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Abstract. We prove smoothness of the density of states in the Anderson model 
at high disorder for a class of potential distributions that include the uniform 
distribution. 

1. Introduction 

The Anderson model is given by the random Hamiltonian H~ = - ~/2A + V on 
I2(Zd), where  

(Au)(x)= .(y) 
y:ly-xt=l 

and V(x), x~Z  a, are independent identically distributed random variables with 
common probability distribution #. The characteristic function of # will be denoted 
by h, i.e., h(t)= Se-it"dl~(v). The "disorder" is measured by e - l , e  > 0. 

If A is a finite subset of Z d, we will denote by H~, a the operator H~ restricted 
to 12(A) with zero boundary conditions outside A. 

The integrated density of states, N~(E), is defined by 

N~(E) = lim [A]- 1 #{eigenvalues of He, A~ E}. 
A~Z d 

It is a consequence of the ergodic theorem that for almost every potential the limit 
exists for all E and is independent of the potential [1-4].  N~(E) is always a 
continuous function [5-71  being log-Hrlder continuous under mild conditions [6]. 

In one-dimension a lot is known about the integrated density of states. Under 
mild conditions it is always H61der continuous on compact intervals [8, 9] and 
under some minimal regularity assumptions on # it is differentiable, even infinitely 
differentiable [10-12]. 
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But in more than one dimension very little is known about the differentiability 
of N~(E). There is an argument due to Edwards and Thouless [13] that shows that 
the density of states is analytic away from the edges of the spectrum if p is the 
uniform distribution. If # is absolutely continuous with respect to Lebesgue 
measured with a bounded density, Wegner [14] proved that NJE) is absolutely 
continuous with a bounded derivative. (See also [, 15].) Under the weaker hypothesis 
that # is H61der continuous, Carmona, Klein and Martinelli [9] obtained bounds 
on the differentiated density of states that suffice for the Fr6hlich-Martinelli- 
Scoppola-Spencer method for proving localization. 

Further results have required high disorder or low energy. Constantinescu, 
Fr6hlich and Spencer I-t6] proved that if # has a density analytic in a strip around 
the real axis, then the integrated density of states is analytic for IE[ large enough. 
If ~t is Gaussian they proved that for high disorder N~(E) is a real analytic function 
of E. Carmona [-4], using an idea of Molcanov, has given a simple proof that if 
h(t) is exponentially bounded, then N~(t) is analytic at high disorder. Another 
simple argument for the same result due to Simon can be found in [16]. 

Differentiability results were obtained by Klein and Perez (unpublished). Using 
the supersymmetric replica trick and a cluster expansion Klein and Perez used the 
decay properties of h(t) to derive differentiabitity for N~(E) for high disorder or 
large ]EI; their method also gave analyticity results. Their results for high disorder 
are: 

Theorem 1.1. (i) Suppose (1 + t)~+nh(t)eL l, where ne{0,1,2. . .  }. Then there exists 
8 0 > 0 such that N~(E) is (n + 1)-times continuously differentiable on the whole real 
line for all 0 <= e < Co. 

(ii) Suppose (1 + t )~ + " h( t )e Li for all n = O, 1, 2 , . . . .  Then there exists eo > 0 such 
that N~(E) is infinitely differentiable on the whole real line for all 0 <_ e < e o. 

(iii) Suppose e-~th(t) is bounded for some ~ > O. Then for any 0 < ~l < ~ there 
exists e i - - e i (~ l )>  0 such that N~(E) is analytic in the strip l imE l < ~i for all 
O~<e~. 

In one dimension a similar result can be derived for any disorder by the methods 
of Campanino and Klein [11] as in their proof of Theorem 1.5, with the integrability 
condition on (1 + t)~+"h(t) being replaced by the boundedness of that quantity. 

In Theorem 1.1 as in the previous results for the multidimensional case (except 
for [,15]), one gets out as much in regularity properties for N~(E) as one puts in 
for the potential probability distribution #. Notice that the conclusions of 
Theorem 1.1 are valid for e = 0. 

In this article we modify the methods of Klein and Perez to get out more than 
we put in, as done in [,10-12] for the one-dimensional case. In particular we will 
obtain the infinite differentiability of N~(E) for small e (but e ~ 0; the result is not 
true for e = 0) if # is the uniform distribution. 

Our condition will be stated in terms of the characteristic function h of the 
potential probability distribution #. We will only consider h(t) for t > 0 (of course, 

h( - t) = h(t)) and differentiability at t = 0 will mean right-hand side differentiability. 
Our result is 
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Theorem 1.2. (i) Suppose h is dfferentiable with (1 + t)h ti) bounded, i = O, 1. Then 
for any 0 < Eo < oo there exists 0 < eo such that N~(E) is continuously differentiable 
on ( -  Eo,Eo)  for 0 < e < e o. 

(ii) Suppose h is 2n-times differentiable (n >__ 1) with (1 + t)h (~) bounded i =  
O, 1 . . . . .  2n. Then for an>, 0 < E  o < oo there exists 0 < ~ o  such that N J E )  is 
(n + 1)-times continuously differentiable on ( -  E o, Eo) Jbr 0 < e < Co. 

(iii) Suppose h is infinitely differentiable with (1 + t)h (i) bounded, i = O, 1, 2 , . . . .  
Then for any 0 < E o < 0 there exists 0 < So such that N~(E) is infinitely differentiable 
on ( - Eo, E o) for 0 < e < e o . 

Corollary 1.3. Suppose t~ is the uniform distribution. Then there exists 0 < e o such 
that N,(E) is infinitely differentiable on the whole real line for 0 < e < e o. 

We approach the density of states through the Green's function. Let 

G~(x,y; z)= < xl(/-L-z)-lLy>, 
where x ,y¢Zd,  I m z > O .  Then (e.g., [4,17]) GJz)=E(Q(O,O;z) )  is the Borel 
transform of the measure dNJE) ,  i.e., 

dN~(~) 
G~(z) = ~ 2 2 -  z , 

and we have 
i) Q ( E  + iO) = lim G~(E +itl) exists for a.e. EeR.  

~,to 
ii) If dN,,a.~, denotes the absolutely continuous part of the measure dN~, we have 

d N , , ~  (E) 1 
' ' " = - l m  G,(E + iO). 
dE zc 

iii) dN~.~i,g = - d N , -  dN,  ..... is supported by the set 

{ E e R l l i m  lm  G~(E + itt)= oo } .  
~lJ, o 

Thus Theorems 1.1 and 1.2 will follows from 

Theorem 1.4. (i) Suppose (1 + t)d+nh(t)eL t, where ne{0,1, 2 . . . .  }. Then there exists 
e o > 0 such that Q ( E  + iO) exists for all E e R  and is n-times continuously differentiable 
for all 0 < e < ~ o .  

(ii) Suppose (1 + t)d+" h(t)~L 1 for all n = O, 1, 2 . . . .  Then there exists eo > 0 such 
that G~(E + iO) exists for all E ~ R  and is infinitely differentiable for all 0 < e < e o. 

(iii) Suppose e - "h ( t )  is bounded for some ~ > O. Then for any 0 < ai < ~ there 
exists el = ei (al) > 0 such that G~(z) has an analytic continuation to Im z > - " t  for 
all 0 ~ e < ca. 

Theorem 1.5. (i) Suppose h is differentiable with (1 + t)h (~) bounded for i = O, 1. Then 
for any 0 < E o < co there exists e o > 0 such that G~(E + iO) exists and is continuous 
on the interval ( - Eo,Eo) for 0 < e < Co. 

(ii) Suppose h is 2n-times differentiable (n >__ 1) with (1 + t)h (° bounded, i =  
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O, 1 . . . . .  2n. Then for any 0 < Eo < 0o there exists e o > 0 such that Ge(E + iO) exists 
and is n-times continuously differentiable on the interval ( - E o, Eo) for 0 < e < ~o. 

(iii) Suppose h is infinitely differentiable with (1 + Oh (1) bounded jbr all i= 
0, 1,2, . . . .  Then for any 0 < Eo < o% there exists e o > 0 such that G~(E + iO) exists 
and is infinitely differentiable on the interval ( -  Eo,Eo) for 0 < e < %. 

The strategy of our proofs will now be described. Let A be a hypercube in Z a 
centered at the origin, and let 

G~,a(z ) = E((0[(H,, A-  z)- 1 t0>). 

We have Q ( z ) =  lira G~,A(Z) for Imz > 0. 
IA I~ Z 't 

We will use the supersymmetric replica trick [18-21, 1 t, 22] to rewrite G~, A(Z) 
as a two-point function of a supersymmetric field theory. We will then perform a 
cluster expansion and do explicitly the integrations over the anticommuting 
variables. We will estimate the terms in the expansion and show convergence for 
small e. This is the approach used by Klein and Perez and gives a proof of 
Theorem 1.4; this will be done in Sect. 2. 

To prove Theorem 1.5 we will need to modify the duster expansion. The 
assumptions of Theorem 1.5 do not give enough decay for the straightforward 
duster expansion to converge. We will write h = h~ + h2, where h~ will have good 
decay properties. We will use a cluster expansion between sites equipped with h, 
and we will estimate the islands of hz's taking oscillations into account. This is 
done in Sect. 3. 

2. A Supersymmetric Cluster Expansion 

2.1. The Supersymmetric Replica Trick. The supersymmetric replica trick says that 

G~,A(Xl ,X2;z)=i~t(xl)~(x2)exp{-- i  ~ ( x [He .A - -Z lY )~ (X) '~ (Y ) }~A  (1), 
x,y~A 

(2.1) 

where A is a finite subset of Z a, xl ,  xz~A, Im z > 0, ~(x) = (q~(x), ~(x), ~(x)), where 
¢(x)eR 2, ~(x) and ~(x) are anticommuting "variables" (i.e., elements ofa  Grassman 
algebra), 

• (x)' ¢(y) = rp(x). (p(y) + ½(t~(x)~/t(y) + ~(y)O(x)) 

and ~at/)-----l-Id¢(x), where dq~(x)=(1/~z)d~(x)dO(x)d2~o(x). Notice that 
x e A  

~e-~(x)¢(X) dO(x) = 1. 
Since we are working on a finite lattice (2.1) is fully rigorous. To compute 

functions of ~, ~ we expand in power series that terminate after a finite number 
of terms due to the anticommutativity. All {~(x) ,~(x);x~A} anticommute. The 
linear functional denoted by integration against d~(x)d~(x) (it is not an actual 
integration) is defined by [23] 

~(ao + al ~(x) + a2ffj(x) + a 3 1 f f ( x ) ~ t ( x ) ) d ~ ( x ) d ~ ( x )  = - a 3 • 
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To simplify our notation, we will abuse it by writing 

q~(x) 2 for ~(x).q~(x) and ~0(x) 2 for ~o(x).q~(x). 

Recalling the definition of H~,A, w e  have 

Q.A(Xl,Xz;Z) = i~O(Xl)~ff(x2)exp~ --i Z V(x)q~(x) 2 + iz Z q)(x) 2 
x~A x e A  

+ie  ~ ~ ( X ) ' ~ ( y ) ~ A ~ ,  (2.2) 
(x,y)~A ) 

where by (x, y ) e A  we denote a pair x, yea  with Ix - y] = t, the summation being 
over all such pairs in A. 

If h is absolutely continuous with a bounded derivative, we can average over 
the random potential in (2.2) to obtain [11] 

E(G~,A(Xl,X2;Z))=i~O(xl)~(x2) 1-[ fl(~(x)2;z)exp{ ie ~ q)(x)'q)(Y)}NA* 
x e A  (x,y)sA 

where fi(r; z) = h(r)ei% 
Thus 

x e A  (x,y)eA 

2.2. The Cluster Expansion. To perform a cluster expansion, we rewrite (2.3) as 

G,,A(Z) = if~b(0)~(0) 1] fl(cI)(x)2; z) [I [( ei~(*)~( ')-  1)+ I ]~A~.  
x~A (x,y)eA 

Thus 

Q,A(Z) = i ~ ~k(0)t~(0) 1] fi(¢(x) 2;z) I-[ ( ei~(x)'a'(" -- t )~A¢,  (2.4) 
F c A  x e A  (x ,y)eF 

where by F we denote a subset of nearest neighbor bonds. Notice that by x~F 
we mean that x is a vertex in F, ( x , y ) ~ F  means the bond ( x , y )  is in F. We will 
denote by b r the number of bonds in N and by v r the number of vertices in F. 
Notice that Vr< br+ 1. 

We now use the fact if F(~I  . . . . .  q),) is a supersymmetric function (with respect 
to the same supersymmetry acting on all the super-variables; see e.g., [24]), such 
that all of its components are integrable, then 

.[ F(~01 . . . .  , ~,,)dq51... d~,  = F(0, . . . ,  0). (2.5) 

This can be easily proved by induction. The case n = 1 is just Lemma 4.3 in [24]. 
Using (2.5) on (2.4) we get (note that fl(0; z)= 1) 

Q,A(Z) = i ~ ~¢(0)~(0) I-I fl(~(x)2; z) 1] ( e'~*(x)'~(y)- 1 )~r~ ,  (2.6) 
O~F~A x ~ F  (x ,y)eF 

where the sum is now only over connected graphs/-" containing the origin. 
We will now fix the connected graph F, 0 ~ F  c A, and perform the integration 
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over the ant icommuting variables. To  do this notice that  

/~(~pz; z) : fl(q~z; z) +/~,(q~2; z)~q), (2.7) 

( i~- : ) 

It follows that  

fO(0)~(0) M fi(q~(x)2; z) YI (ei"e(x)¢(y) - 1 ) N F e  
XEF (x,y)~F 

is a sum of terms of the form 

+ f [ I  fl#x(~°(x)2; z) [[ $(x,Y)(O(x),~°(Y))2r~°, (2.9) 
x ~ F  (x ,y)sF 

where /~#x is either /~ or if, and $(x,y)(~o(x), q~(x)) can be either (e iw~)'o~y) - 1 ) ,  
(it/2)e i~o(~)'°(y) or (ez/4)e ~°(~)'~y) and ~r~O = l-[ dZ~°(x)/n. 

x~ r 

If in Theorem 1.4 we had also made assumptions on the derivatives of h similar 
to the ones made on h, we could now estimate each term in (2.9) to prove a version 
of Theorem 1.4 that  would look more  like Theorem 1.5. In part icular  our  choice 
of e o would depend on the energy interval ( - E o ,  Eo). 

To  avoid the assumptions on the derivatives and the dependency of ~o on  the 
energy interval, let us look again at (2.9). Notice that  if/?#~ =/~', then it follows 
from the integration over the ant icommuting variables that  we must  have 
$(x,y)(q~(x),q~(y))=ei~(~)'~(Y)-i if ( x , y ) ~ F .  We will exploit this fact when 
performing an integration by parts on the variable cp(x) to get rid of the derivative. 
We have 

fl'(cp z) = (2(p2) - ~ ~o.Vfl(~o2). (2.10) 

Thus, with Im z > 0 (we omit z), 

lfl'(q~2) ** (e ,~ .oj_  1)d 2 q~ = _ jfi(p2)V. (2~02)-~ l ~  ( e~"°~J- 13 d 2 
j = i  

k 
= -I/~((Pz)(2~°2)-* ~ ° 'V IV[ ( e'w'~" - 1)dZcP 

j = l  

k 
= _ ~/~(q~Z) Z ie(2rP 2)-1 q).(pf,~,.~: I J  ( e~'~'' -- 1)dZq ~, 

j = l  l ~ j  

(2.11) 
k 

since V ' ( 2 ( p 2 )  - l ( p  = 3((p) ,  and fi(q)2) 1~ ( d"o'~'~ - 1) is cont inuous and equal to zero 
j = l  

at ~o=0. 
We may also have to do an integration by parts when we had already done 

an integration by parts on one side of a bond. In this case, we have 

/?, (q~2)ieq~" ~o~ (2q~,)- 2 e,,~o.o, d 2 (p 

= - igSfl(cpz)(2(#2) -a q)'V(q~'q), (2q~) -1 e~"~°*)dZep 
ie e l -  4 2 2 - 1  = -  ~fl(q) ) ( q~ ~o~) q)'~o~ +ie(4~o2q)~)-~(q~.qh)2]e'~O'~°~d2~o. (2.12) 



Smoothness of Density of States in the Anderson Model 445 

Thus each term in (2.9) can be written as the sum of at most  (2d)vr terms of the 
same form except that  fl#" is always [t and $(x, y)(q~(x), ~o(y)) can also be 

o r  

o r  

ieq~(x)" go(y)(2q~(y) 2)- 1 e~,O(~)-~(y), 

- is E4¢(x) 2 ~o(y) 2 ] - * ¢(x).go(y)d ~°(':)'~(y)(1 + is ~o(x).~o(y)). 

In any case, we always have 

IS(x, y)(~o(x), q,(y)){ < 8(1 + I q,(x){)(1 + {~o(y) l) 

or < 5(1 + {q~(x)l)(2{to00{)- * 

or < e(1 + ({(p(y){)(2[cp(x){)-* 

or < e(1 + (2{ ~o(x){)-*)(1 + (2{ ~o(y){) -1)  

with the impor tant  restriction that  for a given x at most  one of the bonds  for 
which x is a vertex contributes a (21 ~o(x){)-' factor. 

Thus each term in (2.9) can be bounded by ~br(2d)~rC~r where C t is the 
biggest of 

2 
5(1 + }cpl)2elfl(~p2;z)Id ~P (2.13) 

7~ 

o r  

2 d2(p 
S(1 + {qol)zn-~(2lcp{) -~ I//(~o ;z)l . 

rc 

Since l fl(q~2; z)[ < lh(~02)t, C1 can be chosen independently of z. Notice  that  C1 < oo 
by the hypothesis of Theorem 1.4. 

Since the number  of terms in (2.9) is < 2~r3 b~, we have that  

j'O(O)~(O)I~ fl(~b(x)2; z) I-I ( e'~*(~)' o(,) _ 1)~r~b 
x e F  (x,y)~F 

<-_ ebr(2d + C1 + 2)~r3Or- < _ Cb2r+% br 

for C 2 = (2d + C1 + 2)3 
It now follows from (2.6) that  

if 

OaFcA n=O OeFcA withbF=n 

< C 2 ~ (4d2C2e) " =  C2(1 - 2 d C 2 e )  - I  
n=O 

8 < (4d2C2) -1. 

Under  the above assumptions G~,A(E + itl) can be extended to ~/= 0 as a 
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continuous function. Since all our bounds are uniform in EsR and q ~ 0 we can 
conclude that Ge, A(E + irl) converges as A ~ Z a uniformly on E s R  and r/> 0. Since 
for t />  0 the convergence is to Q(E + iq), we can conclude that G,(E + iO) exists 
and is a continuous function on the whole real line. 

We now turn to the differentiability of Q(E + iO) with respect to E. Since 
fl(q)2;z) = h(Cb2)e ~za~, it is clear from (2.3) that G,,A(Z) can be differentiated with 
respect to E for ~/> 0. If we use (2.4) we get 

d 
~ Q ,  Az) = - Z E ~O(O)~(O)~(x) ~ l-[/3(~(x)~; z) l-[ ( e'~'~~'~" - 1)~,¢. 

O e F ~ A  x e Y  x ~ l "  ( x , y ) e F  

~ b  F b F As before each term in the sum can be bounded by C3c  2 ~ , where C 3 is 
calculated like C 1 except that we replace/3 in (2.13) by rp2fl. Notice that C 3 < oo 
is the hypothesis of Theorem 1.4 for the differentiability of Q(E + iO). 

Thus we have the bond 

id-~Q'a(Z)i~ ~'0er~aVrC3Cbr~br~C3n=0 ~ (l+n)(4d2C2e)"<°° 

if, as before, e <(4dZCz) -1. 
The same procedure works for higher derivatives. 
Since h' does not appear in our bounds we can remove it by an approximation 

argument. This concludes the proof of Theorem 1.4 (i) and (ii). To prove the 
analyticity in (iii) the same procedure works since G~, A(Z) is analytic for Im z > - a. 
One proves uniform bounds for Im z >__ - . z  and uses Vitali's Theorem. 

3. The Modified Cluster Expansion 

3.1. Basic Idea. We will now modify the cluster expansion of Sect. 2 to prove 
Theorem 1.5. For technical reasons we will use the supersymmetric replica trick 
for e-IH~ = -½A + e-iV. Thus (2.3) is rewritten as 

G~,A(z)=ie-l~O(O)~(O) I] /3~(~b2(x);z)exp{ i ~ ¢(X)'q)(Y)}NA¢, (3.1) 
x ~  A ( x , y ) ~ A  

where/3,(r; z) =/3(e- i r; z). 
We will write/3, =//1 +/32, the decomposition depending on e./31 will be chosen 

to have compact support and/32 will be the tail. Our approach will be to perform 
a cluster expansion only on bonds between lattice sites equipped with/31, and 
choose/31 and/32 in such a way that the integrals over the regions equipped with 
/32 are small. The convergence of the expansion will then depend on a delicate 
balancing of bounds. 

3.2. The Decomposition of/3~ and Bounds. Let Z be a fixed infinitely differentiable 
1 1 c [ - 1 , 1 ] .  We function on R such that 0<X_---1, Z - 1  on [ - ~ , ~ ]  and suppz 

will use ;~ to denote the characteristic function of [ -  1, 1]. 
We now fix e > 0 and define (we omit the complex energy z) 

ill(t) = fi~(t))~(e-Q), /32(0 =/3,(t) -/31 (t) =/3,(t)(1 - X(e-~t)). (3.2) 
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Here 0 < 8 < 1 is to be chosen later. Our  assumptions are that  

Ih(°(t)l ____ C(1 + 0 -1 for i =  0, 1. (3.3) 

By C we will always denote an appropriate finite constant  (not always the same). 
We will derive bounds on fll and t2 that  will be needed for the convergence 

of the modified cluster expansion. We now fix 0 < E o < oo. All our bounds will be 
uniform in E and ~/for I E[ < Eo and 0 < ~ < 1. 

Notice that  
e-l+~ 

S( l+t ) - i x (e l -~ t )d t<= ~ ( l + Q - l d t = l o g ( l + e - t + ~ ) < _ C [ l o g e l  (3.4) 
0 0 

and 

(1 + t)-z(1 -X(e  l-at))2dt <-_ + t)-edt  =(1 +½e-i+~)-t_<__ Cel-~ 
0 1/2~ 

(3.5) 

F rom now on we will always consider ill,  f12, h, h', etc. as functions of (o2, and 
all the L p norms will always be with respect to d 2 qL 

From (3.2), (3.3), (3.4), and (3.5) we get: 

For  1 < p < oe we have 

For  1 < p < 2 we have 

II 81 I11 ~ Cellog el, (3.6) 

Ilff~ II1 ~ Clloge], (3.7) 

II fll 1[ ~ <= Ce i/2, (3.8) 

IiBi 112 < Ce -1/2, (3.9) 

fit2112 < Ce 1 -~/2, (3.10) 

II 8~ II 2 < C e -  6/2 (3.11) 

It l~01-1f12 It2 < Ce l-a,  (3.12) 

tl I~ot82 lifo = < Ce 1-~/2, (3.13) 

II Iq~lS~ 11oo < C~ -~/2, (3.14) 

It Iq~181 tt2 < Cetlog~l 1/2, (3.15) 

II I ~olff~ II2 Cllog ~11/2, (3.16) 

II 81 lip ~ cd/p, (3.17) 

It 8i lip =< c e -  i + 1/~, (3.18) 

[I t 2  lip ~ Cel --(1 - i/p)6, (3.19) 

II 8~ lip =< Ce -(1 - 1/p)~ (3.20) 

[[ [ ~0 It :  [[ p =< Ce 1 + m / p -  i/2), (3.21) 
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For 32- < p < oo we have 

For 2 < p < oo we have 

II t~0t1~1 lip < c ~  ~"/p- 1/2) 

II I~ol-lfl 2 II~ ~ C81-6(3/2-1/P) 

[I t (P [ ~ 2  t[ p ~ CS1 - 6(1/2 - 1/p), 

II I~o Ifl~ I1~ _-< Ce -o~'~-'p). 

Another bound we will need is 

tl (e ~°'*' -- 1)2(e-°cP2)2(~-~°'2)Jl oo < C~ ~- 

3.3. The Modified Expansion. From (3.1) and (3.2) we have 

-- ieQ, a(Z) = 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

k(x) = 1,2 x e  A ( x , y ) e A  
x~A 

Z D(o)~(o) l~ ~l(¢(x) ~) l~ ~(~(x) ~) 1-I e'*(x)~('~A~. 
A 1 ~ A x~A~ x~A\A1  ( x , y ) e A  

(3.27) 

We will perform a cluster expansion only on bonds between sites in A,.  For 
a fixed A, c A we let A 2 = A\A1 ,  

A2 = {xsa ld (x l ,a2 )  < 1}, Y ( a t ) =  { ( x , y ) e a ~ 1 ( x , y ) ¢ A 2 } .  

To perform the cluster expansion we rewrite (3.27) as 

-i~G~,a(Z) = Y, ~0(0)~(0) [ I  fl*(~(x) ~) H fl~(~(x) ~) 
A 1 c A x e A t  xeA 2 

[I [(e ~*~x~'*~'- 1)+ 1] H do(x)'*('~ aa' 
<x,y>eY-M1) (x,Y>¢.9-(A1) 

= Z Z ~¢(o)~(o) I-I ~(~(x) ~) H ~(~(x) ~) 
AI ~ A  F c.y-(At) x~ A1 x e  A2 

1-[ (eio(x)'*(y) - 1) [ I  e'O(*)'*(V)~Aq~" 
( x , y ) e F  (x,y)¢~-(A1) 

We now use (2.5) and the discussion before it. Taking into account that fl,(0) = 1 
and f12(0)= 0, we get 

-i~o~,A(z)= E E f~(o)~(o) H ~(~(x) ~) 
A 2 ~ A F~@(A2) x~A 2 

1-[ fll(@(x) 2) l~ (d +(*)" ~(y) - 1) 
xe[(A 2 u F)\  A2] (x ,y)  ~F 

1-I e iea(x)" ~(r)~rua2 q), (3.28) 
(x,y)eA2 

where ff(Az)= {FeY-(A 1)lFwAz is a connected set of nearest neighbors bonds 
with 0 ~ F  u,,12 }. 

We now perform the integration over the anticommuting variables. If we fix 
A2 c A, FEqq(Az), the corresponding term in (3.28) can be written as a sum of 
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terms of the form (recall (2.7) and (2.8)) 

+S H 
XE A2 xe[W~ A2)\A2] 

I-I $(x,Y)( ei~(x)'~'(y)- b(x,y)) I-~ $(x,Y)d~(~)'~(r)~r~z: ~°, 
(x,y>~F (x,y)eA 2 

where 

is either fli or ff~,i=l,2,  

b(x,y) is either 0 or 1, 

(3.29) 

(3.30) 

i 1 $(x,y) is either 1,~ or 

There are constraints on the possible choices in (3.30). We are not going to 

B" = B' c~(7Z d + 5). (3.33) 

For xEB" we perform an integration by parts similar to (2.11). Since//2 = 0 in 
a neighborhood of the origin we get 

= -- i ~ I fl2(cP(x)2)[2cp(x)Z]- i ~(x)'q~(y) 

"exp { iq~(x)'r <x~y)Eg2 cP(Y) } d2 cp(x) 

We choose 

take these constraints into account except for the following: if at a given site x we 
have fl](~0(x) 2) then we have b(x,y)= 1 for all (x ,y )~F.  

3.4. Integration by Parts. The LP-bounds (3.11) and (3.20) for fl~ diverge like e -~ 
with 6 > 0. If we have a term in (3.29) with many fl~, our estimate will give us a 
large factor. To avoid this problem we will thin out the number offl~ by performing 
integration by parts. 

So let us fix a term in (3.29) and write A2 = BuB',  where B is the subset of 
A 2 where we have f12, and B' is the subset of A 2 where we have fl~. We want to 
perform an integration by parts in a sufficiently large subset B" of B' such that 
the sites in B" are sufficiently far apart from each other. 

Notice that 

Z~ = U ( 7zd + 7), (3.31) 

the union being over all ~ Z  a with aie{0, 1,2,3,4,5,6}, i =  1,2 . . . . .  d. 
Since (3.31) expresses Z 4 as a disjoint union, there exists at least one such c~, 

say 5, such that 

fB'c~(7Z a + 5)1 > 7-alB'l. (3.32) 
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2 

= - i  Z ~ ~flz(~°(x)Z)[2~p(x)Z]-lcPJ(x)q~J(Y) 
y:(x,y)e~2 j=  1 

• exp(iq~(X)'y:<x~ 2 ¢p(y)}dZq~(x). (3.34) 

After performing the integration by parts (3.34) at all sites in B", we can still 
express each term in (3.28) as a sum of terms of the form given by (3.29), except 
that now 

fl#~ is either fll or fl'l if x ~ F \ A z ,  

or fll,fl 'l,q~flt,q~jfl'l,j= l,2, if x ~ F  c~A2; 

fl~2 * is either fi2, fl~, q~jfl2, ~Pjfl~, (3.35) 

or [2q~2]-lq~fl2,j = 1,2, b(x,y) and $(x,y) 
are as in (3.30) 

3.5. Convergence of  the Expansion. Let us fix a term of the form (3.29) with the 
choices for the functions in the integrand being done according to (3.35). We are 
going first to integrate over the variables in each connected component of A2. The 
functions at each site of A2 are not in L 1 except for those at the sites in B" where 
an integration by parts has been performed, but they are in all L p for p > 1 with 
the possible exception of one of the nearest neighbors of each site in B" where we 
need p > 2. We must use the oscillations given by the bond functions in order to 
be able to estimate the integrals. This will be achieved by interpolating between 
different estimates using L p norms. 

The crucial estimate is given by the following lemma: 

Lemma 3.1. Let 

K = K ( A 2 , F , # , $ , b ) = ~  1-[ fl#~(cP(X) 2) I~ fl#zx(q~(x) 2) ]-I $(x,Y) ei~(x)'~(y) 
x~,~2\A2 xeA2 (x,y)~fit 2 

I]  [$(x, w)(ei~'(~)'~°°~) - b(x, w))~(e-o q~(x)2)~(e-~ q~(w)2)] ~ 2  q~" 
~,~>~r,~2 (3.36) 

Then there are l < p < 2 , 2  <r  < oo, l < q = q ( r ) <  oo with l imq( r )= l ,  and a 
r ~ 2  

constant C = C(p, q, r)< ~ ,  all independent of  A 2, F, #, $, b, such that 

IK] <CI~2~ [-[ 11~l12,pIlll~ll, lq tlfl#~lll,ql-111~1I~,2 
xeA2 \ l  xeI x~[(~2\A2)\EI] XeEl 

I~ ]l $(x, w)(e i~'~)'~°(~) - b(x, W))~(e-6fp(X)2)Z(e-6(~(W) 2) 11 m ,  (3.37) 
(x,w)eF, x~2 

where I={x~A2tff~2~=q~fl2 or q~jfl'2,j= 1,2}, E, is a subset of  A 2 \ A  2 with 
tE*t<ll l ,  and ll [[v,,p~--½{[[ Jim+l[ l[p~)- 

The proof of this lemma will be postponed to Subsect. 3.6. 
Lemma 3.1 and the L" bounds of Subsect. 3.2 allow us to estimate K in terms 

ofe and ]A2I. 

Lemma 3.2. For 6 > 0 sufficiently small there exists ~ > O, depending only on the 
dimension d, such that for all ~ > 0 sufficiently small we have 

[K] < e ~lz~l I-I [I $(x, w)(e I~'~¢~) - b(x, w))~(e-oq~(x)Z)2(e-O~o(w) 2) II ~. 
<~,~,)~r,~a~ (3.38) 
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Proof. Let 

N~ = I [A2\A2] \E , I ,  
N2=I{x~A2111#2 ~ is either f12 or ~ofl32}1, 
N'2=l{xeA21flez ~ is either fl~ or q~fl~}]. 

We recall B" = {xeA2lfl#2 ~ = [2q~ z] -~ q~j//z }. 
Applying Lemma 3.1 and the bounds (3.6)-(3.25) we get 

IKt < CIX~le (~ --6)N2'F.-'SN~2~(I--6)IB"I8--(1 - 1/~)N~8-1/21~tlA, 

where 

A = 1-[ It $(x, w)(e i~'(~)'~(w) - b(x, w))~(e- ~ q~(x)2))~(e-~q~(w) 2) II ~- 

Now using (3.32) and (3.33), IN~I +lB"l  = [B'l, the fact that ill < In"l by 
construction, lEvi _-< l i t ,N1 < IA21,tN21 + IB'I = IA21 and IA21 <(2d + 1)tA21, we 
get 

IKI ~ C 1~218[(2`7a)- l-~(l + 7-a)]l B'l13(1-6)N2 F,-(1-q- X)IAzl A 
~--_ c ( 2 d  + 1)IA21 ~[{2.7 d) - 1 -6 (1  + 7 - a )  - (1  - q  - 1)(2d + 1)]lBtl ~[1 - O - (1  --q - 1)(2d + 1 ) ]N2A"  

The lemma now follows by taking q sufficiently close to one and 6 sufficiently 
small. 

We can now prove the convergence of the expansion (3.28), by estimating it 
uniformly in A and in IE[ < E0,0 < r/< 1. 

Theorem 3.3. For any E o < oo we can choose 6 > 0 in (3.2) for which there exists 
~o > 0 such that the expansion (3.28) converges as A ~ Z a, uniformly in 0 < e < e o, 
IEI < Eo and 0 <q  < 1. 

Notice that Theorem 1.5 (i) follows from Theorem 3.3. 

Proof of  Theorem 3.3. From (3.28) and (3.29) we have 

-eiG~.a(z)= E E Z(---)~ I-I /?#~((q0(x) z) [ I  fl#2~(q)(x) z) 
A 2 = A F~ff(A2) #,$,b xe[(FuA2)\A2] xaA2 

I ]  $(X, y)(e ~ ' ~ ' ~  -- b(x,y)) 
(,x,y)~F 

I-I $(x, y)ei~(~)'~r)~r.~z q), (3.39) 

where the sum in #, $, b is over the allowable choice (3.35). 
Using (3.36) we have 

leQ, a(z)l < E E E IK(Az ,F ,# ,$ ,b ) I  
A 2 = A  Feff2(A) f:h$,b 

I-[ II $(x, y)(e z~'~x)'*~r) - b(x, y) )~@-~ q~(x)2)~(e-o cp(y) 2) [I 
(x,y)~F 
x,yCA 2 

1-I II/~#~ II ~ • 

For  fixed A2, F, #, $, b, let us write 
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F1 = { (x ,y)sFlb(x ,y)  = 1}, 

L =  {x~F\A2lfl#l x = fli}, 

We now choose 6 > 0 and eo > 0 by Lemma 3.2, so (3.38) holds for all 0 = e < t o. 
Using (3.38), (3.6), (3.7) and (3.26) we have 

[eG.,a(Z)[_--< 2 2 2 e~'~P~2[(C'zll°g~l)lLl(Cll°gel)lL'r( Cc='a)br~, 
A2 c A F~ff(A2) #,$,b 

where br~ is the number of bonds in F1. 
By the remark after (3.30) we have [E[ < br~. Thus 

I~G,A(Z)I < ~ ~ ~ ehl&l(Cellogel)lLJ(Ce~/Zlloge[) Icl 
A2 ~ A F~C~(A2) #,$,b 

=< Z Z Z ~21r,~21 (3.40) 
A2c:A Feff(A2) #,$,b 

for some 6z > O. 
We now estimate the sum on the right-hand side of (3.40) by first choosing the 

set D = F w Az, which must be a connected set containing the origin, and then 
summing over all possible choices of A2, F, #, $, b compatible with D. The number 
of possible choices is bounded by C DI for some finite constant C which depends 
only on the dimension. Thus we get 

teG~,A(z)l <= ~ ClVle~2tvl = (2d)2"(C~a')" = ~ (4d2 Cea~) ". (3.41) 
O~D connected n = 1 1 

It suffices thus to choose e0 > 0 such that 4d2Ce~o ~ < 1. 
This finishes the proof of Theorem 3.3. 

3.6. Proof of Lemma 3.1. At each site x~A 2 we consider a function f~(q~(x)) and 
define 

M(f~;x~A2)=~ l-I f~(q~(x)) I~ $(x,y)ei~(~)'~r)~ °" (3.42) 
x~A, 2 ( x , y )~A  2 

M(f~;xeA2) is a multilinear functional. We will establish bounds for M in 
terms of several possible choices of norms for the {f~;xsA2} and interpolate 
between these norms to obtain the desired bound that implies (3.36). 

We start with some definitions. Let d be the set of isolated points in A2, i.e., 

J = { x e A 2 1 ( x , y ) e A  2 implies yeA1}, 

and, for ~ as in (3.31), let 
H~, = [A2 r~(7Z a + ~ ) ] \ I ,  

where I is a given fixed subset of A 2 with I x - Y l  > 5 for x, y d ,  x ~y .  For each 
xeI  such that there exists <x,y>sA= with ysA=\A=, we choose such a y which 
we denote by y(x). We define 

E~ = {y(x)lx~I with dist(x,A~\A2) = 1}. 

Notice that [E~I ~ [II. 
We first prove: 
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Lemma 3.4. For any r, 2 < r < oo, there exists p, 1 < p <= q, where 1/q = ½ + l/r, such 
that 

[M(fx;xE-7"12)[<CiazfI-I ][fxli2 1-I I[f,~livI-[i[f.l[, 
x d t ~ \ J  xeH=c~J xEI 

1-I lifxitl.2 1-I [Ifxl[1.~ I ]  l[fx][~ 1-I [lfxl[1.2. (3.43) 
xeA 2 \(Ha~;Iud) x ~ A  2 \ ( A  2 u El) x~J\H~ x~E I 

Proof. We will first integrate over some of the variables in (3.42) and then estimate 
what remains by the D-norm. The integration will be done in several steps. 

Step t. Integration over the variables labeled by J n H ,  and one nearest neighbor. 
Since the sites in J c~ H~ do not have nearest neighbors in common we can do 

the integration over the corresponding variables obtaining 

I-I f x (  ~_~o(y ) ) ,  (3.44) 
x ~ J w H  a \ y : ( x , y ) ~ A  2 

where f(t#) = S ei**'f(q ~') d2 q~" We recall the nausdorff-Young inequality IIf I I p, <_- 
(2~)2-21vtlfltv for 1 <=p<2,1/p'+l/p=l.  Notice that if x~dc~H~ and we fix 
Y ~ , 4 2 ,  I x - Y l = 1, then (3.44) is in L p' (d 2 ~o(y)), uniformly in the other variables. Thus 

Step 2. Integration over the variables labeled by xeH~\J such that dist(x,I)> 1 
and over one nearest neighbor. 

For each such x we pick z = z(x)eA2\H=, Iz - xl = 1. We then integrate over 
/ N 

f~(  E _  tp(y)), which is in L2(d2~9(x))uniformly in the other ~o(z), obtaining 
\ y:(y,z)~A 2 / 

nearest neighbors of z. We obtain 

j'Ifx( (x))l t:(  o( ))<l  (x)<=2.11fxlhltfzlh. 
\ y : ( y , z ) ~ A  2 

Step 3. Integration over the variables labeled by I and two nearest neighbors. 
Here we must consider several cases. 

Case I. x~I and there is y~H~ with Ix - y[ = 1 (in particular yq}g). 
/ \ 

We integrate over ~0(.v)to obtain f y (  ~ ~o(z)], which is in L2(dZ~o(x)) 
\ z : ( z , y ) ~ A  2 / 

uniformly in the other variables. We then choose another nearest neighbor z of x, 
which must be either in AE\A2 or in A2\H~. Integrating over ~o(z) we get 

/ \ 

f~(  ~ ~o(w)) which is in Lt(d2q~(x)), where I / t= 1 -  1/r-½, uniformly in the 
\w:(w,z)= 1 l 

other variables; here we pick an r, 2 < r < oo. We set 1/q = 1/r + ½. We can then 
bound the integration over ~o(x) by (2re) 2 ]1 f~ II, ]l fy [I 2 II f~ [Iq. 

Case 2. xeI,  dist(x,H~)> 1 but dis t (x ,A=\A2)= 1. 
We pick y(x)eEs and another nearest neighbor z of x and repeat the procedure 

of Case 1. We must now be careful if there exists w~H= such that w and x have a 
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common nearest neighbor u. If in step 2 we chose a different nearest neighbor u' 
of w over which to do the integration we can take z = u. If however we already 
used u in step 2 we must take z ~ u. This can always be done except if we are in 
dimension d = 2 and x is a corner of the box A, so x has only two nearest neighbors 
in A. In this case we must enlarge E~ slightly (by four more points, one for each 
corner of A) and use this new site of Ez in step 2 if necessary to free the two nearest 
neighbors of x for the present case. This slight enlargement of EI makes no 
appreciable difference and we will simply ignore it. 

Case 3. x~l,  dist (x ,H~)> 1, dist(x, A2\A2)> 1. 
We proceed as in case 2, but we pick the two nearest neighbors o f x  in A2kH ~. 

Step 4. We now estimate all the remaining integrals by the D-norms. 
If we now pick p in step 1 such that 1 < p < q, where q was chosen in step 3, 

we obtain (3.43). 
This proves Lemma 3.4. 
We will now use complex interpolation between Banach spaces to interpolate 

between the bounds obtained in Lemma 3.4 for different choices of a. An application 
of the three lines theorem as in [25] gives 

Lemma 3.5. Let L( fx ;xeA ) be a multilinear functional on (Ll~L°°) A such that 

pL(f~;x~A)l < C H II fx II, . . . .  (3.45) 
x~A 

and 

where t~, ux, v~[1 ,  oo]. 
Then 

where 

IL(f~;x~A)[ < C H Ilf~ II, ..... (3.46) 
x~A 

I L(f~; x~A)l < C H II f~ H tx,wx, (3.47) 
xeA 

1 _1 ( 1 + 1 )  
w~ 2 \ux  vx/" 

We are now ready to finish the proof of Lemma 3.1. Let a ("), n = 1,2, . . . ,  7 a 
denote an ordering of the ~'s as in (3.31). We apply Lemma 3.5 to M(fx;x~A2), 
where we have A = A 2 \ I  and fix the variables in Az \A .  We apply Lemma 3.5 
iteratively. We start by choosing ~ = ~1) in Lemma 3.4 so we have the bounds 
(3.45) and (3.46) with 

t~,=2 for x~A2\( IuJ) ,  

t .=  p for x~J, 

ux= t for x~Az\(H~,)uI) ,  

u~= p for x~H~,~, 

v x = l  for xeA. 
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Applying Lemma 3.5 we get (3.47). In the next step we take a = a (2) in Lemma 3.4, 
and use Lemma 3.5 with t,, u, as before but with v, equal to w~ obtained in the 
previous step. If we perform this procedure for all a("), n = 1 . . . . .  7 d, we are able to 
obtain an estimate of the type (3.47) with all w, > 1 for all x e A 2 \ I .  If we now 
select p to be the smallest of all w~ we obtain the estimate of Lemma 3.1. 

3.7. Differentiation. Since (d/dz)fl(@2; z)= i@2fl(~2; z), it follows from (3.1) that for 
Im z > 0 we have 

d" 
dz" Q,A(Z) = ie -("+ ~ ~, (~(0)~(0) q~(x~)2... ~(x,)2 >,,Z, (3.48) 

Xl , . . . , xn~A  

where 

< O(o) 5(0)~(x~)~... ~(x.) ~ >.,A 

x ~ A  k (x , y )~A 

(3.49) 

We will now show that if h is 2n-times differentiable with (1 + t)hl°(t) bounded, 
i = 0, 1 . . . . .  2n, we can apply our modified cluster expansion to each term of the 
form (3.49) and obtain convergence of the expansion we get from (3.48) in the same 
region of the parameters for which we proved convergence for the expansion of 
G,,A(Z ) (i.e., for the parameters as in Theorem 3.3). Since for fixed E o < oe we will 
choose e o > 0 independent of n, we will obtain a proof of Theorem 1.5 (ii) and (iii). 

Applying the modified cluster expansion (3.28) to each term of the form (3.49), 
we get (we surpress e) 

< 0 (o) 5(0) ~2 (xl)... ~ (x.) > a 

= E E <~J(O)~(O)(~(X1) 2" '"  (])(Xn) 2 >F, A2, (3 .50)  
A 2 ~ A F~CS(A2;Xl,...Xn) 

where 

and 

<A>~A~ = J'A H ~2(~(x) ~) H /~l(~(x) 2) 
Xfi A2 x~[(A 2 ~3 r ) \  A 2 ] 

H ( d ~ ) ' ~ y ) -  1) H _  ei*(~)'~Y)@r,~2 
(x ,y>sF <x,y>~A 2 

~(A2; x l . . .  xn) = { F ~f¢(Az)lxl  . . . . .  x . ~ F  u A2 }. 

It now follows from (3.48) and (3.50) that 

- Q A(z)= E E E Y k 
k = O  Xl , . . , , xneA  A2 c A F~fg(A2;xl,...,Xn) \ , /  

k 

<o(o)5(o)  [ I  [I " " ~o(xs) >r, A2" (3.51) 
i=1 j = k + l  

If we now perform the integration over the anticommuting variables in each 
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term on the right-hand side of (3.51), we obtain a sum of terms of the same form 
as (3.29), except that: 

(i) For  x = x 1, x2 , . . . ,  Xg, we have ~x = fli, i = 1, 2. 
(ii) For  x = x,+ 1 . . . .  ,xn, ~x  is replaced by ~0amfl~ ~, where m denotes the number 
of x]s, j = k + 1, . . . ,  m, such that x = xj. 

Since we did not assume that ~o2"fl~sL 2, we will have to perform integrations 
by parts to obtain terms we can bound. In addition to the bounds of Subsect. 3.2, 
we will need: 

II I,;o"l& IJq _-< el/2,~ II & IIq, (3.52) 

ilt~01r'/~ ~ llq ----< d :2~m 11/~!~ I1~. (3.53) 
These bounds hold for all 1 ___ q =< oo and all m > 0. Also, 

II I~olB~ ) II~ ~ c~ -z÷~-~zz (3.54) 

Since we assumed the same decay for h a) as for h, we have that l[ fil l) [1~ and e -I II/~i I1~ 
satisfy the same type of bounds, with i = 1, 2, with perhaps different constants. 

Notice that the bounds (3.52) imply that for the terms in (3.51) with x i e A \ A 2  
our previous estimates suffice. Problems arise from x ~ A 2 .  We will show that such 
terms may, however also be estimated in essentially the same way as before, the 
bounds being changed by constants depending only on n and e. 

For fixed A2 and F we consider a rather general term, 

Z(#, m, l) = Z(#, m, l, A2, F, $, b) 

= ~ l~_ [fl#x:'(q~(x)2)q?~(x)q~Z2x(x)] I-I $(x,Y) ei~(x)'~°(r) 
xeA 2 (x,y)~.4 2 

H $(x, w)[~oT'~(w)q~12~(w)ei~°(~)'~°(~) -- b(x, w)]~(e-Oq3(w)2)Ns2q~. 
(x,w):r 
~a2 (3.55) 

Here #, m, l are multi-indices taking values in the non-negative integers, and by 
fl~ we mean the # : t h  derivative of fl~, $ and b are the same as before, except that 
we will put b(x, w) = 0 whenever mw+ l~ ¢ 0. It is easy to see that Z(#, m, l) can be 
estimated as in the previous sections provided 

(i) I~ + m~ <__ 1 for all x e A  2. 
(ii) The distance between points with l~ + rn~ = 1 is sufficiently large, e.g., bigger 
than 6 in each coordinate direction. 

Our purpose is to rewrite Z(#, m, l) as a sum of terms satisfying these conditions. 
This is achieved by using partial integration to move around powers of ~0 until 
they are sufficiently diluted. The key to success is that the number of terms generated 
this way depends only on the number of powers of ~o originally present, i.e. on n, 
and that the bounds on the resulting terms differ from the bounds obtained 
previously only by factors depending on e and n. The following describes a simple 
algorithm to achieve this. Note that we do not strive for optimal bounds. We use 
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the following notation: Iml = ~ rex, l/l, i#1 being defined the same way. Let z~ be 

a fixed (lattice) hyperplane intesectmg the boundary of A. For xEA, let d(x) =- 
dist(r~,x). We denote by np a (hyper) plane parallel to n such that dist(rc, rcp)= p. 
We are only concerned with rep's that intersect A a. For any such plane let 

ao(m, l) = 2 m~ + l~. (3.56) 
x ~ A 2 ~  p 

A plane rCp with %(m, l) = 0 is called "empty" and a plane with ap(m, l )  = 1 is called 
"clean." We will rewrite Z(#, m, l) as a sum of similar terms in which all planes will 
become clean or empty, and such that between two clean planes there will be at 
least six empty ones. Let 

Cg(m,1)={xeA21 either aa(~)(m,1)> l, or aa~x)(m,l)= l and aa,(m,l)¢O 

forsome d' with Id (x ) -d ' l<6}  

and 

A(m,I)= ~ m~ + lx. 
x~Cg(m,l) 

The following lemma provides the elementary operation we need: 

Lemma 3.6. Let xo~A2. Let xl be the nearest neighbor of xo such that d(xO = d(xo) - t. 
Let N 1 be the set of nearest neighbors of x 1 in A2 u F, and N O = N 1 k {Xo}. Then 

Z(#,m,l) = ~ Z(#(y),m,l(y)) + l~Z(#,m,l(xa)) (3.57) 
y,~N i 

if l~o > O, and 

if mxo > O, where 

Z(#, m, l) = ~ Z(#(y), re(y), l) + m~ Z(#, m(xi), l) 
y~N i 

m~(y)=m~o-1 /f X=Xo, 

my + l if" x = y ~ N  °, 

mx~ + l if x = x l  and 

m~ - I if x = x I and 

mx otherwise. 

/~0') is defined in the same way and 

#x(y)=#xl- -1  /f x = x 1 

#~ otherwise. 

(3.58) 

and y = xo, (3.60) 

Proof. Consider the case lxo ~ 0. We may use in (3.55) the identity 

k w~2 txo A 

Performing then an integration by parts with respect to the variable q3z(xl) and 

y = XO~ 

y = xl ,  (3.59) 
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computing the derivatives that arise we get 

Z(#,m,l)= S l-I ~*(~°(x)2)cPT'~(x)~°z2x(x) H $(x,Y) e'~'~)'~') 
x~x~ <x,y>E~ z 

H $(x, w)[q~7"~(w)cflzw(w)e '~°~)'~°°~) 
<x,w>~F 

x~A 2 

- b(x, w)] ~,[~-"q~(w)2-1 

"lV t~#x~+l: /X x2~ taxi: X ", l x l + l r  X ". 
Px I tq)[, i))@i t 1)g)2 t i) 

+ l~,~7~(cp(xl)2~oT*'(x~)cp)'-~(x~)}~2cp. (3.61) 

Equation (3.61) is strictly correct only if N O c A2. If N O contains points y ~ F  but 
Y¢-42, the b(x, y) corresponding to that term in the sum disappears. This is in 
accordance with our convention that b(x, w) = 0 if rnw + lw # 0. Taking this remark 
into account, Lemma 3.6 can be read off Eq. (3.61). 

Note that the multi-indices appearing in Lemma 3.6 satisfy 

tml + II(Y)I ~ Iml + llt, 

Im(y)l + tlt < tml + I/t, (3.62) 

%(m(y), l) = ap(m, l(y)) = aa(m,/) if p > d(xo) = a~(m, l) - 1 
if p = d(xo), (3.63) 

and 
i#(Y)t < I#1 + 1. (3.64) 

We may use Lemma 3.6 successively in a given plane ~zo until that plane is "clean" 
or "empty." Keeping track of the terms that are produced gives: 

l_emma 3.7. Let rcp be a plane such that ap(m, l) ~ 1. Let z = 0 or 1. 
Then 

Z(#,m, 0 = ~ Z(~,  " ~  m i, li), (3.65) 
i=1 

where 

(i) ap(rh~,~)=z for all i, 

(ii) Irfi~[ + IT~I < ]m[ + l/l, 

(iii) ap,(rh~,~)=trp(m,/) for p '> p, 
(iv) I#~l < I#[ + ap (m, l) - z, 

(v) #~x<#x+trp(m, l ) - z  for 
=#x for 

X ~ p _  1, 
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(vi) x < [2d + a p_ 1 (m, l) + Go(m,/)]%("~°-L 

Proof. The lemma follows by applying Lemma 3.6 op(m, l ) -  z times. 
We now apply Lemma 3.7 consecutively on non-empty planes starting with 

the one farthest away from re. In the first plane we choose z = 1, thus leaving it 
"clean." In the subsequent 6 planes we apply, if necessary, Lemma 3.7 with z = 0. 
The 7 th plane again is treated only until "clean" and so on. For each seven planes 
we treat we reduce thus A(m, t) by one. Therefore, the total number of times we 
need to apply the lemma is no larger than 7.2r, if A(h, l) = 2r at the beginning, 
until A(~,7") = 0. But this guarantees that powers of ¢p in Az that appear are all at 
most one, and furthermore widely separated. More precisely, we have 

Proposition 3.8. Le t  ~t 2 be fixed, lmt + 111 = 2r, and # a multi-index with #~ < 1 for 
all xEA2. Then 

Z(#, m, l) = ~ Z(#(i), rfi(i),T(i)), (3.66) 
i=1 

where 

O) A(rh(i),'((i))=O, 

(ii) tn~(i)] + lr(/)l < 2r, 

(iii) I~(i)l ~ I#1 + 7"(2r) 2, 

(iv) #x(i) < #x + 2r - 1 < 2r for all x, 

(v) x < (2d + 4r) (zr)2. 

Proof. Again, the proposition follows by using Lemma 3.7 as outlined above and 
keeping track of the bounds, using that in particular %(m, l) < 2r in each plane r% 
and at each stage of the process. 

A term Z(#, rh, l') can now be estimated in II [I ~o-norm like a term K in Lemma 
3.1., after we perform integrations by part on a set B" c B'. To avoid complications, 
we choose B" as in Subsect. 3.4, but remove from it all points such that Tx + rfi~ = 1. 
There are at most 2r' 2 e such points, and will therefore affect our bounds only by 
a factor ~-2,2~. 

Taking this into account and using Lemma 3.2 with the bounds (3.52)-(3.54) 
gives then that 

]Z(#, m,~')] ~ e-~r~e ~ll~x21 

1-[ IT $(x, w)(e i~'(x)'~'(̀ ~) - b(x, w))yEe-° q)(x)Z]y[e-~ q~(w)2] II ~, 
(x,w)~F 

x~,~2 (367) 

where a(r) is a constant depending only on r. [Note that a(r) takes already into 
account the fact that some (but no more than 2r) terms in the product on the right 
of (3.67) appear modified in Z(#, rh, l').] Note that 61 is the same that appears in 
Lemma 32. Combining this estimate with the bound on in Proposition 3.7, we 
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get tha t  

d" 
t - i8" + ~  G~, A(z) l = 2" E E E E 

xt.,.Xn~ A A2\A FeaJ(A2;x 1,...,xm) #,$,b 

• lZ(# ,  1, m)l YI II $(x,y)(ei*t~)~tr) - b(x,Y))Z(s-~cP(x)2)~(e-*q~(Y) 2] II o~ 
(x,y)~F 
x,yCA2 

1~ Ilfl#d111~ ~ IDI"CI( n)e-'*°CD~s~2tnl; (3.68) 
x~F\~2 OeD 

connected 

here C 1 (n), a(n) d e p e n d  o n l y  o n  n, a n d  C, c52 are  c o n s t a n t s  i n d e p e n d e n t  of  n. The  
la t te r  sum converges ,  as (3.41), p rov ided  s o > e > 0, if 

4d 2 C~o ~ < 1. (3.69) 

This  proves  T h e o r e m  1.5 (ii). Since e o g iven  by  (3.69) is i n d e p e n d e n t  of  n, we 
p roved  T h e o r e m  1.5 (iii) as well. 
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