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On a Deception Game with Three Boxes 
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Department of Mathematics, University of Malaya, 59100 Kuala Lumpur, Malaysia 

Abstract: This paper clarifies the status of a deception game posed by Spencer. We show the 
value of this game is zero. 

1 Introduction 

Consider the following two-person zero-sum game F~ where n > 2  is an integer. 
Players 1 and 2 are both informed that  n numbers have been drawn, each uniformly 
and independently from the interval [ - 1 ,  1]. Only player 2 is further informed the 
actual  outcome of  the numbers.  These numbers are then dropped into n numbered 
boxes, one in each box. Player  2 doses  the boxes, and labels the lids. At  least n - 1 
of  the lid-labels must equal to the contained numbers,  but  one of  the lids may  be 
labelled arbitrari ly f rom [ - 1 ,  1]. Player 1 then looks at the labels, chooses a box,  
and receives f rom player  2 an amount  equal to the selected box ' s  actual contents. 

The interesting feature here concerns the usefulness of  certain informat ion giv- 
en a piece of  it has been manipula ted  for deception. Obviously,  by ignoring the la- 
bels completely,  player 1 can guarantee himself an expected payof f  of  0 by choosing 
any box. Thus v~ >__ 0 where vn is the value of  F~. Notice that if player 2 is not  allowed 
to falsify any number,  player  1 can get an expected payof f  greater than 0 by choos- 
ing the box with the largest lid-label,  thus obtaining the expectation of  the maximum 
of  the ordered statistics. So the true informat ion in the boxes is valuable to player 1, 
and asking whether vn = 0 is t an tamount  to asking whether the falsification of  one 
out  of  n pieces o f  informat ion  is enough to render the informat ion completely use- 
less to him. It is easy to see v2 = 0 since player 2 can make the two boxes show the 
same lid-label. We will show later that  v, > 0 for n _ 4. So falsifying one out of  two 
pieces of  informat ion can make the informat ion useless. When there are four or 
more  pieces of  informat ion,  falsifying only one cannot make the informat ion use- 
less. What  is then the situation for precisely three pieces of  informat ion? This is the 
problem addressed here and the answer is: In fact, falsifying one out of  three pieces 
of  informat ion can make the whole informat ion useless. 

The deception game F~ is due to Mark  Thompson.  The question whether v3 = 0 
was discussed but  not solved in his Harvard  undergraduate  thesis in 1970. Subse- 
quently, Joel Spencer (1973) posed this question as an open problem in the Ameri-  
can Mathematical Monthly.  He also ment ioned Daniel Klei tman and Shmuel Zamir  
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had independently proved 1)4 > 0. Baston and Bostock (1988) later filled an impor tant  
theoretical gap by proving very general deception games always have a solution. 

The original problem had the box contents drawn from [0, 1], but we have re- 
scaled the interval here to [ -  1, 1]. This permits an easier description of  an opt imal  
strategies for player 2 in F3. In fact, we shall present two opt imal  strategies for player 
2. The elegant mixed opt imal  strategy in Section 2 is constructed based on an idea 
at tr ibuted to Thompson  by Spencer. Thompson has apparent ly  not  published this 
result. Thus a major  aim of  the present paper  is to clarify the status of  this deception 
game in the open literature. We present the simplest pure opt imal  strategy we could 
find in Section 3, and we show vn>0 for n>_4 in Section 4. 

2 A Mixed Optimal Strategy for Player 2 

Let the ordered triples (xi, x2, x3) and (Yl, y2, Y3) denote the contents and lid-labels 
respectively of  the three boxes. Let I denote the interval [ -  1, 1]. A pure strategy for 
player 2 is taken to be a Lebesgue measurable function from 13 to 13 which he uses to 
change (xl,x2, x3) to ( y l , y 2 , y 3 )  such that  y~:=xk for at least two of  the values 
k =  1, 2, 3. A mixed strategy for player 2 is a probabi l i ty  measure over the set of  his 
pure strategies. To prove v3 = 0, it suffices to construct a strategy for player 2, pure 
or mixed, that can hold the expected payof f  of  player 1 to 0. A sufficient condit ion 
on such a strategy is that ,  for each (Yl,Y2, Y3) in 13, the condit ional  expectation 
E[xkl (yl ,  Y2, Y3)] is independent  of  k, that  is, when player t sees (y~, Y2, Y3), he is 
indifferent  between choosing any one of  the three boxes. We will refer this later as 
the indifferent proper ty .  

Let  a, b and c denote the absolute values of  the box contents, ordered f rom the 
largest to the smallest. Let p = (a b + b c) / (a  b + a c) and q = (a c + b c ) / (ab  + a c). Fig- 
ure 1 describes a mixed opt imal  strategy in which player  2 simply uses the probabi l -  
ities within the rectangle to change the sign of  one of  the box contents. The signs + 
and - denote positive and negative box contents; either sign may be used if  the 
contents is 0. I f  a = 0 then necessarily b = c = 0. Notice p and q are not  proper ly  
defined when a = 0  or b = c = 0 .  For  the first case we take the row pat tern 
a , b , c = 0 , 0 , 0 t o b e  , , . For  the second case we may assume a > 0 .  W e t h e n  
take the row pat tern a, b, c=  a, O, 0 to be + ,  - ,  - or - ,  + ,  - depending whether 
the "a" box contents is positive or negative, and define p = 1. 
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Fig. 1. A mixed optimal strategy for player 2. 

The verification that this is an optimal strategy involves checking that, given an ob- 
servation of  any of  the four column patterns, player 1 will receive the same expected 
payoff  irrespective of  which box he chooses. Thus the indifferent property men- 
tioned earlier is satisfied. 

3 A Pure Optimal Strategy for Player 2 

Two mathematically-interesting questions remain concerning F3. Since player 1 has a 
pure optimal strategy, does player 2 also have a pure optimal strategy? What does 
the full set of  the optimal strategies of  player 2 look like? We can answer the first 
question in the affirmative, but we have no answer to the second question. The sec- 
ond problem is equivalent to that of  characterizing all the extreme optimal strategies 
for player 2. A pure optimal strategy is obviously an extreme optimal strategy, but 
the converse is not true. Even the restricted problem of determining all his pure 
optimal strategies lies beyond our reach. 

To construct a pure optimal strategy f for player 2, we introduce the following 
notation. For x, y and z in 1, let [x, y, z] denote all the distinct permutations on x, y 
and z, written as ordered triples. We call [x, y, z] a combination. Two combinations 
are equal if and only if they admit the same permutations; thus [x, y, z] = [x, z, y] 
and so on. Let the box contents be x, y and z, not necessarily given according to the 
order of  the boxes. If  f changes z to t, we denote this symbolically by 
[x, y, z] ~ [x, y, t]. We use the following procedure to describe f and verify it is an 
optimal strategy. 
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(i) Define a partition {Pk} for 13; 
(ii) Define f on each Pe. Take a fixed combination, say [x, y, z], in P~. If  

[x, y, z] --' [x, y, t] by the rule f ,  verify t is in I; 
(iii) Obtain S, the set consisting of  all distinct combinations in Pk which are 

mapped by f to Ix, y, t]; 
(iv) From each combination in S, extract the appropriate triple or triples. Veri- 

fy these triples satisfy the indifferent property, that is, the sum of these 
triples is a triple whose components are all equal. 

We will illustrate the above procedure for one particular case below, and leave 
the verification of  the other cases to the reader. Let A~ denote the set of  triples (or 
combinations) in 13 with exactly k distinct components. Hence 13 = A 1 u A a  uA3.  We 
first deal with the more difficult case A3 where all the triples have distinct compo- 
nents. Let 

B~ = {[x,y, z]: - l < - x < y < 0 ,  y < z  <1}, 
BE = {[--X, --y, --Z]: - - I < x < y < 0 ,  y < z < l } ,  
C~ = {[x,y, Z]: - 1  <x<y<O,  y < z < l  + 2 y } ,  
C2= {[x,y, z]: - l < x < y < 0 ,  1 + 2 y < z _ l } .  

Then A3 is partitioned by B1 and B2, and B1 is partitioned by C1 and C2. We here- 
after assume x < y < z .  

For [x, y, z] e C1, change z to t where 

I x  i f  x + z = 2y, 

t= 2 y - z  i f x + z r  

We now illustrate our procedure for the case x + z r 2y. 

(ii) It is easy to verify t = 2 y - z ~ l ;  
(iii) S = { [x, y, z], [ 2 y - z ,  y, 2 y - x ]  }. By our assumption, [x, y, z] ~S. Since 

- 1 < 2 y -  z < y < 0 and y < 2 y - x  < 1 + 2y, [ 2 y -  z, y, 2y - x] ~ C1. Further- 
more, ( 2 y - z )  + ( 2 y - x )  ~ 2y. By the definition of  f on this combination, 
2 y - x  is changed to 2 y - ( 2 y - x )  =x.  The reader can verify the two combi- 
nations in S are distinct, and no other combinations in C1 can be mapped 
b y f t o  [x, y, 2 y - z ] ;  

(iv) Extract the triples (x, y, z) and ( 2 y - x ,  y, 2 y - z ) .  These two triples, which 
are mapped b y f t o  (x, y, 2 y - z ) ,  satisfy the indifferent property. It is clear 
the remaining five pairs of  triples also satisfy this property. 

For the case x + z = 2y, S = { [x, y, z] }. 
We may take y < 0 in Cz since Cz is empty if y = O. Let C2 = C~ u (C2-C~) 

where 

C~= {[x,y, z]: - 1  < x < y < 0 ,  1 + 2 y < z < l } .  
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For  [x, y, z] ~ C~, change z to t where 

f l + x + y - z  i f z - 2 x - 2 y < _ 3 ,  

t = i _ ( l + z ) / 2  i f z - 2 x - 2 y > 3 .  

We list some propert ies  of  t which are required to verify f works. 

- l < t < 0 ;  
l + 2 x < 2 t  + z - 2 y < 2 t  + z - 2 x <  l. 

There are two separate cases here. 

Case 1: t r x and t r y .  In this case S = { [ x , y , z ] ,  [x, t, 2 t + z -  2 y], 
[y, t, 2 t + z - 2 x ] } .  Notice t is invariant  when x and y are interchanged. This means 
we do not have to check, for example, whether x or t is larger in [x, t, 2 t + z - 2 y ] .  
We have written the combinat ions in S such that  the last component  is the one to be 
changed. 

Case 2: t = x  or t = y .  We summarize the results to be verified in Figure 2 where 
- l < x < y < 0 .  

Conditions Combinations Mapped by Combinations 
in C~ f to required in A 2 

2x+y_> - 2  [x, y, l+y ]  [x, y, x] Ix, l + 2 x -  y, x] 

2 x + y <  - 2  [x, y, - 1 -2x]  [x, y, x] [x, - 1 - 2 y ,  x] 

x+2y>_ - 2  [x, y, 1 +x] [x, y, y] [1 - x + 2 y ,  y, y] 
and 2 y < x  

x + 2y < - 2 [x, y, - 1 - 2y] [x, y, y] [ -  1 - 2x, y, y] 

Fig. 2. The case t = x  or t=y.  

We have to verify, for example, if  - l < x < y < 0  and 2 x + y _ > - 2 ,  then 
[x, y, 1 +x]EC6,  and is the only combinat ion in C6 mapped  b y f t o  [x, y, z]. We omit 
these verifications because they are s traightforward.  We now explain why we include 
column 4 in Figure 2. Recall we define f on C~ by Ix, y, z] ~ Ix, y,  t]. For  certain 
values of  x, y and z, we have t = x  or t = y .  For  the sake of  arguments,  suppose the 
first set of  condit ions holds so that  [x, y, 1 +y]  is mapped  to [x, y, x]. To "balance" 
this combinat ion,  we require a combinat ion in Az,  namely [x, 1 + 2 x - y ,  x], and 
map it also to Ix, y, x] so that  a total  of  two combinat ions in A2 and C~ are mapped  
to Ix, y, x]. These two combinat ions contain nine triples which are then put  into 
three groups,  each with three triples. We then verify each group of  triples satisfies 
the indifferent  property .  Let D1 denote the set o f  combinat ions in A2 required to 
balance the combinat ions in C~ for all possible values of  x and y.  It is impor tant  to 
check all the combinat ions in D1 are distinct to ensure no combinat ion in D1 is re- 
quired more  than once. 
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The expected payoff  received by player 1 is equal to a certain Lebesgue integral 
evaluated over 13. This is in turn equal to the integral evaluated over 13 minus any set 
with measure 0. For [x, y, z] E C~ - C~, x = - 1 or z = 1. It follows that C 2 -  C~ is part 
o f  the boundary of  13 and therefore has measure 0. Hence f may be defined arbi- 
trarily on C2 - C~. Put it another way, the event that the contents of  the three boxes 
fall in C2-C~  has probability measure 0. This event may be disregarded without 
affecting the computation of  the expected payoff  to player 1. 

For [ - x ,  - y ,  - z ]  in BE, define f [ - x ,  - y ,  - z ] = - f [ x ,  y, z]. That is, for 
[ - x ,  - y ,  - z ]  in Bz, change [x, y, z] according to f defined on B1 and then reverse 
the sign of  each component.  It is clear that, since f works for combinations in B1, it 
also works for the combinations in B2. In this case the set of  combinations required 
in A2 is D2, given by D2 = - D 1 .  It can be checked DI riD2 is empty. 

We have defined f on the subsets D~ and D2 of  A2. We now define f on 
A 2 - D ~ - D 2  by [x, x, u] ~ [x, x, x], and we leave all combinations unchanged in A1. 
This completes the construction of  a pure optimal strategy for player 2. 

4 Four or More Boxes  

We show vn > 0 for n _> 4, that is, the falsified information is useful to player 1 when 
there are four or more boxes. Toward this goal, we will construct a strategy for 
player 1, using only the lid-labels (Yl, Y2, Y3, Y4) of the first four boxes, which gua- 
rantees an expected payoff  strictly greater than 0. The basic idea here is player 1 can 
exploit the situation when the contents (x~, x2, x3, x4) of  these four boxes fall in the 
neighborhood of  ( -  1, - 1, 1, 1) (or ( -  1, 1, - 1, 1) et cetera). 

Let e be a small positive number (e = 0.1 will do). Define 

G =  {(x~,x2, x3, x4)eI4: xl < - l + e ,  x2 < - l + e ,  x 3 > _ l - e ,  x 4 -  l - e } ,  
H =  {(x~,x2, x3, x4)eI4: xl <__ - l + e ,  x2--- - l + e ,  x3_ l - e }  
u{(x~,x2 ,  x3, x4)e14: x,<_ - l + e ,  x2_< - l + e ,  x4>_ l - e }  
w{(x~,x2,  xa, x4)~I4: x, < - l + e ,  x3>_ l - e ,  x4~ t - e }  
w{(x l , x2 ,  x3, x4)eI4: x2 < - l + e ,  x3> l - e ,  x4>__ l - e } .  

Let player 1 adopt the mixed strategy: Choose box k (k=  1, 2, 3, 4) with probability 
(1 +yk) / (4+y l  +y2+Y3+Y4) if (Yl,Yz, Y3,Y4)~H; choose each of  the four boxes 
equiprobably otherwise. We leave it to the interested reader to verify a best response 
from player 2 against this mixed strategy is: 

(i) I f  (X1, X2, X3, X4) ~ G, change the smaller of  x~ and x2 to 1; 
(ii) I f  (xa, x2, x3, x 4 ) ~ H - G ,  change the tuple to any feasible tuple in I 4 - H ;  
(iii) I f  (xl, x2, x3, x4)~I 4 - H ,  leave the tuple unchanged. 

In case (ii), a feasible tuple refers to an (y,, Y2, Y3, Y4) satisfying y k = x k  for at 
least three of  the values k =  1, 2, 3, 4. It can be checked that player 1 receives more 
than (Xl + x2 + x3 + x4)/4 if (xl, x:, x3, x4) e G, and receives (xl + xz + x3 + x4)/4 if 
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(X1, X2, X3, X4)El 4 -  G. Since G has a positive measure,  the expected payof f  to player 
1 is strictly greater than 0. This imples Vn > 0 for n_> 4. 
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