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1 Introduction

Let V be a complex affine space of dimension /. Let uy,...,u, be affine coor-
dinates of V. Let 1 <i <n, 0 <, < / and let {a,,} be complex numbers.
Consider the linear functions

o, =ag, tauy + -+ agu.

Let H, = ker(o,) be the corresponding affine hyperplanes in ¥ and let A =
{Hl,.,.,H,,} denote their arrangement. We assume that A is essential. This
means that the lowest dimensional intersections of these hyperplanes are points.
Let N = N(A) = |J_, H, be the divisor of A and let M = M(A) =V —N(A)
be the complement of A. Given a complex n-vector A = (4),...,4,) € C",
consider the multivalued holomorphic function defined on M by

Biu) = a;ll o,

Studying Bethe vectors in statistical mechanics, A. Varchenko [18] conjectured
that for generic 4 all critical points of ¢, are nondegenerate and the number
of critical points is equal to the absolute value of the Euler characteristic of
M, y(M). He proved the conjecture for complexified real arrangements in [18].
A similar result was known to K. Aomoto [1, Example 1] who stated without
proof that for positive A the number of critical points of ¢; equals the number
of bounded components of the complement of the real arrangement. See [2,
Theorem 4.4.1.1] for details. In this paper we prove Varchenko’s conjecture for
all arrangements. More generally we give a formula for the number of critical
points of the multivalued holomorphic function

A
@) = e/, w) = &'

o
on M where f(u) is a polynomial of degree r = 0. The formula for r =
0 is Varchenko’s conjecture. The functions ¢, and &, are integrands in the

n
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multivariable theory of hypergeometric functions and hypergeometric integrals
They occur in work of Aomoto, Kita, Gelfand, Varchenko, and others [1], [5],
[6], [81, [9], [141, [16], [18]. Consult forthcoming books by Aomoto and Kita
[2] and by Varchenko [17] for further references.

Theorem 1.1 Let A be an essential complex affine arrangement and let f be
an A-transverse polynomial of degree r = 0.

(i) There exists a (Zariski-) closed algebraic proper subset Y of ©" such
that for each A € €"—Y, &, has only finitely many critical points all of which
are nondegenerate and the number of critical points of @, is independent of
A€ C" — Y. Denote this number by y(A).

(i) y(A) = |x(A, 1~ 7).

See Definition 2.3 for the notion of an A-transverse polynomial and Definiton
2.1 for the characteristic polynomial y(.A4,¢) of A. It is known [11, Theorem
5.93] that y(M) = y(A,1). Thus Theorem 1.1 specialized to » = 0 proves
Varchenko’s conjecture for all arrangements.

Let C(@;) be the set of critical points of @; in M. In Section 2 we use
algebraic methods to study the set C(&;). It is easy to see that a point v € M
is a critical point of &, if and only if it is a critical point of log @, so the
I-form

n d .
w; = d(log @) =df + 3.4~

i=l 1

vanishes at v. Similar problems were studied in [12] and [15] and we use the
terminology and methods of these papers. We interpret the set C(@;) in terms
of a complex Q} = (Q*(A), w;A) of logarithmic forms with poles on A whose
differential is w;A. We show that the support in M of the top cohomology
H/(ij) is equal to the set C(®;). This is the set of points of M at which the
localization of H’(Q}) is not zero. In Section 3 we show that there exists a
closed algebraic proper subset Y; of € such that for each 1 € €" — Y1, the
cohomology groups HP(£2}) are finite dimensional and we calculate the Euler
characteristic of the complex Q7:

22 = (A1 =r). M

In Section 4 we prove Theorem 1.1. First we find a closed algebraic proper
subset ¥, of €” such that for each A € € — Y5, @, has no degenerate critical
points on M. Then we find a closed algebraic proper subset Y containing
Y, UY,. This proves the first part of Theorem 1.1. We call 1 € C"—Y generic.
For generic A all critical points are nondegenerate and their number is the
constant y(\A):

IC(@:)] = HA). @

It remains to find the value of y(,A). We show the existence of generic A for
which

HP(Q)=0, 0= p<¢and dimeH (2}) = |C(®,). 3)
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Thus we get from (1), (2), and (3) that y(A) = |x(A, 1 — r)|. This proves the
second part of Theorem 1.1.

2 Logarithmic forms

In this section we establish the fundamental connections between critical points
of @; and a complex of logarithmic forms. For the rest of this paper we fix a
complex affine essential /-arrangement A = {H\,H,,...,H,} where H, = kero,
and let Q = [[._, o be a defining polynomial for the arrangement A. Let
L = L(A) be the set of all nonempty intersections of hyperplanes in A. We
consider L as a partially ordered set by reverse inclusion so it has minimal
element V. Let pu : L x L — Z be the Mgbius function of L defined by
X, X) =1, the recursion y .,y X, Z)=0for X < Y, and u(X,Y) =0
otherwise. o

Definition 2.1 The characteristic polynomial of A is y(A,1) =3 ;o m(V,X)
tdlmX_

We construct a central (£ + 1)-arrangement from A called the cone over
A. Let ¢V be an affine (£ + 1)-space with coordinates ug,uy,...,u,. Regard V
as the affine hyperplane of ¢V defined by uy = 1. For X € L, let X° be the
cone over X. We identify the C-algebra of polynomial functions on V with
the polynomial algebra S = Cluy,...,u,]. Let S° = Clug,uy,...,u,] be the
coordinate ring of ¢¥. For each g € S define the homogenization of ¢ as

g" = uSBg(ur fuo, ..., usfuo)

where deg g is the degree of g. Clearly, g* € S° and it is homogeneous of
degree deg g¢.

Definition 2.2 Let A = {H,,...,H,} and Q = [[_, o, be a defining polynomial
for A. The cone cA of A is defined as the central arrangement in cV defined
by the polynomial Q° = uyQ" = uy [ [}

i=1 l

Definition 2.3 Let f be a polynomial of degree r. If v > 0, then we say that
f'is A-transverse provided for every X € L(cA), the restriction of f" t0 X
has no critical points outside the origin. If r = 0, then we agree that every
honzero constant is A-transverse.

For the rest of this paper we fix an .A-transverse polynomial f of degree r = 0.

Proposition 2.4 The following statements are equivalent for a point v € M:
(1) v is a critical point of ®,, so v € C(®,),
(2) v is a critical point of log &, = f + Z:’;l A log o,
() wi(v) =df @)+ X, 4% () =

Proof. Since ®,(v)+0, the assertions follow from the formula
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o(log ;)

6uj

15(4’/:).

N
Ou,

Proposition 2.5 Let v € C(®;) and let H = H; be the Hessian matrix of

log @, with entries
> f 1 Al
H ;= — Z}_k_’_’_/_
P wow, & o

The following statements are equivalent for a point v e M.
(1) v is a nondegenerate critical point of @;,
(2) v is a nondegenerate critical point of log ®;,
(3) det Hy(v)+0.

Proof. Since 0®;/0u;(v) =0 for all j, the assertions follow from the formula

62(log (D,) e 62¢;, _ _26(15,16(1%

0

Ou;0u; * Oulu; tQu Ouj

A C-linear map 8 : § — § is a derivation if 6(ab) = af(b) + bO(a) for
a,b € S. Let Der(S) be the S-module of derivations of S. It is a free S-module
with basis {D, = 0/0u;}.The module of A-derivations is an S-submodule of
Der(S) defined by

D(A) = {0 € Der(S) | 6(Q) € OS}.

The Euler derivation is 0y = Zf:l w;D,. Tt lies in D(A) if and only if A is a
central arrangement so all hyperplanes contain the origin.

Let p be an integer. Let Q7[V] denote the S-module of all global regular
(=polynomial) p-forms on V. Let Q7(V') denote the space of all global rational
p-forms on V.

Definition 2.6 The module QF = QP(A) of logarithmic p-forms with poles
along A is defined as

Q7 = QP(A) = {w € Q°(V) | Qo € QP[V] and Q(dw) € QP! [V]}.
Let QP =0if p<Oor p>/{.

Clearly, w; € Q'(A). It is easy to see that QP(A) is a finitely generated
S-module containing Q7[V]. Also Q°(A) =S and Q'(A) = (1/Q)Q'[V]=S.
Recall the interior product form [11, 4.74)

(, ) D(A) x QP(A) — QP71(A)
which is an S-bilinear pairing. In particular, when p = 1, we have a pairing
(,):D(A)x Q' (A) — S (6}

satisfying <2, fiD;, Zj gjduj> = >, fxgr. For a complex manifold Z and a
point z € Z, let T,Z denote the holomorphic tangent space of Z at z. Define
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the evaluation map 1, : D(A) — T,M as follows. Given 6 € D(.A), write 6 =
SouD; and let t,(0) = Y wi(z)D,. Write 0, = 1,(0) and D(4), = t.(D(A)).
it follows from [11, 5.17] that if v € M, then D(A), = T,M. The pairing (6)
induces the natural pairing

(, )o: TMXxTM — C

of the holomorphic tangent space and the holomorphic cotangent space of M
at each point v € M.

Proposition 2.7 Define the ideal I, = (D(A),w;) = {(0,w;) | 0 € D(A)} of
S. Let V(1) denote the zero set of I,, Then C($;)=V(I;)NM.

Proof. Let v € M. Then w;(v) = 0 if and only if (&, wi(v)) = 0 for all
¢ € IuM = D(A),. Apply Proposition 2.4. ]

Definition 2.8 Let 1 € €. Define maps w; A : QP(A) — QP71 A) by sending
w € QP(A) to w; N w. We obtain the cochain complex

Q= QA = (@) - 25 Q0 A) 2 QI (A) 25
Lemma 2.9 H'(Q}) ~ S/I;.

Proof. There is an isomorphism y : D(A) =~ Q' ~'(A) defined by
/ —
W0) = Q7" S(—= 1Y 0uduy A Aduy A - Aduy
=1

for 0 € D(A). By abuse of notation, let y also denote the isomorphism 7§ ~
Q’(A) defined by y(g) = Q" 'gdu; A ... A dus. Then the map 6 : 0 — (6, w;)
makes the following diagram commutative:

DAY 5 Q/7l(A)
16 NP
s 4L QA O

Let N be an S-module. For v € V., let N, denote the localization of N at v. It is
naturally an S,-module. Define the support of N by SuppN = {v € V | N, +0}.

Propesition 2.10 (1) SuppH "(Q;f) NM = C(P;).
(2) If H/(Q3) is finite dimensional, then |C(®;)| < dimH " (Q}).

I? roof. (1) is a direct consequence of Proposition 2.7 and Lemma 2.9 and (2)
follows from (1). O

Proposition 2.11 The ideal I, annihilates the S-modules H P(Qy) for all p.
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Proof. Let w € QF with w; Aw = 0. Let § € D(A). Then (f,0) € Q7~'. We
have

wj; N\ (8,0)> = -(0,(1),1 A (D) + <9,(D,1>w = (9, w/)w

This shows that (6, w,)w is a coboundary. |

3 The Euler characteristic

In this section we find an algebraic set ¥; C C" so that for all A € €"—7Y, the
cohomology groups H?(£2%) are finite dimensional and the Euler characteristic
x(2%) equals x(A, 1 —r). (We may actually choose ¥; = () unless r = 0.)
Introduce a natural increasing filtration on Q27(A4). Let § € QP[V]. If each
coefficient of f is a polynomial of degree at most ¢ — p then we say that the
total degree of B is < g and write tdegfi < g. Let w € Q7(A). It follows from
the definition that w can be written in the form w = f/Q where € QP[V].
Let n = deg Q = |.A]. We may formally consider the degree of 1/Q as —n
and say that the total degree tdegw < ¢ if tdegf < ¢ + n. For example, if
(=1, Q=u(u—1), and w = dufu(u — 1), then tdegw < g for g = —1.

Definition 3.1 Total degree introduces an increasing filtration on QP(A) for
qgeZby

QL, = QP(A)gy = {w € QP(A) | tdego £ g}
Define C-vector spaces for q € Z by
GryQF = GryQP(A) = Q7(A)</QP(A) g1

Definition 3.2 Suppose 1 € C". Let q € Z. The cochain complex % has a
subcomplex Q¢ , = Q¢ (A) which is defined by

* * N N A A
Qg = Qg(A): -+ = Qgq+(p~/)r -5 'Qg;}#(p—/ﬂ)r 252 Q/gq — 0.
This provides an increasing filtration of the cochain complex Q*. For each
q € Z, define the complex

Gry = Gr, Q" = Gr,Q*(A) = QL /QC,_,.

Denote by Gr* the direct sum of the complexes Gry = Gr,Q* for all q.
The following result was proved in [15, Theorem 7.1]:

Theorem 3.3 Let f be an A-transverse polynomial of degree r > 0. Then for

every A € C" )

(1) the cohomology groups HP(2}) and HP(Gr*) are finite dimensiondi
for all p,

2) 22 = S(=1)?dim H/(®}) = Y(-1)? dim H/(Gr"}

= y(A,1-7r). L
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The argument in [15] uses the fact that when r > 0, the induced differential
in the complex Gr* is the highest degree homogeneous component of d f* and
hence it is independent of A. Note also that in this case the number of solutions
of w; = 0 is finite for all A. We need the analog of Theorem 3.3 for r = 0. In
this case d f = 0 and there may exist values of A which give infinitely many
solutions of w; = 0. Thus the analysis is somewhat more delicate. See Remark
3.11 and Example 4.7. In the rest of this section we assume that r = 0.

Let p be an integer. Define

K? ={we€ QF(cA) | dug A =0}.

Then K” is an S°-module graded by total degree: K” = @,czK/). Let g be an
integer. Define a C-linear map ¢ : Kf“ — Q‘éq by a(w) = (=1)7(0g, ©) |uy=1.
Here 6 is the Euler derivation. By abuse of notation, we let ¢ also denote the

induced C-linear map o : K R Gr, Q7. The next Proposition was proved in
[15, Prop. 4.6]:

Proposition 3.4 The following sequence is exact where the first map is mul-
tiplication by uy:

0 _’qujll o, quﬂ _°, Gr, Q7 — 0. =
Define i
nood
ot =34 ;o;_, € Q'(cA).
=1

1

It is easy to see that the maps w’A : Kf — K/*' define complexes K; =
Ky, ).

Proposition 3.5 The homomorphisms ¢ in Proposition 3.4 define a cochain
homomorphism of the complexes K; — GryQ* that decreases dimension by

Proof. 1t suffices to prove that ¢ commutes with the differentials. Let @ € KP*!,
Notice that w|,,—; = 0. Using this we have

w; A <GE,(,U> \u():] = (wé’ A <65,w>) |u0=1
= (~ <95,(l)2 AN U)> + <HE,(JJZ> LL)) .uozl = (‘ <055w}/{ A w>) 1“0:1' =

Denote by K™ the direct sum of the complexes K, for all g. It follows from
Propositions 3.4 and 3.5 that the sequence of complexes 0 — K* 2 K* %
Gr* — 0 is exact. \

Proposition 3.6 The following induced cohomology sequence is exact:
e HPP(K) B HO K ) = HP(Gr) — HPPA(K) 5 HP (K ) — -0

Proposition 3.7 Write H? = HP(K*). Define Do(cA) = {6 € D(cA) | (uy) =
9. Let § ¢ Dy(cA). Then <0, wﬁ) € Ann(H?) for every p.
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Proof. Let w € K? and wﬁ‘ A @ = 0. Then we have
0= (0,0} A w) = (0,0h) 0 — & A (0, 0).

Since 0 € D(cA), n = (0,w) € QP! (cA). To prove the result it suffices to
check that # € K#~!. Thus we need that dug A n = 0. We have

dug N (0, w) = B(ug)w — (8,dug A w) =0

since A(ug) =0 and w € K7, |

Let Hy = ker(up). Then Hy is an £-dimensional hyperplane in ¢¥. For any
X € L, define X = HyN.X°. Thus X is a vector subspace of ¢/ and dimX =
dimX. We can regard X as the parallel translate of X through the origin. For
any X € L, define the index set

IX)={i | X¢Hf, 1sign}

For example, I(V) = {1,...,n} and I(H;) = {i | H; is not parallel to H;}.
Let my = Hiel(x) ocl'-'. For any nonzero vector a € ¢V, let d, be the derivation
of §¢ in the direction of a.

Corollary 3.8 For any X € L and nonzero vector a € X, we have (mx0q,w}) €
AnnH?,

Proof. By Proposition 3.7, it suffices to check that nxd, € Do(c.A). This is
straightforward. O

Proposition 3.9 Suppose A is nonempty and central. Then C(®;) = 0 unless
E:’:I ﬂvi = 0

Proof. Since the Euler derivation 0 € D(.A), we have

n
0> 4 = (0, wz) € L.
i=1
Thus V(I;) = 0. Apply Proposition 2.7. 0
Define LT = {X € L(A) | dim X > 0}. For each X € L*, define a
hyperplane Fx in " by

FX:{/{EC’I | Z A,ZO}
i€l(x)
Lemma 3.10 Define Y1 = Jy;+ Fx. Then Y1 is a closed algebraic proper
subset of C". Suppose that A € C" —Y,. Define the ideal
1) = {{0,0!) € $° | 6 € Dy(cA)}

of S¢. The radical of the ideal generated by uy and I contains the maximal
ideal Sﬁ_ = (u(), v ,u{).
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Proof. Denote the ideal of S generated by uy and I}? by I. Let V(1) be the
set of common zeros of /. By the Nullstellensatz, it suffices to show that V(1)
is contained in {0}. Suppose v € V(). Then v € Hy = ker(up). Let X N H,,
where the intersection is over {i | 1 < i < n,v € Hf}. Then X = Hy N X°
is the maximum (smallest as a set) element of L(c.A) which contains v. We
also note 1(X) = {i | X € Hf} = {i | v ¢ Hf}. We will show X = 0.
Define the arrangement B = {X N Hf | i € I(X)}. Suppose X 0. Then B
is a nonempty central arrangement in X. Note that v € M(B). For simplicity
write @ = w_f‘ = Y1, Z(datja?). By Corollary 3.8, (nyd,m) € I for every
vector @ € X. Define o = 37, Addof/af). If i ¢ I(X), then X C Hf
and thus (0, da?) = 0. Thus we have 0 = (nxds,w), = <nX(7,,,wX>U. Since
nx(v)+£0 and w* has no pole at v, the restriction @ of the 1-form w' to
X vanishes at v € M(B). On the other hand, by Proposition 3.9, since B is
nonempty and central, @ never vanishes on M(B) unless 3, 100y A; = 0. This
is a contradiction. O

Remark 3.11 The set Y\ has the following description in terms of the projec-
tivized arrangement P of the cone cA

Projectivize V¢ to get an /-dimensional complex projective space P(V¢). For
any vector subspace X of V¢, let P(X) denote its projectivization. Note that
P(X¢) is the projective closure of X. The cone cA naturally determines a
projective arrangement P by

P = {P(Hy), P(HY)...., P(H)}.

For simplicity, write Po = P(Hp) and P, = P(H¢) for | £ i < n. Choose the
complex number Ag = — Y, A; as the weight of Py so that the expression

d n o dot
}'Oﬂ+zli O;:

Uo i=1

defines a global rational 1-form on P(¥¢). Then for X € L* we have

S h=—dg— S h=— 3

i€l(X) 1sign P(X)CP,
XcHf

Let L(P) be set of all nonemp%y intersections of hyperplanes of P. Note that
Py =P(Hy) = P(V°) — V is “the hyperplane at infinity.” Define

L(P)oo ={Z € L(P) | Z C Py}
It is the subset of L(P) consisting of the elements lying at infinity. Then

L(P) = {PX) | X € L'},
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Therefore

= U {xea:w ) z,:o}: U {ie¢"| zzi:o}.

XelL+ P(X)CP, ZeL(P)oo Zeh,

Theorem 3.12 Let r = 0. Suppose A € C" —Y,. Then

(1) the cohomology groups HP(Q%) and HP(Gr™) are finite dimensional
for all p,

(2) 2(823) = 3(-DPAim HP(Q) = 3 (—1)Pdim H?(Gr*) = x(A. 1).

Proof. (1) We only need to show that H?(Gr*) is finite dimensional. By
Proposition 3.6, it suffices to prove that the map induced by multiplication by
ug : HP(K*) — HP(K™) has finite dimensional kemel and cokernel. Recall that
HP(K*) is annihilated by (6, ") for all 6 € Dy(c.A) by Proposition 3.7. Thus
both the kernel and the cokernel are annihilated by the ideal generated by uy
and I. Therefore (1) follows from Lemma 3.10.

(2) Let EFY be the spectral sequence associated with the filtered complex
{Q%,}. Then EP? = HP*(Grl,) = 0 except for finitely many pairs (p,q) by
(1). So we have

S (—1)Pdim HP(Gr*) = S (- 1)P"¥dim E]? = Y (~1)"*9dim E*
P P4 r4

= S(=1)P*4dim ERY = $2(~1)Pdim HP(Q").
¥ 14

Therefore it suffices to show the statement for Gr*. Let

Poin (Gr™;x, y) = 3 (dim Gr,Q7 9 y?
P4

and set y = —1. We get

Poin (Gr*; x, —1) = 3 (dim (Gr, Q" x(—1)”
pa

= Y X1y (1) dim H”(Gry).
g >

Define ¥(A;x,t) = Poin (Gr*;x, ’—(—1—_—)’[1111) The formula P(A;1,¢) = x(A1)
was proved in [15, Theorem 5.3]. Thus we have

X(A 1) = ¥(A;1,1) = lim Poin (Gr*;x, 1)
= S (~1)"dim H?(Gr*).
p

4 The number of critical points

In this section we prove Theorem 1.1. First we find an algebraic set ¥ C C”}
so that for each 1 € €" — ¥, &, has only finitely many critical points, all ot
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which are nondegenerate and the number of critical points of @; is independent
of A € —Y. Wecall 1 =(4,...,4,) € C"— Y generic.

Proposition 4.1 Define Z = {(L,v) € €' x M | w;(v) = 0}. Then Z is an
n-dimensional complex manifold

Proof. Note that Z is the zero set of the ¢ equations

of &
Yoisa —0, 1</j<¢
dw, T2 T 1251

%ji

The Jacobian at (4,v) is an (n + /) x / matrix which may be written as
J = [AH]. Here A is an n x £ matrix with 4;; = a;;/a;(v) and H is the
Hessian matrix of Definition 2.5. Since A is essential, the matrix 4 has rank
¢ for all (4,v). O

Proposition 4.2 Define the projection p : Z — C" by p(4,0) = A. Then (4,v)
is a critical point of p if and only if v is a degenerate critical point of ®;.

Proof. The tangent space T(;,Z of Z at (4,v) is naturally identified with the
kemnel of the matrix map J = [AH] : € — €’. Thus @p)oy : TunZ —
T;€" is not surjective if and only if it is not injective if and only if det
H;V(U) =0. O

Proposition 4.3 There exists a closed algebraic proper subset Y, C C" so
that if 1 € C" — Y,, then the critical points of the function ®; in M are
nondegenerate.

Proof. Let D C C" be the discriminant of the projection p : Z — C". By
Sard’s theorem, D is nowhere dense in €”. Since D is a constructible set, it is
contained in a closed algebraic proper subset ¥ of €”. The conclusion follows
from Proposition 4.2. (]

Theorem 4.4 There exists a closed algebraic proper subset Y of C" such that
for each 2 € ©" — Y, ®; has only finitely many critical points, all of which
are nondegenerate, and the number of critical points of ®, is independent of
A€ C" ~ Y. Denote this number by y(A).

Proof. Case 1. Assume that the map p : Z — C" is not dominant so the
image of p is not dense in €". Then the image p(Z) is contained in a closed
algebraic proper subset Y. Obviously, Y satisfies the condition. In this case
(A) = 0.

Case 2. Assume that the map p: Z — C" is dominant. Then there exists
2 closed algebraic proper subset which contains ¥, and ¥ such that for U =
T"— Y the map Pt p~'(U) — U is a surjective covering map and the
umber of points in a fiber is constant, In this case y(A) > 0. 0
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This establishes the first part of Theorem 1.1. It remains to prove the equal-
ity p(A) = {x(A, 1 — r)|. The following lemma of de Rham type was proved
by Saito [13).

Lemma 4.5 (de Rham-Saito) Let A be a Noetherian ring. Let N be a free
A-module of rank ¢ with basis ey,...,e; so N = ®,/ 1Ae, and let APN be
the p-th exterior power of N. Let w € N. Write w = ¥!_ ae;. Let I be the
ideal generated by the coefficients a; for 1| < i < ¢. Cons:der the cochain
complex

o~ APTIN s APN — APYIN —s .

i

where the coboundary maps are given by ¢ — w A ¢. Let HP denote the
cohomology of this complex. Let d = depthiA be the maximal length of an
A-regular sequence in I. Then we have HP =0 for 0 < p < d. O

Define an algebraic proper subset Y3 of €C* by

XeL(A) WxCH,

Proposition 4.6 If 1 € € — (Y U 13), then
(1) H(2;) =0 for 0 £ p </, and
(2) dim H'(Q;) =|C(®,)].

Proof. (1) 1t suffices to show that the localization H7(Q}), =0 forallv e V.
Choose an arbitrary v € V and fix it. By translating the coordinates we may
assume that v is the origin.

Case 1. Suppose v € M(A). We may assume that A = {H,,...,H,} with
ve H fori=1,...,kandv & H; fori =k+1,...,n. Then oy,...,04 are
homogeneous of degree one. Define n, = a4 ... %,. Then 7,(v) 0. Suppose
n € QP(A), with ) Ay = 0 € QPY(A),. Note that n,05 € D(A), where
g is the Euler derivation. Recall the ideal I; of S from Proposition 2.7. It
annihilates the S-modules H?(Q%), for all p. Note that (n,0p,w,) € I;. Write
Jf as a sum of its homogeneous components, f = = _ f(m). We have

(Op, w;) = ZmﬂmH—ZI/1 + Z /1

i=k+1 a’

where 4; is the degree one homogeneous part of o; for k +1 < i £ n B
assumption 3°F . 4;%0. The remaining terms lie in the maximal ideal of S:.
Thus (0, w;) is a unit in S,. Since 7,(V)*0, (1,0, w;) € I; is also a unit in
Sy. This shows that v & V(I;) and that H”(2}), = 0 for all p.

Case 2. Suppose v € M(A) — C(®;). Since V(L) N M(A) = C(¥;) &
Proposition 2.7, we have v & V(I;). Since the ideal I; annihilates H7(£}): by
Proposition 2.11, we have H?(£2}), = 0 for all p.
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Case 3. Suppose v € C(®;). The 1-form w, vanishes at v. Note that a; is
aunit in S, for 1 £ i £ n. Write

4
w,; = Zgidut S QI(A)W
i=1

with g; € S, for 1 £ i £ [. Since gi(v) =0 for 1 £ i £ I, we can define a
holomorphic map germ

G=1(g1,....9/) : (C/,0) — (C’,0).

The Jacobian matrix of the map germ G is equal to the Hessian matrix A = H;
from Proposition 2.5. Since A € €" — 7, v is a nondegenerate critical point
of @;. Thus detG does not vanish at v. This implies that the map germ G
is locally biholomorphic so v is an isolated zero of G with multiplicity one.
Therefore g,,...,9, form a regular sequence. We can apply Lemma 4.5 to
A=S8,, N=Q [V}, v =w;e =du, and d = £ to prove (1).

(2) In the proof of (1) we showed that V(I;) = C(®;). Let v € C(P;).
We use the notation of Case 3 above. Since v is a zero of G = (gy,...,9/)
with multiplicity one, we have

dim Si/(g1,...,9/)8 = 1.

Note that D (A), = S,(8/0u1) + - - - + 5,(6/0u,) because v € M. Thus (I;), =
(915--.,9¢)S,. Therefore

dmH Q)= ¥ dimH(Q)),

veC(P,)
= > dimS,/()e= Y dimS,/(g1,...9,)S, =|C(@)]. D
veC(P,) vEC(P;)

To complete the proof of the second part of Theorem 1.1, let 1 € €" —
(YUYs) so y(A) = |C(®;)|. Apply Proposition 4.6, Theorem 3.3, and Theorem
312 to get

PA) = |C(D,)] = dimH’(Q}) = [1(2})| = [x(A 1 —r)|.

This completes the proof of Theorem 1.1.

Example 4.7 Let £ = 1,n =3, and r = 0. Consider ¢, = (u— 1)1 u2(u+1)5.

Here M = € — {—1,0,1}. Y, is defined by A; + 4, + 13 = 0. ¥; contains the
paints where |C(®,)| = co. 13 is defined by (43 — 41 + 44 (A + 42 +43) = 0.
Y2 contains the discriminant. At these points |C(®;)| = 1. We may choose Y
13 the union of Y;,Y, and the three coordinate planes. All A € € — Y are
generic and @, has |x(M)| = 2 nondegenerate critical points in M.
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