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Summary. We consider certain conditions for abstract lattices of  commuting 
squares, that we prove are necessary and sufficient for them to arise as lattices 
of higher relative commutants of  a subfactor. We call such lattices standard 
and use this axiomatization to prove that their sublattices are standard too. We 
consider a method for producing sublatties and deduce from this and [Po5] 
some criteria for bipartite graphs to be graphs of  subfactors. 

O. Introduction 

Let N C M be an inclusion of  von Neumann factors of type Ill with finite 
Jones index, [M : N] < oo. The standard invariant of  N C M, fiN.M, is given 
by the lattice of  higher relative commutants ( M / N  Mj)0_<i=<j in the Jones' tower 
associated to N C M, M0 = M C Ml C M2 C .... The inclusions between the 
finite dimensional algebras IE = M; A Mi C M / A  Mi+l C in each row i of  this 
lattice of  inclusions are described by a pointed bipartite graph F i. Due to 
periodicity the first two of  these graphs, F = F 2~, F '  = F 2~+1, i ==_ 0, give all 
the inclusions. ~N.M has in fact more structure than just (F,F'). Describing 
~N.M and in particular characterising the pairs of  graphs (F, F ' )  that can occur 
as graphs of  subfactors (i.e. are standard) is a central problem of this theory. 
We attempt here a new approach to this problem. 

Thus, we obtain in this paper a characterisation of  (34[ f3 Mj)o<__i<=j as ab- 
stract lattices of  inclusions (A,j)o<=,<=j by considering a set of  axioms that we 
prove are necessary and sufficient for a system of inclusions of  finite dimen- 
sional algebras to occur as higher relative commutants of  a subfaetor. More 
precisely, let (Aij)i<j,i=O, I be finite dimensional algebras with Atj C Aoj and 
•tj C Ai.j+l, i = 0, 1,j > i, A00 = All = I1~ and with a trace z on UAoj. Then 
the axioms that we consider are: 1). Commuting square conditions: EA,,EAo, = 
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En,  for 1 < k < j ;  2). Existence of Jones 2-projections ek E Ak,k 7> 2, im- 
plementing the z-preserving conditional expectations of Aij,-i  onto Ai,k-2; 3). 
Markov conditions: dimA0j = dimAoj+lej+j = dimA~j+l for all j > 1 and 
z(e2x) = 2z(x), for all j > 1 and all x C Alj; 4). Commutation conditions: 
[A0j,Ajk] = 0, where Ajk = {e2 . . . . .  ej}' rqAlk, for k > j > 2. Thus we prove 
that for the system of finite dimensional algebras (Aij)i<=j,,=o,1 to coincide with 
the higher relative commutants (M" N Mj), <=j.i=o,x of some subfactor N C M of 
index [M : N] = 2 - I ,  it is necessary and suficient that (Aij) satisfy the axioms 
1)-4). And if so then Aij = M / N M j  for all 0 < i < j .  

We call a system of finite dimensional inclusions (A/j) satisfying the axioms 
1 )-4) a standard lattice of commuting squares. We mention that the subfactors 
that we construct to realize (A~j) as higher relative commutants are hyperfinite 
only when the graph F of the lattice is strongly amenable. In general, the sub- 
factors N C M are constructed by universality considerations similar to [Po4] 
and are thus not hyperfinite. 

A rather surprising application of this axiomatization is that a sublattice (in 
the obvious sense) of a lattice of higher relative commutants of a subfactor is 
itself the lattice of higher relative commutants of some subfactor. Sublattices 
can be constructed from an initial one similarly to the way one obtains new 
groups from a group that is given by generators and relations, by keeping the 
same generators but only part of  the relations. This will enable us to obtain 
some rather strong obstruction criteria for (pairs of) graphs to be standard, i.e., 
to be graphs of subfactors, especially when the index is small (see 4.5-4.9). 
Thus, we will prove that if a standard pair of  graphs (F, F t) satisfies a certain 
stability condition at some distance n from the initial vertex then F, F '  must 
be finite graphs that continue with Afro tails from that distance on. 

Note that it is not clear whether one can find the 'subfactor realising a 
sublattice of a given lattice to be hyperfinite in case the subfactor realizing the 
initial lattice is hyperfinite (the one that we construct are in any case not!). 
In fact, the problem of characterizing all the standard lattices coming from 
hyperfinite subfactors remains open. 

Recall that in the case F is finite, i.e., when N C M has finite depth, .c~Ny 
was shown in [Oc] to be equivalent to the (finite) graded tensor category of 
all irreducible bimodules (or correspondences) generated under Connes'  fusion 
rule by N C M, and was described as an abstract object, called paragroup, by 
providing it with a full set of axioms ([Oc]). These can, of  course, be viewed 
as axioms of the corresponding higher relative commutants. Note however that, 
even when regarded this way Ocneanu's axioms for higher relative commutants 
of finite depth subfactors do not coincide with our set of  axioms for such 
lattices. Thus, even for arbitrary (not necessarily finite depth) lattices we do 
not assume the existence of the antisymmetry (=contragradient) maps in the 
lattice and we ask for commutation relations, rather than relative commutant 
conditions. 

The interpretation ([Oc]) of fr as a group like object in the finite deptil 
case led, together with ([L]), to the consideration of using the "fusion rule'" 
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method for finding obstructions for bipartite graphs to be standard i.e., to be 
graphs of subfactors (cf. [Oc], [Iz], [Bi]). This method usually requires a case 
by case analysis, but it was useful in the index < 4 case, to prove the nonoc- 
curence of the Dodd graphs as graphs of subfactors, and also for some index 
> 4 exclusions. 

Some general obstruction criteria, called "triple point obstructions", were 
obtained in [HI,2] from local matrix computations. They were used there to- 
gether with the fusion rule method and a number of ad-hoc arguments to 
exclude most of the graphs of square norm between 4 an 4.7 from being stan- 
dard. Our results do cover the triple point obstruction in [H2], except for the 
case F = Tjin,lin , and recapture results from [HI,2] in a direct way, without 
extra-work. Thus, our global approach also offers some conceptual explanation 
to Haagerup's surprising result that most subfactors of index between 4 and 
4.7 have graph Am. 

In an independent recent work V. Jones considers a different "global" ap- 
proach to the obstruction problem ([J2]), which in particular gives a powerful 
obstruction criterion that covers the triple point obstruction in [H2] and other 
results from [H1,2]. We included Corollary 4.9 to test if his criterion can be 
obtained from ours: again, we can recover it, except for the case F = Tfin,fi,. 
However, the ideas of approaching the obstruction problem in [J2] and in this 
paper are from rather distinct points of view. 

1. Lattices of commuting squares 

Let (Aij)O<l<=j<~ be a system of finite dimensional algebras with Aii ~ ~ ,  
~ A  Aij C Akt, Vk < i, j < l, and with a given faithful trace z on Un=0 0n = 

U,jA,j. We consider the following properties for Aij, 2: 

1.1.1. The  commut in9  square condition 

EA,, EA,, =- EA~,E.4,, = EA,, 

where r = max{i, k}, s = rain{j, 1} and Et~ is the v-preserving expectation onto 
B. 

1.1.2. Ex i s tence  o f  Jones )t-projections 
There exists a representation of the 2-sequence of Jones projections {ei}i>=~ in 
'OnAo,n such that 

a) ej E Ai-2,k, V2 < i < j < k 
b) ej+lxe)+~ = EA,.,_,(x)e)+~, Vx E Ao , i  < j - 1 

c) ei+lxei+l -~ EA,+~,,(.~)ei+l, Vx E Aij, i + 1 < j 
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1.1.3. Markov conditions 
(The definition of Ind(A C B) is that of [PiPol]) 

a) Ind(Ai,j C Aid+l) _--< )~-I,EA,.,(ej+I)= 21 
b) Ind (Aid C A i - i j )  < 2-I,EA ..... (ei) = 21 

1.1. Definition. A system of finite dimensional algebras ( A i j ) o < i < j  a s  above, 
satisfying (1.1.1)-(1.1.3) is called a 2-lattice of  commuting squares. Note 
that by Jones' theorem, the existence of the 2-projections implies 2 - I  c 
{4cos z n/nln > 3} U [4, oo). 

Recall from [Pol] that an inclusion of type H1 on Neumann algebras Q c p 
is 2-Markov if ~ j m j m ~  = 2-11, V{mj}j orthonormal basis of P over Q and 
that it is called homogeneous 2-Markov if in addition eQ has scalar central 
trace in (P, eQ). 

1.2. Proposition. Let (Aid)id be a 2-lattice of  commuting squares, with 2 4= 1, 
and denote by Ai,oo : ~jj>__iAid the completion of  Ai,i C Ai,i+l C . . .  in the *- 
strong topology given by z, i >= O. Then A l,~ C Ao,~ is a homogeneous 2- 
Markov inclusion and A0,o~ De2 Al,or ~e3 . . .  is a tunnel for this inclusion. 

Proof By [PiPol] and (1.1.3) b) we have Ind (Ai,o~ C Ai- l ,~)  = 2 -1, Vi > 
1, and the rest is trivial by [Pol] and [PiPol]. [] 

Many of the conditions (1.1.1)-(1.1.3) are, in fact, redundant. To see this 
let us consider one more: 

1.3. Definition. Let 

= AO0 C Aol C A02 C ... 
U U 

= A l l  C AI2 C ... 

be a sequence of inclusions of finite dimensional algebras, with a trace z on 
UnAon, satisfying the conditions: 

1.3.1. Commuting square conditions 
If EAoEA,: = EA,,EAo, = EA,,, V1 < i _< j.  

1.3.2. Existence of  Jones projections 
There exists a representation of the Jones' 2-projections {e i } i>  2 in U. A0n such 
that: 

a) ej EAoj, j > 2, ej E A u ,  j > 3 
b) ej+lxe)+l = EAo.,_,(x)ej+~, Vx E Aoj, 
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1.3.3. Markov conditions 
a) Ind (Ao,j CAo,j+~) < 2 -1. 
b) Ind (AI,j C A0d) ~ 4 -1, ~'(e2x ) = 2z(x), Vx C AIj. 
Then (Aa)i<=j,i=o, I is called a 2-sequence (or ladder) of  commuting squares. 

1.4. Proposition. Let 

Aoo C AOl C e2 A02 C e3 A03 C ... 
U U U 

Al l  C AI2 C e~ A13 C 

be a 2-sequence of  commuting squares and define Aij =-{e2 . . . . .  e,}' NAIj, 
2 <- i <- j. Then (Aij)ij is a 2-1anice o f  commuting squares. 

Proof Note first that if x E Aoj then v(ej+lX) = v(ej+ixej+l ) = 
~(EAo.,_,(x)ej+j ) =  Z(EA ..... (x)uej+lu,), for all unitary elements u in the yon 
Neumann algebra generated by ej+i,ej+2 . . . . .  But by Jones ergodicity re- 
sult ([J1]) this algebra is a factor, so by taking averages over such uni- 
taries u we get that v(xe]+l)= 2r(x). Next, let Ao,~ = UnAon, Al,o~=(.JnAl,n. 
By (1.3.3) b) and [PiPot] we have Ind (Al,oo C A0.oo) = 2 - I .  Moreover, if 
Po --- vN{e2 . . . .  }, P1 = vN{e3 . . . .  } then by the fact that {el}j>2 is a 2-sequence 
of Jones projections and by (1.3.3) b) we have that 

Al,ec C A0,o~ 
U U 
PI C P0 

is a commuting square, with both rows of index 2 - l  and the bottom row an in- 
clusion of factors ([J1]). Thus both row inclusions are homogeneous 2-Markov. 
Since EA. ~(e2) = 41, it follows that e2 is a Jones projection for A~,o~ C Ao, oo, 

i.e. if A2,o~ def {e2} , AAl.oo then A2,oo C A1,~ C e2 Ao,o~ is a Jones' basic con- 
struction ([Poll .  Chl) .  Moreover 

EX'~(x) = k-lEA, (e2xe2),Vx E At oo 
A 2  ~ ' " 

Since A2,] = {e2}'~Ai,j ,  by the above formula for E A'~a2 ~ it follows that 
Alcx~ E~I~(AI,,) C A,,,. But we also have E ~ ( A , , , )  C {e=}' NA, ,~  ---- A2,~. Thus, 

we have the commuting squares, Vj => 2: 

A2,oo C Al,oo C A0,oo 
tO tO to 

A2r C A~,i C Ao,/ 

Thus (Aij)o<__i<=j satisfies (1.1.1) - (1.1.3) for i = 0, 1,2, with EA2.~(e3)= 41, 
and we continue this way inductively. [] 

The Markov conditions (1.1.3) (resp. (l .3.3)) may seem difficult to check 
~n certain situations. We have the following alternative description: 
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1.5. Proposition. Assume 

= AO0 C A01 C e2 Ao2 C e3 Ao3 C 
U t_) U 

= A l l  C AI2 C e~ A13 Q 

are eommutin9 squares o f  finite dimensional algebras with {ei}i>=2 a 2- 
sequence o f  Jones projections satisfyin9 (1.3.1), (1.3.2). Then (Aij)<=j,i=o,j 
satisfies (1.3.3) (i.e. it is a 2-sequence o f  commutin9 squares) i f  and only if 
it satisfies for  i = 0 the dimension equalities. 

(1.3.3') a)'. dimAij  = dimAi4+lej+l = dimAi+l,j+l,Vj >= i 
b)'. EA,.,.,(ei+2) = 21,Vj > i 

Also, (Aij) satisfies 1.3.3 i f  and only i f  it satisfies for  i = 0 the (1.1 in 
[PiPol ])-type identities: 

a)" 2-1EA,.,+,(xej+2)ej+2 = xej+2,Vx 6 Ai,j+2,Vj >= i 
(1.3.3") b)" ~.-IEA,.t.,(xei+2)ei+2 = xei+2,Vx E Ai4,'qj >= i + 2 

Moreover, i f  (Aij)i<j,i=o,i is a 2-sequence o f  commuting squares and (Aij)o<=,<=s 
is the correspondin9 2-lattice (with A~j= {e2 . . . . .  e i } 'AA l , j , i  > 2) then 
(Aq)i <=j satisfy ( 1.3.3 )', ( 1.3.3 )" for  all i > O. 

Proo f  If (A 0 )i<=j,i=O,l satisfies (1.3.1)-(1.3.3) then it gives rise to the homoge- 
neous Markov tunnel A0,~ j 2  AI,~ j 3  A2,~ D ... (see 1.4), so in particular 
we have (1.3.3)" by [PiPol], [Pol] and by commuting squares. 

Clearly ( 1.3.3 )" => ( 1.3.3 )'. 
Finally, assume (1.3.3)' holds true. Since dimA0,j+j = dimAo,j+lej+2 and 

dimAl# = dimA~#e2, it follows that (1.3.3)' implies 

Aod+2ej+2-= Ao.j+lej+2,Vj > 0 
Ao,je2 = AI.jee,Vj >= 2. 

Since we have the trivial identities 

x -~ ~.-1E A .... (x)ej+2,Vx C Ao#+lej+2 
x = ~.-tEA,,(x)ez, Vx 6 Al,je2 

we are done. U 
The fact that the index axiom (1.3.3) can be alternatively formulated in 

"probabilistic" and "dimension" terms is quite useful. Note also that the di- 
mension condition is sufficient (and necessary as well) to ensure the ([PiPol])- 
identity ( 1.3.3)". 

1.6. Corollary. I f  (Aij)o<=i<=j is a 2-lattice o f  commutin9 squares then dimA, / = 
dimAi+n4+n, Vi + 1 <-<_ j,  Vn >= 1. 

Proo f  By (1.3.3)" we have dimAij  = dim Ai,j+l ej+l -- dim Ai,j+l el+2 = dim 
Ai+14+l, where the equality dimAi,j+lej+t = dimAi#+lei+2 is due to the equiv- 
lence of  ei+2,ej+l in Ai,j+ 1 ~ Alg {1,el+2 . . . . .  ej+l} (cf [J1]). F] 
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1.7. Corollary. I f  (Aij)o<i<j is a 2-lattice o f  commuting squares then the 
Jones projections {el}i>=2 implement the following canonical embeddings be- 
tween the centers o f  Aij. 

a) Z ( A i d )  ~ z ~-+ z t E Z(Ai , j+2) ,  z '  is the unique element in z (mi , j+2)  s u c h  

that ze/+2 = z' ej+2 
b) Z(A,j)  ~ z w-+ z t E Z(Ai-z,j) ,  z t is the unique element in Z(Ai-z , j )  such 

that zei = zt ei . 
Moreover, i f  Kn (resp. L , )  and K" (resp. L'n) are the sets o f  simple sum- 

mands o f  Ao,zn (resp. do,zn+l) and Al,2n+l (resp. Ai,2,+2), respectively, and i f  
we identify K,  (resp. L , )  and K" (resp. L'n) as subsets o f  K,+l (resp. L,+~) 
and K'+~ (resp. L',+l) respectively, then there exist unique pointed bipartite 
graphs F = (akt)kEk, t~L, F' = (bk't' )k'~k',t'~U, where K = U,  Kn, L = [,.JnLn, 
K ' =  UnK~, L ' =  UnL'n, such that the inclusion graphs o f  Ao,2n C Ao,zn+l 
(resp. Ao,2n+l C Ao,2n+2) and A1,2n+l C A1,2n+e (resp. A1,2n+2 C AI,2n+3) are 
given by K,,F (resp. L,F t) and x,,F (resp. L[ F 't) respectively. Furthermore, i f  
F,, F~ are the similar 9raphs Jor the rows (A2i,j)j resp. (A2i+1,j)j and we iden- 
tify the centers o f  A2,2 C A2,3 Q ... with the centers o f  Ao,o C Ao,1 C A02 . . . .  
and so on, by z ~ S ,  with zez = z~ ez, then there is a natural identification 
F = Fi, F I = F~, Vi >= O. 

Also, there exist unique vectors' (sk)k~k, (tt)l~L, (S~,)k'~k', (t~,)t'eL' such 
- -  S t that skg - k; = 1 (where {ko} = K  o, {k~} = K~), r r , ~ =  ~-'~, x r ' e =  r, 

r ' r " ~ '  = ~ - ~ ' ,  ~r"~ '  = e and (2nSk)k~x,,, (2~tl)t~L,,, (2~s~,)k'CX,',, (2~t~,)t'eL~, 
give the traces o f  the minimal projections in Ao,z,,Ao,2,+1 Ao,2,+l,Ai,2,+2, re- 
spectively. 

Proof. In the proof of the existence of such a unique graph for A00 C A01 C 
A02 C ... in [GHJ] or [Po2] the only facts used were the axioms (1 .3 .1 ) -  
(1.3.3)". [] 

2. Standard lattices 

The typical example of a 2-lattice of commuting squares is the lattice of higher 
relative commutants of an extremal subfactor N c M of finite Jones index, 
2 -1 = [M : N] < oo. Indeed, if N C M C MI C e2 M2 C . . .  is the associated 

def t Jones' tower, then Aij = M, A Mj, 0 < i <= j ,  are well known to satisfy the 
axioms (1.1.1)-(1.1.3), with the observation that the extremality condition is 
needed only for the condition (1.1.2) c) and the second part of (1.1.3) b). 
In addition, however, M" A M j  satisfy the condition [M,' N M j , M j  AM1] = O, 
g i < j < = l .  

2.1. Definition. A 2-lattice of commuting squares is standard if  it satisfies the 
following: 

2. I. 1. Commutation relations 
[Aij,Akl] = O, Vi <__ j <- k < I 
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Since we proved that 2-lattices can be recovered from their first two rows, we 
want to write (2.1.1) as a condition involving Aoi,Ali only. 

2.2. Proposition. Let  (Aij)i__<j,i=o: be a 2-sequence o f  commuting squares. I f  

Aij def {e2 . . . . .  ei} I nA i j ,  V2 < i < j, then (Aij)ij is a standard 2-lattice of 
commuting squares i f  and only i f  (Aij)i<__:,i=o: satisfies," 

(2.1.1') [Aol,Au] = O, 1 <= j 
[Aoi,Aij] = 0,V2 _< i _< j 

Proof  Trivial by the definitions [] 

Note that if we take (Aq)i<j,i=O, I tO be a 2-sequence of commuting squares 
and we denote ,41,oo C e2 A0,oo C e~ A-l,e~ C e~ A-2,oo C e-~ ... its Jones tower 
then we can obtain Ai,~,i  > O, as fi,oAo,oofi,o with fi,o the word of maximal 
length in ei, ei-i  . . . . .  e-i+2, which by [PiPo2] implements the expectation of 
A0,oo onto Ai,oo. More precisely, we have fi,oAo,nfi,o --Ai,nfi,o. We can then 
get rid of fi,o by taking fo_if i ,oAo,  f i ,o fo_i  = Ai,,fo,-i, where f0 , - ,  is the 
word in e0,e-1, . . . ,e-2 ,+2 implementing the expectation of A_,,~ onto A0,oo. 
Thus, we can reformulate (2.1.1) t as follows 

(2.1.1") [Aoi, fo,-ifi,oAonf,,ofo,-i] = 0,0 <- i <- n 

Let us record the observation we started with, in the form of a statement. 

2.3. Proposition. Let  N C M be an extremal inclusion o f  type 111 factors with 
finite Jones index, 2 - l  = [M : N] < oo. Then Aij = M: NMj,  0 <-- i < j, is 
a standard 2-lattice. 

2.4. Definition. Let (Aij)o<=i<=j be a 2-lattice. If A ~ C A,j are subalgebras such 

that A ~ C A~ k <= i <= j <= l, ei E A~ k + 2 <_ i <_ l, and (A~ verify the 

axioms (1.1.1), (1.1.2), then (A ~  is called a 2-sublattice (or simply a sub- 
lattice) of (Aij). Note that if (A~ is a sublattice of (Aij) then it is itself a 
2-lattice, i.e., it automatically satisfies the Markovianity axiom (1.1.3). 

2.5. Corollary. I f  (Aij)  is a standard 2-lattice and (A~ is' a sublattice of 
(Ao) then (A ~  is a standard ):lattice as well 

Proo f  Trivial by the definitions [] 

Although we will deduce it again in the next section from different con- 
siderations, we can already give a first proof to the fact that sublattices of the 
lattices of higher relative commutants are themselves lattices of higher relative 
commutants. The first proof of  this result is based on the main theorem in 
[Po4]. It is this observation that led us to the considerations in this paper. 

2.6. Theorem. Any sublattice o f  a lattice o f  higher relative commutants :s 
itself a lattice o f  higher relative eommutants. 
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Proof. Indeed, let N C M be an extremal subfaetor and assume A ~ C M [  O 

Mj is a sublattice. By 2.1 in [Po4] there exists a unitary u E M~' such 

that M ~  def vN (uMlu*,M' NMoo) = UMl u* V M( NMoo *M(NM~ M' NMoo, 
where N C M C e' MI C e2 M 2  C . . .  is the Jones' tower for N C M and Moo = 
UnMn its enveloping algebra. Let Po = vN{e2,e3 . . . .  } and more generally 
P, = vN{et+2 . . . .  },i => 0. Let {m~.}j be an orthonormal basis of Pi over Pi+l. 

Let r  = ,~ ~ t i*  o9 2._d mjxmj , x E M~,  and note that i f x  E Mi~+l then '~i(x) = 

E~ii'(x), in particular if Q ide=-f vN (uMlu*,M'NM,)  and if x E Qi+l, then 

�9 ,(x) E MY" and more generally ~ j . . .  ~i(x) E Mf  ~, Vj < i. But for x E oi+l 
we also have ~i(x) E M~,  because m'j,x E M~,  and more generally we have 

�9 j . . .  r E M~.  Thus EMii'(Q'+I ) = r ... d;,(Q,+') C M ~  AMy ~, Vj < i. 

Since U Qi is dense in M ~  it follows that EM;,(M~o) C M~.  Thus, if we define 

M~ ~f MU~ N Mr'  then 

U U 
My c M~+~ 

is a commuting square and e,+l E M/u+1, Vi >-- 0. 
Now, if Q = UMlU* then by [P03] we have Q' N M ~  = M [  N M ~ ,  

so that Q'NM]  ~ = E M , , , ( M [ N M ~ ) = M [ N M i ,  Vi => I. Thus, 

M1 u' N M u = M( n M/ and more generally M f  N M~ = {el . . . . .  ej}' f3 (M~' N 
M~) = Mj n M/, Vl =< j <: i. In particular, it follows that Mff are factors, 
Vj >_ 1, and that M ~ C M ~ C . . .  is a Jones tower. Since M ~~  ~  
and e2 E M~ ~, by commuting squares and [PiPol] it follows that M u = M~ 
is also a factor and that the above is in fact the Jones tower associated 
to M u C M~. Moreover, since M u' N M ~  = sp((M~' NM~)e2(M~' N Moo)) = 
sp((M( n Moo )e2(M[ N M ~  ) ) = M ~ N M~,  it follows by commuting squares 

that we actually have M f  n M~ = M'j N Mi, Vi,j >= O. 

Now, we consider the following algebras: M~L ~ def vN (u M~u*, A ~  

uMIu* vAooc ,A0,.~ Ao,~ , 0  Qi,O defvN(uMlu*AO) . =  , Exactly the same argument 

as for M u then shows that we have the commuting squares: 

M/~ C M ~" i+1 
U U 

Mi u'~ C M u'~ i+1 

for all i > 0 and that M ?  "~ N M u'~ = A~ Vi, j .  [] 

2.7. Remark. Related to the above proof of 2.6, it is interesting to note that 
even if N Q M is an inclusion of hyperfinite type Hi factors, the inclusion 
of factors N o C M ~ constructed in 2.6 so that its higher relative commutants 
coincide with a given sublattice of (M~ N Mj),,j, is not hyperfinite. Thus, in 



436 S. Popa 

order to realise sublattices of  a "hyperfinite" lattice, we may have to get out 
of  the class of  hyperfinite algebras. 

3. Construction of subfactors with given standard lattice 

It was already proved in [Po3] that the 2-lattice A ~ = Alg{1,ei+2 . . . . .  ej}, 0 
i < j ,  which is obviously standard, is indeed the lattice of higher relative 
commutants of  a subfactor, by using a "universal construction" involving the 
Jones projections and amalgamated free products. In fact what is needed in 
order to extend that argument from (A ~  to more general lattices is the property 
of  being standard. 

We will prove in this section that every standard lattice (Aq) is a lattice 
of  higher relative commutants of  a subfactor, thus showing that the axioms 
(1.1.1), (1.1.2), (1.1.3), (2.1.1) are a complete set of axioms for the lattices 
of  higher relative commutants. 

Although we can prove this result by going along the lines of [Po3], we 
will present here a simpler argument which, in the case the lattice (Aq) equals 
the above (A~ differs from the proof in [Po3] and from its subsequent sim- 
plifications in [Bo]. 

So let (Aij)O<=i<=j be a 2-lattice, with 2 - I  > 4, and with ei C Akt, k + 2 < 
i < l, its Jones projections. We do not assume (A,j) to be standard for now. 

Let Pi = vN {ei+2 . . . .  } C Ai,~ i > O. Let {m~}j be an orthonomaal basis 
of  Pi over Pi+l. Let Q be an arbitrary separable type HI factor with the 
trace still denoted by z. (All that follows works for Q a finite nonatomic 
von Neumann algebra, as in [Po3], but we take it to be a factor for the few 
simplifications that this hypothesis facilitates). 

Let now M ~  ~f  Q |  *A~  Ao,~ and denote for x E M ~ ,  cPi(x) = 
,t Ejm~xm' 2, i >= 0 

Let ffide-~-fP[NMoo, i > O. Since P,+I C P i  are locally trivial (because 
a -1 > 4, [PiPol]) ,  if  we let fi+2 E Pi nP[+l, z(f,+2) = t < 1/2, where t ( l  - 
t) = 2, then Pi+lfi+2 = fi+2Pifi+2, Pi+I(1 - fi+2) = (1 - fi+2)Pi(1 - fi+2). 
Thus, we also have ffifi+2 = fi+2/3i+lfi+2,/3i( 1 - f i+2)  = (1 - fi+2)/3i+l( 1 - 
fi+2).  Also, ~i  implements on/3i+t the unique conditinal expectation onto/3, 
that takes fi+2 into (1 - t ) l  (and which is not trace preserving!). Furthermore 
ei+2xei+2 = ~i(x)ei+2, Vx E/3i+1, and/30 C/31 C e2/32 C . . .  is the Jones tower 
for/3o C g/31, where g = ~0]p,. Denote by g,;. the expectation of /3 j  onto/3, 

in this tower, i.e. 8Ji = ~i o . . .  o ~Jl:," 

Note that ~i  (or gl  +l ) implements a conditional expectation of A~+l,oo O 
Mo~ onto A~.oo N Mo~ as well. 

Since ~ j + l ( x ) =  x, Vx E Q v Aoo we have: 

(3.1.1) ~ i o . . . o ~ j ( Q V A o 4 )  C , ~ i . . . ~ j + l ( Q V A o j + l ) , i  < j 

By [PiPo2], gJ is implemented by the projection e/,. obtained as a scalar 
multiple of  the word of  maximal length in el+2 . . . .  , ej, ej+l, . . . ,  e2j-i. Thus, if 
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x, y E/Sj then 

j q 2 j - - i  = .  ~ 2 i _ 2 J ( e 2 j - i e J x e ( p 2 j _ t  ~t~ 2 j - i f l  ,.,[ 2 j - i . ~  gi(x)gi(Y)ej . j i i + j  ,~ , e j  e t Y e i ~ j  ] 

i - "  2 j - i  " ' " 2 j - i  = 2 :ej ( ~ x ~ y ~ ) e  i 

" i - - j  2 j - - i  " " ' 2 j - - t  = z  o~ ( 4 x 4 y 4 ) e j  

In particular, if x , y  E O v Ao,] then J J 2j-, : : i (x)Ei(y)  C ~ (e[i(QV Ao , j )~ (QV 
v2j -- i 

Aoj)e:) C ~ j  ( Q V A o . 2 j - , ) = ~ j o " ' o ~ 2 , _ , ( Q V A o . 2 j _ i ) .  But since z =  

J J Pi also have ~, o This shows that: g, (x)eg, (y )  ~ we . . .  o % ( z )  = z. 

(3.1.2) (~i o . . .  o cpj(Q v A0,j)) 2 c ~i o . . .  o ~2j- i (Q v Ao,2j-i) 

Consider then the following notation: 

(3.1.3) Mi de_f (Ujr  0 . . .  0 ~ j (Q  v A o j ) ) - , i  >= 0 

By (3.1.1), (3.1.2) each Mi follows an algebra. By the definition we clearly 
have Mi C Pi and '~i(Mi+l ) = Mi, so that we have the commuting squares 

Po C a~ Pl C a~ t52 C 
(3.1.4) O O U 

mo C MI c M2 c 

with ej C Mj, j > 2. We wi l l  prove that, although ~(+1 _ ,  = d~i[p,., is not trace 
preserving, it is trace preserving when restricted to Mi+j. To do this we first 
need to prove that r is a Markov trace on the inclusions Mi C M~+I, i.e., 

(3.1.5) r(e,+2x) = 2Z(x),gX E Mi+l,i >= 1 

By (3.1.3), to prove this equality we only need to show that z(ei+2g:i+l(y)) = 

2r(~J+l(y)) ,  Vy E Q v Ao4, Vj >-- i + 1. But by [Po3], Q' A M ~  = ALto and 

if i > 1 then r(ei+2g~+l(y)) = v(uei+2g:i+l(Y) u*) = z(ei+2gJi+l(uyu*)), Vu E 
~ ( Q ) .  By taking weak limits of convex combinations of uyu*, u E ~#(Q), and 
by using Q' fqM~ = A L ~  it thus follows that r(ei+28J+l(y)) = 

z(e,+2g~+l(EA,.~(y))). Similarly we get * (~ :+ l (Y) )=  ,(e{+,(G,=(y))). But 

E~,,~(Q v Ao,j) = ALj and o~j+l [A,., = E A'' Since z(ei+2y') = 2~(y') ,  Vy' E Ala+ I " 

Al,i+l, (3.1.5) follows. 
We can now calculate the relative commutants of MI C M2 C . . . ,  under 

the additional assumption that (Aij) is standard. 

(3.1.6) I f  (Aij) is standard then M~fqMi =Ak,i,Vi >~ k > 1. 

Indeed, in the proof of (3.1.5) we already noted that EQ, nM,= E~,.,, Vi > 1. 
Since Q c Mk, e2 , . - '  ,ek ~ A0a C Mk, it follows that M[ NMi  C {e2,- . .  ,ek}' N 
A l,i = Ak.i. Conversely, if  x ~ Ak,i then clearly x ~ )14. by the definitions. Also 
let y = ~k o . . .  o ~j(Y0), for some Yo ~ Q V A o , j , j  > i. If  {mt}t is an or- 
thonormal basis of  Pk over Pj then ~ o . . .  o r ) j - k  ~"]4 mtyom~ = 

r 
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But {m~}/ is also an orthonormal basis of Ak,~ over Aj,~ so that we have 

x ~ m t y o m ~  = ~ m , E & ~ ( m ; x m D y o r n  7 
1 I,r 

But [Aj.~, Yo] = 0, so that the right hand term equals 

~ m , y o E & ~ ( m r x m l ) m  t = m,yom x ,  
I~ \ r / 

proving (3.1.6). 
We can now state the result: 

3.1. Theorem. Let  (Xij)o<i<i be a standard 2-lattice. Then there ex&ts an 
extremal inclusion o f  factors  N C M o f  index [M : N] = 2-~ such that M[ n 
Mj = Aij, 0 < i < j ,  where N C M C M~ C .. .  is the Jones tower o f  factors 
associated to N C M. Moreover, i f  the graph F o f  (Aq)o<i<=) is strongly 
amenable then N , M  can be taken hyperfinite. 

Proof. Assume first that F is strongly amenable, so that A2,~ C Ao,~ is 
an inclusion of factors. Since Ao,~ ~ A2,~ ~ A4,~ 3 . . .  is a tunnel and 
A~k,~ nAo ,~  D Ao,2k, if follows that IIrA2~,Ao~[I --- I l r r ' l l  = ;~-~- But [A0,~ : 
A2,~] = ~-2 SO that [[FA . . . .  A0,~[[ 2 < 2-2. Thus I I r A ~ , A o ~ l [  2 = A - 2  = [ A o , ~  : 

A2,~] so that A2,~ C Ao,~ is extremal and strongly amenable. Let M ~  be the 
enveloping algebra of A2,~ C Ao,~ and define M = A~,~ N M ~ , M 2  = A~,~ N 

- - A  ! . . .  M ~  and more generally Mk - k,~ N M ~ ,  Vk. Thus M C M2 C M4 C is 
a Jones tower for M C M2 and clearly M ~ A M2k -- -- A2L ~ N Ao,~ D Ao,2~, by 
the bicommutant relation (M~i N M ~ ) '  fq M ~  = M2i for strongly amenable sub- 
factors [Poll .  Before proving the opposite inclusion M'  N M2k C Ao,2k note 
that if  e 4 = )t-le3e2e4e3 and more generally e2Z~ +2 = 2-1e2k+le2ke2k+ze2k+l 

then M2k-2 C Mak C r M2k+2 is a basic construction and so is A2k+2,~ C 

A2k,~ C ~]+~ A2k-2,~. Thus, if {mj} j  is an orthonormal basis of A2k,~ over 
A2k+2,c~ then M2k ~ x ~ )2 L_~j ~" mje2k+2"e2k+2m*2k ~ 2k j = 22 Z--~mj~M2~_2~ X-~ 17M2~ tx'~~ j ~- 

M2~ 2k+2 2k+2 * = E '4~ (x) E ~ _ : ( x )  C M2k-2. But if  x C Ao2k then 22 ~ j  , m j e 2 k  x e 2 k  m j  Ao,2~-2 " 

Thus we have the commuting square relation EM2~_:(Ao,2k)= Ao,2k-2. 
Now, if x E M ' N M 2 k  CAo,~ then let xo EAo,2,, with IIx-x0[12 < E. 

By expecting on M2k we then get e > I I x -  EM=,(xo)ll2 = I Ix -  EAo2,(xo)ll2' 
By letting e ~ 0 we get x E Ao,2k. Thus M '  ~ M2k = Ao,2k and by expecting 
this relation onto M~i n M ~  = A2i,~ we get M~ n M2~ = A2i,zk. Also, M~,+l P 
M2k = (M2i t0 {e2i+t})' f3M2k = {e2i+~}' ~A2i,2~ = A2i+~,2k, by (1.1.2). Simi- 
taffy A ~,2~- ~ = A g,2~ ~ {e2k + ~ }' = M[ f? M ~  f? {e2k + l } t, SO that Ai~ = M[ ~ Me. 
V O < i < _ j .  

Since 2 -~ < 4 implies F is strongly amenable, we only need to prove the 
rest of the statement for 2 -~ > 4. Then let Q be a (separable) type 111 factor 
and define Mo~ = Q | *A,.~ A0,~, like at the beginning of this section 
Let also M0 C M1 C M2 C ... be defined like in (3.1.3). By definitions, Q v 
Ao,j C Mj,  so that U~Mj D Uj (Q VA0,/) = Mo~. By (3.1.6), Mj are factors. 
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Vj ~ 1. By (3.1.4),(3.1.5) we have [M2 : MI] = Ind EM~ ---- 2 - j  and MI C 

M2 C e3 M3 C e4 ... is the Jones tower for M1 C e'~ M2. Since 2e3 = e3e2e3 =- 
E~(e2)e3, we also have EM,(e2)= 21 so that e2 ~ Me is a Jones projection 

tbr the inclusion of factors M1 C M~. Thus M def (e2} ~ AMI is a factor and 
M C M1 C e-' M2 is a basic construction [PiPol]. But we also have Me2 
e2Mle2 = ~ (Ml )e2  = Moe2, so that M = Mo. 

We already showed that M [ N M j  = A , j ,  if j > i > 1 in (3.1.6) Then 
M~ ~ Mj = EM,(M' f~ Moo) = EM,(sp (M( f~ M~e2M( N Moo )) = EM,(sp(A ~ ,oce2 

A I,~ )) = EM, (Ao,oo) = UkEM, (Ao,k) = no,j. 
Finally, note that by the first part we also have that if F is strongly 

amenable, Moo = Q | A l,oo *A, ~ A0,oo as before and M d~ff A~,oo N Moo, Mi a~=f 
A~l,oo nMoo,  then (M[ NMj )  = (A,j) [] 

Note that the construction of hyperfinite N C M with M~ ~ f3 Mj = Aij, when 
(Aij) has finite F, coincides with the one in [Poll or [Oc]. The construction of 
N C M from amalgamated free products coincides with the one in [Po3], when 
Aq = A l g  {1,ei+2,. . . ,ej} ,  i.e., when F = A , ,  n < ~ ,  and, more generally, 
with the one in [Ra] for F finite. 

3.2. Corollary. A system of  finite dimensional algebras (A~j)o<i<j with a 
trace r is the lattice o f  higher relative commutants o f  an extremal inclu- 
sion o f  factors N C M of  index ,~-i i f  and only i f  it is a standard 2-lattice. 

Note that since by 2.4 sublattices of standard lattices are standard, 
Theorem 3.1 provides an alternative proof to Theorem 2.6 as well. 

Like with the proof of 2.6, note that even if (A~j) is a standard lattice 
coming from a hyperfinite inclusion of factors N C M we may not be able 
to realise its sublattices (A ~  as higher relative commutants of a hyperfinite 

inclusion (unless the graph of (A ~ is strongly amenable). Indeed, in the con- 
struction of 3.1 the subfactors are non F by [Po3]. 

3.3. Corollary. I f  (A,j)ij & a standard lattice then there exists an extremal 
inclusion of  non F factors N C M such that (Aij) is its lattice o f  higher 
relative commutants and such that i f  (A ~ is a sublattice o f  (Aij) then there 

exists N O C M ~ embedded in N C M as a commuting square so that (A ~  is 

the lattice o f  N O C M ~ 

3.4. Remark. It would be extremely interesting to show that if (Aij) is the lat- 
tice of higher relative commutant of an inclusion of hyperfinite factors N C M 
then any sublattice (A ~  of (A~/) is itself the lattice of an inclusion of hyper- 
finite factors. Note that, by [Po6], if (Aq) comes from an amenable inclusion 
N C M then for (A ~  C (Aij) to be realised as higher relative commutants of 

some N O C M ~ embedded in N C M it is necessary that (A ~  is itself amenable 

(so A ~ = AIg{1,ei+ 2 . . . . .  ej} cannot be realised this way). 
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4. A Criteria for pairs of graphs to be standard 

In this section we will use 2.6 (i.e., the fact that sublattices of lattices of higher 
relative commutants are themselves lattices of  higher relative commutants) to 
deduce some obstruction criteria for bipartite graphs to be graphs of subfactors. 

Tentatively, one natural way to construct sublattices (A ~  of a lattice (A~j) 

is to take A~ d C A~ d equal to Aid C Aod, V j  < n, for some n, and then continue 
adding only the Jones projections to the previously chosen algebras, i.e. letting 

AiO,+k+i = (Ai:+l,e,+i+l . . . .  ,en+i+k). 

This is analogous to having a presentation of a finitely generated initial group 
G given by the generators g l , . . . , g l ,  and relations RI ,R2 . . . .  and then taking 
the group G O with the same generators 91, . . . ,g l  but only the first n relations 
R1 . . . . .  Rn. In the case of lattices though we still need the compatibility relation 

EA..~((Ao,,,en+l . . . . .  e ,+k) )C (Ao,n,en+l . . . . .  en+k) 

to be satisfied, in order for the above A ~ to be a sublattice. And this condition 
is not automatically fulfilled. 

The following gives a sufficient condition which insures this compatibility. 
As we will later see, this condition is in fact quite strong and the only proper 
sublattices that it can produce are the trivial ones (i.e., the ones generated 
by the Jones projections). Yet, this will be enough to give us the obstruction 
criteria. 

4.1. Proposition. L e t  (Aij) be a 2-lattice. A s s u m e  that f o r  some n we have." 

(4.1.1) (Ai.n+,,e,+i+l) --- (Ai+~,n+i+~,ei+2),Vi > O. 

L e t  AO. = Aid, i f  0 < j - i < n and f o r  j - i > n + 1 define reeursively 
A g =  0 0 A 0 ,,: sp Aid_lejAid_ 1 + id-1 = (A~ Then (A ~  is a sublattice o f  
(Aij). 

P r o o f  We prove by induction over k that A~ = (Ai+l,,+i+k,ei+2), Vi > 
0,Vk >__ 1. For k --- 1 this is true by hypothesis. Assume that we have the 

0 : (Ai,n+i+ k, ei,n+i+k+l), by defini- equality up to some k > 1. Then Ai,n+i+k+ I 0 
0 0 {ei+2, en+i+k+l } 0 0 tion, and el+ 2 E Ai,n+i+ k C Ai,n+i+k+ 1, tO Ai+l,n+i+ k C Ai,n+i+k+ I . 

0 Thus, Ai+l.n+i+k+ 1 : sp  (Ai+l,n+i+ken+i+k+lAi+l,n+i+k ). 4 _ 0  0 Ai+l,n+i+kO Q Ai,n+i+k+1,0 
showing that 0 0 (Ai+l,n+i+k+l, ei+2) C Ai,n+i+k+ 1 . 

For the reverse inclusion we similarly have: {ei+l,e,+i+k+]} tO A ~ i+ l,n+l+k 
o o = ((Ai+l~+i+k,ei+2),en+i+k+l) for C (Ai+l,n+i+k+ l, ei+2) and since Ai,n+i+k+ 1 0 

k > 2, we are done. C] 

For (4.1.1) to hold true, Vi, it is in fact sufficient that it is satisfed for 
i = 0 , 1 .  
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4.2. Proposition. I f  (A,j) is a standard lattice and it satisfies the condition: 

(4.2.1) (Ai,n+i, en+i+l) = (Ai+l,n+i+l, e~+2) , 

for i = O, 1 then it satisfies this condition Vi > O. Moreover, for  (4.2.1) to 
hold true for  i = O, 1 it is sufficient that: 

(4.2.2) (Ai,n+,, e~+,+l ) = A,,n+~+l, i = 0, 1. 

Proof. Since A,j =- 54; N Mj for the tower of factors M C MI C M2 C ... as- 
sociated to some extremal inclusion N C M it follows that there are cononical 
isomorphisms from A,j to A,+2j+2 carrying e,+2 . . . . .  ej onto e~+4,...,ej+2 res- 
pectively. Thus, if (4.2.1) holds true for i = 0, 1 then it holds true Vi. Also, 
if (4.2.2) is satisfied for some odd n then there exist antiautomorphisms of  
Ao,n+~ (resp. AI,n+2) carrying Ao,n onto Al,~+l (resp. Al,n+l onto A2,n+2) and 
en+l into e2 (resp. en+2 into e3), showing that (4.2.1) holds true for i = 0, 1. 
If n is even then there exists an antiautomorphism of Ao,n+2 carrying Al,n+l 
onto itself, e~+2 into e2 and A1,,+2 onto A0,n+l and e,+l into e3. Thus (4.2.2) 

(4.2.1) [] 

At this point we would like to be able to recognise the stability condition 
(4.2.2) by merely looking at the graphs of the lattice. 

4.3. Proposition. Let  (A,)) be a standard lattice with its pair o f  graphs 
(F, U) .  Assume that, f o r  some n, both F and U satisfy the following stability 
condition: 

(4.3.1). There is a one to one correspondence, j ~ ], given by single edges, 
between the vertices o f  F (resp. F ' )  at distance n f rom * that are not end 
points and the vertices o f  F (resp. F t) at distance n + 1 Jrom ., i.e. there 
exists a unique edge exiting j and it goes to ], and distinct such j ' s  give 
distinct ]'s. 

Then (Ao) satis]ies the stability condition (4 .2 .2)Jor  i = O, 1 and thus 
(4.2.1), Vi. 

Proof  Let N C M be so that M, t N Mj = A,j, Let j be a vertex at distance 
n from �9 on the graph F and let pj be a minimal central projection in 
M t N M ,  of label j .  Then j is an end point iff ( 1 - z , + l ) p j  = 0 ,  where 
zn+l =- zM,nM,,+,(e,+l) = z(M,nM,,,e,,+,)(e~+J), Also, there exists a unique edge 
exiting j with no other edge going to the same vertex at distance n + 1, if 
and only if (1 - Z , + l ) ( M  ~ NM,,)p;  = (1 - z , + l ) ( M '  NM,+I )p j .  Thus, if 
(4.2.1) is satisfied then ( 1 - z , , + I ) M ' A M , = ( I - z , + I ) M ' A M , + ~ .  But 
zn+~(M ~ NMne~+lM ~ N M , )  = z ,+lM ~ NM,+I always, so that M'  nMn+l  = 
(M' N M,,,e,+I). [] 

For the next result we denote by F(n)  (resp. U ( n ) )  the restriction of F 
(resp. 1 "t) to the vertices at distance < n from *. 
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4.4. Corollary. Let (Aij) be a standard lattice and assume its 9raphs ( F , U )  
satisfy the stability condition (4.3.1) for some n (so that (Azj) satisfies (4.1.1) 
by 4.3). Let A ~ C Aij be the sublattice obtained by truncating (Aij) from the 

step n on like in 4.1 and let (F~ ~ be its 9raphs which one calls the 
"truncation o f  (F,F r) at step n". Then F ~ (resp. F ~ ) is obtained from F 
(resp. U )  by addin9 to each boundary vertex j o fF(n )  (resp. U(n) )  an An, 
tail, for some 1 < nj < oo, with nj = 1 iff j is an end point. 

Proof This is clear now by the proof of 4.3. Indeed, if j is not an end 
point in F(n), pj is the corresponding minimal central projection in A0,n 
like in the proof of 4.3 and if we have (1 -zn+l)pj4=O, then either (1 - 
zn+2)pj = 0, meaning that ( 1 - Z n + l ) p j  is a direct summand corresponding 
to an end point in F~ 1 ) =  F(n+ l) ,  or (1-z~+2)pj4=O in which case 
( 1  - zn+2 )Pj(Ao,n+l,en+2) = (1 - zn+2 )pjAo,~+l (here zn+l = z(Ao.,,,e,,+f~( en+ l ) = 
ZA ..... (en+l)). 

By induction the above shows that F ~ will have an An, graph departing 
from j ,  for each j .  [] 

We can now deduce our main obstruction criteria for a pair of graphs 
(F,F p) to be standard. Thus, we show that if (F,F')  is stable at some step 
n and is 'non-trivial '  up to that level i.e. F(n)4:A~+l (equivalently, the n'th 
relative commutant contains more that just the Jones projections), then the rest 
of  the graphs F, U MUST consist of Afin tails only. So, if either F or U fail 
to continue with an Afi, tail from one of its vertices at distance n from �9 then 
( F , U )  is not standard. 

4.5. Theorem. I f  ( F , U )  is a standard pair o f  ,qraphs correspondin9 to index 
2 -1 > 4 which is stable at distance n from �9 then one ofthefollowin9 holds 
true: 

a) F(n)=An+l = U(n)  and then the truncation at step n o f  (F,F ' )  is 
(r~ ~ = (Aoo,Aoo). 

b) From each vertex at distance n from �9 both F and U continue with 
A fi, tails. 

Proof By 4.4 it follows that (F~ ~ is obtained from (F(n) ,U(n))  as de- 
scribed in b), with An,n < o~, instead of Afro. But then, if we get an Ao~ tail 

at some j ,  (F~ ~ must be (Aoo,Aoo) cf. [Po5]. If we only get At,n tails, 
then the weights at its vertices must be proportional to (P,,(2)/Lo,,_, (2)) 1/2. 

But by 1.4.3 in [Sc] it then follows that (F~ ~ = (F,F') ,  so ( F , U )  itself 
must continue with A fin tails from the level n on. [3 

From the above, it follows that there are no standard pairs of infinite graphs 
(F, U ) ,  which are stable at some step n for which (F(n), U(n))+-(A~+I,A,+I). 
Equivalently, we have: 

4.6. Corollary. I f  (F, F I) is a standard pair o f  infinite ,qraphs correspondimt 
to index > 4 which is stable at some step n then (F(n),F'(n))  = (A,,+I,A,+It 
and the truncation at step n o f  ( F , U )  is (A~,Aoo). 
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The above results show in particular that if F = F '  and F is stable at step n 
then F must be of a very particular form. In some situations, even if apriorically 
F, F' are not assumed equal, one can use 4.5 to get some conclusions (e.g., 
exclude ( F , U )  as a standard pair) by looking at F only. 

4.7. Lemma. Let ( F , F ' )  be a standard pair of  graphs. 
a) I f  n is an even number and F is stable at levels n, n + 1, n + 2 then 

(F,F ~) is stable at n + 1. 
b) I f  F ( n -  1 ) = A n ,  then F ' ( n -  1)=A~.  
c) I f  F ( n -  1 ) =  An, F(n + 1) has just one edge more than F(n) and the 

unique vertex at distance n - 1 fi'om * is either a double, triple or quadruple 
point, then F(n + 1) = F'(n + 1) and (F,F')  is stable at n. 

d) I f  n is odd, F(n - 1 ) = An and F(n + 1 ) has .just one edge more than 
F(n), with its unique end point at distance n from �9 being related to the vertex 
n - 1 by just one edge, then F(n + 1) = F'(n + l )  and (F,F')  is stable at n. 

Proof a) Let N C M be a subfactor with (F, F ' )  as its standard pair of  graphs. 
Then M t (7 M n +  3 ---- sp M t 0 Mn+ 2en+3 Mt I"1Mn+2 d- M' N Mn+2. But M '  f3 
Mn+2 = spM p fq mn+len+2M' f"l mn+l + M t n Mn+l = spM( fq Mn+2ez M~ n 
Mn+2 + M ~ n M . + 2  the last equality following from the parity of 
n + 2 (=  parity of n) and the existence of the antisymetry on M ~ n M.+2. Thus 
we get M' N Mn+3 = sp M( A Mn+2e2M( A Mn+2en+3M( 0 Mn+2e2M( N Mn+2 + 
X where X is a set consisting of products of elements in {e2,e,+3} UM( A 
Mn+2, with e2, en+3 appearing at the most just one time each. But e2M( N 
M,~+ 2en+ 3M~ • Mn+ ze2 C ( M~ 0 Mn+3 )e2 = (spM~ N M,+ 2en+ 3M~ f~ Mn+ 2 + M~ 

Mn+2)e2. Thus, when expecting M~n  Mn+3 onto M( n M,+3 we get M (N 
M.+3 = EM(nM,,~,  (M( A Mn+3 ) = EM(nM,,+~ (sp M( n Mn+2e,,+3e2M( n Mn+2 -b X )  
= spM( A Mn+2en+3M( NM.+2 + M ;  (3Mn+2. But this shows that F '  is stable 
a t n + l .  

b) If F ( n -  1) = A., it means that M ' n  M. - I  is generated by the Jones 
projections e2 . . . . .  e . - i .  Since dim M ' n M . _ I  =dim M(NMn and M ( n  
Mn DAlg {l,e3 . . . . .  en}~-- Alg {l,e2 . . . . .  e n _ l } = M ' O M n _ l  [Jl], one gets 
M(nMn = Alg {1,e3 . . . . .  en} so that F ' ( n -  1 ) = A n .  

c) If F has a double, triple or quadruple point at the vertex n - 1  
then M( n M. ~Alg  { 1, e2 . . . .  en } | r with i = 0, 1, 2. But since dim M'  n 
M~ =d imM(fqM.+ l  and M(NM.+I  D Alg {1,e3 . . . . .  e,,+l} ~ C '  it then fol- 
lows that M( N M.+I ~- Alg ( 1, e3 . . . . .  e.+j } ~ ~i  as well and F(n) = F'(n). 
If F(n + 1) adds jsut one more edge to F(n) then dim M[ AM.+I =dim(sp 
(m' NM.)e,,+l(m' NM. ) )  + 1 = dim( sp (m( NM.+~)e.+2(M( fq M . + I ) ) + I  so 
that U ( n +  1) adds just one more edge to F'(n) too. Thus F ( n +  1 ) =  
U(n+ 1) and (F,F')  is stable at n. 

d) Similarly, i f n  is odd, F(n - 1) = A .  then U(n - 1) =An,M(nM,,+t ~- 
M 'nMn (via the antisymetry of M'NM.+I)  and all new summands of 
M( N M.+l will be related only to the vertex (summand) n -  1. It is easy to 
see that this entails F(n) ~- F'(n). Since dim M( nMn+2 = dim M'  f-IM.+l = 
dirn(sp(M' N M,,)e,,+I(M' r i M . ) ) +  1, from F ( n ) =  F'(n) it follows that dim 
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M( nMn+2 = dim(sp(M( AMn+t)en+z(M(NMn+I)) + 1, so that F'(n + 1) has 
just one more edge than F'(n), related by a unique (i.e., multiplicity one ) 
edge with the vertex n - 1. Thus, F(n + 1) = 1"(n + 1) and (1",1") is stable 
at n. []  

By Theorem 4.5, the above observation yields: 

4.8. Corollary. Assume that a standard graph 1" satisfies one o f  the condi- 
tions 4.7.c) or 4.7 d) and that 1"(n)#A,+v Then 1" = F' and 1" is obtained 
from 1"(n) by adding to it exactly one A tin tail. [] 

The above Corollary shows that if 2 -  i > 4,1"(n - 1 ) = An and at the ver- 
tex n - 1 one has only three edges one of which has an endpoint, then 1" can 
only be a Than type graph (with the notation of [GHJ]), with finite m. Thus, 
the above result covers part of the recent result in [J2]. By using the result 
of [H1], which shows that in fact (Tn,m, Tn,m) cannot be a standard pair, one 
actually recovers [J2] in its full generality: 

4.9. Corollary. ([J2]) Let N C M be a type H1Jactor with index [34 : N] > 4 
and graph 1" = FN, M. I f  1"(n-  1 ) = A n  and 1"(n) has a triple point then 
F ( n +  1) has at least two edges more than 1"(n). Equivalently, i f  F is a 
pointed bipartite graph such that 

1"(n + 1) = 

9 

0 0 0----- --(3 ~ 0 0 

then F is not the graph o f  a subfactor. [] 

4.10. Final remarks. I)  Note that the obstruction cirtieria 4.5 essentially comes 
out of the theorem 2.6, which in turn was inspired and deduced from the result 
in [Po4]. On the other hand that result, i.e., the existence of certain universal 
commuting squares of assymptotically free sequences, is a direct consequence 
of the local quantization principle in [Po2,3]. It is quite interesting that a 
purely analytical result like ([Po2,3]) can have such genuinely combinatorial 
consequences. 

2) Note that the condition 4.7 a) cannot be improved to arbitrary integer 
numbers (i.e., odd as well): by the exemples of finite depth subfactors of 
smallest possible index larger than 4 in [HI], there exist standard pairs (F, 1") 
such that F is stable at n , n +  1 , n + 2  for some odd n while ( F , F ' )  is not. 

3) Any intersection of sublattices of a given standard lattice is again a 
sublattice. Thus, given a subset (e.g. a subalgebra) Q of A0n there exists a 
smallest sublattice that contains Q. We call it the sublattice generated by Q. If 
Q is a subalgebra that contains e2, e3 . . . .  , en then the sublattice that it generates 
can be found by a recursive procedure of taking appropriate expectations and 
generating algebras, like in the universal construction of Sec. 2 in [Po3]. If one 
can keep track of the inclusions graphs in this process then this construction of 
sublattices can bring some more exemples of standard invariants and produce 
more obstruction criteria for graphs. 



Axiomatization of  the lattice 445 

dcknowledyements. 1 am very grateful to Uffe Haagerup for patiently explaining to me his 
results on repeated occasions and for pointing out to me 1.4.3 in [Sc] , to Vaughan Jones for 
keeping me informed on his recent exciting work and to Dietmar Bisch for useful comments 
on the initial form of the paper. This paper has been circulated since July 1994 as an ESI- 
preprint no 115 (1994). I would like to thank H. Narnhofer and W. Thirring for their warm 
hospitality during my stay at the Erwin Schrodinger Institute for Mathematical Physics in 
June 1994, where the final form of this paper was prepared. 

References 

[Bi] 

[Bo] 

[GHJ] 

[H1] 

[H2] 
[Iz] 

[IzKa] 

[Jl] 
In] 
[J3] 

[L] 

[Oc] 

[PiPo 1 ] 

[PiPo2] 

[Pol] 

[Po2] 

[Po3] 

[Po4] 

leo5] 

[Po6] 

ira] 

ISc] 

!Su] 

D. Bisch: On the structure of finite depth subfactors In: Algebraic Methods in 
Operator Theory, Birkhfiuser, Basel-Boston-Stuttgart, 1994, pp. 175-194 
F. Boca: On the method of constructing irreducible finite index subfactors of  Popa. 
Pac. J. Math 161 (1993) 201-231 
F. Goodman, P. de la Harpe, V.F.R. Jones: Coxeter graphs and towers of algebras. 
MSRI Publ. 14, Springer, Berlin, 1989 
U. Haagerup: Principal graphs of subfactors in the index range 4 < [M : N] < 
3 + x/2 In: subfactors, World Scientific, Singapore-New Jersey-London Hong 
Kong, 1994, pp. 1-39. 
U. Haagerup (In preparation) 
M. Izumi: Applications of fusion rules to classification of subfactors. Publ. RIMS 
Kyoto Univ. 27 (1991) 953-994 

M. lzumi, Y. Kawahigashi: Classification of subfactors with principal graph D (!). 
J. Funct. Anal. 112 (1993) 257-286 
V.F.R. Jones: Index for subfactors. Invent. Math. 72 (1983) 1-25 
V.F.R. Jones (In preparation) 
V.F.R. Jones: An affine Hecke algebra quotient in the Brauer algebra, preprint 
(1994) 
R. Longo: Index of subfactors and statistics of quantum fields t. Commn. Math. 
Phys. 130 (1989) 217-247 
A. Ocneanu: Quantized groups, string algebras and Galois theory for yon Neumann 
algebran, In: Operator Algebras and Applications. London Math. Soc. Lect. Notes 
Series 136, London, 1988, pp. l l9-172 
M. Pimsner, S. Popa: Entropy and index for subfactors. Ann. Sci. Ex. Norm. Sup. 
19 (1986) 57-106 
M. Pimsner, S. Popa: Iterating the basic construction. Trans. Am. Math. Soc. 310 
(1988) 127-133 
S. Popa: Classification of subfactors of type II. Acta Math. 1'72 No. 2 (1994) 
163-255 
S. Popa: Classification of subfactors and of their endomorphisms. CBMS Lecture 
Notes Series, 1994 
S. Popa: Markov traces on universal Jones algebras and subfactors of finite index. 
Invent. Math. 111 (1993) 375-405 
S. Popa: Free independent sequences in type HI, factors and related problems (to 
appear in Asterisque) 
S. Popa: Some ergodic properties for infinite graphs associated to subfactors to 
appear in Ergod. Th. & Dynam. Sys. 
S. Popa: Symmetric enveloping algebras amenability and AFD properties for sub- 
factors. Math, Research Letters 1 (1994) 409-425 
F. Radulescu: Random matrices, amalgamated free products and subfactors of the 
yon Neumann algebra of the free group. Invent. Math. 115 (1994) 347-389 
J. Schou: Commuting squares and index for subfactors, thesis, University of  
Odense (1990) 
S.Sunder: HI factors, their bimodules and hypergroups. Trans. Am. Math. Soc. 
(1993) 


