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Abstract: The superadditive solution for 2-person Nash bargaining games was axiomatically defined 
in Perles/Maschler (1981). In Pedes (1982) it was shown that the axioms are incompatible even for 
3-person bargaining games. In this paper we offer a generalization method of this solution concept 
for n-person games. In this method, the Kalai-Smorodinsky solution (1975) is revealed as the rule 
followed to determine the movements along the path of intermediate agreements. 

1 Introduction 

Here we consider the Bargaining Problem as was specified by Nash (1950). In it 
the question of selecting an agreement is resolved by means of the construction of a 
solution, which is a function defined in the considered domain of bargaining games, 
and the achieved proposal is justified by means of an axiomatic characterization. 

Alternative proposals for solutions have subsequently appeared in the literature. 
Two of the most relevant are the Kalai-Smorodinsky solution (1975) and the super- 
additive solution by Perles-Maschler (1981). Although they all were defined for the 
case of two players, Nash's solution, like that of Kalai-Smorodinsky, did not present 
problems for their extension to the case of three or more players. The Nash solution is 
uniquely generalized in a natural way (see Roth (1979)); while the Kalai-Smorodinsky 
solution can be generalized in several ways on different possible domains (see Thom- 
son (1980), Peters and Tijs (1984) and Imai (1983)). 

Nevertheless, this has not been possible for the superadditive solution. In Perles 
(1982) a negative result for the case of three players is obtained, which shows the 
impossibility of finding a solution that satisfies the same set of axioms which charac- 
terize it in the case of two players, in a sufficiently basic domain of problems. 

There still remains, however, the interesting problem of finding a satisfactory gen- 
eralization of this solution concept for the n-person case, i.e., discover a well-defined 
function for an arbitrary number of players, that coincides with the superadditive 
solution for the particular case of n = 2. 
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In this work we present a procedure for such a generalization, inspired by the 
second method followed by Perles and Maschler for the calculation of  the solution, 
through which they designated a path of intermediate agreements or also a Status Quo 
Set. It will be seen that this path can be reinterpreted as the trajectory which would be 
originated if the followed rule for moving along it, in each infinitesimal time interval, 
were the same as that which is followed, in only one step, in the Kalai-Smorodinsky 
solution. 

The organization of  the present work is as follows. In section 2 the Perles- 
Maschler solution is defined and the alternative definition is explained. In section 3 
the equivalence of both solutions for the case n = 2 is proven. The main contribution 
is presented in section 4, where, for sufficiently smooth games, the existence and 
uniqueness of the outcome produced by the new procedure for n >- 3 is proven, and, 
in section 5, where the solution is also defined on a subclass of polygonal games. 

2 The  P M  Solut ion for  n = 2 

Consider 2-person bargaining games of the form of S _= (S, 0), where 0 ~ (0, 0) is 
the conflict point and S is the feasible set in the utility space of the players. We shall 
impose the following requirements on S: 

HI:  S is a nonempty, convex and compact set 
H2: S C IR 2, and 3x ~ S such that x >> 0 
H3: S is comprehensive, i.e., if u c S and 0 -- v -< u then v E S 

We shall denote by/32 the family of  all 2-person bargaining games S _= (S, 0) which 
verify H1, H2 and H3. Perles and Maschler axiomatically defined the concept of  
superadditive solution (see Perles/Maschler (1981)). 

Definition 2.1: A superadditive solution is a function ,0 : ]32 ___> ]R 2 which satisfies 
the following axioms (written ~b s for 0(S)): 

Axiom 1: (Pareto Optimality). For each S in ]32, Os c OP(S), where OP(S) := {x E S : 
[ y > - x , y r  y ~ S}. 

Axiom 2: (Scale Covariance). For each S in ]32 and a 6 IR2++ then 0 ~'*s = a .  g5 s, where 

a �9 S :-- {a * x : x E S} and (al, a2) * (Xl, x2) := (alXl, a2x2). 

Axiom 3: (Symmetry). If  S in B2 is symmetric, i.e., (Ul, U2) E S 4=} (u2, Ul) C S, then 
= 

Axiom 4: (Superadditivity). For all R and S in ]32, @R+S >>_. ~R + @S, where R + S := 
{x + y : x C R ,  yES} .  
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Axiom 5: (Continuity). The restriction of q5 to/32 is continuous, where the topology 
in/32 is induced by the Hausdorff metric, and/3~ is the subfamily of  B 2 that satisfies 
OS = OP(S) (OS is the north-east boundary of S). 

Axioms 1, 2, and 3 are standards and appear in many other solution concepts. 
For a brief motivation of axiom 4, remember that in Nash's  theory, the points in 
S can represent expectations on uncertain events. These events can themselves be 
bargaining problems. For example, the players are able to know that tomorrow the 
feasible set will be, either R with probability p, or S with probability 1 - p; for which 
the set of  feasible outcomes will be H = pR + (1 - p)S. Axiom 4 lets us avoid the 
possibility that one player prefers reaching an immediate agreement (for example, 
~ > p~b~ + (1 -p)~b s) while the other prefers to wait in order to know which of the 

( "  two, R or S, is the effective game ~b 2 < p q ~  + (1 -p)qSs). 
Both authors proved that this solution exists in/32 and is unique. They also gave 

an explicit formula for ~ which we have defined further on. 
.Given a S C/32, we denote pS and qS to be the points of intersection of OS with 

the u2-axis and the ul-axis of  11t 2 respectively. 

Definition 2.2: The Perles-Maschler solution of S c/32 is defined as that point u s = 
PM(S) E OS which satisfies: 

fplS qS 
-~Zduldu2 = f s  ~ '  u s Pareto optimal (2.1) 

where the integrals are taken along arcs of  OS. 

Remark 1: It is straightforward to extend the theory to games with disagreement 
point other than (0, 0). It is sufficient to replace the utilities by the utility gains in the 
definition 2.2, and extending the axiom 2 to include Translation Covariance: for all 
b E 11t 2, qS(S + b) = qS(S) + b. 

For the question of whether a similar solution for games with more players 
exists, unfortunately a negative answer is obtained. In Pefles (1982) it is proven that 
a solution u :/33 -+ IR3+ which simultaneously satisfies axioms 1, 2, 3 and 4 does not 
exist. (For the proof of non-existence the subfamily of  games which are finite sum of 
non-degenerate simplices is used). 

Although an extension for n players using the axiom of superadditivity cannot 
be carried out, it is possible, nevertheless, to extend the rule which is underlying in 
the determination of u for/3n, with n ~ 3. 

To illustrate the intuitive meaning of the rule which we will propose, let us first 
consider the interpretations of the PM solution in an example like that in figure 1. 

Pefles and Maschler propose two intuitive procedures which give rise to their 
solution. 

Procedure 1: Suppose two points moving towards each other along OS, starting si- 
multaneously from p and from q. Each point moves so that the product of  the corn- 
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P 

Fig. 1. 
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d u  1 
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ponents of its velocity vector in the time interval dt is a constant, for example, -1 ,  
i.e., duldu2 = -1 .  Then, these points will meet at u s. The total time which each one 
will need to traverse OS is: 

t' = los 

and, thus, condition (2.1) means: 

(1/2)ts= fuS,/-duldu2= f; -~3~du2 
Procedure 2: Suppose that the players leave from 0 along a continuous path which 
takes them until u s . Each point of the path can be thought of as an intermediate 
agreement that preserves the balance of power in the following sense: if s is on the 
path and we consider the residual game (S, s), the solution in it should supply the 
same result u s. Furthermore, for each t C [0, (1/2)t s] the respective point s(t) of the 
path is defined by s(t) = (Vl(t), w2(t)) where v(t)  and w(t) are the points of OS which 
verify: 

fp V(O ~/-duldU2 = fw7 x / -du ldU2 = t 
(0 

In this way, we have defined the Status Quo Set by means of the graph of a function 
s2 = ~(sl) which joins the origin with u s. Later on we will see the value which the 
derivative ~' takes at each point. In our example, OS can be expressed as the graph 
of two functions, one the inverse of the other, u2 = f ( u l )  or else ul = g(u2) (where 
for each (ub u2) E OS one has f ' (ul)  = 1/g'(u2)). Imagine that the two players I and H 
begin negotiations in q and p respectively. At the beginning, each player demands the 
highest possible payoff for himself; since (qb P2) ~ S, (which is the utopia point of 
the game), those demands are incompatible. Then, in order to achieve an agreement, 
the players make gradual concessions by moving towards each other along OS. If at 
each instant t, they move in such a way that during the infinitesimal time interval 
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dt, the changes of the utilities due to further concessions satisfy dvldv2 = dwtdw2, 
where w and v are the positions of  1 and II at t ime t (see figure 2), then we have: 

~(0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : u(O 

i i == ! i i  

/i" ] 
sl( 0 v~(t) q= 

F i g .  2.  

~p, = ds2 = dw2 = ff(Wl)dWl = f ' (wl)dVl  = ff(wt)  . 1 

dSl dVl g'(v2)dv2 g'(v2)dw2 g'(v2) 99' 

which means: 

, / ~  - ~/f'(wl(t)) . f ' (v t ( t ) )  Vt E (0, (1/2)tSl : p'(sfft)) = V g  (v2(t)) 

The slopes in v(t) and w(t) determine the exchange rates for the utilities: one util o f  
I for - f ' (v l ( t ) ) [ - f ' (wt ( t ) )]  utils of IL This means that when the players move along 
the status quo set, the ratio of the rates of  their gains is the geometric mean of  the 
above exchange rates. 

Although this condition does not have an easy intuitive meaning, as the very 

same authors emphasize (P/M (1981), end of section 52) the condition dvt(t)dv2(t) = 
dwl (t)dw2(t) can be rewritten as follows: 

dVl (t) dw2(t ) 

dwl (t) dv2(t) 
(2.2) 

which has a more attractive interpretation in terms of  mutual concessions: 

the utils that I is offered the utils that H is offered 

the utils that I yields the utils t h a t / / y i e l d s  

2 Also see the footnote 13, in which they thank Martin Beckmann for showing them this aspect. 
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And it can also be thought of as an equitable rule of concessions until finally reaching 
the agreement u s . 

It is this condition which will open us the way for tackling bargaining problems 
with three or more players. To be able to adequately interpret (2.2) we will need 
to define beforehand the Utopia Points path. At each point s(t) of the status quo 
path there will be associated the corresponding utopia point of the residual game 
(S, s(t)), defined by u(t) = (wl(t), v2(t)), Vt C [0, (1/2)ts]. And so, the Status Quo 
path automatically defines the Utopia Points path, and this will be represented by the 
graph of a function u2(t) = ~b(u~ (t)), which joins u s with the utopia point of the game 
(ql,p2), (see figure 2). If we do dul(t) = dwl(t), du2(t) = dv2(t), dsl(t) = dVl(t) and 
ds2(t) = dw2(t), then (2.2) is converted into: 

ds2(t) _ du2(t) 

dSl(t)  db/1 (t) 

which, in terms of the functions ~ and ~, is the condition: 

VS1 C (0, U S) : ~ '(S1) = 2Y(Ul), w h e r e  Ul = g (~ ( s1 ) )  

Since moving along a path of intermediate agreements (sb ~(sl)) implies making 
concessions in the utopia points (Ul, ~(ul)); then, in order to reach the point u s the 
rule the players need to follow is that the ratio o f  the rates o f  their gains - ~' - at 
each point has to coincide with the ratio o f  the rates o f  their losses - ~'. 

Remark 2: It is interesting to point out the connection that exists between the Perles- 
Maschler solution and the Kalai-Smorodinsky solution, which is made evident from 
the previously stated rule. For the game like that which appears in figure 2, given 
the point of disagreement (0, 0) and the utopia point (qb P2), the outcome that the KS 
solution produces is that point on the boundary, vEOS,  such that vl +732 = ql -P2, (see 
Kalai-Smorodinsky (1975)). Said in another way, the proportion between the gains 
which the players have obtained in v must coincide with the proportion between the 
maximum aspirations which they had at the start before any type of agreement was 
materialized. However, it is straightforward that this condition can always be rewritten 
as vl +/)2 "= (q~ - u 1 )  + ( P 2  - v 2 ) .  That is to say, in the agreement, the proportion 
between obtained gains with respect to the conflict point is the same as the proportion 
of the losses with respect to the utopia point. 

With certain analogy, in the PM solution, when the players move in a continuous 
way along the path of intermediate agreements from 0 to u s, their corresponding 
maximum aspirations decrease with continuity from (qb p2) to u s, in such a way that 
at each instant t and at each infinitesimal time interval dt, the proportion between 
the gains passing from s(t) to s(t + dt) is equal to the proportion between the losses 
passing from u(t) to u(t + dt). Thus, KS is revealed as the rule fol lowed to determine 
the movements along the path o f  intermediate agreements, at each infinitesimal instant 
o f  time dt. 
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In this section we will give an alternative definition of  the Perles-Maschler solution, 
based on the last interpretation presented in section 2, and we will demonstrate that 
both definitions are equivalent. 

Given S ~/32, let x s, yS C OP(S) such that x s = pS and yS = q~, and denote by 

so = ( xs, Y2,S) (see figure 3). Furthermore, OP(S) is the graph of  any of  the following 
functions: u2 = f(ul)  := max{u2 : u c S} and ul = g(u2) := max{u1 : u E S}. These 
functions are inverse to each other, finite concave, strictly decreasing and absolutely 

r S  S], continuous in [x~, qS] and in [Yz,P2 respectively. In that way, these functions are 
differentiable almost everywhere. For each point x E S, being x >-- so, we have its 
associated utopia point (g(x2),f(xl)). For each function ~7 : Ix s, qS] ___+ lR we have a 
path of  points C(S) := {(Xl, ~/(Xl)) : Xl C [x s, qS]} defined. The Perles-Maschler path 
is defined as: 

Definition 3.1: Given S E i3 2, we say that C(S) is the Perles-Maschler path if rl is an 
absolutely continuous and strictly increasing function verifying: 
i) rl(xS) = yS 

ii) Vx E C(S) A S: 
ii.1) (g(x2),f(xl)) C C(S) 
ii.2) rl'(xl) = rl'(g(x2)) almost everywhere. 

pS 
v(0) x s 

i :~ u.  i 

. . . . . . . . . . . . . . . . . . . . .  

S 0 ', 
I 

y S  

w(O) 

Fig. 3. q s 

In the way in which C(S) and OS are constructed, it is straightforward that their 
intersection is a unique point, which we will denote by u s (i.e., {u s} = C(S) A OS). 
Then we have the following theorem: 

Theorem 1: For each S ~ / 3 2 , / A s  = us .  
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Proof." The proof is divided into two steps: in the first, we will see that the point 
u s = PM(S) is the intersection point of OS with the graph of  a determined function 
which we will construct and which verifies all of the properties of definition 3.1 and, 

S /AS. in the second step, we will see that u s, is uniquely determined and so, u, = 

STEP 1: The point u s is defined as that point on OS which verifies: 

/ / ~  = f.,qs ~ = (1/2)t s 

For each t E [0, (1/2)ts], let v(t) and w(t) be the points on OS which satisfy: 

qS 

jpS 
(3.1) 

For t > 0, the points v(t) and w(t) are uniquely determined; if S E ]3 2 \ ]302, the points 
v(0) or w(0) (or both) constitute a line segment of OS which is parallel to an axis, if 
S E ]302, then v(0) = pS and w(0) = qS. (See figure 3) 

For 0 < t -< (1/2)t s, let s(t) = (vl(t), w2(t)) and, for t = 0, let s(0) = so. For the 
set Os := {s(t) : 0 -< t -- (1/2)t s} we will designate it to be the Status Quo set. 

Without loss of generality for that which remains of the proof, we are able to 
suppose that S c ]302 and, therefore, s(0) = so = (0, 0). Thus, OS is the graph of  any of 
the following functions: u2 = f (u l )  := max{u2 : (ub u2)ES} or ul = g(u2) := max{u1 : 
(ub u2)ES}. These functions are inverse to each other; they are finite concave, strictly 
decreasing and absolutely continuous in [0, q~] and in [0, pS], respectively. In that 
way, these functions are differentiable almost everywhere. Because of the absolute 
continuity o f f  and g, expression (3.1) can be written as: 

= [ w2(t) 
[ vl(t) ~/~f '(Ul)dUl ~ f ~ ' ( u 2 )  du2 = t  
.io Jo 

(3.2) 

Since the integrands in (3.2) are positive almost everywhere, it follows that both v~ (t) 
and w2(t) increase strictly and continuously from 0 to u s and u s, respectively, as t 
increases fi'om 0 to (1/2)t s. Thus, the status quo set is the graph of a continuous, 
strictly increasing function s2 = ~(s~), connecting the origin to the point u s. 

It is well known that the fight derivative f+(ul) exists and is continuous on the 
right in 0 <- ul -< u s. Similarly, the left derivative f'_(ul) exists and is continuous o_~_ 
the left in 0 < ul -< u s. Moreover, f~ = f ;  almost everywhere. So, since sl(t) = vl(t), 
it follows from (3.2): 

(The second equality holds also at Sl = 0). 
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Similarly, since s2(t) = w2(t), one shows that: 

(dr) = ~ /~ - ( s2 )  and ( d r )  = --~+($2) O< $2 ~< U~ ~ _  ~ +  

Thus, since s = (Vl,  W2) on ~s: 

~ S  1 + = ~ - ~ -  ~ = ~/f~-(Vl)"f#-(Wl) 0 < S 1 <5 uS 

hence, ~p'(Sl) = x/f'(vl) . f ' (wl)  almost everywhere sl E [0, ufl. 
However, the status quo set /5 s determines another set F s of utopia points de- 

fined by F s := {u(t) : 0 -< t -< (1/2)t s} where u(t) := (wl(t), v2(t)). Furthermore, 
u(t) = (g(s2(t)),f(sl(t))), Vt C [0, (1/2)ts]. (See figure 2) 

Since vl(t) and w2(t) increase strictly and continuously from 0 to u s and u s, 
respectively, and since OS = OP(S), then wl(t) and v2(t) decrease strictly and con- 
tinuously as t increases from 0 to (1/2)t s. Thus, F s is the graph of  a continuous and 
strictly increasing function u2 = ~b(ul), connecting u s to the point (q~,p~). 

Note that (3.2) can be rewritten as: 

: f qlS ~ -~ f t (#A1)du  1 t 
aod2(t) aWl(t) 

Since ul(t) = 

Then, since u 

wl(t) and u2(t) = v2(t), we have: 

dt 
= - ~ ; ( u 2 )  and ( ~ u 2 ) + : -  ~ u S < - u 2 < p  s 

( d t )  = - ~  u S < u l  <qS 
=-~- - f ' - (Ul )  and JU~ul + 

= ( w l ,  v2) on Fs: 

= t W u s -< ul < qS 

from where, ~ s ( U l )  = ~ / f ' ( w 1 ) " f t ( V l )  almost everywhere ul c [u s, qS], and further- 
more: 

and 

~--fL(w,) + ~ = ~/fL(w,) "f~_(vl) u s <- u, < qS 
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hence: ~ '(s l)  = ~ ' (ul )  almost everywhere sl �9 [0, uS], btl �9 [u S, qS],  being ul = g(s2) 
and s2 = cp(sl). 

Moreover, ~ and z) are absolutely continuous functions in [0, u s] and [u s, qS] 
respectively, because the directional derivatives of f are bounded in every closed 
subinterval of [0, qS). 

It follows that, joining the graphs of g~ and ~,  we get the graph of an absolutely 
continuous and strictly increasing function x2 = r/(xi), connecting the origin to the 
point s s (ql, P2) and with the property ii) of definition 3.1. Furthermore, the intersection 
point of the graph of this function with OS is precisely u s. 

STEP 2: Now we will see that the point u s is uniquely determined. In order to do this 
we will demonstrate that the graph of any absolutely continuous and strictly increasing 

( s  s) function x2 = r/(Xl), connecting the origin to the point ql,P2 and with the property 
ii), intersects OS always at the same point: u s. In effect, by the property ii.1), if 
x2 = r/(xl), then, f (x l )  = rl(g(x2)) and, therefore, f (x l )  = ~(g(rl(xl))). By deriving this 
expression, we get: 

f ' (xl)  = ~7'(g(r/(xl)))' g'(r/(xl)) �9 "l]t(X1) almost everywhere X 1 �9 [0, qS] 

Since by the property ii.2), r/(xl) = r/(g(r/(xl))) almost everywhere, we 
get: 

f J ( x I )  = ( ~ / ( X l ) )  2 " g'(r l (Xl))  almost everywhere xl �9 [0, qS] 

= r / (xl)-  ~/-g'(rl(xl)) almost everywhere xl E [0, qS] 

fo ~ ( - f ' ( u , )  dUl = fo ~' rl'(u,) " ~/-g'(rl(u,)) du, 

fo~l(xl ) fO x  ̀ ~ - - f ' ( " l ) d " l  = ~--g'(/12) du2 

Therefore, the intersection of the graph of r 1 and S coincides with the status quo set 
of S, thus, the graph of r/intersects OS at u s. [] 

4 Definit ion of  the P M  Solution for n Players 

In this section we are going to extend this equivalent definition of the PM solution 
to the case of n players. Let us consider the family of n-person bargaining games 
S -- (S, 0) which verifies the following assumptions: 

GI: S C IR", S is a nonempty, compact, convex and comprehensive set and 0 C 
int(S) 

(comprehensive : [Vx, y E S : x <- y] =4. [Vz : x <- z -< y ~ z E S]) 
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G2: 3 k  << 0, k E S such that OS~ = OP(Sk) ,  where Sk := {x E S : x --- k} 
From G2 it follows that OSk is the graph of  any of the following functions: 

Xi -~ gg(x- i )  := max{ug E I t  : (x-i[ ui) C Sk}, i = 1 ..... n 

where: 

X--  i ".'~- (XJ . . . . .  X i - -  1, Xi + 1 . . . . .  X n )  

(X-i  l ui) :---- (Xl . . . . .  X i - l ,  bli, Xi+ l . . . . .  Xn) 

Furthermore, these functions gg are well defined, they are continuous and strictly 
decreasing in S/k, where S~ := { x - i  C IR ~ -  ' : x C Sk }, i = 1 . . . . .  n. 

We shall impose the following additional assumption: 
G3: Vi  = 1 . . . . .  n : gi is a C 2 class function in int(S~) 
which implies that Vx E I(Sk), the partial derivatives of  gi are negative, g j (x  i) < O, 

Vi, j = 1 . . . . .  n, i 4= j ,  where I(Sk) := {x E S : x >> k}. Moreover, since the negotiation 
set S + := S 71 ~ _  C l(Sk), gi is a C 2 class function in S +, Vi = 1 ..... n. 

We denote/3+ to be the family of n-person bargaining games which verify G1, 
G2 and G3. 

Assumption G1 is merely another way of rewriting H1, H2 and H3; the only 
difference is that negative payments for players are admitted. This does not pose 
any kind of conflict since the extension of the solution is created in terms of the 
negotiation rule which underlies in the status quo sets, and not with regard to the 
axiom of superadditivity (see section 6 of  P/M (1981)). G2 and G3 are of a technical 
character and are concerned with the fact that the solution is obtained as a resolution 
result of a system of differential equations; in particular, G2 guarantees that the initial 
condition is in the interior of the domain and G3 provides sufficient conditions of 
smoothness of  the problem. 

As in section 2, for each disagreement point x C Sk, its corresponding utopia point 
g(x)  := ( g l ( x - l )  . . . . .  gn (x -n ) )  is associated with it and, by means of n - 1 functions 
~li : D C [k l ,  rl] -+ IR, i = 2 . . . . .  n, (where rl := max{x1 : x E Sk} and D is an 
open set such that [0, gl(O)] C D), one can define a path in ]R n, C(S) := {x = 
(Xl, ~]2(Xl) . . . . .  7In(X1)) : Xl E D}. 

Defini t ion 4.1: Given a game S E/3+, we say the curve C(S) is the Perles-Maschler 
path if, Vi = 2 ..... n, r/g is a continuous, strictly increasing and differentiable function 
(VXl E D :  r/'(Xl) > 0) verifying: 

i) 
ii) 

?~i(O) = O, Vi  = 2 . . . . .  n 
V x  E C(S)  A S~: 
ii. l) g(x)  E C(S)  

ii.2) ~?~(xl) = ~l~(gl(x-1)), Vi  = 2 .. . . .  n. 

Because C(S) is a strictly increasing curve, its intersection with OSk provides one 
unique point, which allows us to have the following definition of the Perles-Maschler 
solution in B2. 
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Defini t ion 4.2: The Perles-Maschler solution is defined as that function P M  : 13+ --~ IR ~ 
that verifies P M ( S )  := C(S) A OS~, for all S E B ~ + ,  

Theorem 2." For each game S C/3g, the point P M ( S )  is well defined. 

Proof." Given a game S E/3g, in order to see that P M ( S )  is well defined, we will 
demonstrate that there exists a unique Perles-Maschler path. To do this, we will divide 
the proof into three steps: in the first step, we will show that, supposing that such a 
curve existed, then its tangent vectors at each point are a solution of  a determined 
eigenvectors problem; in the second step, we will see that the aforementioned problem 
has a unique solution at each point of  I(Sk) and, finally, in the third step, we will 
demonstrate that there exists a unique curve passing through the origin whose tangent 
vectors form a part of  this field of eigenvectors. 

S T E P  1: Suppose that the path C(S) exists, (which we will denote by C when there 
is no place for confusion); then, by property ii.1), if xi = ~/i(Xl), for i = 2 ..... n, we 
have: 

gi(xl ,  rl-i(Xl))  = rh(gl(rl(Xl))), i = 2 .. . . .  n (4.1) 

where: 

~(x1) := (~2(Xl) ..... ~n(Xl)) 

i(Xl) := (V2(Xl) ..... Vi--I(X~), ~i+l(Xl) ..... ~n(Xl))- 

By deriving the expression (4.l), we obtain for each i = 2 . . . . .  n: 

n 

i t 
g i ( x b  ~?-i(Xl)) + ~ gk(Xl, r l - i (x l ) )"  r/k(Xl) = 

k = 2  
k ~ ' i  

~]~(gl = (~](Xl)))" g 'q(Xl))" ~l~(Xl 
= 

VXl " (xb r/(Xl)) E I (SD 

(4.2) 

Let h c N n, h >> 0, be the tangent vector to C at the point (Xl, rl(xl)), then, h = 
(1, r/~(Xl) ..... r/'n(xl)), where vector h depends on the point (xb rl(xl )); then, by property 
ii.2), 7l~(g 1 (~?(Xl))) = hi, Vi  = 2 . . . . .  n. Therefore, it is deduced from (4.2) that: 

g~(xl,  71-i(xl)) + gk(xb  ~7-i(Xl)) " h~ = hi" g~(rl(xl)) " hk 
k = 2  = 
k ~ i  

Vxl : (xb r/(xl)) E l(Sk), Vi  = 2 .. . . .  n 

(4.3) 
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If we call A -- ~ gl(~(Xl) ) �9 h~, (A also depends on (xb 77(Xl))), we obtain from (4.3) 
k = 2  

that: 

gl (Xl' T]-i(Xl)) + gk(Xl, rl-i(xl))" hk = A .  h i 
k=2 kv~i 

,VXl  : (Xl,  T](X1)) E l(Sk) 

Vi = 2 ..... n 

Thus, A and h satisfy the following eigenvalues and eigenvectors problem: 

Ah = G(xb r/(xl)) - h, VXl  : (X 1, T](Xl) ) E I(Sk) 

where: 

G(Xl, rl(Xl)) = 

0 g ~ ( ~ ( X l ) )  - ' -  g~(~(xl)) 
g~(xl, ~-2(Xl)) 0 " "  g~(xl, ~-2(Xl)) 

. . . 

Lg~(xl, ~-n(Xl)) g~(x l ,~- . (X l ) )  ' "  0 

Therefore, if path C exists, then, for each point (xb ~l(xl)) C C N l(Sk), there exists 
a A = A(xl, ~7(xl)) E IR such that the tangent vector to the curve C at (xx, ~7(Xl)), 
h = h(xb ~/(Xl)) >> O, satisfies Ah = G(xx, ~l(xl))h. 

Moreover, since G(xb ~l(xl)) �9 h = dg(Xl, ~(xl))(h) <- 0, then, A -< 0 (see figure 
4). 

v3(x) 

/"~ i 

r 

v'(x) 

Fig. 4, h(x) collineal to dg(x)(h) 

where vi(x) := (gi(x_i), x-i) ,  Vx  C C N Sk, Vi E N. 
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S T E P  2: Thus, for each x = (xl . . . . .  x,,) C l(Sk), we set the following eigenvalues and 
eigenvectors problem: 

.~(x) . h(x)  = O(x)  . h(x), h(x)  >- O, ,~(x) <- o (4.4) 

Call A(x)  = - G ( x )  and #(x) = -A(x) ,  then, problem (4.4) is equivalent to the prob- 
lem: 

#(x )  . h(x) = A(x )  . h(x), h(x) >- O, # (x )  >- 0 (4.5) 

The matrixA(x) --  (aij(x)) verifies that aii(x) = O, Vi  = 1 .. . . .  n, and aij(x) = - g j ( x - i )  > 

O, Vi, j = 1 . . . . .  n, i ~ j .  Therefore, A(x)  is an irreducible matrix, Vx C I(S~). Then, by 
the Perron-Frobenius theorem (see Gantmacher (1959)), for each x E l(Sk),  problem 
(4.5) has one unique solution #*(x) > 0, (the Frobenius root), and there exists an 
eigenvector associated with it, h(x)  >> 0, and all real eigenvectors are uniquely deter- 
mined, up to the product by a scalar. Furthermore, the Frobenius root is a simple root 
of the characteristic equation: de t (# l  - A) = 0. Then, for each x E I(Sk), we take that 
eigenvector h(x)  associated to #*(x) such that hi (x) = 1, i.e., h(x) = (1, h2(x) ..... hn(x)), 
and we define the following function: 

f :I(Sk) --+ lR+f 1 

x - -~ f (x )  = (h2(x) ..... hn(x)) 

Because of  the foregoing, f is well defined. Let us see t h a t f  is a E 1 class function in 
I(Sk). For each x c I(SD, the Frobenius root #*(x) of  problem (4.5) is the only positive 
root of the characteristic equation p(x,  # )  := d e t ( # ( x ) I - A ( x ) )  = 0, and is a simple root 
of  such an equation, (therefore, p~(x ,  #*) r 0). As det(#(x)l  - A(x) )  is a polynomial  

of the nth degree whose coefficients are C ~ class functions in l(Sk),  because gi is a 
C 2 function in I(S~), Vi  = 1 .. . . .  n, then we have the conditions to apply the implicit  

function theorem, which yields that #*(x) is a C 1 function in l(Sk). 

Given x C I(Sk), and its Frobenius root, #*(x), any of the associated eigenvector, 
h = h(x), is a solution to the system: 

( # * ( x ) l - A ( x ) ) .  h(x)  = 0 (4.6) 

This system is a system of n linear equations whose coefficients are C I class functions 
in I(Sk), and its solution is a 1-dimensional vectorial subspace, so, the rank of  the 
matrix (#*(x)I  - A(x ) )  is n - 1. If  we denote for B(x)  := (#*(x) l  - A(x)) ,  there exists a 
submatrix of order n - 1 whose determinant is different from zero; suppose without 
loss of generality, that this submatrix is formed by the first n - 1 rows and n - 1 
columns of B(x).  Then, it is easy to see that the solution to system (4.6) is of  the 
form: 

{ a ( B l ( x ) ,  B2(x)  . . . . .  Bn(x))  : a ~ ~ }  
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where: 

Bi(x) = ( - 1 )  i+1  

bll(X) . . .  b l , i - l ( x )  b l , i+l(X)  . . .  bin(x) 

bn-l , l (X)  . . .  b , - t , i - l ( X )  b , - ~ , i + t ( x )  . . .  b n - l , , ( x )  

Thus, Bi(x)  is a C 1 class function in l ( & ) ,  Vi  = 1 . . . . .  n. Furthermore, it is known 
that there exists a strictly positive eigenvector associated to #*(x). So, there exists an 
c~ E lR such that: 

oz(Bl(X), B2(x) ..... Bn(x))  = (1, h2(x) . . . . .  h . (x ) )  

with h i (x )  > 0 and hi(x) a C 1 class function in I(&), Vi = 2 . . . . .  n. Hence, it follows 
that func t ionf  is a C 1 function in l(Sk).  

S T E P  3: Let us now see that there exists a unique curve passing through the origin 
whose tangent vectors form part of  this field of eigenvectors defined by function f .  
For this, we set the following problem of ordinary differential equations: 

7]'(Xl) = f(xb 7](XI)) 
(4.7) 

7(0)  = 0 

i,e.: 

{ rl~(xl) = hi(x> rl(xl)) ,i = 2 . . . . .  n 

rh(O) =- 0 ,i = 2 . . . . .  n 

As f is a C 1 function in l(Sk) and 0 E int(&), there exists k 'E N n such that k << k' << 0. 
Then, f is a C 1 function in &,, where &, := { x E S  : x >- k ' }  is compact and 0cint(&,) ,  
therefore, problem (4.7) has a unique solution xi = rig(X1), i = 2 .. . . .  n, defined in an 
interval of  the form [ - e ,  e] and, furthermore, this solution is extendable to the right 
until reaching OS +, i.e., problem (4.7) has a unique solution xi = ~?i(Xl), i = 2 ..... n, 
defined at an interval [ - e ,  c~] such that (c~, 7/(cQ) E OS +. By definition, this point 
(c~, ~](c0) is the Perles-Maschler solution for the game S E B~. [] 

R e m a r k  3: A fact to take into account with respect to theorem 2 is that the convexity 
of S throughout the theorem did not play a role, so, from the point of view of the 
definition of the solution, convexity is not a necessary domain restriction. 

R e m a r k  4: Concessions Path. 
It is easy to prove that a condition equivalent to that of section 2, d v l d v 2  = 

d w l d w 2 ,  is verified. For this, beginning from path C, the corresponding Conces s ions  

P a t h s  C i are defined, which are the points in OS associated with each player i that 
converge in P M ( S ) :  

c i ( s )  : --  { ~ i ( x )  = (gi(x-i),  x - i )  E OSk : x E C(S) UI Sk} 

If  at each point x E C(S)  A Sk the tangent vector to the curve is h(x),  then the 
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corresponding tangent vector to the curve C~(S) 

(dg i (x - i ) (h - i (x ) ) ,  h - i ( x ) )  (see figure 5). 

C ~_ v~(x) % 

t -  dv3(x) 

at the point v i (x )  is dv i ( x )  = 

X 

dv'(x) 

v~(x) 
%. 

C ~ 

v'(x) dv'(x) 
Fig. 5. 

As dg i (x - i ) (h_ i ( x ) )  ~ i = gk(xi) �9 h~(x) = A(x)'  hi(x), if we take the product of  the 
k = l  
k ~ i  

components of  the vector dv i (x ) ,  we have that H ( d v i ( x ) )  = A(x )H(h(x ) ) ,  Vi  = 1 . . . . .  n. 

R e m a r k  5: Comparison with the Raiffa procedure 
We can compare our procedure with that suggested by Raiffa (1953), in its contin- 

uous version. In the Raiffa procedure, starting at the status quo point, the negotiation 
model effects step by step improvements in the player 's  positions until a Pareto op- 
timal point is reached. The rule for the construction of this negotiation path is the 
following: the slope at each point is the same as that of the straight line joining that 
point and its corresponding g(x).  Formally, we define this path, in the same way as 
definition 4.1, as follows: 

Defini t ion 4.3: Given a game S ~  B+, we say the curve R(S)  is the Raiffa path if, Vi -- 
2 ..... n, ~li is a continuous, strictly increasing and differentiable function verifying: 

i) 
ii) 

rli(O) = O, Vi  = 2 . . . . .  n 
Vx ~ R(S) r? Sk: 
ii .  1) g(x)  E R(S)  

g i ( x - i )  --  Xi Vi = 2 . . . . .  n. 
ii.2) ~];(xl) - ~ ~ x~' 
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Equivalently, the tangent vector to the curve R(S) at the point x, for all x E R(S) fq Sk, 
is collineal to the vector g(x) - x. It is easy to see that R(S) is uniquely determined 
by this system of differential equations. 

5 Domain Extension 

An interesting discussion appears when one wants to define the path C(S) in games in 
which the functions gi are C 2 class almost everywhere in S~, as happens, for example, 
in polygonal games (i.e., games whose OSk is the union of pieces of  hyperplanes). 

Conceptually, this should not involve problems to define the path C(S) starting 
from the functions ~i of  definition 4.1, it is sufficient to add "almost everywhere" to 
condition ii.2); that is to say, it must be verified that in almost everywhere x E C(S)f3 Sk 
and in its corresponding g(x), the tangent vector h(x) to the path is collineal to its 
corresponding dg(x)( h(x) ). 

In the points x E I(S~) in which all the functions gi, Vi = 1 ..... n, are C 2 class 
in a neighbourhood, there exists a unique hyperplane Hi(x) tangent to OSk in its 
corresponding points vi(x). If  we denote Ai(x) to be the corresponding normal vector 
to Hi(x), then the corresponding ith row of the matrix G(x) is uniquely determined 
b y  gij(x) = -.~j(x)/.,~f(x), Vj r i, y gii(X) = 0; which allows us to determine the vector 

h(x) that solves (4.4). Now then, in the points xEI(Sk) in which some function gi is not 
differentiable, in their corresponding points vi(x) there are more than one (possibly 
infinite) tangent hyperplanes to be considered. We shall then have as many matrices 
G(x) as possible combinations of associated hyperplanes. 

To illustrate this fact, we consider the most simple case in which problems may 
appear, like that in figure 6. 

Here, the point v3(x) on OSk is simultaneously determined by means of two 
different functions: v3(x) = g31(x_3) = g32(x_3) .  Now, in order to find h(x), we can 
determine the third row of G(x) by means of the normal vector either to H3(x), or to 
H3(x). From among the two possible solutions which appear in the figure, only ht(x) 
is feasible, because h2(x) marks an increase direction of C3(S), starting from v3(x), in 
a region of OSk that is not determined by g32. 

A priori, the possibility of finding games in which, constructing C(S), there appear 
branches in the path, may not be dismissed, because of  the fact that there are several 
feasible solutions h(x), or else interruptions, due to the non-existence of these. In the 
following, we shall show sufficient conditions which guarantee the existence and the 
uniqueness of the vector h(x) at those points x C I(Sk) in which some function gi is 
not differentiable. 

Fix the point x in what remains. The tangent vector h(x) only shows the direction 
of the path at this point, so, without loss of  generality, we can normalize it supposing 
that it belongs to A := {h E IR~_] ~n  = i= 1 hi 1 }. Suppose that for each h C A and for 
each i E {1 ..... n}, there exists the following directional derivative of  the function gS 
at the point x in the direction of the vector h-i, which we shall denote by di(h): 
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31 g 

v3(x) 

Fig. 6. 

di(h) := lim g i (x - i  + th- i )  - gi (x - i )  
t~o  t 
t > o  

Then, we can define the following function: 3 

d :  A ~ I R "  

h ~ d(h) := (di(h))'}= 1 

There is a direction starting from v;(x),  Vi = 1 ..... n, associated with each vector h c A .  
This direction is the following: (see figure 7) 

dvi (x) (h)  = (di(h), h - i )  

Therefore, the vector d(h) represents the decrease direction of the players' utilities 
starting from g(x) when the utilities are increased in the direction of the vector h 
starting from x. Hence, we are looking for a vector h C A which is collineal to the 
vector d(h). 

Suppose that d(h) 4= O, Vh C A ,  then, proving the existence of such a vector h is 
equivalent to finding a fixed point of the function F : A -+ A defined as: 

d(h) 
F(h) := - -  

~.(h) 
i = 1  

3 Note that the functions di are homogeneous, i.e., di(ozh) = a .  di(h), Va > O. 
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vi(x) 

h l  

Fig. 7. 

tga  = 
di(h) 

II h_i[I 

because, when F(h*) h*, we have that A*h* = d(h*), being ~* = ~ di(h*), which 
i = 1  

is the general condition equivalent to that in (4.4), that we had for the case in which 
all the functions gi are C 2 class (since, in this case, d(h) = dg(x)(h)). 

Theorem 3: If  S verifies G2 and the function d is well-defined and continuous in A, 
then the function F has an unique fixed point. 

Proof." 

Existence: The function F is well-defined because di(h) <- O, Vi = 1 ..... n, and 

di(h) r O, since the functions gi are strictly decreasing. Therefore, Fj(h) := 
i = 1  

n d j ( h )  >_Oand ~ F i ( h ) =  1. 
~" di(h) i= 1 

i - - I  

Moreover, F is a continuous function because d is continuous, and A is a com- 
pact and convex set, so, by the Brower's fixed point theorem, there exists h* E A such 
that F(h*) = h* and, by construction, this means that there exists h* E A and/k* -< 0 
such that )~*h* = d(h*). 

Uniqueness." Suppose there exist two fixed points of F, i.e., there exist h*, k* E A and 
)~, A M --< 0 such that: 

~ h *  = d(h*), ~ k *  = d(k*) (5.1) 
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Let us see, firstly, that, for each i C {1 ..... n}, there exists a vector z i E IR", z i >> 0 

which is perpendicular simultaneously to both directions d v i ( x ) ( h  *) and dvi(x) (k*) .  In 
effect, Denote by Ai to the following matrix of two rows and n columns: 

Ai := [dv i ( x ) (h* ) l  
Ldvi(x)(k*) J 

We look for a vector z i C IR", z i >> 0 such that Aiz  i = 0. By means of one theorem of 
the alternative, we have that, either A S  = O, z i >> 0 has a solution, or zAi >> 0 has 
a solution. Let us now see that the second alternative is not possible. Suppose that it 
were possible, i.e., there exists z E •2 such that zAi >> 0, then: 

* * ~ �9 . 

l Zldi(h ") + z2di(k *) > 0 

Taking into account that h], k] >- O, Vj, and di(h*), di(k*) <- O, then zl and Z 2  are 

two non-zero numbers and of different sign. Suppose, without loss of generality, that 
zl > 0 and z2 < 0. Therefore, we have: 

h ,  �9 - i  >> a k - i ,  di(h*) > ctdi(k*), being a = --Z2/Zl > 0 

Then, since gi is strictly decreasing, we deduce that: 

di(k ~) = lim g i (x - i  + tak*-i) - g i ( x - i )  >- lim g i ( x - i  + th*-i) - g i ( x - i )  - di(h*) 
~ o  lC~ t~o tc~ a 
t > 0  t > 0  

so, o~di(k*) >- di(h*), which is a contradiction. Therefore, we have shown that, for 
each i E (1 ..... n}, there exists a vector z i E IR n, z i >> 0 which is perpendicular to both 
d v i ( x ) ( h  *) and dvi(x) (k*) ,  this implies: 

di(h*) " zi ~ z) . h~ = O, Vi  = 1, n 
j = l  

j~ i  

t i t i * di(k*) " zi ~ zj " kj = 0 ,  Vi  = 1 ..... n 
j = l  
j r  

I di(h*) = - 5( , ,  . h~, g i  = l ..... n 
j = l  A, i 
j r  

di(k*) ~ Zj , z ~ i k~, Vi  = l ..... n 
IJ ~ 1 
j~ i  

Then, from (5.1) we conclude that h* and k* are solutions to the following eigenvector 
problem: 

• h = A . h ,  ~ < - 0 ,  h > - O  (5.2) 
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were the elements aij of  the matrix A are given by: 

z~ 
aij -- - ~ J , i 4 : j ,  clii=O, Vi, j E  {1, .... n} 

zi 

Calling # = - A  and B = - A  -> 0, problem (5.2) is equivalent to the following: 

# h = B . h ,  #>-0,  h>-O (5.3) 

The matrix B is irreducible, so, by the Perron-Frobenius theorem, the problem (5.3) 
has one unique solution up to the product by a scalar; therefore, h* : k*. [] 

The sufficient conditions of  theorem 3 which guarantee the existence and the 
uniqueness of the vector h(x) at each point x E I(S~) are satisfied in the case in which 
S is a non-empty and compact  set, verifies G2 and whose OSk is the finite union of 

pieces of hyperplanes. Denote by 7~0 the family of  such a games 4. 
In this case, each hyperplane determines, for each i C (1 ..... n}, a region of I(S~) 

in which the function gi is defined through the equation of  that hyperplane. By means 
of  the intersection of all these regions, we obtain a finite partition of I(S~) so that the 
vector h(x) is constant in the interior of  each region of this partition. Moreover, the 
vector h(x) is well-behaved in the following sense: if the path arrives at the boundary 
between two regions, is easy to see that the vector h(x) is constant up to the boundary 
with another region. So, the path we look for is uniquely determined and it is piecewise 
affine. Thus, we can state the following corollary: 

Corollary: For each S E 7~0, the Perles-Maschler path is uniquely determined and, 
therefore, PM(S) is well-defined. 

Remark 6: We believe that it is true the next conjecture: the solution PM is continuous 

on 7~0 with the following norm: 5 

I[f II : :  Itf II~ + ~ II~ II~ 
i = l  

If  this was true, by means of  the limit, we could define it on the closure of  7~0. 
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