
On the existence of good stationary strategies for
nonleavable stochastic games

Piercesare Secchi

Dipartimento di Economia Politica e Metodi Quantitativi, UniversitaÁ di Pavia,
Via San Felice, 5, 27100 Pavia, Italy

Received December 1995/Final version 1997

Abstract. This paper discusses the problem regarding the existence of optimal
or nearly optimal stationary strategies for a player engaged in a nonleavable
stochastic game. It is known that, for these games, player I need not have
an e-optimal stationary strategy even when the state space of the game is
®nite. On the contrary, we show that uniformly e-optimal stationary strategies
are available to player II for nonleavable stochastic games with ®nite state
space. Our methods will also yield su½cient conditions for the existence of
optimal and e-optimal stationary strategies for player II for games with
countably in®nite state space. With the purpose of introducing and explaining
the main results of the paper, special consideration is given to a particular
class of nonleavable games whose utility is equal to the indicator of a subset of
the state space of the game.
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1. Introduction

Let S be a countable nonempty set of states, A and B two ®nite nonempty sets
of actions for players I and II respectively and q a law of motion which assigns
to each triple �x; a; b� A S � A� B a probability distribution de®ned on the
subsets of S. On S de®ne a bounded, real valued function u called the utility
function. Consonant with Maitra and Sudderth [1992] S;A;B; q and u de®ne a
zero-sum, nonleavable stochastic game whose dynamics we can describe as
follows. Given an initial state x A S, player I chooses, possibly at random, an
action a1 A A, player II chooses, possibly at random, an action b1 A B and the
game moves to its next state X1 according to the probability distribution
q��jx; a1; b1�. The new state X1 is announced to both players along with their
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chosen actions. By iterating this procedure a random sequence of states
x;X1;X2; . . . is produced and the payo¨ from player II to player I is ®xed to
be the expected value of

u� � lim sup
n!y

u�Xn�:

Maitra and Sudderth [1992] proved that any nonleavable game has a
value, but the question about the existence of good stationary strategies for one
or both players is still open in its complete generality. Our main result asserts
that in any nonleavable game with ®nite state space there is a uniformly e-
optimal stationary strategy available to player II. An example of Nowak and
Ragahvan [1991] implies that this result cannot be extended to nonleavable
games with countably in®nite state space. However our methods will also
yield su½cient conditions for the existence of good stationary strategies for
player II: for example, we will show that a uniformly optimal stationary
strategy is always available to player II when the value function V of the
nonleavable game is greater than or equal to its utility function u. If
V�x� < u�x� for some x A S there need not be an optimal strategy for player II
even when the state space of the game is ®nite.

The same results do not hold for player I since Maitra and Sudderth [1996]
showed with an example that, even when S is ®nite, there need not be an e-
optimal stationary strategy available to player I for a given initial state of the
game.

The techniques used in the paper are those of Maitra and Sudderth [1992,
1996] and, in general, of the theory of gambling. In the next section we will set
notation and terminology, which will follow that of Maitra and Sudderth
[1996], and we will recall a few general results about leavable and nonleavable
stochastic games. Section 3 examines the question as to whether stationary
strategies exist for one or both players with respect to a special class of non-
leavable games, namely those with utility function equal to a subset of the
state space S: the section should be considered as an introduction to the main
results of the paper which are presented in Section 4. A concluding remark
will close the paper.

2. Preliminaries

Let Z � S � A� B and de®ne H � Z � Z � � � � to be the space of histories
or sequences h � �z1; z2; . . .� of elements of Z. For n � 1; 2; . . . a partial
history of length n is a sequence p � �z1; . . . ; zn� of n elements of Z. A strat-
egy a for player I is a sequence a0; a1; . . . such that a0 is an element of P�A�,
the collection of all probability distributions de®ned on the subsets of A, and,
for n � 1; 2; . . . ; an is a mapping which assigns to each partial history p of
length n an element of P�A�. Strategies b for player II are de®ned in the
same way with B in place of A. A family of strategies a for player I is a map-
ping from S to the collection A of all available strategies for player I; that
is, for every x A S; a�x� is a strategy for player I. A family of strategies a for
player I is called stationary if there exists a function m from S to P�A� such
that
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a�x�0 � m�x�;

a�x�n�z1; . . . ; zn� � m�xn�

for any integer n; x A S and z1 � �x1; a1; b1�; . . . ; zn � �xn; an; bn�. We write
a � my. Analogous de®nitions and notations hold for player II.

Given an initial state x A S, the law of motion q along with a strategy a
for player I and a strategy b for player II determines a probability distribution
Px;a;b on the sigma-®eld of subsets of H generated by the coordinate functions

Zn�z1; z2; . . . ; zn; . . .� � zn

for n � 1; 2; . . . : The expected value of a bounded, Borel measurable function
g from H to the reals will be indicated with

�
gdPx;a;b or Ex;a;bg.

If a is a strategy and p � �z1; . . . ; zn� is a partial history of length n, the
conditional strategy a� p� is de®ned by

a� p�0 � an�p�;

a� p�m�z01; . . . ; z0m� � an�m�z1; . . . ; zn; z
0
1; . . . ; z0m�

for all mV 1 and �z01; . . . ; z0m�.
A stopping time t is a mapping from H to f0; 1; . . .gW fyg such that if h0

agrees with h in the ®rst t�h� coordinates, then t�h0� � t�h�. A stopping time
which is everywhere ®nite is called a stop rule. Let t be a stop rule and
p � �z1; . . . ; zn� a partial history of length n; if t�z1; . . . ; zn; z

0
1; z
0
2; . . .�V n for

any history h0 � �z01; z02; . . .�, we de®ne the conditional stop rule t� p� by setting

t� p��z01; z02; . . .� � t�z1; . . . ; zn; z
0
1; z
0
2; . . .� ÿ n:

When t is a non-zero stop rule, de®ne on H the function pt by setting, for
every history h � �z1; z2; . . .�; pt�h� � �z1; . . . ; zt�h��. If g is a bounded, Borel
measurable function from H to the reals, we will make frequent use of the
following conditioning formula,

Ex;a;bg �
�
fEXt;a� pt�;b� pt��gpt�g dPx;a;b; �2:1�

where, for every h A H; gpt�h� is de®ned by

gpt�h��z01; z02; . . .� � g�z1; . . . ; zt�h�; z01; z
0
2; . . .�:

The same formula holds even when t is a non-zero stopping time such that
Px;a;b�t <y� � 1.

Finally we introduce the one-day operator G de®ned, for every bounded,
real-valued function f on S and for every x A S, by

�Gf��x� � inf
n

sup
m

Ex;n;mf; �2:2�
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where m and n range over P�A� and P�B� respectively and

Ex;m;nf �
X
a AA

X
b AB

X
x1 AS

f�x1�q�x1jx; a; b�mfagnfbg:

By von Neumann's Theorem [von Neumann and Morgenstern, 1947],
�Gf��x� is the value of the one-day game A�f��x� where x is the initial state,
players I and II choose, possibly at random, actions a A A and b A B respec-
tively, and the game moves according to the law of motion q to the new state
X1; ®nally II pays I the expected value of f�X1�. The same result by von
Neumann proves also the existence of optimal randomized actions m A P�A�
and n A P�B� for players I and II respectively.

We are now in the position to de®ne the notions of leavable and non-
leavable stochastic game. Given S;A;B; u and q the leavable game L�u��x�
with initial position x A S is a game where player I chooses a strategy a AA
and a stop rule t, player II chooses a strategy b A B, and II pays to I the
quantity Ex;a;bu�Xt�. When I is not allowed to stop, the game N�u��x� where
the payo¨ from II to I is Ex;a;bu� is called nonleavable.

Maitra and Sudderth [1992] proved that, for every x A S,

inf
b

sup
a;t

Ex;a;bu�Xt� � sup
a;t

inf
b

Ex;a;bu�Xt� � U�x�

and

inf
b

sup
a

Ex;a;bu� � sup
a

inf
b

Ex;a;bu� � V�x�:

The functions U and V are the values of the games L�u� and N�u� re-
spectively. Given an initial state x A S, a strategy a AA is optimal (e-optimal)
for player I forN�u��x� if

Ex;a;bu�VV�x� �Ex;a;bu�VV�x� ÿ e�;

for any strategy b of player II. By reversing the inequalities we obtain analo-
gous de®nitions for optimal (e-optimal) strategies for player II.

In Section 3 we will be concerned with a special class of nonleavable
games, namely those where u is the indicator function of a subset W of S. In
this case the expressions above have a particular meaning. It is in fact easy to
check that if, for every x A S; u�x� � I �x A W �, then

U�x� � inf
b

sup
a

Px;a;b�reachW � � sup
a

inf
b

Px;a;b�reachW �

where [reach W ] is the event that is true if Xn A W for some nV 0. The ex-
pression of V�x� becomes instead

V�x� � inf
b

sup
a

Px;a;b�Xn A W infinitely often�

� sup
a

inf
b

Px;a;b�Xn A W infinitely often�
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since, for every history h � ��x1; a1; b1�; �x2; a2; b2�; . . .� A H,

u��h� � lim sup
n!y

u�xn� � 1 if xn A W infinitely often,

0 otherwise.

�

Considerable use will be made of the following lemma, due to Maitra and
Sudderth [1992], which characterizes the value function of a leavable game.

2.3 Lemma. The value function U for the leavable game L�u� solves the opti-
mality equation

U � u4GU ;

and is the least, bounded, real valued function f de®ned on S such that

�a� fV u and �b� GfU f:

In order to introduce a similar characterization for the value V of a non-
leavable game N�u� we need to de®ne an operator T which maps every
bounded, real valued function u de®ned on S to the bounded, real valued
function Tu de®ned, for every x A S, by

Tu�x� � �GU��x�

where U is the value of the leavable game L�u�. The operator T has many
properties for which we refer to Maitra and Sudderth [1996, Chapter 7]. In
this paper we will need the following two properties of T .

2.4 Lemma. Let u; u1 and u2 be bounded, real valued functions de®ned on S and
let c be a nonnegative real number. Then

(i) If u1 U u2;Tu1 UTu2.
(ii) T�cu� � cTu.

The proof of (i) and (ii) above is trivial and follows immediately from the
de®nitions of the operators T and G. By means of the operator T Maitra and
Sudderth [1992] characterized the function V as it is shown in the next lemma.

2.5 Lemma. The value function V for the nonleavable game N�u� is the largest,
bounded, real valued function f de®ned on S such that

T�u5 f� � f:

Here is an immediate consequence of Lemma 2.5.

2.6 Lemma. The value function V for the nonleavable game N�u� is also the
value function for the nonleavable game N�u5V�.
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Proof: Let V 0 be the value of the nonleavable game N�u5V�. Clearly
V 0UV since u5V U u. On the other hand,

V � T�u5V� � T��u5V�5V�

so that V UV 0 by Lemma 2.5. G

Before concluding the section we want to recall a formula which is due
to Sudderth [1971]. Let x A S and a and b be strategies for player I and II
respectively. Then for every bounded, real-valued function u de®ned on S

Ex;a;bu� � inf
s

sup
tVs

Ex;a;bu�Xt� �2:7�

where s and t range over the set of stop rules.

3. Reaching a set in®nitely often

In this section we will consider a special class of nonleavable stochastic games
with utility function equal to the indicator of a subset of the state space.

Let S be a countable nonempty set of states and assume that W is a non-
empty subset of S. For every x A S, set u�x� � I �x A W �. De®ne, as before, U
to be the value function of the leavable game L�u� and V to be the value
function ofN�u�. In the gameN�u� the aim of player I is to choose a strategy
which maximizes her probability of reaching the set W in®nitely often, while
player II seeks a strategy which minimizes the same quantity. When W has
only one element, we will prove that player II always has an optimal station-
ary family of strategies, whereas player I need not have a stationary strategy
which is e-optimal for a given initial state. However if W has more than one
element there need not be an optimal strategy, and hence not even an optimal
stationary strategy, for player II even when the state space of the game is
®nite.

We will begin with a zero-one result which states that, if u is the indicator
of a subset W , then either supx A W V�x� � 1 or V 1 0.

3.1 Theorem. Let W be a nonempty subset of S and, for every x A S, set
u�x� � I �x A S�. If supx AW V�x� < 1, then V 1 0.

Proof: Let p � supx AW V�x� < 1 and consider the nonleavable game N�pu�
which has the same state space, action sets and law of motion as N�u�, but
utility pu. Write V 0 for the value ofN�pu�.

We claim that

V 0 � pV : �3:2�

In fact note that, for every history h � ��x1; a1; b1�; �x2; a2; b2�; . . .� A H,

� pu���h� � lim sup
n!y

�pu��xn� � p lim sup
n!y

u�xn� � � pu���h�:
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For every e > 0 and x A S, let ae�x� be an e-optimal strategy for player I in the
game N�u��x�. Then

Ex;ae�x�;b�pu�� � pEx;ae�x�;bu�V p�V�x� ÿ e�

for all x A S and all strategies b of player II; therefore V 0�x�V pV�x�. Anal-
ogously, by considering the game from player II's point of view, one can show
that V 0�x�U pV�x� for all x A S and this proves that V 0 � pV .

However it is also true that

V UV 0 �3:3�

since, by Lemma 2.6, V is the value of N�u5V� and u5V U pu because
V�x�U p for all x A W .

Equations (3.2) and (3.3) imply that V � pV and thus V 1 0 because
p < 1. G

When the set W is ®nite, the previous theorem asserts that either there is
an x A W such that V�x� � 1 or V 1 0. In particular if g is an element of S,
which we may call the goal, and W � fgg, then either V�g� � 1 or V 1 0. In
both cases there is an optimal stationary family of strategies available to
player II: this is the content of Theorem 3.6 below. Before proving it we want
however to show a result which conveys the idea that, in order to reach a goal
g in®nitely often, one must ®rst reach g and then return to g in®nitely often.
The same result was proved by Sudderth [1969] for nonleavable gambling
problems with a goal.

3.4 Theorem. Let g A S and set, for every x A S; u�x� � I �x � g�. Then, for
every x A S,

V�x� � U�x�V�g�: �3:5�

Proof: Since W � fgg, Theorem 3.1 implies that either V 1 0 or V�g� � 1.
If V 1 0, then (3.5) is obviously true.
If V�g� � 1, then proving (3.5) reduces to showing that V � U . Since it is

always true that V UU , we need to prove that in the present situation it is
also V VU . Notice ®rst that V�g� � u�g� � 1 implies that V V u. Therefore

V � T�u5V� � Tu � GU

and thus

GV � G�GU�UGU � V

where the inequality is true because GU UU , by Lemma 2.3, and because it is
trivial to show that Gu1 UGu2 if u1 U u2 are two bounded, real valued func-
tions on S. But then, by Lemma 2.3 again, V VU . G

Let n be a function which maps every x A S to a probability measure be-
longing to P�B� which is optimal for player II in the one-day game A�U��x�
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and consider the stationary family of strategies ny. Maitra and Sudderth
[1992] proved that ny is always optimal for player II for the leavable game
L�u�. The next theorem shows that ny is also optimal for player II forN�u�
when u is the indicator function of a point.

3.6 Theorem. Let g A S and, for every x A S, set u�x� � I �x � g�. Then ny is an
optimal stationary family of strategies for player II for N�u�.

Proof: Once again, because of Theorem 3.1, there are only two mutually ex-
clusive cases to be considered.

Case 1: V�g� � 1. Fix x A S and a strategy a for player I. Then the sequence
fU�Xn�g is a bounded supermartingale with respect to Px;a;ny�x�. In fact U is
bounded between 0 and 1, and, for any nV 0,

Ex;a;ny�x��U�Xn�1�jX1; . . . ;Xn� � EXn;a� pn�0;n�Xn�U

U �GU��Xn�

UU�Xn�

where the ®rst inequality is true because n�Xn� is optimal for player II in the
one-day game A�U��Xn� whose value is �GU��Xn�, whereas the second in-
equality follows from Lemma 2.3. By Doob's Optional Sampling Theorem
[Doob, 1953] we thus have that, for any stop rule t,

Ex;a;ny�x�u�Xt�UEx;a;ny�x�U�Xt�UU�x� � V�x�

where the ®rst inequality holds because uUU while the last equality is true
because of (3.5). Applying formula (2.7), we get

Ex;a;ny�x�u� � inf
s

sup
tVs

Ex;a;ny�x�u�Xt�

U sup
tV0

Ex;a;ny�x�u�Xt�

UV�x�:

Since this is true for every x A S and for all strategies a of player I, we have
proved that ny is optimal for player II in this case.

Case 2: V 1 0. In order to prove that ny is optimal for player II we will show
that, for every x A S and for all strategies a of player I,

Px;a;ny�x��Xn � g infinitely often� � 0:

First notice that, since V�g� � 0, then �GU��g� < 1. In fact, set V0 �
Tu � GU . By way of contradiction, assume that V0�g� � 1. Then V0 V u, so
that

T�u5V0� � Tu � V0
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and thus V0 UV by Lemma 2.5. But this implies that V�g� � 1 contradicting
the assumption that V 1 0.

Set

d � 1ÿ �GU��g�
2

> 0:

Then, for all l A P�A�,

�GU��g�VEg;l;n�g�U

�
�
fU�X1�<�GU��g��dg

U�X1� dPg;l;n�g�

�
�
fU�X1�V�GU��g��dg

U�X1� dPg;l;n�g�

V ��GU��g� � d�Pg;l;n�g��U�X1�V �GU��g� � d�:

Therefore

Pg;l;n�g��U�X1� < 1ÿ d� � Pg;l;n�g��U�X1� < �GU��g� � d�

V 1ÿ �GU��g�
�GU��g� � d

V
d

1� d
> 0 �3:7�

for all l A P�A�. This says that, if player II uses ny, whenever the process
fXng reaches the goal g there is a strictly positive probability that the follow-
ing state of the game will belong to set fx A S : U�x� < 1ÿ dg.

Now ®x x A S and a strategy a for player I; for the sake of simplicity we
will write P for the probability Px;a;ny�x� and E for the expected value com-
puted according to P. Notice that, as in Case 1, the sequence fU�Xn�g is a
bounded supermartingale with respect to P and therefore converges almost
surely with respect to P.

Equation (3.7) and the almost sure convergence of the sequence fU�Xn�g
imply that P�Xn � g infinitely often� � 0 since, if this was not the case, the
supermartingale fU�Xn�g would downcross the interval �1ÿ d; 1� in®nitely
often with positive probability and therefore would not converge on a set of
histories of probability greater than zero.

To make the argument more precise let

D � fh A H : Xn�h� � g infinitely ofteng

and de®ne a sequence of stopping times ftng by setting

t0 � inffnV 0 : Xn � gg
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and, for any nV 1,

tn � inffn > tnÿ1 : Xn � gg:

Then D �7y
i�0fti <yg. For any nV 1, de®ne the set

An � fh A H : U�Xn�h�� < U�Xnÿ1�h�� ÿ dg

If h � �h1; h2; . . .� A D,

Xy
n�1

P�An�1jX1; . . . ;Xn��h� �y

since, for every j V 1;Xtj�h��h� � g;U�Xtj�h��h�� � 1 and thus, by (3.7),

P�Atj�1jX1; . . . ;Xtj
��h� � Pg;atj �h��h1;...;htj �h��;n�g��U�X1� < 1ÿ d�V d

1� d
> 0:

Therefore

DJ fh A H :
Xy
n�1

P�An�1jX1; . . . ;Xn��h� �yg

and

P�D�UP�
Xy
n�1

P�An�1jX1; . . . ;Xn� �y� � P�An infinitely often�

where the last equality holds because of the Extended Borel-Cantelli Lemma
[Breiman, 1968]. However, if h A fAn infinitely ofteng, then fU�Xn�h��g does
not converge. Hence

P�An infinitely often� � 0

and P�D� � 0. G

3.8 Remark: When u is the indicator of a ®nite subset W of the state space S,
the result of the previous theorem is still true in the sense that an optimal
stationary family of strategies is available to player II if V�x� � 1 for all
x A W or if V 1 0. When the former hypothesis is true, V V u so that the re-
sult becomes a special case of Theorem 4.1 which will be proved in the next
section. If V 1 0, then W � fx A S : V�x� < u�x�g and thus, for games with
®nite state space, the result follows immediately from part (i) of Lemma 4.9 of
the next section. If S is countably in®nite, W is ®nite and V 1 0, it is still true
that player II has an optimal stationary family of strategies. To prove this
claim one may follow the argument which will be sketched in Remark
4.14 G

The previous theorem settles a½rmatively the question about the existence
of an optimal stationary family of strategies for player II when W � fgg. The
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situation is di¨erent for player I. Obviously, if V 1 0, any strategy is optimal
for player I. However Example 7.13.4 of Maitra and Sudderth [1996], a vari-
ation of an example of Kumar and Shiau [1981], shows that, even when S is
®nite, player I need not have an e-optimal stationary strategy at a ®xed initial
state of the game if V�g� � 1.

When W has more than one element, there need not be an optimal strategy
for player II even if the state space S is ®nite. This follows from Example
7.13.5 of Maitra and Sudderth [1996] which is another variation of the exam-
ple of Kumar and Shiau. In the next section we will prove however that in
nonleavable games with ®nite state space, for any e > 0, player II has a sta-
tionary family of strategies which is e-optimal. This result cannot be extended
to games with countably in®nite state space since, by modifying an example of
Nowak and Raghavan [1991], Maitra and Sudderth [1996, Example 7.13.6]
got a nonleavable game with countably in®nite state space in which no e-
optimal stationary family of strategies exist for player II.

4. Stationary strategies for player II

Let us now return to the general nonleavable stochastic gameN�u� where u is
a real valued bounded function de®ned on a state space S, player I chooses a
strategy a, player II chooses a strategy b and the payo¨ from II to I is Ex;a;bu�
when x is the initial state of the game.

The main property of the stationary family ny, which in the previous sec-
tion we showed to be optimal for II when u is the indicator of an element
g A S, is to keep the value V ofN�u� from increasing along the way. To make
this idea more precise given the initial state x A S of N�u� and a real valued,
bounded function f de®ned on S, say that a strategy b of player II conserves f
at x if, for any strategy a of I, Ex;a0;b0

fU f�x� and, for any nV 1 and any
partial history p � ��x1; a1; b1�; �x2; a2; b2�; . . .� of length n, EXn;a� p�;b� p�fU
f�Xn�. When u is the indicator of a g A S, the stationary family ny conserves
the value V of N�u� at every x A S. However this property alone was not
su½cient to prove optimality of ny. In fact if V 1 0 any strategy of II con-
serves V ; optimality of ny followed in this case from the fact that, no matter
what the strategy of player I is, the set fgg is reached in®nitely often on a set
of histories of probability zero, as we proved in Case 2 of Theorem 3.6. Note
that, when V 1 0; fgg coincides with the set of states where V < u while this
latter set is empty if V�g� � 1.

For a general nonleavable gameN�u� de®ne a partition of the state space
S by setting

W 0 � fx A S : V�x� < u�x�g and W 1 � fx A S : V�x�V u�x�g:

When W 0 is empty, we will prove with Theorem 4.1 that ny is still optimal
for II. When W 0 is nonempty and the state space of N�u� is ®nite, for
any e > 0 we will construct a stationary family n for II such that, regardless
of the strategy of I, the probability of reaching W0 in®nitely often is zero and
n conserves at every x A S a function f whose distance from V is less than
e=2. It will follow from Theorem 4.16 that n is an e-optimal stationary family
for II.
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4.1 Theorem. If W 0 � j; ny is optimal for player II.

Proof: When W 0 � j;V�x�V u�x� for every x A S. Since GU � V0 VV , this
implies that GU V u. But G�GU�UGU since GU UU by Lemma 2.3 and it
is trivial to show that Gu1 UGu2 if u1 U u2 are two bounded, real valued
functions de®ned on S. Hence, by Lemma 2.3 again, U UGU and thus
U � GU . Notice that

T�u5U� � Tu � GU � U

and thus, by Lemma 2.5, U UV . Since it is always true that V UU , this
proves that V � U when W 0 � j.

Now note that, for every x A S and for every g A P�A�,

Ex;g;n�x�U U �GU��x�UU�x�

where the ®rst inequality holds because n�x� is optimal in the one-day game
A�U��x� whose value is �GU��x� and the second inequality is true because of
Lemma 2.3. This is enough to prove that fU�Xn�g is a bounded super-
martingale with respect to Px;a;ny�x� for every x A S and for all strategies a of
player I.

Now ®x x A S and a strategy a for player I. By Doob's Optional Sampling
Theorem [Doob, 1953] we have that, for any stop rule t,

Ex;a;ny�x�u�Xt�UEx;a;ny�x�U�Xt�UU�x� � V�x�

where the ®rst inequality follows from the fact that uUU . Therefore,
applying formula (2.7), we get

Ex;a;ny�x�u� � inf
s

sup
tVs

Ex;a;ny�x�u�Xt�

U sup
tV0

Ex;a;ny�x�u�Xt�

UV�x�:

Being this true for every x A S and for all strategies a of player I, we have
proved that ny is optimal for player II. G

4.2 Remark: Assume that u is the indicator of a subset W of S. Then W 0 � j
if and only if V�x� � 1 for every x A W ; therefore the theorem proves that,
when this last condition is satis®ed, an optimal stationary family of strategies
is available to player II. This covers, for example, Case 1 of the proof of
Theorem 3.6. G

De®ne a sequence of functions fVng by setting V0 � Tu and, for any
nV 1;Vn � T�u5Vnÿ1�. By the de®nition of the operator T ;V0 � GU where
U is the value of the leavable game L�u�. For any nV 1, let U n be the value
of the leavable game L�u5Vnÿ1�. Then, for any nV 0;Vn � GU n if we set
U 0 � U .
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For any given x A S; fVn�x�g is a decreasing sequence of numbers bounded
between V�x� and U�x�. The same is true for the sequence fU n�x�g as the
next lemma implies.

4.3 Lemma. For all nV 1,

u5Vnÿ1 UU n UVnÿ1 � GU nÿ1 UU nÿ1:

Therefore

U n�x� � Vnÿ1�x� � �GU nÿ1��x�

if Vnÿ1�x�U u�x�.

Proof: For all nV 1;Vnÿ1 � GU nÿ1 UU nÿ1, where the ®rst equality is true
by de®nition whereas the second follows from Lemma 2.3. Since Vnÿ1 V
u5Vnÿ1 and GVnÿ1 � G�GU nÿ1�UGU nÿ1 � Vnÿ1, from Lemma 2.3 again
it follows that U n UVnÿ1. But U n is the value of L�u5Vnÿ1� and thus
U n V u5Vnÿ1.

Note that, if x A S and Vnÿ1�x�U u�x�, then �u5Vnÿ1��x� � Vnÿ1�x� and
thus U n�x� � Vnÿ1�x�. G

In general the sequence fVng does not converge to the value function V of
N�u�. However, when S is ®nite, Maitra and Sudderth [1996] proved that

V � lim
n!y

Vn: �4:4�

In the rest of the section we will assume that S is ®nite and that the set W 0 is
nonempty.

For every x A W 0, de®ne l � l�x� to be the ®rst integer greater than or
equal to zero such that Vl�x� < u�x�.

4.5 Lemma. For every x A W 0,

�GU l��x� < U l�x�:

Proof: Let x A W 0. If l�x� � 0, then �GU��x� � V0�x� < u�x�UU�x�. If
l�x�V 1, then

Vl�x� < u�x�UVlÿ1�x�

and thus

�GU l��x� � Vl�x� < �u5Vlÿ1��x�UU l�x�

where the last inequality follows form the fact that U l is the value of
L�u5Vlÿ1�. G
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4.6 Remark: If u is the indicator of a set W , then W 0 JW . In this case, let us
de®ne

W0 � fx A W 0 : �GU��x� < U�x�g

and, for any nV 1,

Wn � fx A W0 ÿ 6
nÿ1

j�1
Wj : �GU n��x� < U n�x�g:

Then it is su½cient to assume that W is ®nite for proving that, when W 0 is
nonempty, there is a k V 0 such that W0; . . . ;Wk are all nonempty and

W 0 � 6
k

j�1
Wj

even when S is countably in®nite. G

We are now ready to de®ne the stationary family n which we will prove to
be e-optimal for player II when the state space S of the game is ®nite and W 0

is nonempty.
Let

k � maxfl�x� : x A W 0g: �4:7�

Fix e > 0 and let m be an integer greater than k. De®ne m� 1 quantities
h0; . . . ; hm by setting

h0 �
1

2
�minfU�x� ÿ �GU j��x� : x A W 0; j A f0; . . . ;mg;

�GU j��x� < U j�x�g5 e�

and, for any i A f1; . . . ;mg.

hi �
1

2
�minfU i�x� ÿ �GU j��x� : x A W 0; j A fi; . . . ;mg;

�GU j��x� < U j�x�g5 hiÿ1�

where we use the convention that minfjg �y. Note that

0 < hm < hmÿ1 < � � � < h0 U
e

2
:

Now de®ne a real valued, bounded function f by setting, for every x A S,

f�x� � minfU i�x� ÿ hi : i A f0; . . . ;mgg:

74 P. Secchi



If x A W 1 let r � r�x� be such that f�x� � U r�x� ÿ hr, but if x A W 0 set

r�x� � maxf0U j Um : �GU j��x� < U j�x�g:

Note that, for every x A W 0; r�x� is well de®ned and is greater than or equal to
l�x� because of Lemma 4.5. Note also that, if x A W 0 and r�x� < m, then

�GU m��x� � U m�x� � �GU mÿ1��x� � U mÿ1�x�

� � � � � �GU r��x� < U r�x�U � � � UU�x�: �4:8�

In fact since l U r, for every i A fr� 1; . . . ;mg,

Viÿ1�x�UVl�x� < u�x�

and thus

U i�x� � Viÿ1�x� � �GUiÿ1��x� � Uiÿ1�x�

where the ®rst equality follows from Lemma 4.3, the second one is true by the
de®nition of Viÿ1 and the last equality holds because of the way we de®ned
r�x�.

Finally, for every x A S, let

l�x� � nr�x�

where, for any 0U j Um; nj is a function which maps every x A S to an ele-
ment of P�B� which is optimal for player II in the one-day game A�Uj��x�.
Note that the function l depends on the quantity e and on the integer mV k
which were both chosen before. De®ne n � n�m;e� � ly.

4.9 Lemma. For all x A S and for all strategies a of player I,
(i)

Px;a;n�x��Xn A W 0 infinitely often� � 0

and
(ii)

Ex;a;n�x�u�UU m�x� � e

2
:

Proof: Let n � n�m;e�. In order to prove part (i) of the lemma we will show
that, for all x A S and for all strategies a of player I, the sequence ff�Xn�g is a
bounded supermartingale with respect to Px;a;n�x� which does not converge
on a set of probability greater than zero if the process fXng visits the set W 0

in®nitely often with positive probability.
Let M � supx AS ju�x�j.
Proving that ff�Xn�g is a bounded supermartingale with respect to

Px;a;n�x�, for all x A S and for al strategies a of player I, is tantamount to
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showing that

Ex;g;nr�x�fU f�x�

for all x A S and for all g A P�A�.
If x A W 1 then

Ex;g;nr�x�fUEx;g;nr�x�U
r ÿ hr U �GU r��x� ÿ hr UU r�x� ÿ hr � f�x�

for all g A P�A�, where the last equality follows by the way we de®ned
r � r�x�.

Let now x A W 0. Then

Ex;g;nr�x�fUEx;g;nr�x�U
r ÿ hr U �GU r��x� ÿ hr U f�x�

for all g A P�A� where the last inequality is true because, for every
i A f0; . . . ;mg,
�GU r��x� ÿ hr UU i�x� ÿ hi: �4:10�

In fact �GU r��x� < U r�x� so that, for i A f0; . . . ; rg, we obtain (4.10) by
noticing that

hi ÿ hr Uhi

UminfU i�x� ÿ �GU j��x� : x AW 0; j A fi; . . . ;mg; �GU j��x�<U j�x�g

UU i�x� ÿ �GU r��x�:

On the other hand, if r < m and i A fr� 1; . . . ;mg, then equation (4.8) implies
that U i�x� � �GU r��x� and thus (4.10) holds in this case because hr ÿ hi > 0.

Hence ff�Xn�g is a bounded supermartingale with respect to Px;a;n�x� and
thus converges with Px;a;n�x� probability one, for all x A S and for all strategies
a of player I.

Set now hm�1 � 0 and let

d � 1

2
minfhj ÿ hj�1 : j A f0; . . . ;mgg > 0:

We want to show that, for all x A W 0,

Px;g;nr�x��f�X1�U f�x� ÿ d�V d

2M � d
> 0 �4:11�

for all g A P�A�.
Let x A W 0. Then

�GU r��x� ÿ hr � dU f�x� ÿ d �4:12�
since, for every i A f0; . . . ;mg,
�GU r��x� ÿ hr � dUU i�x� ÿ hi ÿ d: �4:13�
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In fact �GU r��x� < U r�x� so that, if i A f0; . . . ; rg, by the de®nitions of d and
hi,

dU
hm

2
U

hi

2
U
�U i�x� ÿ �GU r��x�� ÿ �hi ÿ hr�

2
:

On the other hand, if r < m and i A fr� 1; . . . ;mg, we know from equations
(4.8) that U i�x� � �GU r��x� and thus (4.13) follows in this case from the fact
that

dU
hiÿ1 ÿ hi

2
U

hr ÿ hi

2
:

Now note that, since ÿM U uUM, then ÿM UV UU UM and thus

0UM � V UM � Vr �M � �GU r�UM �U r UM �U U 2M:

Therefore

�GU r��x� �M VEx;g;nr�x�U
r �M

�
�
fU r�X1�U�GU r��x��dg

�U r�X1� �M� dPx;g;nr�x�

�
�
fU r�X1�>�GU r��x��dg

�U r�X1� �M� dPx;g;nr�x�

V ��GU r��x� �M � d�Px;g;nr�x��U r�X1� > �GU r��x� � d�

for all g A P�A�. Hence, by (4.12) and the de®nition of f.

Px;g;nr�x��f�X1�U f�x� ÿ d�VPx;g;nr�x��f�X1�U �GU r��x� ÿ hr � d�

VPx;g;nr�x��U r�X1�U �GU r��x� � d�

V 1ÿ �GU r��x� �M

�GU r��x� �M � d

>
d

2M � d

for all g A P�A�.
Having proved that (4.11) holds for all x A W 0 and for all g A P�A� we will

now show that, for every x A S,

Px;a;nr�x��Xn A W 0 infinitely often� � 0

for any strategy a of player I.
Fix an initial state x A S and a strategy a for player I and write P for

Px;a;n�x�.
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Let

D � fh A H : Xn�h� A W 0 infinitely ofteng

and de®ne a sequence of stopping times ftng by setting

t0 � inffnV 0 : Xn A W 0g

and, for any nV 1,

tn � inffn > tnÿ1 : Xn A W 0g:

Then D �7y
i�0fti <yg. For every nV 1, de®ne the set

An � fh A H : f�Xn�h��U f�Xnÿ1�h�� ÿ dg:

If h � �h1; h2; . . .� A D.

Xy
n�1

P�An�1jX1; . . . ;Xn��h� �y

since, for every j V l; y � Xtj�h��h� A W 0 and thus, by (4.11),

P�Atj�1jX1; . . . Xtj
��h� � Py;atj �h��h1...htj �h��;nr�y��f�X1�U f�y� ÿ d�

V
d

2M � d
> 0:

Therefore

DJ h A H :
Xy
n�1

P�An�1jX1; . . . Xn��h� �y

( )

and

P�D�UP
Xy
n�1

P�An�1jX1; . . . ;Xn� �y

" #
� P�An infinitely often�

where the last equality holds because of the Extended Borel-Cantelli Lemma
[Breiman, 1968]. However, if h A fAn infinitely ofteng, then ff�Xn�h��g does
not converge. Hence

P�An infinitely often� � 0:

This proves that P�D� � 0 and concludes the proof of part (i) of the lemma.
Now de®ne a function u1 by setting, for every x A S,

u1�x� � u�x�I �x A W 1� ÿMI �x A W 0�:
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Note that u1 U f� h0. In fact, if x A W 1,

u�x�UV�x�UU m�x�UU mÿ1�x�U � � �UU�x�

and thus, for every i A f0; . . . ;mg,

u1�x� ÿ h0 � u�x� ÿ h0 UU i�x� ÿ h0 UU i�x� ÿ hi

which shows that f�x� � h0 V u1�x�. On the other hand, if x A W 0; f�x�V
ÿM ÿ h0 � u1�x� ÿ h0.

Let u�1 � lim supn!y u1�Xn�. Because of part (i), which has already been
proved,

Px;a;n�x��u� � u�1� � 1

for all x A S and for all strategies a of player I. Therefore, for all x A S and for
all strategies a of player I, by applying formula (2.7), we get

Ex;a;n�x�u� � Ex;a;n�x�u�1

� inf
s

sup
tVs

Ex;a;n�x�u1�Xt�

U sup
tV0

Ex;a;n�x�u1�Xt�

U sup
tV0

Ex;a;n�x�f�Xt� � h0

U f�x� � h0

UU m�x� � h0 ÿ hm

UU m�x� � e

2

where the third inequality holds because of Doob's Optional Sampling Theo-
rem [Doob, 1953] and the last inequality is true since h0 < e=2. This proves
part (ii) and concludes the proof of the lemma. G

4.14 Remark: When u is the indicator of a ®nite set W , and V 1 0 there is an
optimal stationary family of strategies available to player II. In fact, in this
case W 0 �W so that the result follows directly from part (i) of the lemma
above when S is ®nite. When S is countably in®nite, one can partition the
set W 0 in the way indicated in Remark 4.6 and then proceed with the same
arguments we used above to prove that (i) still holds. G

4.15 Remark: If player II is a dummy with only one action, the gameN�u� is
a nonleavable gambling problem for player I and part (i) of the previous
Lemma implies that, whatever the strategy I plays, the probability of visiting
the set where V < u in®nitely often is zero. This corresponds to Theorem 3.7.1
of Dubins and Savage [1976] G
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We are ®nally ready to prove the main result of the section.

4.16 Theorem. Let S be ®nite. Then for every e > 0 there is a stationary family
of strategies which is e-optimal for player II in the nonleavable game N�u�.

Proof. Let V be the value ofN�u� and S �W 0 WW 1 where, as before,

W 0 � fx A S : V�x� < u�x�g and W 1 � fx A W : V�x�V u�x�g:

If W 0 � j, Theorem 4.1 states that there exists an optimal stationary family
for player II. So let us assume that W 0 is nonempty. Fix k as in (4.7). Since S
is ®nite, equation (4.4) implies that there is an mV k such that

Vm UV � e

2
:

Let player II use the stationary family of strategies n � n�m�1;e�. Then by part
(ii) of Lemma 4.9, for every x A S,

Ex;a;n�x�u�UU m�1�x� � e

2
UVm�x� � e

2
UV�x� � e

for all strategies a of player II, where the next to the last inequality holds be-
cause of Lemma 4.3. This proves that n is e-optimal for player II. G

4.17 Remark: The theorem implies the results derived in Everett [1957] and in
Thuijsman and Vrieze [1992] for recursive games. G

5. A concluding remark

Example 7.13.6 of Maitra and Sudderth [1996] implies that e-optimal station-
ary strategies need not exist for player II when the state space of the game is
countably in®nite. However one can show that in the nonleavable game con-
sidered in that example, for any given initial state, there is an e-optimal sta-
tionary strategy available to player II. If this is true in general for all non-
leavable games is still unknown.
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