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I Introduction 

Let V be a complex affine space of  dimension f.  Let ul . . . . .  u/ be affine coor- 
dinates of  V. Let 1 _< i _< n, 0 =< j < / and let {aja} be complex numbers. 
Consider the linear functions 

~ : a0,t q- al,tUl -~- �9 �9 �9 -[- a/all/. 

Let H, = ker(~,) be the corresponding affine hyperplanes in V and let A = 
{Hi . . . .  , H , }  denote their arrangement. We assume that A is essential. This 
means that the lowest dimensional intersections of  these hyperplanes are points. 
Let N -- N(.A) = U n l  H~ be the divisor o f .A and let M = M(.A) = V - N ( . A )  
be the complement of  .A. Given a complex n-vector 2 = (21, . . . ,2n) E Cn, 
consider the multivalued holomorphic function defined on M by 

Studying Bethe vectors in statistical mechanics, A. Varchenko [18] conjectured 
that for generic 2 all critical points of  qS;~ are nondegenerate and the number 
of critical points is equal to the absolute value of  the Euler characteristic of  
M,)~(M). He proved the conjecture for complexified real arrangements in [18]. 
A similar result was known to K. Aomoto [1, Example 1] who stated without 
proof that for positive 2 the number of  critical points of  ~b;. equals the number 
of bounded components of  the complement of  the real arrangement. See [2, 
Theorem 4.4.1.1] for details. In this paper we prove Varchenko's conjecture for 
all arrangements. More generally we give a formula for the number of  critical 
points of  the multivalued holomorphic function 

�9 ).(u) = ef(U)~b;.(u) = el(")~Jnl. .. o~,;~" 

on M where f ( u )  is a polynomial of  degree r > 0. The formula for r = 
0 is Varchenko's conjecture. The functions qS~. and qh are integrands in the 
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multivariable theory of  hypergeometric functions and hypergeometric integrals 
They occur in work of Aomoto, Kita, Gelfand, Varchenko, and others [I], [5], 
[6], [8], [9], [14], [16], [18]. Consult forthcoming books by Aomoto and Kita 
[2] and by Varchenko [17] for further references. 

Theorem 1.1 Let A be an essential complex affine arrangement and let f be 
an A-transverse polynomial o f  degree r > O. 

(i) There exists a (Zariski-) closed algebraic proper subset Y of  ~ such 
that for each 2 E ~ n _  y, ~b)~ has only finitely many critical points all o f  which 
are nondegenerate and the number o f  critical points o f  ~;. is independent of 
2 E C n - Y. Denote this number by 7(A). 

(ii) 7(A) = IZ(A, 1 - r)[. 

See Definition 2.3 for the notion of an A-transverse polynomial and Definiton 
2.1 for the characteristic polynomial Z(A,t)  of A. It is known [11, Theorem 
5.93] that z (M)  = Z(A, 1). Thus Theorem 1.1 specialized to r = 0 proves 
Varchenko's conjecture for all arrangements. 

Let C(q~i) be the set of critical points of ~ba in M. In Section 2 we use 
algebraic methods to study the set CUb~.). It is easy to see that a point v E M 
is a critical point of ~b;. if and only if it is a critical point of  log ~;~ so the 
1-form 

~oa d(log ~b;~) = d f + ~ ~ i - -  
i=1 ~t 

vanishes at v. Similar problems were studied in [12] and [15] and we use the 
terminology and methods of these papers. We interpret the set C(~b;.) in terms 
of a complex ~* = (~*(A),colA) of logarithmic forms with poles on A whose 
differential is co;A. We show that the support in M of the top cohomology 

d * H (~2~) is equal to the set C(~ . ) .  This is the set of points of M at which the 
localization of H t ( ~ )  is not zero. In Section 3 we show that there exists a 
closed algebraic proper subset Y1 of ~"  such that for each 2 E C" - 111, the 
cohomology groups H P ( ~  ) are finite dimensional and we calculate the Euler 
characteristic of the complex ~ :  

Z(O*) = Z(A, 1 - r). ( l )  

In Section 4 we prove Theorem 1.1. First we find a closed algebraic proper 
subset Y2 of ~"  such that for each 2 E ~n _ Y2, ~;~ has no degenerate critical 
points on M. Then we find a closed algebraic proper subset Y containing 
Y~ U Y2. This proves the first part of  Theorem 1.1. We call 2 E ~"  - Y generic. 
For generic 2 all critical points are nondegenerate and their number is the 
constant 7(A): 

IC(,m;~)l = '),(A). (2)  

It remains to find the value of 7(A). We show the existence of generic 2 for 
which 

HP(Q*~) = 0, 0 =< p < d and dimcHe(Q~) = 1C(~bD]. (3) 
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Thus we get from (1), (2), and (3) that 7(-4) = Iz(`4, 1 - r ) [ .  This proves the 
second part of  Theorem 1.1. 

2 Logarithmic forms 

In this section we establish the fundamental connections between critical points 
of q~, and a complex of  logarithmic forms. For the rest of  this paper we fix a 
complex affine essential f-arrangement .A : {Ht,/ /2 . . . . .  Hn } where / / ,  = kerc~, 

n and let Q = Hi=l ~i be a defining polynomial for the arrangement A. Let 
L = L(.A) be the set of  all nonempty intersections of hyperplanes in `4. We 
consider L as a partially ordered set by reverse inclusion so it has minimal 
element V. Let /~ : L • L --, 7/ be the M6bius function of  L defined by 
lffX, X )  = 1, the recursion Y~,x<_z<_Y It(X,Z) = 0 for X < Y, and /~(X, Y) : 0 
otherwise. 

Definition 2.1 The characteristic polynomial o f  .At is Z(A, t) = ~X~L P(V,X)  
t &reX. 

We construct a central ( [  + 1 )-arrangement from .4 called the cone over 
.4. Let cV be an affine (d + 1)-space with coordinates u0, Ul , . . . ,  ul. Regard V 
as the affine hyperplane of  cV defined by u0 = 1. For X E L, let X C be the 
cone over X. We identify the ~-algebra of  polynomial functions on V with 
the polynomial algebra S = (E[Ul . . . . .  ur]. Let S c = ~[uo, ul . . . .  ,u/]  be the 
coordinate ring of  cV. For each g 6 S define the homogenization of  a as 

gh =u~Og.g(UdUo . . . . .  U#Uo) 

where deg 9 is the degree of  9. Clearly, 9 h E S C and it is homogeneous of 
degree deg 9. 

Definition 2.2 Let .4 = {H1 . . . . .  Hn} and Q = H,"=I ~ be a definin9 polynomial 
~or `4. The cone cA o f  A is defined as the central arranqement in cV defined 
by the polynomial QC = uoQh = uo [Ii"=l 7hi. 

Definition 2.3 Let f be a polynomial o f  degree r. I f  r > O, then we say that 
f is .A-transverse provided for  every X E L(c.A), the restriction o f  f h  tO X 
has no critical points outside the oriqin. I f  r = O, then we agree that every 
nonzero constant is .A-transverse. 

For the rest of  this paper we fix an .A-transverse polynomial f of  degree r > 0. 

Proposition 2.4 The followinq statements are equivalent for  a point v E M: 
(1) v is a critical point of@;,, so v E C(@~), 
(2) v is a critical point o f  log @;. = f + ~i~=1 2i log ~i, 

(3) o~,~(v) = d f ( v )  + ~i=1 2 / ~ ' ( v )  = 0. 

Proof Since @j,(v)=l=O, the assertions follow from the formula 
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- i  ~ ( ~ , )  ? ( log  ~ . )  _ q~ 
~uj ' ~uj 

Proposit ion 2.5 Let v E C(eb;.) and let H = H;, be the Hessian matrix of 
log cb;. with entries 

Hi, j O2 f " 2 --  ~ k akaak'j 

Ou, Ouj k=l ~ 

The following statements are equivalent for a point v E M." 
(1) v is a nondegenerate critical point o f  cb;~, 
(2) v is a nondegenerate critical point o f  log ~i ,  
(3) det H;~(v)+O. 

Proof Since O~;./~uj(v) = 0 for all j ,  the assertions follow from the formula 

~2(log q);.) _ ,:ib_l c32q~;, q~_2cgr~;~ cqq~;. [] 

OUi~Uj ;'. OUi~Uy a ~U t ~Uj 

A ffMinear map 0 : S --* S is a derivation if O(ab) = aO(b) + bO(a) for 
a,b E S. Let Der(S) be the S-module of derivations of S. It is a free S-module 
with basis {D, = c~/c)ui}.The module of  .A-derivations is an S-submodule of 
Der(S) defined by 

D(,A) = {0 E Der(S) IO(Q) E QS}. 

The Euler derivation is 0E = ~,~=1 uiD,. It lies in D(A,) i f  and only if  ,A is a 
central arrangement so all hyperplanes contain the origin. 

Let p be an integer. Let OP[V] denote the S-module of all global regular 
(=polynomial )  p-forms on V. Let g2p(v) denote the space of all global rational 
p-forms on V. 

Definition 2.6 The module 0 p = g2P(,A) o f  logarithmic p-forms with poles 
along ,At is defined as 

(2 p = QP(.A) = {co E ~2P(V) I Qco E ~2P[V] and Q(dco) E •P+I[V]}. 

Let ~P =O if  p < 0 or p > d. 

Clearly, co;, E ~2J(A). It is easy to see that ~2P(,A) is a finitely generated 
S-module containing (2P[V]. Also ~2~ = S and g2/(A) = (1/Q)g2/[V] ~- S. 
Recall the interior product form [11, 4.74] 

( , ) : D(.A) x K2P(,,4) ~ QP-I(A)  

which is an S-bilinear pairing. In particular, when p = 1, we have a pairing 

( , ) : D(,A) • f21(,,4) ~ S (6) 

satisfying (Y~i fiDi, E j  9jduj)  = E k  fkgk. For a complex manifold Z and a 

point z E Z, let TzZ denote the holomorphic tangent space of  Z at z. Define 
/ 
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the evaluation map rz : D ( A )  ~ TzM as follows. Given 0 E D(.A), write 0 = 
u,Di and let z~(0) = ~ ui(z)D,. Write 0z = zz(0) and D(A)z = r~(D(.A)). 

It follows from [11, 5.17] that i f  v E M, then D(Ah, = T~M. The pairing (6) 
induces the natural pairing 

( , ) r : T ~ M • 1 6 2  

of the holomorphic tangent space and the holomorphic cotangent space of  M 
at each point v E M. 

Proposition 2.7 Define the ideal Iz = (D(,A),~o;.) = {(0,6o;~) I 0 E D(,A)} o f  
S. Let V(I;~) denote the zero set o f  l;. Then C(q~;~) = V(I;~)MM. 

Proof Let v E M. Then (o;.(v) --- 0 if  and only if  (~,~o;.(v)) = 0 for all 
E T~,M = D(,A)~. Apply Proposition 2.4. D 

Definition 2.8 Let 2 E ~ .  Define maps ~ozA : (2P(,A) --+ (2P+I(,A) by sending 
~o E f2P(,A) to co~ A ~. We obtain the cochain complex 

(2)~ = (2~(.A) =- (O*,(o)A) : �9 �9 �9 ----+ OP(.A) (2P+I(A) -----+ . ' .  

Lemma 2.9 H/(O * ) ~- S/I; 

Proof There is an isomorphism 7 : D(A)  ~ f 2 / - t ( A )  defined by 

/ 

7(0) = Q - l ~ ( _ l ) , - 1 0 ( u i ) d u l  A . . .  A du, A . . .  A dug 

for 0 E D(A).  By abuse of  notation, let 7 also denote the isomorphism 7 : S ~- 
f2 / (A)  defined by 7(g) = Q-lgdu~ A ... A du/. Then the map 6 : 0  ~ (0,o9;~) 
makes the following diagram commutative: 

D(A)  ~ Y2/- I (A)  

s ~ f2qA). [] 

Let N be an S-module. For v E V, let N,~ denote the localization of  N at v. It is 
naturally an S~-module. Define ,the support o f  N by SuppN = {v E V I N~, 4=0}. 

Proposition 2.10 (1) SuppH/ (O~)  A M = C(q'z). 

(2) I fHe (~2~) i s  finite dimensional, then IC(r < d i m H / ( O ~ )  �9 

Proof (1) is a direct consequence of  Proposition 2.7 and Lemma 2.9 and (2) 
{bllows from (1). [] 

Proposition 2.11 The ideal 1; annihilates the S-modules HP(Q * ) f o r  all p. 
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Proof Let co E (2P with co:~ Aco = 0. Let 0 E D(,A). Then (0,co) E O p - l .  We 
have 

co~/~ (O, co) = - (O,  co:+ :~ co) + (0,co:,)co = (0,~o~3co. 

This shows that (0, co;~)co is a coboundary. [] 

3 The Euler characteristic 

In this section we find an algebraic set Yi C C n so that for all 2 E C n -- Y1 the 
cohomology groups HP(O~) are finite dimensional and the Euler characteristic 
)f(Q,~) equals j((,A, 1 - r). (We may actually choose Y1 = (3 unless r = 0.) 

Introduce a natural increasing filtration on OP(,A). Let fl E QP[V]. If  each 
coefficient of  fl is a polynomial of  degree at most q - p then we say that the 
total degree of  fl is < q and write tdegfl < q. Let co r QP(A). It follows from 
the definition that co can be written in the form co = fl/Q where fl E QP[V]. 
Let n = deg Q = I,,41. We may formally consider the degree of  1/Q as - n  
and say that the total degree tdegco < q if  tdegfl < q + n. For example, if 
d = 1, Q = u ( u -  1), and co = d u / u ( u -  1), then tdegco < q for q > - 1 .  

Definition 3.1 Total de#ree introduces an increasin9 filtration on OP(,A) for 
q E  71by 

QP<=q = ~ ' ~ P ( A ) < q  = {(.0 E O P ( A )  [ tdegco < q}. 

Define C-vector spaces for q E 7l by 

Grq[~ p = GrqOP(A) _-- (2p(A)<q/f2p(A)<q_ 1. 

Definition 3.2 Suppose 2 E C n. Let q E 77. The cochain complex f2~ has a 
subcomplex O*<=q = O*<=q(M) which is defined by 

* * co2A p C02A ~:'~p+l r CO)+A $,~:<q ---4 0- 
~"~<=q -~- ~-~<=q(A) : " ' "  ~<=q+(p--d)r  ~ <=q+(p--(+l)r ----+ " ' "  

This provides an increasin 9 filtration o f  the cochain complex 0". For each 
q E 71, define the complex 

~r~ = ~r+O* = a r+O*CA) = O ~ + l O k + _ , .  

Denote by Gr* the direct sum of  the complexes Grq = Grqf2* for all q. 

The following result was proved in [15, Theorem 7.1]: 

Theorem 3.3 Let f be an ,A-transverse polynomial o f  degree r > O. Then for 
every 2 r ~ 

(1) the cohomolooy 9roups H P ( Q~ ) and HP(Gr  *) are finite dimensiona; 
for all p, 

(2) ~((Q~) = ~ ( - 1 )  p dim HP((2*~) = ~-] ( -1)  p dim HP(Gr *) 
= z ( , A ,  1 - r ) .  E 
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The argument in [15] uses the fact that when r > 0, the induced differential 
in the complex Gr* is the highest degree homogeneous component of  d f  and 
hence it is independent of  2. Note also that in this case the number of  solutions 
of co;~ = 0 is finite for all 2. We need the analog of  Theorem 3.3 for r = 0. In 
this case d f  = 0 and there may exist values of  2 which give infinitely many 
solutions of  co~ -- 0. Thus the analysis is somewhat more delicate. See Remark 
3.11 and Example 4.7. In the rest of  this section we assume that r = 0. 

Let p be an integer. Define 

K p = {co E QP(c,A) ] duo A co = 0}. 

Then K p is an SC-module graded by total degree: K p = @qElKq p. Let q be an 

integer. Define a G-linear map ~ : K p+I ~-~ OPq by r = (-1)P(OE, co} [u0=l. 
Here 0E is the Euler derivation. By abuse of  notation, we let r also denote the 
induced G-linear map a : Kq p+j ~ Grqf2P. The next Proposition was proved in 
[15, Prop. 4.6]: 

Proposition 3.4 The following sequence 
tiplication by uo: 

O___, Kp+? uo _ ~ gq p+I 

Define 

& exact where the first map & mul- 

Grq~2 p ---+ O. [] 

n 2 d ~  d = ,=,E ' - C  c ~'(cA). 

It is easy to see that the maps r : Kq p -+ Kq p+I define complexes K~ = 

(G ,  co~A). 

Proposition 3.5 The homomorphisms rr in Proposition 3.4 define a cochain 
homomorphism o f  the complexes Kq ~ Grqf2* that decreases dimension by 
I. 

Proof It suffices to prove that cr commutes with the differentials. Let co E K p+I . 
Notice that co[,0=l = 0. Using this we have 

co;~ A <o~,co> In0=, = (co~ A {o~,co>) I,,o=, 

= ( - ( 0 ~ , d A c o > + ( 0 ~ , d ) c o )  L,0=, = ( - ( 0 ~ , d A c o > )  1,0~, [] 

Denote by K* the direct sum of  the complexes Kq for all q. It follows from 

Propositions 3.4 and 3.5 that tlae sequence of  complexes 0 ~ K* uo K* -G 

Gr* ---, 0 is exact. 

Proposition 3.6 The following induced cohomology sequence is exact: 

...__.+ Hp+I(K, )  uo ---+ H p+I(K*) --~ HP(Gr  *) ---* HP+Z(K * ) u~o Hp+2(K,)  --~.. .  [] 

Proposition 3.7 Write H p = HP(K*). Define Do(cA) = {0 C D(e.A) ] O(uo) = 
% Let 0 ~ D0(cA). ~hen (0,~o~) c Ann(HOfor every p. 
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Proof  Let ~o E K p and ~o~ A m = O. Then we have 

0 =  A = A 

Since 0 E D(cA) ,  q = (0,r E ~P-I(c ,A).  To prove the result it suffices to 
check that q E K p-1. Thus we need that duo A q = 0. We have 

duo/~ ( 0 , ~ )  = O ( u o ) ~  - (O, duo /~ oJ) = 0 

since O(uo) = 0 and r E K p. [] 
Let H0 = ker(uo). Then Ho is an d-dimensional hyperplane in cV. For any 

X E L, define X = Ho AXc.  Thus X is a vector subspace of  cV and d i m X  = 
d imX.  We can regard X as the parallel translate of  X through the origin. For 
any X E L, define the index set 

I ( X ) = { i [ X ~ = H f ,  1 _ < i _ < n } .  

For example, I (V )  = {1 . . . . .  n} and I(H1) = {i [ Hi is not parallel to H1}. 
Let nx = 1Jilt(x):~. For any nonzero vector a E cV, let ~ be the derivation 
of  S r in the direction of  a. 

Corollary 3.8 For any X ff L and nonzero vector a E X, we have (nx~a,r E 
AnnHP. 

Proof  By Proposition 3.7, it suffices to check that nx~a E Do(cA). This is 
straightforward. [] 

Proposition 3.9 Suppose .A is nonempty and central. Then C(qs;~) = 0 unless 
n ) 

Proof  Since the Euler derivation 0e E D(A) ,  we have 

n 

O+ ~)~i = (0~',~,~) E Ii.. 
i = l  

Thus V(I;~) = 0. Apply Proposition 2.7. KI 
Define L + = {X E L(A)  [ d i m X  > 0}. For each X E L +, define a 

hyperplane Fx in Cn by 

F x = { 2 E ~  n , ~ 2 i = 0 } .  
iEl(X) 

Lemma 3.10 Define Y~ = Ux~L+ Fx. Then }'1 is a closed algebraic proper 
subset o f  C n. Suppose that 2 E G n -- Y1. Define the ideal 

I ~ = {(0,w~) E S e I 0 E Do(cA)} 

o f  S c. The radical o f  the ideal generated by uo and I ~ contains the maximal 
ideal S~_ = (uo . . . . .  ur 
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Proof Denote the ideal of  S c generated by uo and I o by I.  Let V(I) be the 
set of  common zeros of  I.  By the Nullstellensatz, it suffices to show that V(1) 
is contained in {0}. Suppose v E V(I). Then v E Ho = ker(u0). Let X AH,,  
where the intersection is over {i I 1 <_ i <- n,v E HI}.  T h e n X  = H o N X  ~ 
is the maximum (smallest as a set) element of  L(cA) which contains v. We 
also note I (X)  = {i I X ~= 11[} = {i I v ~ 11[}. We will show X = 0. 
Define the arrangement B = {X A H/c [ i E I (X)} .  Suppose X + 0 .  Then B 
is a nonempty central arrangement in X. Note that v E M(/3). For simplicity 

h ~ 2i(dcqh/cc,h). Corollary 3.8, (nx~,co) E 1 for every write co = co~. = ~ i = t  By 
vector a E X. Define co x = ~i~l(X)2~(dehi/ehi). If  i f~ I(X) ,  then X C_ HI  

and thus @~,de/h) = 0. Thus we have 0 = (Ztx(?~,co)~ = (rcx~?~,cox) . Since 

~x(v)+O and co x has no pole at v, the restriction N of  the 1-form off to 
vanishes at v E M(B).  On the other hand, by Proposition 3.9, since /3 is 

nonempty and central, N never vanishes on M(B) unless ~iEI(X) 2i = 0. This 
is a contradiction. [] 

Remark 3.11 The set Y1 has the following description in terms of  the projec- 
tivized arrangement 7 ) o f  the cone c.A. 

Projectivize V " to get an ~-dimensional complex projective space P(VC). For 
any vector subspace X of V c, let P (X)  denote its projectivization. Note that 
P(X C) is the projective closure of  X. The cone c.A naturally determines a 
projective arrangement 7 ) by 

7 ) = {P(Ho), P(H~') . . . . .  P(Hs 

For simplicity, write Po = P(Ho) and Pz = P (H[ )  for 1 _< i _< n. Choose the 
complex number 2o = - ~ ' - i  )~i as the weight of  Po so that the expression 

" 2 d0r 2o du~ + ~ i ~h 
UO i=1 

defines a global rational 1-form on p(VC). Then for X E L + we have 

iEI(X) 1 <,_-<n e(~)C_pz 

Let L(7)) be set of  all nonempty intersections of  hyperplanes of  7). Note that 
P0 : P ( H 0 ) =  P(V c) - V is "the hyperplane at infinity." Define 

L(7))oo = {Z E L(7)) I Z C_ Po}. 

It is the subset of  L(7)) consisting of  the elements lying at infinity. Then 

L(7))oo = {P(X)  ] X E L+}. 
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Therefore 

X e L  + p(~)Cpt  ZEL(T')cc ZCP~ 

Theorem 3.12 Let  r = O. Suppose 2 E ~ - Y1. Then 
(1) the cohomology groups HP(O*~) and HP(Gr*) are finite dimensional 

f o r  all p, 
(2) X(O,~ ) = ~ ( -  1 )Pdim HP(f2~ ) = }-2~(- 1 )Pdim HP(Gr * ) = ~(A, 1 ). 

Proof. (1) We only need to show that HP(Gr *) is finite dimensional. By 
Proposition 3.6, it suffices to prove that the map induced by multiplication by 
uo : HP(K  *) ~ HP(K  *) has finite dimensional kernel and cokemel. Recall that 
H P ( K  *) is annihilated by (0, o)~) for all 0 E Do(cA)  by Proposition 3.7. Thus 
both the keme! and the cokemel are annihilated by the ideal generated by u0 
and I ~ Therefore (1) follows from Lemma 3.10. 

(2) Let Er p'q be the spectral sequence associated with the filtered complex 
{~'~*_<q}. Then E1 p'q = HP+q(Gr*_q) = 0 except for finitely many pairs ( p , q )  by 
(1). So we have 

) ~ ( -  1 )Pdim HP(Gr * ) = )-~(- 1 )P+qdim E p'q = ~ ( -  l)P+qdim E ;'q 
P P,q P,q 

= )-~(- 1 )P+qdim E ~  q = ~ ( -  1 )Pdim HP(~2 * ). 
P,q P 

Therefore it suffices to show the statement for Gr*. Let 

Poin (Gr*; x, y) = Y~Adim Grqf2 p)xqy p 
P,q 

and set y = -1 .  We get 

Poin (Gr* ;x, - 1 ) = )-~(dim (Grq f2 p ) xq ( -  1 )P 
P,q 

= ~ - ~ x q ~ ( - -  1 ) P d i m  HP(Grq ). 
q p 

(Gr ; x , - - ) .  The formula T(A; 1 , t ) =  Z(A, t )  Define T ( A ; x , t )  = Poin * t(l~-xX)--I 

was proved in [15, Theorem 5.3]. Thus we have 

X(A, 1) = T(A; 1, 1) = lim Poin(Gr*;x,-1)  
X---+ | 

= ~ ( -  1)Pdim g P ( a r  *). 
P 

4 The number of  critical points 

In this section we  prove Theorem 1.1. First we find an algebraic set Y C ~" 
so that for each ~. E IE n - Y, ~;~ has only finitely many critical points, all o~ 
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which are nondegenerate and the number of  critical points of  ~;, is independent 
of 2 E ~ " -  Y. W e  call  2 = (21 . . . . .  2n) E C n -  Y generic.  

Propos i t ion  4.1 Define Z = { (2 ,  v) E ~ "  • M I o~(v)  : 0 }  Then Z is an 
n-dimensional complex manifold 

Proof Note that Z is the zero set of  the ( equations 

Of ~ '2  ~j,i =0 ,  1 < j < ~. 
~u-Tj + ~ ' ~ ( ~ )  = = 

The Jacobian at (2, v) is an (n + ( )  x ( matrix which may be written as 
J = [A H]. Here A is an n x ( matrix with Ai,j = ej,i/~i(v) and H is the 
Hessian matrix o f  Definition 2.5. Since .A is essential, the matrix A has rank 
( for all (2, v). [] 

Propos i t ion  4.2 Define the projection p : Z ~ ~" by p(2, v) = 2. Then (2, v) 
is a critical point o f  p i f  and only i f  v is a degenerate critical point o f  ~;~. 

Proof The tangent space TC;~,~)Z of Z at (2, v) is naturally identified with the 
kernel of  the matrix map J = [A H] : (U n+r --~ ~'~. Thus (dp)c;,~) : TC;.,~,)Z 
T;C n is not surjective if  and only if  it is not injective if  and only if  det 
H;.(v) = o. [ ]  

Proposi t ion 4.3 There exists a closed algebraic proper subset 112 C ~ so 
that i f  2 E C ~ - II2, then the critical points o f  the function ~;~ in M are 
nondegenerate. 

Proof Let D C I17 ~ be the discriminant of  the projection p : Z ~ ~n. By 
Sard's theorem, D is nowhere dense in ~".  Since D is a constructible set, it is 
contained in a closed algebraic proper subset Y2 of  I12 n. The conclusion follows 
from Proposition 4.2. [] 

Theorem 4.4 There exists a closed algebraic proper subset Y o f  ~" such that 
.[br each 2 E ~n _ y, 4;, has only finitely many critical points, all o f  which 
are nondegenerate, and the number o f  critical points o f  ~;~ is independent o f  
)~ E ~" - Y. Denote this number by 7(,,4). 

Proof Case 1. Assume that the map p : Z ~ ~n is not dominant so the 
image of  p is not dense in tEn. Then the image p(Z)  is contained in a closed 
algebraic proper subset Y. Obviously, Y satisfies the condition. In this case 
~'(A) = o. 

Case 2. Assume that the map p : Z --~ ~n is dominant. Then there exists 
a closed algebraic proper subset which contains Y1 and Y2 such that for U = 
~" - Y the map plp-~(u) : p - l ( U )  -* U is a surjective covering map and the 
number of  points in a fiber is constant. In this case 7(~4) > 0. [] 
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This establishes the first part of  Theorem 1. I. It remains to prove the equal- 
ity 7(.A) = Iz(.A, 1 - r)[. The following lemma of de Rham type was proved 
by Saito [13]. 

Lemma 4.5 (de Rham-Saito) Let  A be a Noetherian ring. Let N be a free 
A-module o f  rank : with basis el . . . . .  e: so N = | and let APN be 

/ 
the p-th exterior power o f  N. Let  co E N. Write co = ~i=laiei. Let  I be the 
ideal generated by the coefficients ai for  1 <_ i < (. Consider the cochain 
complex 

... ~ A P - I N  ~ APN ~ Ap+IN ~ . . . .  

where the coboundary maps are given by d? ~-~ ~o A (9. Let H p denote the 
cohomology o f  this complex. Let  d = depthtA be the maximal length o f  an 
A-regular sequence in I. Then we have H p : 0 for  0 < p < d. [3 

Define an algebraic proper subset I13 of C" by 

Y3 = U ~ ; i = 0 } .  
XEL(A) I. xC//~ 

Proposition 4.6 I f  2 E ~ - ( Y U Y3 ), then 
(1) HP( f2~)=O for  0 < p < :, and 
(2) dim H:(f2~) =lC(~b:~)[. 

Proof  (1) It suffices to show that the localization HP(f2~)v = 0 for all v E V. 
Choose an arbitrary v E V and fix it. By translating the coordinates we may 
assume that v is the origin. 

Case 1. Suppose v ~ M(J[).  We may assume that ,4 = {H1 . . . . .  Hn} with 
v E Hi for i = 1 , . . . , k  and v f[ Hi for i = k + 1 , . . . ,n .  Then ~ l , . . . , cq  are 
homogeneous of degree one. Define 1t~ = ~k+a ...c~,. Then zt~(v)+0. Suppose 
q E f2P(.A)v with co;, A q = 0 E (2P+1(.A)~. Note that rcvOE E D(A) ,  where 
0e is the Euler derivation. Recall the ideal I;~ of S from Proposition 2.7. It 
annihilates the S-modules HP(f2*~)~ for all p. Note that (~zo0e, ~o~} E 1;. Write 
f as a sum of its homogeneous components, f = E~m=of(m). We have 

r k 
(OE, fO;,} ~ mf(m) -k ~'~i q- ~ ~i 

m=O i=1 i=k+l ~i 

where ~i is the degree one homogeneous part of  cti for k + 1 < i -< n. B) 
assumption Y~=1 ~'i=~0. The remaining terms lie in the maximal ideal of S~ 
Thus (0E,~o:,} is a unit in Sv. Since n , (V)+O,  (n~OE, co~) E I:~ is also a unit in 
S~. This shows that v ([ V(I:~) and that HP(s'2~)~ = 0 for all p. 

Case 2. Suppose v E M ( . A ) -  C(qh).  Since V(1) , )MM( ,A)=  C(~:~) b~ 
Proposition 2.7, we have v ~ V(I;). Since the ideal lz annihilates HP(t2~),~ b;r 
Proposition 2.11, we have HP(t2*~ )v = 0 for all p. 
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Case 3. Suppose v E C(q';,). The 1-form r vanishes at v. Note that ~i is 
a unit in Sv for 1 _< i _< n. Write 

{ 

i = l  

with Yi E Sv for 1 < i < I. Since gi(v)  = 0 for 1 < i < l, we can define a 
holomorphic map germ 

G = (gl . . . . .  g~) : ( ~ I , 0 )  ~ ( ~ f , 0 ) .  

The Jacobian matrix of  the map germ G is equal to the Hessian matrix H = H;. 
from Proposition 2.5. Since )~ E ~n _ y, v is a nondegenerate critical point 
of r Thus de tG does not vanish at v. This implies that the map germ G 
is locally biholomorphic so v is an isolated zero of  G with multiplicity one. 
Therefore g ~ , . . . , g e  form a regular sequence. We can apply Lemma 4.5 to 
A = Sv, N = 01[V]v,  ~o = r i = dui ,  and d = E to prove (1). 

(2) In the proof  of  (1) we showed that V(1;~) = C(~b;o). Let v E C(cb;.). 
We use the notation of  Case 3 above. Since v is a zero of  G = ( g l , . . . , 9 e )  
with multiplicity one, we have 

dim S,J(g~ . . . . .  g~)S,, = 1. 

Note that D ( A ) v  = S ~ ( O / O U l ) + . . .  + Sv(O/c~ue) because v E M. Thus (I;.)~, = 
(gl . . . . .  g~ )S~. Therefore 

d imHr( f2~)  = ~ d imH/(f2~)~ 
vEC(q~;~) 

= ~ dimS~/(l;~)~,= ~ d i m S ~ / ( y j  . . . .  9 / ) S ~ , = 1 C ( ~ ) 1 . E 3  
v E C ( ~  z ) vE C(cb;, ) 

To complete the proof  of  the second part of  Theorem 1.1, let 2 E ~ "  - 
(Y U Y3) so 7(A)  = I C(q~;,)I. Apply Proposition 4.6, Theorem 3.3, and Theorem 
3.12 to get 

7 (A)  -- IC(~;.)l = dimH~([2~) = Iz(~Y)l = IX(A, 1 - r)l.  

This completes the p roof  of  Theorem 1.1. 

Example 4.7 L e t  { = l , n  = 3, a n d  r = O. Cons ider  ~;, = ( u -  1);~lu;~2(u+ l )  )~3. 

ltere M = ~ -  { - 1 , 0 ,  1}. YI is defined by 21 + 22 + 23 = 0. Y1 contains the 
points where [C(~;,)I = ~ .  Y2 is defined by ( 2 3 - 2 1 ) 2 + 4 2 2 ( 2 1  + 2 2 + 2 3 )  = 0. 
Y2 contains the discriminant. At  these points Ic(~,)l = 1. We may choose Y 
,as the union of  Yj, Y2 and the three coordinate planes. All 2 E I ~  3 - -  Y are 
generic and r has Ix(M)I = 2 nondegenerate critical points in M. 

Acknowledgements. We thank J. Damon, M. Kita, A. Varchenko and S. Yuzvinsky for 
~'aluable suggestions. J. Damon has indicated that there may be an alternate proof of this 
'heorem using results in [3] and [4]. 



14 P. Orlik, H. Terao 

References 

1. Aomoto, K.: On vanishing of cohomology attached to certain many valued meromorphic 
functions. J. Math. Soc. Japan 27, 248-255 (1975) 

2. Aomoto, K., Kita, M.: Hypergeometric functions (in Japanese). Tokyo: Springer 1994 
3. Damon, J.: Higher multiplicities and almost free divisors and complete intersections 

(preprint) 
4. Damon, J., Mond, D.: .A-codimension and the vanishing topology of discriminants, In- 

vent. math. 106, 217-242 (1991) 
5. Esnault, H., Schechtman, V., Viehweg, E.: Cohomology of local systems of the com- 

plement of hyperplanes, Invent. math. 109, 557-561 (1992), Erratum, ibid. 112, 447 
(1993) 

6. Gelfand, I.M.: General theory of hypergeometric functions. Soviet Math. Dokl. 33, 573- 
577 (1986) 

7. Goresky, M., MacPherson, R.: Stratified Morse Theory. Berlin Heidelberg New York: 
Springer, 1988 

8. Kita, M.: On hypergeometric functions in several variables I. New integral representations 
of Euler type. Japan J. Math. 18, 25-74 (1992) 

9. Kita, M.: On hypergeometric functions in several variables 11. The Wronskian of the 
hypergeometric functions. J. Math. Soc. Japan 45, 645-669 (1993) 

10. Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes. 
Invent. math. 56, 167-189 (1980) 

11. Orlik, P., Terao, H.: Arrangements of Hyperplanes. Grundlehren der Math. Wiss. 300, 
Berlin Heidelberg New York: Springer, 1992 

12. Orlik, P., Terao, H.: Arrangements and Milnor fibers. Math. Ann. (to appear) 
13. Saito, K.: On a generalization of de Rham lemma. Ann. Inst. Fourier 28, 165-170 (1976) 
14. Schechtman, V.V., Varchenko. A.N.: Arrangements of hyperplanes and Lie algebra ho- 

mology. Invent. math. 106, 139-194 (1991) 
15. Terao, H., Yuzvinsky, S.: Logarithmic forms on affine arrangements Nagoya Math. J. 

(to appear) 
16. Varchenko, A.N.: The Euler beta-function, the Vandermonde determinant, Legendre's 

equation, and critical values of linear functions on a configuration of hyperplanes. I. 
Math. Ussr Izvestiya 35, 543-571 (1990) 1I. Math. Ussr lzvestiya 36, 155-167 (1991) 

17. Varchenko, A.N.: The functions H , < j ( t , -  tj) ~'/~ and the representation theory of Lie 
algebras and quantum groups. World Scientific Publishers (to appear) 

18. Varchenko, A.N.: Critical points of the product of powers of linear functions and families 
of  bases of singular vectors (preprint) 


