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The Shapley  Value in the Non  Dif ferent iable  Case  

By J. F. Mertens I 

Abstract. The Shapley value is shown to exist even when there are essential non differentiabilities 

on the diagonal. 

Introduction 

In their book "values of Non Atomic Games", Aumann and Shapley [1] define the 
Shapley value for non atomic games, and prove existence and uniqueness of it for a 
number of important spaces of games like pNA and bv'NA. They also show that this 
value obeys the so-called diagonal formula, expressing the value of each infinitesimal 
player as his marginal contribution to the coalition of all players preceding him in a 
random ordering of the players: say if the worth v(S) of coalition S is expressed as a 
function of finitely many non atomic probabilities/21 .../~n by 

v(S) =f(u~(s) ..... oN(s)) f ~  c 1, f(0) = 0 

then the diagonal formula takes the form 

Of 
[r = ~ lai(S ) fo (t, t .. . . .  t)dt 

3xi 

or in general, more symbolically 

1 
[f)(v)](ds) = f [ v ( t l  + ds)  - v ( t l ) l d t .  

o 
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This interpretation in terms of  a random order depends on the fact that, for a larger 

number of  players, player ds will in a random order occur at some time t uniformly 

distributed on [0, 1 ], and that the set of  players preceding him will be an almost per- 

fect sample of size t of  the whole population - so that its worth will be essentially 

v ( t l )  = f ( t p l ( I  ) . . . . .  tPn(I) ) .  
Those results have a large number of  important applications - they do however 

depend on the differentiability of  f along the diagonal. 

The diagonal formula was later extended, in "Values and Derivatives" [4] to a 

much wider class of games, including spaces like b v ' N A  where the function f cannot be 
called differentiable. 

The extended formula applies say to majority games (v(S)  = I(ta(S) ~> a) 0 < a < 1); 

or even to majority games in several different houses (v(S)  = I(1al (S ) >~ a l  , ta2(S) >1 a2 , 

.. . .  tan(S ) ~> a n ) -  0 < a i < 1) provided all quota's a i are different. (1(') denotes the 
indicator function.) 

But the case where the quotas would be the same - say all i _ would be excluded, 
at least when n ;> 2. 

Similarly, in economic applications, economies with strong complementarities, 

like "n-handed glove markets" (v(S)  = min ~i (S))  would remain excluded - again 
at least when n > 2. i=1 ..... n 

Moreover, no value operator at all was known to exist on any space of  games that 

would include all n-handed glove markets - except (Y. Tanmann [7]) when n is fixed 

and in addition all measures tai are mutually singular, i.e. the different types of  gloves 
have disjoint sets of  owners. 

S. Hart's "measure-based values" [3] are an illuminating approach to this problem. 

They highlight the fact - which could already be seen in Aumann and Shapley's 

analysis [ 1] of  the three-handed glove market - that in some sense different finite 

approximations to the game may yield quite different values, according as to one or 

another part of  the player set - say the owners of  one or another type of  glove - ap- 

proximates better the limiting game. For the approximations considered, the distribu- 

tion of  a random sample around the diagonal is essentially normal, with a covariance 

matrix that is quite sensitive to the relative degree of  approximation in different parts 
of  the player set. 

Surprisingly, as we will show, in the limit the symmetry axiom - i.e. to ask that 

the solution depends only on the data of  the game - is strong enough to force the 

distribution away from the normal distribution, and to impose an in some sense 
unique answer. 

Here we extend the diagonal formula o f  Mertens [4] to include in addition all 
situations of  this type. 

We get in this way a value - of  norm 1 - on a closed space that will include DIFF 

- and DIAG - ,  the dosed algebra generated by bv 'NA,  and also all games generated 
by a finite number of  algebraic and lattice operations from a finite number of  mea- 
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sures, and all markets functions of  finitely many measures. The space will also include 

the finite games and the "regular" games with countably many players. 
Intuitively, the diagonal formula is extended by taking the derivative not on the 

diagonal, but at some small perturbation of  it - say t l  + eX instead of t l  - and by 
averaging the result for some probability distribution over perturbations. We prove 
further a weak form of  uniqueness, in the sense that there is only one such probability 
distribution over perturbations that would yield a value. 

In parallel, another extension is made to previous approaches, mainly in order to 

make the value invariant e.g. under all automorphisms of the lattice of  coalitions mod. 

countable sets, instead of only all automorphisms of the player set. In particular, this 
allows us to deal with finitely additive measures just as well as countably additive ones. 

The basic definitions are given in Section 1. Section 2 defines the probability 

distribution over perturbations and shows its uniqueness. An explicit formula for the 

value of games of the type discussed above (n-handed glove markets,  majority in several 
different houses) is derived in Section 3. 

S e c t i o n  1 

We follow basically the terminology of  Aumann and Shapley [ 1]. (1, C) denotes the 

player set, C being a o-field of  subsets of  the set L A game is a real valued function v 
on C, with v(~b) = 0. Its variation norm II v IIBv is the supremum of  the variation of  v 

over all increasing chains (Ct C_ C 2 C_ ... C Cn) in C. (BV, II "IIBv) denotes the Banach 
algebra of  all games of  bounded variation. 

FA is the subspace of  B V  consisting of  additive set functions. 

We are going to define a value - more precisely, a projection r of  norm 1 of some 

closed subspace Q of B V  (FA C Q) onto FA, such that [~o(v)](I) = v(I )  and such that 

is symmetric in the sense that for any automorphism 0 of  the Boolean algebra C, if 
0 t is defined on B V b y  [ot(v)](S) = v(O(S)), then Ot(Q) = Q and ~o o 0 t = 0 t o ~o. 

In fact, ~o will be constructed as the composition of different positive linear sym- 
metric mappings of  norm 1 : ~0 = ~4 o ~o 3 o ~02 o ~01 . 

(1.1) ~01 maps any game into the corresponding constant sum game, [~01(v)](S ) = 
! [ v ( S ) -  v(S c) + v(/)]: obviously ~01 is a symmetric projection of norm 1 onto the 
2 
space Q1 of  all constant sum games w (w(S) + w(S  c) = w(1)), such that [~Ol(V)](I ) = 
v(I). 
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(1.2) ~2 is the extension operator: 
B(I, C) denotes the space of bounded measurable functions on (I, C), By(l, C) 

is the space of  "ideal sets",i .e.  (f[f  EB(I, C), 0 <.f  <<. 1 }. 
+ 

For functions V on BI(I, C) (with #(0) = 0), one defines as previously the varia- 

tion norm l[ # [l/By by considering all possible increasing chains in B~(I, C), and one 

defines #+(X)= sup E ( V ( f / + l ) -  #(f/)) +, and similarly for # - :  obviously 
o<fj-<<fi§ <• i 

II v IIn~v = "#+( / )  + v - • ,  v = v + - v - .  

Similar definitions are possible for the space Fe of  functions # (0(0) = 0) defined 
only on the e-neighborhood of the diagonal Ire = + " ( f E B I ( I ,  C) s u p ( f ) - i n f ( f ) ~ < e } ,  

- +  
and lead to 11V ]l~v,e and r e ,  #e by restricting all chains to remain in this neighbor- 
hood. By definition II v IIXBy,o ; inf II V II~v, e- 

e > 0  

Following [5], we define Fas the set of  triplets (lr, v, e), where zr is a finite mea- 
surable partiiton of I, v is a finite set of  non atomic elements of  FA and e > 0. F is 
ordered by a~< a '  iff 7r~ ~< rra, (zr~, is a refiniement of  rr~) and v a c_ vs '  and e~ ~> e~,. 

(F, ~<) is filtering increasing. 

Cn is the set of  increasing sequences 0 ~<fl ~ f 2  ~<... ~<f~ ~< i of measurable 
functions, and E n the set of  increasing sequences $1 C_ S 2 ... c_ Sn in C. 

For any a E F and f E  Cn, we define P~,f as the set of all probabilities with finite 
support on E n such that E [E(I(Si) ) - f i [  < e uniformly on I, and such that S E rr~, 

i 
T E ga,  S N T = r imply 

(0  (s 0 Si)i= 1 i s  independent of  (T (3 Si) in= 1 

O) v~(s n si) = v ~ -  I(s)) 

and 

('r) ~. z ( s ) = o ~ s n & = o .  

Intuitively P E pa,f  i f P  is the distribution of a random set (or sequence of sets) that is 
very similar to the ideal s e t f -  "very" being measured by a E ~c. 

Obviously a ~< a '  implies P~,f _D pa,,f, and I showed in [5] that always Pa,f =# 4~. 

For any game v, and any fEB~(I ,  C), let V(f )=  lira sup fv (S)dP(S) ,  
~ F  e~P~,i 

v( f )  = lim inf f v(S)dP(S). (The inclusion relations a <~ a' ~ Pc~,f D_ PcCy imply 
~eFPeP=,i 

that the limits exist, the corresponding sup's or inf's being monotonic in a.) Now v is 
in the domain De of~p~ iff V X E  Ire, V(X) = V(X), and then ~ ( v ) E F  e is defined by 

[~(v)l(x) = v(x) = v_(x). 
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Obviously D e is a closed (in the maximum pseudo-metric) vector subspace of  the 

space of  all games, and symmetric, and ~ is a symmetric linear operator from De to 

Further r transforms non negative games into non negative elements o f F  e, and 

monotonic games into monotonic elements of  Fe, and is of  norm 1 both in the maxi- 

mum norm and in the variation norm - this follows from the fact that V n, V f E  Cn, 

P ~ , I r  ~. 
Finally one ha s  obviously [r = v(I), and el < e2 ~D e  1 D-_De 2 and if 

e l  
vEDe2 then r (v) = ~0~2(v) on Vel. 

Observe that for games with finitely many players, r coincides with Owen's 

multilinear extension, and that for games in EXT (cfr "Values and Derivatives"), ~2 

coincides with the extension as defined in "Values and Derivatives". 

Observe also that ~ obviously maps constant sum games r E D  e into constant 

sum games w E Fe [i.e.: w(• + w(1 - • = w(1) V X E B~(I, C)], and that if v E De, 
then r  and r162 = r162 where ~I maps Fe into F e by the formula 

1 
[~01 (w)I(x) = 7 [w(• - w(1 - X) + w(1)]. 

(1.3) ~o 3 is essentially the derivative operator defined in "Values and Derivatives": 

First, if w E F e ,  define u~ on { f e B ( l ,  C): supf - in f f<<.e}  by rg(f) =w[max 

(0, min (1 ,f))] .  
Obviously w -+ ~ is symmetric, positive, linear, etc . . . .  ; and if w is constant sum, 

w(x) + ~9(1 - X) = ~(1).  

1 W(t + rX) - W(t - 7X) dt - whenever w ~ U F e and Let now [r215 = lim f 
r ~ o  o 2 r  e 

the limit exists for all X EB(I,  C) - .  

Some remarks are in order. 

First, if one deals only with games in BV, there would be no problem of  existence 
of  the integrals - otherwise, we make the explicit assumption that, for any X, ~( t  + ~'X) 

is a.e. defined and integrable for all sufficiently small T. 
1 

We also assume that, for all X EB(I,  C), lim f [w(r(u + X) +) + W(T(U + X)-)]du 
> o 

= 0 .  r ~ o  

This is for instance satisfied, by the dominated convergence theorem, as soon as w 

is bounded and lim w(r• = 0 V • E B~(1, C). 
> 

7---+ o 

Obviously the mapping Cs is positive, linear, symmetric. 

Let us show that 

[~3(w)l(a + b• = aw(1) + b[(~3(w))(• v a, b ER.  
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In particular we will have [~03(w)](1 ) = w(1), so that ~a(w) is linear on every plane 

containing the constants. 
It is obvious that [~3(w)][bx] = b[r V b, V X. So we only have to show 

that [~o3(w)](1 + X) = w(1) + [tp3(w)](X ). Thus 

1 #(t  + r + rx) - ~ ( t  - r - rx )  dt  
~o3(w)(1 + X) = lira f 

> o 2r  
I"--+0 

1 # ( t  + r )  - r  - r )  1 '~V(t + 7)(.) - -  1 7 g ( t  - -  TX) 
=lim f dt  + lim f dt  

> o 2z > o 2r  
7--~0 T--+O 

1 1 

+ lim ~rr f [#(t  + r + rx)  - # ( t  + rx)  - 9v(t + r) - # ( t  - r - rx) 
> 0 

~r -.+ 0 

+ g,(t - rX) + # ( t  - r)]dt. 

The first integral equals 

1 f 1+1- 
- -  f 2r  r 

f  (s)ds = f  (s)ds-  ,(s)ds . 
1 - - 7 "  

Since #(X) + ~(1 -X)  = #(1), this equals 

11 ] 1 v~(1) - - ~  2 f #(s)ds = w(1) 1 f w(s)ds = w ( 1 ) -  f w(ru)du ,  
- r  T 0 0 

and this last integral converges to zero by assumption. So the first integral converges 
to w(1). 

The second integral converges by definition to [~a(w)](X), so there remains to show 
that the last integral converges to zero. It is equal to, writing F+(t) for # ( t  + rX) - ~(t), 
F_( t )  for # ( t  - rx)  - #(t):  

1 
f ( F + ( t + r ) - F + ( t ) ) d t +  ( F _ ( t ) - F _ ( t - r ) ) d t  

2 r  o o 

1 [ l+ r  r 1 o ] 
= - -  f F+(s)ds - f F+(s)ds + f F_(s)ds  - f F_(s)ds  . 

2 r  1 0 1 - r  - r  
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Now the relation w ( x ) + ~ ( 1 - •  implies F + ( t ) = - F _ ( 1 - t ) ,  so that the 

last integral equals 

1 Y 
--7" 

1" "; 0 ] 

F _ ( s ) d s - f  F + ( s ) d s - f  F + ( s ) d s -  f F _ ( s ) d s  l 
0 0 - 7 "  

= - -  F _ ( s ) d s  + s)ds 
7" - -  

-1  r 
= - -  f [ F + ( s ) + F _ ( - s ) ] d s  

7" 0 

1 

= - f [F+(ru)  + F _ ( - r u ) l d u  
o 

1 

= - f [~( r (u  + X)) - w ( ~ )  + ~ ( - r ( u  + X)) - ~ ( - r u ) l d u  
o 

1 

= - f [W[T(U + • + W[T(U + •  -- W(Tu)ldu 
o 

(for r<~ [1 + II xll] - 1 )  

and this last integral tends to zero by assumption. 
Let us finally show that ~v3 is of  norm 1. Let X ~< X', and consider any increasing 

chain 

X <<- X x < X 2 <<- . . . <<- Xn <~ X ' . 

Denote by V(v) [x ,  X'] the supremum of  the variation of  v over all such finite chains. 

Let I Ix ' -XII  = 5, then V(v) [x ,  X'] <~ V(v )[x ,  X + 8], and there is no loss in restricting 

the chains to satisfy • x = X, Xn = • + 5 . 
If  v = Ca(w), and we take ~- > 0 sufficiently small such that all ~v(t +- 7-• exist, 

then 

1 

1 f [ W ( t + ~ X i + l ) _ ~ v ( t + r X i ) + W ( t _ r X i )  2 [ v ( X i + I ) - v ( x i ) [  = l i m ~  /~ o 
i 

- ~ ( t  - TX i+l ) ]d t  I 

1 1 
<~ lim ~-~ o f [ ~ [~(t  + TXi+l)  -- ~ ( t  + r•  [ + 2;i I~(t -- rXi) -- ~v(t -- r •  I ]dt, 
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or, lett ing I~  [ = we + + w~-, 

1 1 
~< lim ~rr f [ l ~ l ( t  + r ( x  + 5)) - I~  I(t + r x )  + I~  I(t - r •  - I~  I(t - r (x  + 8) ) ]dr  

0 

1 [ 1 +r5 1 r8 
= l i m - ~ r  [ f i ~ l ( t + r x ) d t +  f I ~ l ( t - r x ) d t - f  ICvl(t+rx)dt 

1 1 --~r,5 0 

o ] 
- f I ~ l ( t - r x ) d t  . 

--'t'5 

But,  for  all X, we have 0 ~ I@ I(X) < 1@ I(1) = w+(1)  + w~-(1) = II w II~Bv, ~. Thus  

IIw [llnv,edt- f (O)dt i I v ( x i + l l - v ( x i ) [ <  lira G l_f~ -r8 

= ~ IIw [IIBV, e ,  

and therefore ,  e being arbi t rary,  

V(~3(w))[X, X'] < llx' - X t l  I [wl i~v,o .  

In part icular  II ~3 (w) I Imv  = V(~a(w))  [0, 1 ] ~< It w [ l~v ,o  < II w [ lmv,  which shows tha t  
~3 is o f  n o r m  1. 

Since v = ~a (w)  satisfies v(a + bx)  = a v ( 1 )  + by(x), we have 

1 
( v ( t  + r• - v ( t -  rx))  = v(x), 

1 
so that  ~rr [~(t  + r x )  - V(t - r •  = v(•  for  [l rxl[ <~ t ~< I - l[ rx l l .  I f  now Jl v tinny < o% 

then b y  v(a + • =av(1) + v(x) we get V(v)[a - 5 , a + 6 ] = V(v)[0,  25 ], which equals by  
homogene i ty  25 V(v)[O, 1 ] = 25 [l vii. Therefore ,  for  all t we have 

11 4 [v(t + r •  v ( t -  r• < ti• itvlr. 



The Shapley Value in the Non Differentiable Case 9 

Also, Ilvll < oo implies that O(t + rX) is integrable (in t) - as a function of  bounded 

variation-, so that, by Lebesgue's bounded convergence theorem 

1 1 
f ~ [0(t  + rx)  - O(t - r x ) ld t  ~ v(x). 
0 

Thus, to show that v E Dom (r and that ~3(v) = v there only remains to show that 

v is bounded and lim v(rx)  = 0 V • E B~(1, C). This follows again immediately from 
> 

"/"--~ 0 

the boundedness of  the norm of  v and from the homogeneity. 

Thus if v = Ca(w), II v II < oo implies v E Dom (~0a) and r = v. Therefore we get 

then V(v)[• •  = V(~a(v))[X, • ~< I I • 2 1 5  II" Ilvll and this relation is anyway true if 
II v II = + oo. To summarize, we have shown that 

Proposition 1: 

- Ca is positive, linear, symmetric. 

- [ ~ a ( w ) ] ( 1 )  = w ( 1 ) .  

- lI~a(w) llmv ~< IlwlliBv, o. 

- v E Range (~a) implies 

v is linear on every plane containing the constants, 

V(v)[X,X']<~II• "llvll V X,x '  EB(I ,  C), 

further, if II v II ~< o~, then v E Dom Ca, and Ca(v) = v. 

For every e > 0, one gets a different domain for ~I o ~2 o r However, the composi- 

tion having norm 1, and the domains being increasing when e ~ 0, the composition can 

be extended to the closure of  the union of  those domains. Let us call ff this operator. 

(In Section 4, we will show how to define directly an operator with closed domain 

extending ff - the present approach seems however easier for getting the main idea 
through, being more closely related to the literature.) 

(1.4) Let us now already prove part of  our claims. 

Let Q = (v I r E  Dom if, ~ ( v ) E  FA ): obviously Q is a closed symmetric space, 
and ~ is a value on Q. 
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It is obvious that Q contains DIFF,  DIAG, and all games satisfying v(S) = v(S e) 

v S ~ C .  
Let us show that Q also contains bv'FA (and all "regular" games with countably 

many players). 
bv'FA is the closed space generated by all games of  the form v (S )= f (p (S ) ) ,  

where g @ FA 1+ and f i s  monotonic,  continuous at zero and at 1, with f (0 )  = 0, f (1 )  = 1. 
It is sufficient to show that v E  Q when v is a generator. After applying r to v, one 

may assume further that  f (x )  + f (1  - x )  = 1. 
Let us apply ~2 . Let g = ~ Pi where V i Pi >~ 0, i =/=] ~ P i r  gi, gi is two-valued 

i~>o 
for i ~> 1 and go is non atomic (i.e. ~ pi( / )  is maximal given the other conditions). 

i ~ I  

Assume without loss of  generality that gi(I) is monotonic in i ti- 1, and let ai = gi(/) ,  
--1 vi=ai  . p i w h e n e v e r a i r  =sup  { i [ a i r  

Denote by 7r n any partition o f / s u c h  that  

v i , ] e  {1 . . . . .  n ^ ha} ( i r  ~ .4 e~rn : g~(A) r 0,gi(A) =0. 

Let a n = (Trn, go, 2 - n )  �9 Then for any P E pO~n,g one has P-a.s. go (S)=  go(g),  for i >~ 1 
gi(S) E ( 0, gi(D } has expectation gi (g) up to 2 -n  and p I (S) ... gn (S) are indepen- 

dent. 
Let also Yg = go(g) + ~ aiXi, where the Xi's are independent random variables 

i ~ l  

with value in {0, 1 }, and with expectation ~'i(g). 
It  follows that,  when n goes to infinity, the distribution of g(S) (= ~ gi(S)) 

i~>o 

converges weakly to the distribution of  Yg. Further,  when n a <~ 0% then g(S) is con- 
centrated on the (finite) set of  atoms of  Yg. It  follows that E(v(S)) converges to V(g) = 
Ef(Yg)  - except maybe when n a = +oo and the distribution of Yg has some atoms at 

discontinuities of f .  
Recall that, for g arbitrary, one sets V(g) = V(max (0, min (1 ,g))). Obviously 

O(t + g) is integrable - being monotonic.  We now show that,  even when na = +0% 
V(t + g) is the extension of  v at t + g, except for at most  two values of  t. Indeed, the 

distribution of Yg is obviously non atomic except when lim vi(g) ^ (1 - vi(g) ) = O. 
i--~ oo 

Since we work only on some e-neighborhood of  the diagonal, we can assume sup (g) 
- i n f ( g )  < 1, so that the only possible exceptions occur w h e n  lim vi[(t + g)+] = 0 

and when Iim vi[(t +g)A 1] = 1. It  is sufficient to consider the first case, which is 

true for all t satisfying 0 ~< t ~< - lim sup vi(g ) = to. But if 0 ~< t < - lim sup vi(g ) = to, 

i (t + to)} is some measurable set, and, since pi(B) = 0 =~ Pi(g) then B = {a~ [g (~ )  ~< - 
_ 1 (t + to), one has vi(B) = 1 except at most finitely many times - otherwise one 
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would have to = - l i m  sup vi(g ) <<, �89 (t + to), thus t i> t o contrary to our assumption. 

Remark that on B one has (g + t) § = 0. 

Thus, as soon as our partition ~r~ refines B, we will have that, with probability 

one, B (~S=  r i.e. S C_BC; and that vi(BC)> 0 at most finitely many times - say 
no 

vi(BC) = 0 V i>~ no. Therefore p(S) will have the distribution o fpo [ (g  + t) + ] + 1~ aiX i 
i=1 

where IE(Xi) - vi[(g + t)+]l ~< 2 -n .  Since n o depends only on g and t, this implies 

p(S) is a distribution on a fixed, finite set of  atoms, that converges weakly to the 

distribution of  Y(g+t)+ - and thus the probability of  every atom converges: we still 

have that 0(g + t) is the extension of  v at (g + t) +. 

Thus the only possible troublesome value of  t is t = - lim sup vi(g ) (and dually 

1 - t = lim inf vi(g)). 
In particular, for any X, O(t + ~'X) is a.e. defined and integrable for all sufficiently 

small r. The second condition for v E Dom ~0 3 was satisfied as soon as v is bounded 
+ 

and V(rX) converges to zero for all X EBI(1, C); v being monotonic it is sufficient to 

show that lira V(r) = 0; this follows from 0(r) ~< (Cavf)(~-) because Cavf is  continuous 
> 

T--+0 

and vanishes at z e ro , f  having this property. 1 1 
Thus to show that v E Q  there only remains to show that ~rof [ V ( t + r X ) -  

O(t - r• converges to some element of FA. To facilitate this, we begin by the lem- 

ma. 

Lemma: If  

- O(t + 7X) is, for every X, a.e. defined and integrable for all sufficiently small r 

1 
f (v[r(t  + X) + ] + v[r(t + X)-  ])dt converges to zero with f ('> O) for all X 
o 

1 1 
-- ~rr o f [0(t + ~ )  - ~(t - rg)ldt  converges for all X E B~(I, C) 

then v E Dom r - i.e. the last expression converges for all X EB(1, C). 

Proof.' Our assumption immediately implies the convergence when X ~< 0, and it is suf- 

ficient to prove the convergence for any ff satisfying ff ~< 1. Write thus ff = 1 + X, 

with X ~< 0; the computation we did when proving that ~0a(w ) is linear on every plane 
containing the constants proved also that ~3 (w)(~) exists - and this finishes the proof. 

[] 
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1 1 
= f [ ~ ( t + r •  By virtue of this lemma, it is sufficient to show that r • ~rr o 

~(t - rx)]dt converges to some element o f F ^  for all • E B~(I, C), where ~(g) = Ef(Yr 
n a 

with g = 0 v (g ^ 1), and Yg =aovo(g) + ~ aiXi, where the random variables Xi are 
i = 1  

independent, with values in (0, 1 } and with expectation vi(g ). 

Let now fL(x) = ~ (f(Y+) --f(Y)) wherefO'+) = lira f ( y  + e). Let alsofR(x) = 
y < x  > 

e .-~O 

f (x)  --fL(x): then both fL and fR are increasing,fL is left continuous andfR is right 

continuous, so that 

1 1 

f (x )  = f I(x >~q)dfR(q) + f I(x > q)dfLq). 
0 o 

Since q~r, X) depends linearly on f, and since 0 ~< r X) ~< r 1) ~< 1 using the mono- 
tonicity of v and the relation 0 ~< X ~ 1, we can apply Fubini's theorem to get 

1 1 

r • = y %,s(~, • + Y %,L(r, • 
0 0 

when r and Cq, L denote the function r corresponding to the case where f (x)  = 
I(x >~ q) and f(x)  = I(x > q) respectively. 

But Cq,R (r, • and Cq, L(r, • being uniformly bounded, the bounded convergence 

theorem implies that it is sufficient to prove that ~q,R (r, • and Ca, L (r, X) converge to 

some element of FA. 
Thus we have reduced the problem to the case where f (x)  = I(q <" x), where <- 

stands for either ~< or <. 
Remark that for i t> 1, vi(g ) = 0 v (vi(g) ^ 1), and that v~(t + rX) = t + rvi(• 

Let for short pi=vi(X) (thus O ~ p i ~  1), and let Zi( i  = 1 ...na) be independent 
random variables, uniformly distributed over [0, 1 ]. Then 

1 1 [ na 
O(r, X) = ~-~r E fo I [aoVo((t -- "r'X) +) + i=1 ~ aiI(Zi <~ t - rpi) <: q 

1 
n a 

<" aoVo((t + rX) ^ 1) + ~2 aiI(Zi <- t + rpi) dt 
i = I  

where <: stands for < or ~< when <" is ~< or < respectively. Let also c}(r, X) be the 
same expression, with Vo[(t-  rX) + ] replaced by t -  rPo and Vo[(t + rX) ^ 1 ] replaced 
by t + rp o. Then obviously ~ ~> ~b, and the integrands can differ only when t ~< r or 

t >! 1 - r, so that 
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lo ; [  " l (o(z,X)-r I q <" a o ( t + r P o ) +  ~ aiI(Zi<<.t+rpi) dt  
i = 1  

+ a similar integral between 1 - r and ~. 

Obviously, the fight hand member goes to zero with r .  Thus if  we set 

1 1 

(p)  = ~ E o f I [ao(t  - P o )  + i>~ x ~ aiI(Zi <" t - Pi) < :  q <" ao(t + Po) 

+ ~ aiI(Z i >1 t + pi)]dt 
i>~1 

1 
we have to prove that r is differentiable at zero, i.e. that lim - ~ (zp) exists and is 

> T 
7---+ 0 

linear in p - i.e. a continuous linear functional on l~ .  We will even show that  the limit 

is of  the form 22 7iPi, with 7i ~> 0, ~ 7i = 1. 

We will show that  this is the case for all sequences Pi having only finitely many 

non zero terms. 

The result will follow from this, because, for an arbitrary sequencepi  (0 ~< Pi <~ 1), 

one has then by monotonic i ty  

1 k 

lim inf  - ~ ( r p ) / >  E 7iPi, 
> T i = 0  

"r--* 0 

thus 

lim inf - ~ ( rp )  ~> 2; 7iPi, 
> "r 0 

�9 r---~ 0 

and 

o o  

lim inf - i f(r(1 - p ) ) / >  1 - 2; 7iPi 
> T 0 

r---~ 0 

1 
and since - [4 (rp) + ~(z(1 - p ) ) ]  converges to 1 (this is the computat ion we did when 

T 

proving that  any w in the range of  Ca is linear on every plane containing the constants), 
1 

it follows that  lim - ~ ( rp )  = ~ 7iPi. 
> T 0 

T---~ O 

Thus we have to show that r  is differentiable at zero as a function of  the 

variables Po .-. Pk,  the other pi's being held fixed at zero. 
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Further if then 7 /=  | 7 - - l p = o ,  we have to show that N 2/i = 1 - (b ecau se  ob- 
\opi ] i >~o 

viously 7i ) 0 by monotonicity of 4). 
Writing the expectation in the formula of ~(p) as the expectation of the condi- 

tional expectation given Z1 ... Zk yields 

1 1 
d/(p) = -  ~ f [HtY(p)-HtY(-p)ldt, 

2 y~ (o, 1 }to o 

where 

HtY(p) II ([ + ( 2 y / -  1 ) ( t - p i -  )]+ ^ 1)F q + aopo - i  
i=1 

with 

FXt (x) = P(ao t + ~ aiI(Zi <~ t) <: x). 
i > k  

Let 

/?tY(p)= 2; [�89 + ( 2 y i -  1 ) ( t - p i - - ~ ) l F t  q +aoPo-  y~ aiyi , 
i=1 i=1 

and 

1 1 
~(p) = -  ~ f [trItY(p)-IltY(-P)ldt. 

2 y~{o,1} k o 

One shows, just as before for 4; - ~, that ~ - ~ is differentiable at zero with zero dif- 
ferentiai (the difference of the integrands is anyway small, and different from zero 
only a small part of the domain). 

Thus to show the differentiability at zero, it is sufficient to show the differen- 
tiability at zero of the expression 
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i 
since ~(p) is a linear combination of expressions of this type. 

Since ( I~ P~i) is ~176 differentiable' this am~ in turn t~ the differen" i=1 

1 

tiability at zero of f tnFkt(x +- aoPo)dt .... 
o 

If this differentiability is proved, then using k = 1, 

1 1 l 
~q=lim - - ~ ( p l )  = li, m - -  f 2pl[F:t (q)-Fl t  ( q - a l ) ] d t  

pl~O Pl Pl o 2 p :  o 

1 
= y [Ftt ( q ) - F ] ( q  - a l ) l d t  

o 

1 
= E l  I[aot + 

o i>1  
aiI(Z i <. t) <: q <. aot +a x + ~ aiI(Zi <~ t)]dt 

i > l  

or, since Z l is, like t, uniformly distributed on [0, 1] and independent of the other 
Zi's, we get 

71 =P[aoZ1 + ~ af l (Zt<Z1)<:q<'aoZ1 + ~ afl(Zi<~Zl)]. 
i>~ l i ~  l 

Let, for k >~ 1 ,Jk(6o) denote the random interval (of length ak) 

{x taoZk + ~ afl(Zi <Zk )  <: x % aoZ k + ~ aiI(Z i <~Ztc )} 
i ~ l  i ~ 1  

(obviously the Jk(~)  are disjoint if we restrict ourselves to the set of co's (with proba- 
bility one) where i=/=]~Zt(co) 4: Zj(co), 0 < Zi(r < 1). 

Let also J0(~)  = [0, 1] \ IA Jk(w). In those notations 
k~>l 

Ti = = P(q E Ji(c~ for all i/> 1. 
p=O 
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Similarly, using k = 0, we get, using W(t) = aot + E ail(Z i ~ t) ,  
i>~l 

1 1 1 
Vo = lim - -  ~(Po)  = lim - -  f [F~ + a o P o ) - F ~  

p o l O  Po p o l O  2po o 

1 1 
= lim , f P [ q - a o P o < "  I f ( t )<:q+aoPo]d t .  

p o l O  2po o 

Thus, if ao = 0, then 3'o = 0, and the differentiability condit ion to check is obvious, so 

there only remains to show that  E 7i =P(q ELI Ji(co)) = 1. When there are only 
i~>l i 

finitely many non zero ai 's,  then q E t.J Ji(co) = {x I 0 < :  x <" 1 } for any ~o, while if 
i 

there are countably many non zero ai's, a recent result of  Berbee [2] proves that 

P(q E U Ji(6o)) = 1 [even that P(q E U Ji(~o)) = 1]. 
i i 

There remains therefore to consider the case a o > 0. Since 1 - E 7i =P(q EJo(~O)), 

the property E 7i = 1 amounts to i/> 1 

1 1 
P(q E Jo(w))  = a o lim - -  f P[q - a o p  o <. W(t) <:  q + aoPo]dt. 

p o l O  2aoPo o 

1 
On the other hand, the differentiability at zero of  f tnFet(x + aoPo)dt, when Fkt(x) 

o 
=P(ao t + E aiI(Z i <<. t) < :  x)  can be rewritten, by letting a[ = ak+ i for i /> 1, a~ = ao,  

i > k  

o = E ai'(a o > 0 ~- a > 0), a['= a[/a, F t (y  ) = Fkt(oy)( = P(a~t + E a;'I(Z i <~ t) <:  y) ,  

as the differentiability at zero of f t F t +aoPo d t - o r ,  letting z =x/o,  and 
o 1 

writing ai for a ; ' - s o  F t becomes F t  ~ - as the differentiability of  a o f tnF~ = 
~n(Z) as a function ofz .  o 

To show also that E 7i = 1, we have to show further that,  when n = 0, the deriva- 

tive is P(z E Jo(w)) .  We have 

1 1 
~[~On(Z + 6)-~On(Z)] = E ~ -  f tnI[z <" W( t )<:z  + 5]dt. 

o 

5 
Let T z = inf { t ~> O [ l ^ z <" W(t) } : i f z < . W ( t ) < : z + a ,  wehave  T z <~ t <~ T z + - ,  

go 

thus T n ~ < t  n~<T~ + 1+ - 1  therefore,  if  X I [ z < "  I f ( t ) < : z  

+ 6 ]dt, a~ ] 
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ao ~ +~_o (1+ ~__]n_l] + 6  X<-~ ftnI(z<'W(t)<:z+6)dt<'X [ ao/ [(Tz ~o) Tz ] 

( n 
= X +  1+ - 1  

1 
N o w X =  Tz n f I]o(r +6u)du. 

0 

If z E I.J Ji(co), then lim I U ji(~o)(x ) = 1, except maybe if  z is a boundary point  
i x-*z i 

of some Ji(6o) - but  this event has probabil i ty zero, even conditionally to all Zj(j -~ i) 
(using a o > 0). 

1 z+~ ~ 1 z+8 
If  z EJo(cO), then ~ f IJ~176 = 1 - i = 1  ~ ~ / IJi(~~ and it is suf- 

ficient to show that  the conditional expectat ion (given z EJo(cO ) and given Tz) of  the 

sum converges to zero. Now, if  z EJo(a~), x >z, then Iji(w)(x ) <~I(Tzv(x_ai ) <~Z i 

<~Tx) <~l(Tzv(x_ai) <~Zi <~ Tzv(x_ai) + (x - z )  ^ ai ),and 

1 
p(x ~ J~(~)l Tz, z ~ Jo(~))  < - -  - -  

1 -Tz ao 

Thus 

1 
p(x ~ U :i(co) Iz ~Jo(o~), 7"z) < E [(x - z )  ^ai].  

i ao(1 - Tz) i>~ 1 

Also, for ao > 0, 1 - Tz > 0 with probabil i ty one if  z < 1, and since Z ai < 0% it fol- 

lows that the right hand member goes to zero when x $ z < 1. Thus the left hand 

member being bounded,  we get, if z < 1 - and obviously also if  z ~> 1 - lim P(x E 
> 

X ---~Z 

U Ji(~o) lz q~ U Ji(~)) = 0; and therefore by symmetry lim e[x E U Ji(o~) [z qL 
i i x ~ z  i 
lJ Ji(6o)] = 0 and thus I U ji(w)(x) is continuous in probabil i ty.  In particular E 7i(x) 
i i i ~ > l  

n 
is a continuous function of  x, and also TzlJo(o~)(x) converges in probabil i ty to 

1 
TnzlJo(to)(z)I (0 <<.x <<. 1) so that by the bounded convergence theorem ~ [~n(Z + 6) 
- ~On(Z)] converges to I(z + 6 E [0, 1 ]) n E[Tzlyo<to)(z)]. 
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Since the equation tp'(z) = P(z @ Jo(w))  is needed only for 0 < z < 1, we have proved 
1 

our statement. (Remark that the differentiability condition of f tnF~(x +-aoPo)dt 

at zero was only one-sided since aop o > 0.) o 

Remark 1. A closer look at the above argument shows that in fact we proved more: 
1 1 

if r  f [~(t + X ) -  ~ ( t - x ) ] d t ,  then qS(X) is Fr6chet-differentiable at zero. In- 

deed, the proof of  the lemma shows that it is sufficient to consider x EBb(I ,  C) - 
1 

provided f (v[r(u + X) +] + v[r(u + X)-])du converges to zero uniformly over the unit 
0 

ball, which is obvious whenever v is norm continuous at zero. Similarly the bounded 

convergence theorem still permits to reduce oneself to the case where f ( x )  = I(q % x).  

Also the approximation of  q~ by c} and later of  ~ by t} are obviously uniform in 

1 
p ~ [0, 110~. Since, as we just mentioned, the convergence of  - [ff(rp) + ~(r(1 - p ) ) ]  

T 

to 1 is uniform in p for v norm continuous at zero, it will be sufficient to consider 

vectors p such that Pi = 0 V i > k : indeed, the same conclusion will then hold when 

Pi = 1 V i > k, so that if k is chosen such that N 7i < e, then r O such that, V r : I r I 
i> k I 

~< to,  V p in one of  these two classes ~ ( r p ) -  ]~ "YiPi ~ e, the result will follow 

(from the monotonicity of ~) for arbitrary p E [0, 1 ]"~ by sandwiching it between the 

two approximations P i, i0i, where p i = Pi = Pi for i ~< k and for i > k Pi = 0, Pi = 1. As 
shown in the proof, the differentiability of  t} over p's having only k non zero coordi- 

nates amounts to the differentiability of  a product of functions of  1 variable, which is 

true as soon as each factor in the product is differentiable, what we proved. 

Also we did not need in fact the symmetry o f~ .  We thus obtain finally: 

Proposition 2. Let 

1 

H(X) = f O(t + x)dt .  
0 

Then H is Fr6chet differentiable at zero, with as derivative the value of  v: 

1 oo 

y ~ 7i(x)vi(')df(x) 
0 0 

where in the integration a discontinuity to the right (left) of  x is to be interpreted as 
the corresponding mass immediately to the fight (left) ofx.  
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The ~/i(x) are def ined in the fol lowing way.  Assume the game v is o f  the fo rm v(S)= 

f(/A(S)),  where/~ = ~ aivi, ai >/O, v i >t O, v i (1) = 1, ~ a i = 1, v 0 non  a tomic  and i />  1 =* v i 
o i 

two valued,  i ~ f ~ vi ~ vj. Define random variables Z i independen t  and un i formly  

dis tr ibuted over [0, 1 ], then expand each poin t  Z i to some half-open interval o f  length ai, 

then shrink the remaining part  o f  [0, 1 ] (o f  length 1) to length a o (propor t ionate ly) .  

Denote  by Ji the random interval  thus obta ined corresponding to Z i. Then 7 i (x)  = 

P ( x  E J i )  for i>~ 1, and 3'o(X) = P ( U  ~ has densi ty 0 a t x )  2 
i 

E ( xx+  )] i.e. T o ( x ) = P  l i m s u p  f ~  f I U ~ ( s ) d s = O  
x - 6  i 

6 ~ 0  

When there are infini tely many  players,  we also showed that  the 7 i ( x )  (i = 0, 1 . . . .  ) are 

cont inuous  on [0, 1], wi th  3'0(0) = 7o(1)  = 1 i f  ao > 0 - in part icular ,  i f  a o > O, the 

series 2; 7i is un i formly  convergent  ( to 1) on [0, 1 ], and anyway 2; 7 i (x)  = 1 V x : 0 
< x < l .  i 

In part icular ,  when there are infini tely many  players,  the value o f  f ( x )  at a j u m p  

and the exac t  def ini t ion o f  the f . . .  dr (x)  play no role. 

It  is possible to draw still some sharper conclusions f rom the foregoing:  let  i~ n E F A  1 

converge (in norm)  to/Ao E F A  1. Let  v i (i>~ 1) enumera te  all a toms of  all/An and let 

u~ be the non a tomic  part  of /a  n , with/An = a o p  O n  n + ~ anpi.  One sees immedia te ly  that  
1 

n n o o n *o o ~  
aou o is no rm convergent  to aouo,  and that  (a i )i=o i s / l - c o n v e r g e n t  to (ai) i=o.  Assume 

now/Ao has infini tely many  players. Since this implies that  when  realizing the random 

2 The equality 3,O(X) = P(IJ ~ has density 0 at x) has to be proved only when a O > 0: we claim 
i 

that a.s. on x ~ [.J a~, this set has density zero at x. It is indeed sufficient to prove this conditionally 
i 

to the set of atoms and the fraction of a O coming after x (or before) - which reduces (by renor- 

malization) the problem to the case x = O. Let X t = - ~ ^ t I(Z i <. t) : X t is an upper bound 
t i>~l\ao 

for the density of U ~ up to time t, so it is sufficient to show that X t ~ 0 a.s. But, if Ft denotes the 
i 

a-field generated by all variables t v Z  i, then, when reversing the usual order on the time interval 
[0, l l ,  Xt  becomes a positive supermartingale w.r.t. Ft, whose expectation goes to zero as we have 
seen: thus X t goes to zero a.s. We would like to stress that this equality cannot be dispensed with in 
a random order approach: indeed, if f (x)  = l(x > q), and if some player of the ocean pivots, since 
he is negligible, it is in fact the infinitesimal coalition ds that immediately follows him that pivots 

so to impute this event to the credit of the ocean, one needs that this infinitesimal coalition 
consists essentially only of oceanic players - i.e. the ocean must have density 1 to the right of q. 
The same applies to the left o fq  if f(x) = l(x >>- q). 
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ordering with the same set of  random variables Z i, we will have a.s. j n  ~ j o ,  and since 

7i(q) =P(q EJi)=P(q EJi), it will follow that ~' i~> 1, 7 n ( q n ) ~ 7 ~  whenever 
qn-*qo ( 0 < q o  < 1). But 7n(q)<<.Prob(q-a n <~ Wn(Zi- ) <<.q)<<.an/ag, so that 

1 
7n(q)--.< ~; a n i f a g  > 0. Thus the/ l -convergence o f a  n t o a  ~ implies that, if 

a ~ > 0 ,  lim sup sup ~ 7n (q )=  0 i.e. the convergence of the series ~ 7n(q) is 
k "~*~ n q i>~k i>~ 1 

uniform in n and q. Since 7n(qn) ~ 7~ it follows that Y, 7n(qn) ~ ~, 7~ 
i~>l  i ) l  

and the relation 2~ 7i = 1 yields therefore 7~(qn) ~ 7 ~  �9 If  a~ = 0, then 7 0 = 0 and 
i~>o 

therefore lim inf 7g(qn) >1 7~ so that the relations 7 n i> 0, ~ 7 n = 1 V n and 
n i = 0  

lim inf 7 n i> 7 ~ V i imply again 7g(qn) ~ 7~ - Hence the l 1 -convergence of 7n(qn) 

to 7~ 

Let gn . ]0, 1[ ->FA : gn(q) = 7~(q)v~ + ~ 7~(q)v i. Since we have shown that 
i = l  

v~ is norm convergent to v ~ (or 7 0 --O) and that the 7~(qn) are /1-convergent to 
7~ it follows that the gn(qn) converge in norm to g~ 

Therefore, i f f  n converges to fo  at every point of  continuity o f f  ~ and has uni- 
formly bounded variation which is Uniformly small in the neighborhood of 0 and 1, 

1 1 

f gn(q)dfn(q) will converge to f g~176 we have shown that: 
o o 

Proposition 3: At every point where p has infinitely many players, value (f(~))  - as 
a mapping from by'([0,  1]) x FA x to FA - is jointly continuous in l a n d  p, when FA is 

endowed with the norm topology and by'([0,  1 ]) is endowed with the ("Arens-")topolo- 

gy of uniform convergence on uniformly bounded equicontinuous subsets of  C(]0, 1 D- 

Remark 2 (Regular games): Let v be a monotonic simple game with countably many 
players. Coalitions being points of  {0, 1) ~ v is a (0, 1 } valued monotonic function 
on (0,  1 }**. Assume first v to be measurable for any product measure on (0, 1 )** (in 

order for the extension to be defined - this assumption has to be made explicitly: in- 
deed, using the continuum hypothesis, it is possible to construct such v's such that 
the lower integral would be zero for the product of any sequences Pi with lim sup 
Pi < 1 and the upper integral would be 1 whenever lim in fp i  ) .  0: there is little hope 
to be able to define a meaningful value for such things). We will also denote by v its 
extension to [0, 1 ]*~ defined by letting v(p 1, P2, P3 . . . .  ) be the expectation of v under 
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the corresponding product measure. We assume v to be continuous in the product 

topology in a uniform neighborhood of  the diagonal - to exclude such obviously non 

regular games as: v (S )  = 1 iff lira inf [proport ion of  players belonging to S among the 

1 Fl "+ ~176 
first n players] ~> ~. Such a game is called regular (or non-singular, or proper) (cfr 

Shapiro and Shapley [6], at least for weighted majority games) if Z lri = 1, where 

zr i = P(i  pivots). 1 1 
Remark now that zr~ = f P(i  pivots arriving at t ) d t  = f [v(t ,  t, t . . . .  t, 1, t, t . . . )  

o 

- v(t ,  t, t . . . .  t, O, t, t . . . ) ] d t  = f (t, t, t . . . .  ) d t  this last formula because v is 
o 

obviously multilinear in any finite number of pi's). The same multilinearity yields 

therefore that,  for any sequence (8i) with finitely many non zero terms, 

i v ( t"  1 + r ~ ) - v ( t "  1) 1 
lim f d t  J lira 
r -+ O 0 "f 0 r --~ O 

1 

= f E 8  i (t, t . . . .  ) d t =  ~Sizr i .  
0 i 

v ( t "  1 + r S ) - v ( t - 1 )  
dt  

Therefore for any non negative sequence 8 i (0 < 8 i ~< 1) if 8 n denotes the same 

sequence with all but the first n terms set to zero we get 

1 V(t" 1 + r S ) -  v( t .  1) 
lim inf f - d t  >1 lim lira 

ae---~ 0 0 T n - - ~  ",r ---~ 0 

v ( t .  1 + r8 n ) - v ( t "  1) 
d t  

= lira ~ 8 ~ n  i = E S i ~ i  
n ---~ ~176 i i 

By an argument we already made before this implies, when applied also to the se- 

quence 1 - ~ i ,  that if ~ 7r i = 1, then 

1 v ( t "  1 + r S ) - v ( t .  1) 
lim f d t =  ~SiTri,  i.e. v E Q  

r - + O  0 7" 

with ~(v)  = (Tri) 

Thus, if v is regular ( i s .  N 7ri= 1), then v E Q. Conservely, if v C  Q, then ~(v) is the 
limit of  a sequence of  continuous functions on [ -1 ,  1 ]**, so is continuous at at least 
one point of  this space, which implies ~(v)  E l 1 (this argument is essentially similar to 
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an argument already made in "Values and Derivatives"): ~(v) is some summable 

sequence ffi- Since by our above argument one has ffi = rri, and since efficiency yields 

2; ffi = 1 we get 2; gi = l : a monotonic,  simple game with countably many players is in 

Q if and only if regular. 

R e m a r k  3 (Polynomial  games): A polynomial on a vector space E can be viewed as a 

continuous multilinear functional F ( x l , . . . ,  Xn) on E n, evaluated along the diagonal 

X 1 = . . . = X  n = X .  

Let us thus therefore d e f i n e P O L  to be the set of  all games v E B V f o r  which there 

exists a continuous multilinear function Fv : [B(I, C)] n ~R_ such that v(S)  = F v ( l s , I  s ,  

. . . .  &)vsec. 
F~ can always be chosen to be symmetric, and is then uniquely determined by the 

game v. Indeed consider any finite measurable partition rr, and the corresponding 

partition lr n on I n . Obviously F v induces a unique measure/a on rr n. Now the func- 

tions I s x I s x . . .  x I s - with S rr-measurable - form a set of  continuous functions on 

rr n, stable under multiplication. And they separate any two points which are not ob- 

tained from each other by permutation of  coordinates. Thus the linear space spanned 
by these functions is the game of  all symmetric functions on rr n. Thus the value o f ~  

on any symmetric functions on rr n is determined by v. If  F v is symmetric, this deter- 

mines the value Fv(X  1 , X2 . . . .  , Xn) where the %/are rr-measurable step functions. Thus 

F v is uniquely determined by v on all step functions, and hence by continuity on 

[8(x, c)]". 
Since F v induces a measure/l on rr n for all finite measurable partitions 7r, one sees 

that F v - and therefore v - also determines a unique symmetric finitely additive set 

function gv on the product algebra C x C x ... x C. 
Define P O L b  to be the set of  these games v E P O L ,  such that gv is of  bounded 

variation. Thus P O L b  can be described as the set of  all games of  the form v ( S ) =  

/J(S x S x ... x S),  for some (symmetric) # E FA( ( I ,  c )n) .  (I have no example of some 

game i n P O L  \ P O L b  or better: in P O L  \ closure (POLb) . )  Then we have 

Claim 1: POL and P O L b  are subalgebras of BV. 

Proof." Le t  v, w E POL (or P O L b  ). Then Xv E P O L  (resp. P O L b  ) by setting Fxv  = X F  v 

(or/~Xv = X/~v). Assume Fv is n-linear and F w k-linear, with n >/k. Set Fv+w(XX .. .  Xn) 

= F v ( x l  .. .  Xn) + Fw(XlXk+lYa~+2 ...  Xn, %2, Xa . . . . .  %k) and symmetrize: this shows 

v +  w ~ P O L .  

Set Fvw(% 1 . . . . .  Xn, Xn+l . . . . .  gn+~) = F v ( x l  .. .  n)Fw(Xn+l .. .  gn+k) : v w  @ POL.  

The above formulas show that /~v+w is obtained by transporting gw to/~w on 
(I, C) n by identifying the first factor of  (I, C)k to  the diagonal in (I, C) n of  the factors 
1 , k +  1 , k + 2  . . . . .  n; and then adding to this/~v: clearly this yields still some # of  
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bounded variation. Similarly gvw can be taken as the product of/a v and/~w, and is 

therefore of bounded variation. 

Note.that such games have a direct economic interpretation: assume for instance 

that individuals are patent holders, and that any technology requires (at most) n dif- 
ferent patents: then, if t.t(dsldS 2 . . . .  , dsn) is the production set achievable by coalition 
(ds 1 U ds 2 U ... U dsn) , the total production achievable by coalition S is v(S)  = 

t~(S x S  x ... xS) .  
The continuity of F v for v EPOL implies immediately that, if/~v denotes the 

marginal distribution on (1, C) generated by/~v (this is, independent of the coordinate 
due to the symmetry of F v), then Ov has bounded variation - i . e . ,  Pv ~ FA. 

It is easy to give examples of games inPOLb that are not inpNA - not even i npNA '  

- ,  even when choosing for gv a countably additive, non atomic measure (with 
~v E N A ) .  

I don't know about the validity of the following proposition for the whole of POL, 

if is not contained in the closure of  POLb. 

Claim 2." POLb C_ Q. 

Proof." We can without loss assume the measure/1 on (I, C) n to be positive. Fix a step 
function X in B(1, C), 0 <~ X <~ 1, and take any finite measurable partition lr = (.41 . . . . .  

Ak) with respect to which X is measurable. Denote by Pt the value of X on At,  and by 

the random coalition obtained by A t c S with probability Pt independently for all L 
Then 

Ev(S)= ~ p(S h xS/2x...xS]n )Prob(SirCSVr) 
jEk  n 

k 
= ~_~ Id(S]l xS]2 •  ) ~=1 pk~] jEk  n i= 

when kij = I { i  E {/i . . . . .  Jn }}- k 
One checks immediately that, when lr is refined, I I  p~i ij decreases, thus Ev(gS) also. 

i=1 
For every partition P of {1 . . . . .  n} , le t  X~ = U{S h x . . .XSin  ISjr=Sjs . - . r  and 

s are in the same element of P}. Let/~,g denote the restriction of/~ to J~p, and let for 

p EP, Sp vary in the diagonal of all i E p. 

In these notations, we get then 

Ev(S)  = X f ( II  X(Sp))l~(ds 1 ... dsp ... dslpi). 
P p ~P 
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Since E v ( S )  decreases when ~r is refined, we may denote its limit by v(x). Denoting 
by/~p a limit point of t h e / ~  when 7r is refined, we get 

v(x)  = ~ f (  II X(Sp))dpp for all step functions g- 
P p ~  

If one wants, this extends now by uniform continuity to all ideal set functions X. Thus 

there only remains to show that any ~ of the form v(x) = f X(s) ... X(Sn)dl~(Sl ... s n) 
In 

is in Dom ~3, with ~3(~) =/~ the marginal of/.t. 
Obviously 0 is continuous at zero and at one, so let us compute ff3(v) using the 

same formula for any • ~ B(I, C). 

1 ~)(t + rX) - #(t)  
ff3(V)(X) = f d t  

o 1" 

1 1 

= - f f  
T O  i n 

{[t + rx(s l )] ,  ..., [t + rX(Sn) ] - t n }d/~(s 1 . . .sn)dt 

1 
= f f t n -1  [X(Sl) + ... + X(Sn)]dt~(s 1 . . . s n ) d t  + O(r) 

o I n 

1 

n 
[ f x ( s l ) d f t ( S l )  + fx(s2)df~(s2)  +. . .1  = P(X)- 

Sec t ion  2 

In Section 1 we have shown how to reduce the problem of defining a value to the 
problem of defining a positive, symmetric linear operator (of norm 1) ff to FA from a 
(closed, symmetric) space V of functions v : B ( I ,  C ) ~ R  that satisfy v(a + bx)  = 

av(1) + by(x) Va,  b @R V x E B ( I ,  C). 

We have also seen that, for such functions v, one has 

V(v)[x,x'l~llx'-xll. Ilvll VX, X'EB(I, C). 

Therefore, if we let DXx(]) = [v(f( + XX) + v(~ - XX)]/2, we get 
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and 

D a +bx(C + d~) = cv(1)  + d D  Ibx /d  I(~) (in particular DxX(1) = v(1)). 

Let Dx(~) stand for lim DxX(~) (if this limit does not necessarily exist, use any 

Banach limit; remark that DxX(~) is necessarily an even function of ~). We get then 

V(Dx)[~, ~'] ~< [1~ ' -  ~ 11 �9 Ilvll 

and 

D a +bx(C + d~) = cv(1) + dDx(~ ). 

Thus, V • Dx(" ) is linear on every plane containing the constants, and satisfies Dx(1 ) 

=v(1)  and lID x II < Ilvll. 
In addition, the mapping X-+Dx is constant on every plane containing the con- 

stants, and the mapping v --> D x is linear, positive and of norm 1. 
Dx(~) is the (two-sided) derivative of  v at X in the direction of ~: 

v(•  + ~ )  - v(•  - r;r 
lim 
T~o 2T 

We think of the typical situation where D x would already be in F A  for "almost every" 
• for an average of  the D x then to be a value, one only has to make sure to get the 

symmetry:  the average should be computed with a (finitely additive) probability 
distribution on B(I,  C) that is invariant under all automorphisms of  (I, C). 

The averaging should be well defined whenever v is a function of a vector measure, 
so for any vector measure P = ( P l  . . -Pn)  and for any borel set B in R n, p - l ( B )  = 

{ X I I . t ( x ) E B }  should be measurable: this class of  sets in B(I,  C) is the algebra of  
cylinder sets. Thus we look for a "cylinder probabil i ty" on B(1, C), i.e. a finitely addi- 
tive measure P on the cylinder sets, such that,  for any vector measure p = (Pl ..- Pn) 
the induced measure P o/.t -1 is a (countably additive) probability on the borel sets of  
R n" 

Similarly, one may define the "conical sets" as being those cylinder sets C such 
that X E C. =. a + b x  E C V a, b E R.  One may then define a "conical probabili ty" as a 
finite additive measure on the conical sets, such that any vector measure p = (#o . . . . .  Pn), 
with I.t i E N A ,  t.t i E N A ,  Pi(I)  = 0,induces a countably additive distribution on n-dimen- 
sional projective space. 
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Recall that any cylinder probability on B(I, C) is uniquely characterized by its 

Fourier transform, a function on the dual defined by 

F(g)  = E  exp i (/1, X)- 

In the next theorem we use the classical concept of  invariance (i.e. under all automor- 
phisms of  (1, C)); accordingly (I, C) is here required to be a standard borel space (i.e. 

isomorphic to [0, 1] with the borel sets) and the duality used is that of  B(1, C) with 

the space NA non atomic, countably additive measures on (1, C). 

Theorem 1." 

A) The extreme points of  the sets of  invariant cylinder probabilities on B(I, C) have 

Fourier transforms Fm,a~ ) = exp (im/1(1) - o [I/l I[) where m E R,  o/> 0. More precise- 
ly, the formula E exp i(tl, X)= f Fm,o(p)dP(m, o) establishes a one to one cor- 

R• + 
respondence between invariant cylinder measures 3 and (countably additive) measures 
P over R x R+. This correspondence is a positive, linear, convolution preserving isome- 

try. 

B) There exists only one invariant conical probability on B(I, C), which is the restric- 
tion to the conical sets of  any invariant cylinder measure of  total mass 1 as described 

sub A). 

Proof.' 

A) Consider first cylinder probabilities. Let gi denote a sequence of mutually singular 
non atomic probabilities. There exists a partition of (I, C) into a sequence of borel 
sets Bi, such tha t / l  i is carried by B i - which has therefore the power of  the continuum. 
Thus, for any permutation zr of  the integers, there exists an automorphism 0~r of  (I, C) 

such that 0~r maps the sequence (gi)7= 1 to the sequence (,urr(0)7= 1. 
The sequence/l  i maps B(I, C) to Ro*, and the cylinder measure induces therefore 

a consistent system of probabilities on the borel sets of  the ~I (R), and thus a (count- 
i=1 

ably additive) probability Q on the borel sets of  R**. The invariance of the cylinder 
measure under 0~r implies then the invariance of  this probability under any permuta- 
tion 7r: the coordinates of  R ~ are exchangeable under Q. 

3 i.e., for any P in the right hand member, there exists a unique cylinder measure with this 
Fourier transform, and this cylinder measure is invariant. 
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Thus, by the Finetti's theorem, if we denote by A the asymptotic o-field on R ~~ 

the random variables/a i are i.i.d, conditionally to A, say with distribution F. The map- 
ping from R ~176 to the set M(R) of  probabilities on R that maps any sequence to it's 

distribution (if this exists - which has Q-probability one by the Glivenko-Cantelli 

and de Finetti theorems) is A-measurable, so Q induces a probability P on M(~R), such 

that Q is the distribution of  a sequence F -  x (xi) where F is selected according to P and 

the x i are selected, independently of  F and of  each other, uniformly on ]0, 1[. It fol- 

lows in particular that any subsequence of  the/ai's would induce the same probability 

P on M(.R). 
t 

Let now/a i be another such sequence; then there exists an uncountable borel set 

B in (I, C) which is negligible for all/li'S and all ', gi s: one can construct on B a third 

such sequence/~i- When the/ali'S and the ~i's are arranged in sequence, they fulfill the 

requirements set out at the start of  the proof,  so the probability P on M(R) induced 

by the two subsequences/a i and/]i is the same. The same would apply to the two se- 

quences /a~ and /]i, so it follows that P is independent of  the particular sequence/a i 

chosen, but depends only on the cylinder measure. 
1 n 

Since On = - ~ /h is such that the sequence (On, gn + 1 . . . .  ) satisfies our require- 
H i=1 

ments, and has the same asymptotic o-field A as the original sequence, it follows that, 
1 

for P-almost every F, /l 1 ... tl n are independently F-distributed and/in = -- ~ /~i is 
n i ~ n  

also F distributed. Thus P-almost every F is such that, for all n, the average of  n in- 

dependent F-distributed random variables is F-distributed, i.e. F is strictly stable of  

index 1. For univariate random variables, this is equivalent to say F is a Cauchy distri- 
bution. 

If we parametrize the Cauchy distributions by their location and scale parameters 

m and o, P becomes a probability distribution on R x R+ such that, for any sequence 

t~i of  mutually singular non atomic measures, the sequence tli(X) is distributed as the 

average under P(dm, do) of the distribution of  ([I U + 1[" Xi -Ilui-II" Yi)'~=l, where the 
X i and Yi are all independently distributed as m + oU, where U is a standard Cauchy 

random variable. 

Thus Illa+ll 'Xi-ll layll 'Yi is distributed like m" Ui(1)+ o'[[Isill'Ui, where U i 
is a standard Cauchy random variable. 

In particular, E[exp (i(/l, x ) ) lm ,  o] = exp I-oil/Ill + On (/s, 1)] V /1 ENA, and 

E e x p ( i ( g , X ) )  = f exp[-olllall+im(t~,l)]de(rn, o). 
R x R +  

It is clear from the above proof - or from the last formula and the uniqueness 

theorems for Fourier and Laplace transforms - that for any cylinder measure there 
can exist only one P such that the above formula holds. 

Let us now show that for any such P there exists a (unique) cylinder measure with 
that Fourier transform. 
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Unicity follows immediately from the fact that distribution over finite dimensional 
spaces are uniquely characterized by their Fourier transform, and from the fact that 
all cylinder sets are finite dimensional. To show existence, recall that Bochner's 
theorem characterizes the characteristic functions on R n as the positive definite func- 
tions tp that are continuous at zero with ~o(0) = 1. This immediately extends itself to 
Fourier transforms of cylinder probabilities (when continuity at zero is interpreted as 
continuity at zero of the restrictions to all finite dimensional subspaces of the dual). 

Indeed every inequality for positive definiteness involves only finitely many points 
in the dual, so the condition is still necessary, and if it holds, we get by Bochner's 
theorem a consistent system of probability distributions on all finite dimensional 

quotient spaces ofB(I, C), i.e a cylinder probability. 
Now our formula obviously has values 1 at zero, and is continuous there by the 

dominated convergence theorem. Thus we only have to show that it is positive definite. 
For this it is sufficient to show that, for every m, o the function exp ( -  o II u II + im (~, 1)) 
is positive definite, the inequalities being linear. 

To show this, it is sufficient to show that this function is the pointwise limit of a 
set of positive definite functions Ca, since the inequalities each involve only a finite 
number of points in the dual and are weak inequalities. 

For every borel partition a=(B~ ...B~) of (I, C), let ~Xl(~o)...Xn(co)be in- 
dependent Cauchy random variables with parameters m and a, and let f(~o) E B(1, C) 
have value Xi(~o ) on B 7 : f(~o) is a random variable with values in (a finite dimensional 
subspace of) B(I, C), Thus by Bochner's theorem it's characteristic function ~ will be 

n 

positive definite. We have 9a~ )  = E  exp (i (g, X)) = E  exp (i(t~,f(~))) =E exp i 
. (Bf  j= l 
NowNow Z v(B~)Xi(~ ) is Cauchy with parameters m E/a(B]) and o N I/a(B~)I, i.e. 

j=t 
m" (g, 1) and a tl/~ 11~, where II/~ 11~ is the norm of the restriction of/~ to the (o-field 
generated by the) partition a. 

Thus 9 ~ )  = exp [--e II/~II~ + irn(~t, 1)] is positive definite, and obviously l[/~ Ila 
tl/~ I1 when ~ ranges over the increasing net of all partitions. 

This proves that 9 is positive definite, and thereby establishes the one to one 
character of this correspondence, when restricted to probabilities on both sides. 
(Obviously the cylinder probability has to be invariant, since its Fourier transform 

is so.) 
It is now clear that, for any bounded measure P, there exists a corresponding 

invatiant cylinder measure: let P = aP1 - ~P2, when Pl and P2 are two probabilities, 
a >/0, I3/> 0, and use aQ1 -/3Q2 as invariant cylinder measure,where Qi is the cylinder 
probability corresponding to Pi. Furthermore this cylinder measure is unique - if 
there were two of them, their difference would be a cylinder measure with zero 
Fourier transform, so the positive and negative parts of this difference would be two 
different positive cylinder measures with the same Fourier transfrom - and in particu- 
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lar with the same total mass (value of the Fourier transform at zero), so that by 
normalizing one would obtain two different cylinder probabilities with the same 

Fourier transform, in contradiction with what we have seen above. 

We have just used the fact that the positive part k + o f  a (bounded) cylinder 
measure X is still a cylinder measure. Indeed, if A ~ denotes the algebra of  cylinder sets, 
k+ is defined by X+(A) = s u ~  k(A N B) '~' A E A. One sees immediately that k+ is 

finitely additive, positive and bounded on A, with ~+/> ~. To show that ~+ is still a 
cylinder measure, let A~ = {9-1(B)[B borel set inR n) for 9 ranging over all finite sub- 

+ . + 

sets {r --- 9n } of NA. Then ~+ = sup~ k~, with k~(A) = B~osu X(A N B). It is thus suf- 

ficient to show that,  V 90, V 9 " 9 ~> 9o, X~ is countably additive on A~, 0 - (the su- 

premum of a bounded, increasing net ofcountably additive measures is still such) or that, 
V 9, X~ is countably additive on A~o: this is the Hahn decomposition theorem for 

countably additive measures. 
Obviously, if further X was invariant, X + will also be: therefore, we can, in the 

same way as above for P, construct for any invariant cylinder measure X a correspond- 

ing measure P on R x R+. Again, this P is unique, otherwise one could construct, as 
above, two different probabilities PI  and P2 with the same value of the integral 

fFm,  a(.g)dP(m, a), contradicting our previous result for probabilities. 
Thus the bijectivity of  the correspondence is established. Its positivity was already 

established before, when dealing with probabilities, and it 's linearity is now immediate- 

ly obvious from the bijectivity - an integral is a linear function of  the underlying 

measures. Being poisitive and linear, it is a isometry because it maps both ways prob- 
abilities to probabilities. 

The assertion about extreme points is now immediate,  so there only remains to 
establish the preservation of  convolution. 

Since a linear mapping from R n to R k maps the convolution of two measures to 

the convolutionof their images, it is clear that  the convolution of  two cylinder measures 

is a well defined cylinder measure, with the Fourier transform of the convolution 

being the product of  the Fourier transforms of the individual measures. In particular, 

if the two measures were invariant, the convolution will still be. Similarly one checks 
immediately that the integral in the right hand side under the convolution of  two 
measures PI  and P2 is the product of  the corresponding integrals. This finishes the 
proof  of  A).  

B) Choose as sub A) a sequence (/ai) of  mutually singular non atomic probabilities. 
Remark that/~i -/.tj :~ 0 with probability one, otherwise it would not induce a distribu- 
tion on (zero-dimensional) projective space. 

/~i - / -q  
Hence the ~ (X) = ~ (i ~> 4) are a sequence of conically-measurable functions, 

/~3 - ~2 
and therefore they have, as in A), a countably additive distribution P~l,~2 .... on R** 
(by Kolmogorov's theorem). 
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Also the f/ (i ~> 4) are exchangeable, hence we get - as in A) - a distribution 

Pul,U2,u3 on R x R+ such that any such sequence with the same (P1 ,#2 ,#3)  is 
distributed like m +  oUi, where Ui is a sequence of  independent Cauchy (0, 1) vari- 

ables, and (m, o) is selected according to Pul,UZ,U3" 
Let 

f i - f 4  _ #i-#________44 _ m + o U i - ( m  + oU4) U i - U 4  (i~>7). 

g i = f 6 - f s  # 6 - U s  m + o U 6 - ( m + o U s ) = U 6 - U ~  

They are distributed according to P#4,#5 ,#6' and therefore for any 3 mutually singular 

non atomic probabilities (#4, gs ,  #6)P#4,#s ,#6 induces for any admissible sequence 
#i the same distribution as if the #i's were independently distributed as Cauchy zero- 

one variables. In particular,P u 1,u2,u3 = P does not depend on (#1, #2, #3)- 
Thus any invariant conical probability induces the same distribution as induced by 

the invariant cylinder probabilities of  A) on any sequence (#i) of  mutually singular 

n~ at~ pr~ ( i ' e "  ~ their rati~ #i - #/ ) " # k  - #t 

Now any conical set is determined by the ratios of  such a finite sequence - where 

the #i's are not necessarily non singular - but can be taken as linearly independent. 

Thus we need the distribution of  (#@/n" " ,where all measures are non atomic and 
i v ] i=1 

of total mass zero, the #i's are linearly independent and v may in addition be chosen to 

be singular with respect to all #i's. 

This distribution is fully determined (Fourier transform) by the distributions of 

n tiPi : of#-, where all linear combinations ~ we need only to know the distribution # 
i=1  V V 

and v are two non zero mutually singular non atomic measures of total mass zero - 

and by normalisation we may assume ][# [[ = [[ v [I = 2. This is the known distribution of 
#+ - p -  

+ _ , where (/1+, # - ,  v +, v - )  are 4 mutually singular non atomic probabilities. [] 
V --V 

Denote by Q the closed, symmetric space generated by FA and all functions v satisfy- 

ing v(a + bx) =av(1) + by(x), ][v[I < ~o that are of  the form v(x) =f(P(X)), where p is 

a vector measure in NA. 

Theorem 2." Let v E  Q, and let P be any invariant cylinder measure of  total mass 1 on 

B(I, C) which is non degenerate - i.e. the subspace of  constant functions has probabil- 

ity zero, or: Prob (a = 0) = 0 - .  Then D• exists, for every ~, for P almost every X 
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(i.e. the difference sup Dx(~ ) - inf DxX(~) converges to zero in LI(dP(x))  when 
h/>h 0 k/>h 0 

Xo --> oo) and is, as well as any DxX(~), P-integrable in X, and Cv(X) -7 f D x ( ~ ) d P ( x )  = 

lira fDXx(~)dP(x) is independent of  the particular invariant P chosen. 

Further Cv E FA, so that the mapping v--> Cv is positive, linear, symmetric,  of  
norm 1, and satisfying r = v(1) : ~b : v-+ Cv is a value on Q. 

Proof.' Since the mapping v--->DXx is positive, linear, of  norm 1 and satisfies DxX(1) = 
v(1), the last sentence of the statement will follow from the other provided we prove 

the additivity of  q~v. 
It also follows that it is sufficient to prove the statement on the generators of  the 

space, since a uniform limit of  P-integrable functions is P-integrable, with the integral 

being continuous along the sequence. 
Finally, since Dx x acts as the identity on FA, and since constant functions are 

P-integrable, it is sufficient to consider the generators of  the form v = f ( g ) ,  with 

/d = (/21 . . .  b~n) a vector measure in NA. 
Also, since, by Theorem 1, P can be written as aP 1 - ~P2, where the Pi are invari- 

ant cylinder probabilities and a - /~ = 1, it is sufficient to consider the case where P is a 
cylinder probability. 

There is no loss in assuming that /a  has full dimensional range - otherwise one of 

the components of/a  is a linear combination of the others, so v can be written only as 
a function of the other components.  

Denote by Bu the image under/~ of the unit ball of  B(I, C) - i.e. Bu = 2(Range of 
p) - /~ (1) .  B~ being compact,  convex, symmetric around zero, and full dimensional, it 

is a neighborhood of  zero (by the absorption theorem say). The relation v(a + bx) = 

av(1) + by(x)  implies now f ( a .  e + bx) =af(e)  + bf (x) ,  V x E R  n , V a, b @R, where 
e = g(1) E R n . 

Finally, the relation V(v) [• X' ] ~< I[ X' - X II " II v I[ implies that, if x = ~(~), and 

y - x  @ 5Bu, then 3 2 with [[2 - X [I ~< 5 andy  =/1(2) so that 

If(Y) - f ( x )  I = I v ( 2 ) -  v(~)I  < Iv(2) - v ( ~ -  5 - 1 ) l+  I v ( ~ ) -  v ( ~ -  5 �9 1)[ 

~< g ( v ) [ ~ - 6  �9 1, ~ + 5 " 11 + g(v)[;~ - 5  - 1 , ~ ]  ~ 36 Ilvll. 

B u being a neighborhood of zero, 3 e > 0 : l l x l l  < ~ e ~ x E B . ,  and thus we have 

shown that Ily - x  II <~ e5 ~ I f (y)  - f ( x )  I ~< 36 Ilvll for all 6, y and x: thus I f (y )  - 
~<3 [Iv[[ 

f (x ) [  - -  -I[y - x]] : f i s  Lipschitz. 

Conversely i f f  is Lipschitz it follows immediately that ]Iv [[ < oo, so our assump- 

tions reduce simply to v=fOa),  where /a is a vector in NA with full n-dimensional 
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range and where f is Lipschitz satisfying f ( a .  e + bx) = af(e) + bf (x)  where e = p(1), 
V x E R  n, v a , b E R .  

We have DxX(~) = [ f (x  + Xy) +f(x  - Xy)]/2, where x =/l(~),  y =/.t(X ) or D~-I(~)  

= [ f ( y  + rx)  - f ( y  - rx)l / (2r) .  
Remark that, f being Lipschitz, the limit (for r -+ 0) will, for each x, exist ?,-almost 

everywhere in y, X being Lebesgue measure. This follows from Lebesgue's a.e. dif- 
ferentiability theorem. Indeed, if x is zero, there is nothing to prove, otherwise x can 
be taken as the first basis vector in Rn: for any z= ... z n , f ( z , z=  . . . . .  Zn) is a Lipschitz 
function of z, so the first partial derivative exists for almost everyz, by Lebesgue's theo- 
rem. Since f i s  Lipschitz on R n, the set of points where the first partial derivative does not 
exist is a borel set, and therefore this set of points has Lebesgue measure zero by 
Fubini's theorem. 

The probability induced by P on R n has characteristic function ~ou(t ) = E exp iit, x )  

= E  exp i ( t , /a(X))=E exp/( i t , /a ) (X))  = f exp [ -ol l / t ,  g)[I +im(it,/a)(1))]d/~(m, o) 
for some probability/5. R x R+ 

Now lilt,/~>11 = sup it,/l(X)) = sup It, x ) = N # ( t )  whereN u is the norm on the 
I1• I1~<1 x~B u 

dual generated by the ball B u. 

And it , /a)(1) = it, e).  Thus 

~o~(t) = f exp [-aNu(t ) + imit, e)]dP(m, o). 
R. xR.+ 

Now obviously, for any given m and g (>0) ,  exp [ - o N u ( t  ) + #nit,  e)]  is Lebesgue 
integrable in t, so the corresponding probability distribution has, by the Fourier in- 
version theorem, a density with respect to Lebesgue measure. Since the conditional 
distribution on R n given m and o is absolutely continuous, the unconditional distribu- 
tion is also certainly so. 

Thus we may conclude that, for any invariant P, and for any ~, the limit Dx(~) 
will exist for P almost every X. 

Thus, for any P, and any x, [ f ( y  + rx)  - f ( y  - rx)]/(2r) is uniformly bounded 
( f  being Lipschitz) and converges P a.e. to it's limit: by the dominated convergence 
theorem, the limit is P-integrable and the limit of the integrals is the integral of  the 
limit function ~0xCv ). 

Now f(a" e + by )=af (e )  + bf(.v) yields ~Ox(a. e + by)= lim [ f (x  + X(a. e + b. y ) )  

+ f ( x  - X(a" e + b "y))] /2 = lim [ f (x  + Xby) + f ( x  - lby)] /2  = ~0x(.V ) if b =# 0 (and = 
f ( x )  if b = 0). x~=o 

Let Z denote a random variable having characteristic function exp - N u ( t ) .  Then 
m" e + oZ where (m, o) is selected, independently of  Z, according to/3(m, o), has 
the correct characteristic function f exp [-oNu(t )  + imit, e)]dP(m, o). Thus 

.~xR+ 
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f~x(Y)dP(y)  =E[~x(m" e + trZ)] =Er ) since /3(cr = 0) = 0: the integral of  the 
limit - which is the limit of  the integrals does not depend on the choice of  P, i.e. on 
the choice of  a particular invariant cylinder probability. 

There only remains to establish the additivity, i.e. that E~x(Z ) is a linear function 
ofx .  

Let fc(x)  = f (x)  exp ( - e  IIx II 2) (e > 0) (here I1" I1 is the euclidean norm). 

We want to show that the fe are uniformly Lipschitz (i.e. with a Lipschitz constant 
independent of  e). 

Since f is Lipschitz, each of them is obviously locally Lipschitz, so by the above 

mentioned theorem of Lebesgue, it will be sufficient to show that the directional 
derivatives of  the fe are uniformly bounded whenever they exist. 

By choosing appropriate axes, we can assume our directional derivative is in the 
direction of  the x 1 axis. 

We have 

~fe =(~ f l ) exp[_e[ ix l l2]_2ex l f exp[_e l l x [12] .  
~x 1 

I f K  is the Lipschitz constant o f f ,  then Oxl[ and I f l ~ g l l x l l - b o u n d i n g a l s o  
IX 1 I by Ilx I[,we get 

~xf-~e ~ < K exp - e  IIx II 2 § 2K(e II x II 2) exp - (e II x II 2) ~ 2K 
1 t 

since e -z + 2ze -z <~ 2. 

Thus the fe have uniformly the Lipschitz constant 2K. Further the formula shows that, 

whenever the directional derivative of  f exists, the corresponding directional deriva- 

tives of  the fe will also exist and converge to that of  f when e ~ 0. 

Thus ~x(y)  = lim lim [ f e ( y + r x ) - f e ( y - r x ) ] / ( 2 r ) ,  all functions involved 
e-~O T-~'O 

being ~< 2K IIx II in absolute value. Thus, by the dominated convergence theorem, 

1 
Er ) = lim lim - -  f [fe(z + r x ) - f ~ ( z - r x ) ] g . ( z ) d z  

e-~o r ~ o  2~" 

where g ,  is the density of  Z (which we have already shown to exist). 
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But since fe is a bounded function, it is integrable, so 

f [ L ( z  + rx)  - L ( z  - rx ) lgu(z )dz  = f L ( z )gu(z  - ~x)dz - f L ( z ) g . ( z  + rx )dz  

= f L ( z ) [ g . ( z  - r x ) - g . ( z  + ~x)]dz. 

Now gu has characteristic function exp - Nu(t), and II t [I exp (-Nu(t)) is integrable for 
Lebesgue measure. Therefore, by the Riemann-Lebesgue theorem, gu is continuously 
differentiable with its gradient going to zero at infinity. In particular the [g~(z - rx) 
-gu(z + rx)]/2r are uniformly bounded and converge pointwise to (--(Vgu) (z), x) ,  

where (Vgu) (z) is the gradient ofgu at z. 1 
Since re(z) is integrable, it follows (dominated convergence) that rlim 2-~ f 

fe(z)[gu(z - rx) -gu(z  + rx)]dz = f fe(z)(-Vgu(z),x)dz and thus 

E~ox(Z) = lim f e-ellzttZf(z)(-(Vgu) (z),x)dz, 
e-+O 

= - (x, lim f e -ellzlt 2f(z) 7gu(z)dz) 
e--~O 

which is linear in x (the limit being some form of Cauchy principal value of 

f f(z) V gu(z)dz). 
This finishes the proof. [] 

Remarks: 

1) One can use the same formula ( e x p -  II~ II) to define the Fourier transform on the 
whole of FA, thereby defining a cylinder probability on B(I, C) when cylinder sets are 

defined as inverse images of borel sets by any vector (/11 ... gn) in FA. This cylinder 
probability would obviously be even more invariant-treating all elements of FA sym- 

metrically. 
Theorem 2 remains then valid when p in the definition of Q is allowed to be any 

vector in FA - provided one interprets "invariant P" as "P having the Fourier trans- 

form prescribed by Theorem 1". 
It might be that this formula could be justified by some type of uniqueness argu- 

ment on the space of non atomic elements ofFA - using maybe a weaker concept of 
automorphism. But certainly for the atomic part no such argument could be hoped 

for. 
However, as our analysis of regular games with countably many players at the end 

of Section 1 may indicate, it could be that in general the "atomic part of the game" is 
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already essentially linearized by the first derivative operation, so that the end result 

would anyway be canonical. This certainly deservers further study. 

2) Define for any vector measure la,Nu(t ) as sup (t, x )  = II (t, ~) II = f I (t, x) II dr(x), 
x EB~ 

where v is the distribution - under a common dominating measure Po - of  the Radon 

Nikodym derivatives f =  ( f l  ......fn) of  p = (Pl . --Pn) w.r.t. P0- For any norm n, one 
could replace f by f '  =fin(f),  and dpo by dp'o = n(f)dpo to normalize v on the n - 
unit sphere - say, for a canonical choice, v could be carried by the boundary of Bv. 

Our proof  then shows that, in this case, exp -Nu( t )  is positive definite. Converse- 

lY however, if the support function Nv(t)= sup (t, x )  of  some compact,  convex, 
x ~Bu 

symmetric set Bv is such that exp -Nv( t )  is positive definite, then, since Nv is posi- 
tively homogeneous of degree one, exp (-Nu(t)) is the characteristic function of a 
strictly stable distribution of index one, and has therefore as classical Levy representa- 

tion e x p -  f l(t, x)ldv(x), where ~ is the normalization of the Levy measure of  the 

process on some sphere - say on the boundary o f B v :  there exists a positive measure v 

on the boundary of B ,  such that Nv(t)  = f I (t, x)  I dv(x).  I f  now we define /a by 
dl.t i =xidv , where x i is the i-th coordinate mapping, we get immediately N~(t)= 
II <t,/a > II : Bg is indeed the ball corresponding to the vector measure/a. 

This interpretation in terms of the Levy measure allows therefore to view the 

random perturbation around the diagonal as the sum of a very large number of inde- 

pendent contributions - those of  the players preceding the given player in a random 

order - the direction of each being according to the distribution of Radon Nikodym 
derivatives of  the given measure. This type of interpretation will be pursued much 
further in a subsequent paper. 

3) A large number of  definitions of  "spaces on which there is a value" are possible in 

view of  what preceeds - depending among others on the exact order in which the 
various limiting operations and averaging operations are to be done, on how much 
"a.e." is put into the definitions, etc. 

We prefer to leave this matter  to the taste of  the reader, as long as no theorems 

are available that would show clearly which option is to be prefered. For a foretaste, 
the reader may want to look at Section 4. 

S e c t i o n  3 

In many applications of  the above results, whether to majority games with several 
houses or to n handed glove markets for instance, the function v of  Section 2 will be 

of  the form f ( g l  .--/~n), where g is a vector measure and f i s  piecewise linear. Elemen- 
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tary transformations reduce this to the case where /l is a full.dimensional vector of  

probability measures. Say fi (i = 1 ... k) are the different linear functions appearing 

as pieces of  f (i =~j =~f/=/=3~). Then the set {x [fi(x) =3~(x)} being of  lower dimen- 

sion, has zero probability under the invariant measure of  last paragraph (since this is 

absolutely continuous with respect to Lebesgue measure), so that we can neglect ties 

among the fi's. Then, for any order < on the indexes 1 ... k, the set (x l  V i,/', i -< j  

.=.f t(x) <J}(x)} = C(-<) is an open convex cone - thus connected - where, by con- 

t inui ty , f i s  constantly equal to one o f  the fi's say f / (< ) .  

Thus, by the results of  Section 2, the value of  this game takes the form 

.< 

So, to compute the value of  such games, we have to compute the probability that 

.fq(/~(X))<f/z(/~(X))< . . .<fik@(X)) - or, letting ~i stand for the measure fii@), the 

probability that •1 < ~02 < ..- < ~k, when r is some vector measure. Remark also that 

the property f ( t  �9 1 + a" x) = tf(1) + of (x )  implies that, for all i needed to represent f 

O.e. f= f r  on some open set), one has not only f / l inear  and not merely affine, so the 

r are indeed measures, but also f/(1) --f(1),  so they also have the same total mass. 

Thus, letting v i = ~i+1 - r we have a vector measure with total mass zero, and we 
have to compute the probability that v(• falls in the positive or~hant. 

If  the vi's are not linearly independent, those inequalities determine a convex 

polyhedral cone in the space generated by v. This cone can be written as a finite union 

of  convex simplicial cones (neglecting boundaries that have probability zero), and for 

each convex simplical cone one can take its extreme rays as new coordinate axes, thus 

reverting to the case where the vi's are linearly independent. 

This is the probability we are going to compute in this section: v = (v 1 ... Vn) is a 

full dimensional vector measure with total mass zero, and we want P(v(• E R~).  
Obviously, this probability does not depend on the particular invafiant measure 

chosen, so we will use m = 0, a = 1. 

Let us first recall that for any norm N on R n , any point x E R  n can be written 

in polar coordinates r = N ( x )  and s =x/r, and that Lebesgue measure dxl  . . .dxn  = 
rn-xdrdo(s) ,  by definition of  the surface measure do on the unit N-sphere. One gets 

the following "change of  variables" formula: if r is any other such surface measure 

(i.e. originating from some other norm), then for any positive measurable function f 
on the unit N-sphere, 

[ ~ ] dr(~) 
f f(s)do(s) = f f [N(a) J Nn(a)" 

From now on we denote shortly by N the support function Nv of  By. 
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We observed in Section 2 that the characteristic function exp - N ( t )  is integrable, 

so the Fourier inversion formula holds. Thus 

1 
= I . Z )  f+ dX1 " " d x n  y [ e x p - N ( y ) ] [ e x p - i ( y , x ) ]  e = P(v(X) @ R n) ,~rr, n 

R n 

d y l  --. dYn 

or, going to polar coordinates 

P=(27r)  - n  f (dXl ...dx.) f [exp-r(1  +i(s ,x))]rn- ldrdo(s)  
+ 

Rn 

( .  - 1)! do(s) 
= f d X l " " d x n f [ l + i ( s , x ) ] n "  (2~)" xi~>o 

The inner integral being a density, it is positive, so we get from the montone conver- 

gence theorem 

(n - 1)! da(s) 
p=  lim f dx 1 .. . dx n 

(2rr) n M--~** O<~xi<~M f [l + i ( s , x ) ]  n 

1 
Now [1 + i(s, X)] n is bounded ( I [ ~< 1) and thus integrable on the product o f  any 

cube in x and the unit N-sphere. Using thus Fubini's theorem, we get 

p = ( n -  1)! lim f de(s) f dxl  . . .dxn 
(2n) n M---~,~ O<~xi<~M [1 + i(s, X)] n " 

n ] (Re(c) = 1) (r depends only 
\ dx dxn 1 

Le tCn(C , s )= in (n -1 ) !  I l s  i f 
e t a  

[c+i~s,x>]" 1 / O~.xi-~.M 

on the first n coordinates o f  the sequence si). An elementary integration over x n yields 

Cn(C, S) = ~ ) (--1) 5 non --1 [C -t- iSnsnM , s] 
~ n E ( o ,  1 

and this formula still holds for n = 1 if one sets Co(C) = - inc. 
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One gets now immediately by induction that 

.E~j 
~)n(C, s) = - E ( -1)  1 In (c + iM E 5js]), 

8E(o, l y' j 

and thus 

-1 do(s) 
lim f [  E (-1)ESJln(l+iME6jsj)] Hs j 

e = (2rri) n M -'-~ 5 E {0, 1 }n 
1 

Since do(s) is symmetric around zero, we can replace each 

-1 In(1 + iM E 5js]) 
i n IIsj 

by the average of  its value at s and at (-s), i.e. by its real part. We get thus 

1 da(s) 
- -  lim f [ E (-1)E~IFn(ME6IsI)] ~.sj 

P = (2~r) n M ~  8 e {o, 1 ? '  
1 

where 

1 1 Fk(x)=-5  In (1 +x2) ,  - tan-l(x) ,~ln (1 +x2) ,  t a n - l x  

according as to k = 0, 1,2 or 3 rood 4. 

Here tan -1 x denotes the inverse of  the tangens function, with values in - ~, ~ . 

Using now the change of  variables formula, we can rewrite this as 

P=(27r)---- ~ 2 i m  f e{oE, 1}n (-1)Z6'Fn ~-(-~ ESjsj j Ilsj 

where r denotes the surface measure corresponding to an arbitrary norm II II. Hence- 

forth we will use [Ix [I = 2; Ixi]. For this norm, the unit sphere has 2 n faces,each with 
r-area equal to 1/(n - 1)!. 



The Shapley Value in the  Non  Differentiable Case 39 

Letting A n = {s Is/> O, N si = 1 } we get, folding all faces back on An, 

p = (2rr) - n  f ~ ' &n rE{O,1} n (-1)~61(~1" ~j)Fn ~] Oj6jSj] ]'-~S] " 
eE (--I, I }n 

The next part of  the computation is for n even. 
Let 

1 X; (H ej) In 1+  
$a(m, s) = ~- e~ ( - 1 , 1 ) n  ~ " 

Claim 1: 

I Ca(M, s) [ 
SUPm . ~ j  is locally integrable on (s E A n : ~ ~ j s / >  O} 

(i.e. any point - and thus also any compact subset - of  this set has a neighborhood on 

which the function is integrable). 

Proof.' Fix one such point s o, and consider first a neighborhood l~so of  s o where all 

strict inequalities among the functions (0;  s 1 ... s n; ( ~  ~jejsj)e ~ { - l ,  1 }n } that hold 
J 

at s o are preserved. Let r2 > 0 be strictly smaller than the absolute value at s o of  any of  

those functions that does not vanish at s o, and assume further that,  on Vso~ all func- 
tions that vanish at so remain < r / in  absolute value, while all the other functions re- 

main ;> 7/in absolute value. Finally write ~o ' aS  the finite union of  sets Vso (and a null 
set) where on each set Vso the ordering of  all those functions is constant (and strict). 

It is sufficient to prove integrability on Vs 0. ASsume in particular without loss of  

generality that, on Vso,We have 0 < s 1 < s2 < . . .  < sk < 7 /<  sk+ I < . . .  < Sn (0 <<- k < n). 
By assumption 3 j > k : gj = 1. We have 

1 1~ (n ej) in ~o = 7 (~2 .-.~.)e (-l ,t  } 

1+  

1+  

2 
M[a ls l  + ~ aiejs i] 

j>1 

N(Sl , e2s2 . . . .  , enSn) 

N(-Sl ,  e2s  2 . . . . .  enSn)J 
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and we will bound individually the absolute value of  every logarithm in this sum. Let 

f i ( s ) = - ( - 1 ) i 6 l S l  + ~, 6/ejsj, n i ( s )=N(- - ( -1 ) i s i ,  eg-s 2 . . . . .  enSn) ( i = 1 , 2 ) .  Now 
]>1 

1 + (Mf  l ~hi )2 
I increases monotonically with M to it's limit, so that 

In 1 + (Mf  2/n2)2 

sup 1 [1~_ In l +[Mf l / n l ]2 ]  = l n l f l / f 2 t  l n ( n l / n 2 )  I. 

M ~]$] 1 + [Mfg-/n 2 ]9_ II s] II s 1 

in I f l / f 2 l  In (n l /n2 )  
Thus we only have to show that and are integrable on Vs. ils/ ilsj 

For the second term, remark that, N being a norm, and any two norms on R n being 

equivalent, n I and n 2 are bounded away from 0 and from 0% and In 1 - n z l < ~ N ( 2 s l ,  
O, 0 . . . .  ) <~Ksl. So [In nl /n2  I <~ K's 1 - thus we only have to show the integrability 

o f s l / I I s  / on ( s E A  n : V i, s i>~s l ) .  
The measure T on A n has a bounded density w.r.t, ds 1 ... ds n _ l ,  so it is sufficient 

1 n--2 I d s  i 1 I n 
to prove that f ds I I I  f - - < o o ,  i . e . f  [lns 1 -2ds  1 <oo,  which is well known. 

0 i=2 s 1 8i 0 

In [ f t / f 2  [ 
The term rrsj appears only if ~ 1 = 1 - so assume this. Let ~(s) = j > l  ~ 6i ei si: 

since f l  = ~o + Sl, f2 = ~0 - s l ,  we can repeat with f l  and f2 the same argument as with 

n 1 and n2 if ~0 does not vanish at s o. So assume furthermore ~O(So) = ~ ~je/s ~ = O. 
]>to 

Since by assumption ~ ~jsj ~ > 0, it follows that there exist two indexes > k, say 
j>tc 

n - 1 and n (renumbering coordiriates), such that 6n-1 = 8n = 1, en_ 1 = -1 ,  e n = 1. 
1 1 

Do now the change of  coordinates (s 1 . . . .  , sn) ~ (-~ f l  , -~ f2, s2 . . . .  , s n_9-) using 

the formulas for f l  and fg- and the equation ~ sj = 1. Since under our assumptions the 

change of  coordinates has nonzero determinant, it will be sufficient to prove integra- 

[ln l f l/fg- ll 1 
bility of  n-9- ~  

0el --f2) H s i 
2 

Integrating the si's, this becomes 

In I f i l l 2 1  I 
f ) ~ - - ~ z  I ln I l l - f 2 l l n - 3 d f l d f 2  

1 ~ 1 
o n -  2- '~-f2 • f l  < ~ - o r  equivalently on [J~ .<L 

"~2"  
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Letting x i = I J~ l, we get, bounding the integrand, 

ln (x1/x2) 
f Iln IXl - x 2 l l n - 3 d x l d x 2  on O~<xi~< ~,  

X 1 - -X 2 

or, by symmetry around xl  =x2, 

f 1 ln (x2 /x l ) [ - ln(x2  --X1)]kdXldX2 ,(oo ( k ~ O )  
o ~ < x l ~ x 2 ~ "  x 2 - x  1 

- or, using polar coordinates and increasing slightly the area of  integration, 

f 
O~r<~ 1 

0~0<~7r]4 

- I n  tan 0 

cos 0 - sin 0 
[ -  In r - In (cos 0 - sin O)]kdrdO 

1 

since f [ - I n  r - A  ]kdr is a polynomial in A, we have reduced the problem to showing 
o 

the finiteness of  

In cos 0 - In sin 0 
f 

o<o<~/4  c o s O - s i n O  
[ - In  (cos 0 - sin O)]tdO (l >I 0). 

71 /r 
It is sufficient to show local integrability at 0 and ~; the ratio being bounded at ~ ,  it 

amounts at this point to the well known integrability of  I l nx  I n near zero; and at 
0 = 0, the argument is just as easy, and reduces to the integrability of  I In x I near zero. 

This proves the claim. [] 

Using now Lebesgue's dominated convergence theorem, we get for any 77 > 0 

lim 08(M,s) 
q~ (M, s) M o ~  

lim f - -  dr(s) = f dr(s) 
M -+~ Aria ~s l~is i~n}  1 - I s i  AnN(sl~,Sis i~)  IIsi 

and 
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= 2; (II e]) in N(e.  s) lim r 2; ( . I l e / ) l n  [ E S i e j s j l - e ~ ( _ l , 1 }  n ] 
M-~oo ~ ( - i , 1 )  n I 

if 3 ] : 5] = 0, the first sum is zero, so 

lim Ca(M, s) =I(5 = ( 1 , 1  . . . .  ' 1))e~(-2;,1}n(IIe])l in 12;gsjl  
M-~,~ pn 

- 2; (II 9)  in N(e-  s). 
ee{ -1 ,1}  n 

1 1 
We have also seen in the above proof  that both --[I-~i e ~ (Fie])In I 2; ejs][ and --1-Is]eE 

(IIei) lnN(e" s) are integrable over A n (for 5 = ( 1 , 1  . . . .  ,1 ) ,  2; 5isi = 1 > 0  every- 
where); so for 5 4= 0, 

( H  ei) In 1 2; 9xi I 
r (M, s) 

lira f - -  tiT(s) =I(8 = (1 . . . . .  1)) f dz(s) 
M ~  A,, n(sj) A,, I I s  i 

2; (I1 el) In N(e" s) 
_ f e dr(s) + lira lim f - (~ (M, S)dr(s) 

A n [Is~ ~--+0 M~~176 ) [Is] 

Therefore, summing over all nonzero fi's, 

2( I I e / ) l n lEe] s ] l  
P(v i>10 V i) =(-1)n/2(27r) -n - f e 

/' n [i sj 

(II e]) in N(e" s) 

- f d~-(s) 
A ,~ rl sj 

- 2; ( - 1 ) E ~ /  lim lim f 
~ { o , 1 }  n rl---~o M-.-~oo An 0 (sl~6isi<rl} 

dr(s) 

(M, s_____ 2 ] 
[i sj 4 7 0 )  J 

Let us now compute the last limit. 
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Assume without loss of  generality 5] = 1 i f f j  ~< k: we want to compute 

lim lim f 
r/--*0 M ~  s~>O 

~-, si=l 
i <<.n 

si<<.~ 
i < k  

(fl el) In [1 + (21//( ~ 9sj)/N(e" s)) 2 ] 
e j < k  

ri M 
dr(s) 

Represent s E A n as ax + (1 -- coy, with x E A k , y  E An_g , a E [0, 1]. Denote by rn 
the uniform distribution on A n : we have r = fn/(n - 1)l as noted earlier. 

One checks easily that, under fn,  a ,  x and y are independent, x and y being uni- 

form and a having the beta-density 

(n - 1)! a k _ l ( 1  _ o l ) n _ k _ l  " 

(k - 1)!(n - k  - 1)! 

Thus we get 

df,-kO') dek(x) 
lim lira f ( n - k - l ) !  i k ~ - - - i~ !  

ricO M---~ A n _  k 

N(I I  el) in [1 + (Ma(Z elxj)/N(a(e, x) + (1 - a ) ( e .  y)))21 
z/ e 

f ak(1 _ a)n-k  [ I x / I l y j  

~ k - l ( 1  - a ) n - k - l d a  

dr._kO') drk(x) 
= lim lim f f 

n ~O  M ~ , ~  " n - k  F lY l  A k [ I x /  

r/ 

f ~ (fl el) in [1 + (M~(s  elxj)/N(a(e, x) + (1 - a ) (e -y) ) )21  da/a(1 -a ) .  
0 e 

We first want to show that: 

Claim 2." The limit (when B ~ O) is not affected if we replace N(a(e.  x) + (1 - a ) (e -  y) )  
by N(e-  y) ,  and de~/a(1 - a) by de~/a. 
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A) First replacement 

Indeed, as before we get from the equivalence of norms o f R  n that 

[ N(ot(e" x) + (1 - o0(e" y)) I 
I In N(e" y)- ~<ga.  

1 +An I [ n 1 
Since sup In ~ I = In - -  , we get that, after the first replacement, the error 

A >~O 1 +An2 n2 
in the sum Z is bounded by K �9 a - for some K > O. 

e 

For the same reason, pairing the terms where, fo r ]  > k, ej is +1 and - 1 ,  one finds 
that, both before and after replacement, the sum 2~ is bounded in absolute value by 

K" y] and for ]  < k, one finds the bound e 

Kxj + K '  in 

eix i + x] 

2 e i x i - x /  " 
i~ s] 

Thus, to show that we commit a negligible error in this first replacement when r~ ~ 0, 

we have to show that 

drk(x) e-rnd~ [ (  ( e J + ' x ) )  k ] dT"m(y) 
f ~  f - ~ - a f M i n  ~, x j+  In ~ ,(Yj)'~=x 

zx k [ Ix /  o ( d - , x > l  1=~ f lY/  

where, for any e E {-1,  1 }k, (e]+)i = ei for i :/:], = + 1 for i =] and (e]-) i  = ei for 
i-C], = - 1  for i=]. 

Let us first bound the inner integral 

m d , ( y )  
f Min (fl, (Yi)/= 1) II Yi <~ m f Min (/3 Max yj ,  (y])~.= 1) d'c(y) 

Am I l'I y] 

<~m f Min(flMaxyj,(.v/)~=l) ~ dyi 
O<~y]<l ] ]=1 Y] 

= m2(m - 1) f Sin [[3y m ,Yl ] ~ dyj 
O<.Yl<~Yj<~Ym<~l j=l Yj 
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= m2(m - 1) f [In (ym/Yl)] m -2 Min (ym 1 ,/3yll)dyldYm 
0~<), l~<Ym<~ 1 

1 y--I  
= m2(m - 1) f dy f [ln u] m-2 Min [/3, u -1 ]du. 

o 1 

Now the inner integral is 

3-1 y-X du 
for y </3 equal to /3 f [ln u ] m - 2 d u  + f [ln U] m - 2  - -  

1 3--1 U 

and 

y--1 
for y ~>/3 to /3 f [ln u]m-2du. 

1 

Therefore our upper bound equals 

m2(m - 1) [/32 3-11 f 

3-1  
=m2(m-1)  /32 f 

1 

du 
[ln u]m-2du + f l(O <~ y ~ u  -1 ~ 3)[ln IA]m-2dy - -  

U 

+[3 f I(/3<~ y<~u -1 <~ 1)[lnu]m-2dudy ] 

[3 3 -1  
[lnu]m-2du + f [In v - l ] m - 2 d v + / 3  f u-l[lnu]m-2du 

o 1 

__~2 f [ l n u ] m - 2 d u  
1 

= m 2 ( m -  1) f ( - l n v ) m - 2 d v +  (-ln 3) m-1 
o m - 1  

3 
= m 2 f (-ln 72) m- 1dr 

o 

by integration by parts. The same integration by parts gives by induction that this last 
integral equals 

m--1 (--ln fi)i 
(m - 1)!~ 

i=o i! 
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Therefore, since we are only interested in values of  3 <- e -m < 1, we get 

f Min(~,(~)1=l)~y)l <~Kmflllnfl[ m-1. 
A m 

LetFm(fl)  =3 [ln/31 m" we thus have to prove that 

)k l)d ;=l 
-HT-x  o j , - -  

Akf dr (x )  e -  m F r o - 1  Min + In i (eJ_,x) a 

(e j+, x) 
To evaluate the inner integral, let for short y] = x i + in - -  - then the inner 
integral is bounded by (e ]- , x) 

e - m  d a  

Min f F m -1 (rain (a,y]))  - -  
] o ct 

Fro_ 1 being increasing in [0, e -m ]. Call this last integral r  we get letting p = 
rain (y, e --m) 

P 
r = f I lnx [ m - l d x  - F m _ l ( P ) ( l n  p + m) 

0 

< K m F m _ l ( p )  - ( l n  p + m ) F m _ l ( p )  

<~ K m F m (p) (using our previous bound for the integral). 

Thus it will be sufficient to show that, letting ~(y)  =Fm (min (y, e-m))  

dr(x)  
f ~(y,)~<~. 

~kn  {xl<xi} 

Since u ~> O, v ~> 0 implies ~(u + v) ~< ~(u) + ~(v),  it will be sufficient to show sepa- 
rately that 

f I lnXl[  m dz.(x)<oo 
X l ~ X  i I I X  i 

i > 1  
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and that 

f q, l n ( l  < e l + ' x )  l l ) d r ( x ) < ~  
Xl<-Xi (~17 X) I I x  i 

The first integral is bounded by - letting [Ix 1[~ = Max [x i [, and r '  being Lebesgue 
measure on {xlll x [l~ = 1 } - 

S [ln--1 f In - -  ~ kx  2 m dr'(x) 
Xl<.Xi X 1 I I X  i Xl<.Xi<.x2 X 1 J II  X i 

i > 1  i > 1  

]m _ _  
=Ck f In kx2 dx 1 II 

dxi 
O ~ X l ~ X i ~ x 2 = l  X1 J / > 2  Xi 

1(k)m() 
= C  k f In l n L  

k - 2  

- -  d x  I < ~o. 
0 Xl  X l  

For the second integral, we will prove local integrability, i.e. that, for any x E Ag 
C~ {x I ~< xi } there is a neighborhood of x in this set where the function is integrable. 

I f x  1 > 0, then xi > 0 V i so that the integrand is locally bounded. Otherwise, one 

(d+,x )  
has (e, x ) = ( e  1+, x ) = ( e  1- ,  x) :  if (e, x):/:O, then locally in ~ <<-Kxl, so 

~< K '~ (x  1), and we have just shown this bound to be integrable. 
Thus there just remains to consider the case where (e 1 +, x) = (e 1- ,  x) = O. 

Since x l  = O, Y x i  = 1, there exists an index] r 1 with x] > l/k, and since further 
e- x = O, there exists another index ] '  4= 1 with )9, >>- k --2, and eie ~ = - 1 .  Assume 
without loss of generality that ] '  = k - 1 ,] = k, and make the change of variables 

(X1 " " X k )  -+ ( f l , f 2 , x 2  " " X k - - 2 )  

using the equations 

( e l+ ,x )= f  1 , ( e l - , x ) = f 2 ,  ~ X  i = 1. 

The integrability on ~xTx / dr(x) is equivalent to that of II x i 
to that of i<k-1 

, which is equivalent 
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tP(llnlfl/f2ll)dfldf2k-2( dxi ) ( f l  - f 2 )  i=211 --xi 

over { I f~" [ <~ ~, 0 <~f l - f  2 <~xi ~< 1 } - or, integrating over the xi's: 

Iln ( f l  --f2)1/~( Ilnlfl/f2 II) 
d f l d f 2 .  

The integrand is only increased if we replace f l  - f 2  by I l f l  l -  If2l I - so we can 
assume 0 ~<fi ~< i ,  inserting absolute value of differences. 

Further by symmetry it is sufficient to consider the case f l  ~>f2 : 

[-In ( f l  -f2)llFm[ln ( f l / f2 )  A (1 + ~m))] 
f dfldf2. 

0 ~f2 <<'fl <<" 1 f l  --f2 

L e t f l  =Y, f2 / f l  = 1 - x :  our integral becomes 

1 �9 1 Fm[ln ( 1 - - X )  - 1  A (1 + S m ) ) l d x  f [_ln(xy)]tdy; 
f 
O X 0 

1 X 

the inner integral is - f [- ln z]tdz, which by a previous computation is equal to a 
X 0 

polynomial in [- in x]:  everything amounts to show that 

[ - ln  xlfFm[ln ((1 - x )  - I  ^ (1 + t~m))]dx 

is integrable on [0, 1]. The integrand is bounded except at x = O, where it is bounded 
[-ln X]l'Frn (2X) 

b y - -  , i.e. a polynomial in ( - ln  x) this we know to be integrable. 
X 

Thus, we finished proving that the first replacement can be made. 
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B) Second replacement 

Once this first replacement is done, the sum in the integrand is, by our previous 

argument, bounded by 

So, to show that the second replacement can be done, we have to show that this func- 
tion is integrable for 

d'c(y) dr(x) dot ( 1 1 1 ) 
since = - + - -  

IIy i [Ix i 1-ot ot(1-ot)  ot 1 - o t  

1 
over say ot < ~- - thus that 

1 

dr(x) 2 d'4y) { 
0 - - M i n  (yi)]Z~ j--~x l f dot f II y] (llnF ~ 

For the first integral we can use our previous computation,  and the integral over ot 
disappears, so we are left to prove that 

61+.X x  em) 
f xl ~<xj .Ilxj 

1 

d'4x) < oo 

and this we have shown previously also. So Claim 2 is proved. [] 

Thus we have to compute 

1 drn_k(y ) d'rk(x ) n 
lim lim ~ f f f 

4-->0 M...+r162 1-I y] ~ 0 

dot 
E ( i i e T ) ( i l e Y ) l n  [l+[Ma(eX, x)/N(O .x ,e  y . y ) ] 2 ] _ _ .  

eX,eY ot 
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Letting Mot = u, this becomes 

1 drn_k(y) drk(x ) Mn 
lim lim f - -  f - -  f 

rl--+o M.-+r162 2 Fly~ II x i o 

du 
(1-I eT)(I-[ ey ) in  [1 + [u(eX, x)/N(O "x, e y . y ) l  2 ] - - .  

ex, ey U 

Now, the limit when M goes to infinity becomes independent of  r~, so we get, using for 

short e for e x and ~ for e y : 

1 drn_k(y ) drk(x) M 
lim f f - -  f 

M--+~ "2 I-[ y j  rI x] o 

du 
( I I  e j ) ( I I~ / )  in [1 + [u(e,x)/N(O "x, ~" y ) 1 2 l - - .  

e,r/ U 

Denote the inner integral by ~M(X, y). We have 

Ml(e x)L/N(O'x "O'y) 
dPM(X,y)= ~, (l-Iej)(1-I~lj) f l n ( 1  + v 2 )  dv  

e,rl 0 V 

I<e,x>l/N(O .x,~ .y) dw 
= s (IIe])(II~7]) f ln(1 +M2w 2) - -  

e,r/ 0 W 

o o  

= f [  
o 

dw 
( I I  e / ) ( I I  ~i)I[w <~ [(e,x)[/N(O .x, rl "Y)]] in (1 +M2w 2) - - .  

e, '0 14,' 

If instead of In (1 +M2w 2) in this integral we had a constant, say in M 2, the integral 
would still exist - because the integrand vanishes in a neighborhood of the origin - ,  
and would have a value equal to in M 2 times 

(II ej)(II 77]) lnl(e ,x)[-  ~ (II ei)(II~j) lnN(O .x, n.  y)=O 
e , "O e , "O 

- the first term being zero because of N (Hr/j)  and the second because N (1-I ej). 
r/ e 



T h e  S h a p l e y  Va lue  in t he  N o n  D i f f e r e n t i a b l e  Case  51 

So we still have 

(~M(X, y) ~ [ ~ (II ej)(II~j)I[w <~ I(e, x)l/N(O .x, rly)]] In (w 2 +M -2) dw ~ .  . - - ,  

0 e,r/  W 

Now the integrand is uniformly bounded, and vanishes outside some closed interval 
disjoint from zero, so that by Lebesgue's dominated convergence theorem 

lim 
M.---> oo  

o o  o o  

(~M(x,y)= f [ N](lnw2) dwm= f [ N]21mwdlnw 
O e,r/ W w = 0  e,r/ 

J(e,x)t 
=w=O [e,n~ ] d ln2 w = e,n ~ (IIei)(II~?j)ln2N(O'x,~7"y) 

= ~ ( I I g ) ( I I ~ ? j ) l n 2 l ( e , x ) l  + ~ (II 9)(I'[r/j)ln2 N(0-x, ~?'y) 

- 2  N (II ej)(Ilr~i ) In i(e, x)L lnN(0 "x, ~7 "Y) 
e,r/ 

= --2 [N (17 9) In I(e, x)l] [N (II ~Tj) lnN(0 "x, ~7 Y)] 
e r? 

(the first of the three sums is zero because N (H ~?j) and the second because N (II ej)). 
r/ c 

Now we have to show that when we apply the first two integrations to r -- lira r 
we get something going to zero, i.e. that M 

Claim 3." 

) ark(x) o. 
lim f drn_k(Y, f _ f [ ~ (iiei)(ii~?j)i[w<< " le" xl/N(O .x, r~'y)l] 

M--,~ H y i I l  x j  o ~,, 

In (1 + (Mw)-2) dw 
W 

By Lebesgue's dominated convergence theorem, since in (1 + (Mw) -2) decreases point- 
wise to zero, it will be sufficient to show that 
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drn-x(Y) drk(X) 
f I I y  i f - - ~ x ]  

or,  replacing w by  z -1/2 , tha t  

( IIei)(II~?])I[w <~ I(e, x)l/N(O . x, 77. y) ]  1 
e /rl  

2 dw 
l n ( 1  + w -  ) - - < o o  

W 

d~n-k(Y) drk(x) f I 2; (Ile])(IIn])I[z<e,x> 2 >~N2(0 .x, n 'y) ] l  
f IIy i f IIx] o c,~ 

dz 
l n ( 1  + z ) - - <  ~176 

Z 

If  z is close enough to zero (smaller  than min N2(0  �9 x, y))  then the sum 

Y dz 
cally zero (i.e.,  for  all x and y ) ,  so we can replace dz/z by  1--~z ' and get 

is identi-  
e ,r/ 

d'rn_k(Y) . drk(x) 
s i~,, J-~x, lo I Z (Ilei)(IIr~i)I[z(e, x; ,2 >~N2(O "x, +7 "Y)]I 

E ~'rl 

d i n  2 (1 + z) < oo? 

Let  us now try  to  bound  the sum N . 

Pairing the terms where r~ 1 has oppos i te  signs we get 

2; = N ( I I  ej)(IIrlj)I(n+ <~ z (e, x) 2 < n )  

using n+ for N2(0  -x ,  + ~ t Y t ,  ?'/272, ~3Ya . . . .  )- 

Pairing now the terms where e I has opposi te  signs, we get,  le t t ing u = 2; 
U~_ = [ u q - e l X  1 [ 2 , U _  = [ U - - e l X  1 [ 2  / > 1  

9x j, 

f l I(n~ u+) t~ .~u)l (n~ ~n) 2 = ~ ( I Ig ) ( I I r  0 < - -  + I  I <z  
e,'q e,r/ U_ \/2+ U+ 

(~ n)(n: n+) (u:n)(:.~z n~) 1 +1 < - -  I ~ < z < - -  + I  - -  1 - -  < . 
/2+ U-- /2+ 
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Thus we get by integrating 

z) <~e~,n { [i(n~++ u+ ) (n_~++ u~+)J f [  ~ I d l n 2 ( l +  ~<- -  + I  ~< Ax 
e ,'r'/ U_ 

("-n-)t + I  < n _  A 2 + I  - - < - -  A 3 
n+ u +  n+  

where 

(n+)) (in:: Al=I(n_>n+ ) In 2 1 - l n  2 1 + - -  ~I(n_>n+) 
U+ U+ + u+  

(ln(l+n_)-lnu+).2~KI(n_>n+)(ln~++)(1-1nu+) 

A2=I(u+>u_ ) In 2 1+ - l n  2 1+ n + .  <~I(u+>u_) In u+ / 1/n+ + l/u+ ] 

(ln (l + n+)-ln u_) . 2 <.KI(u+ >u_) (ln ~__ )(X -lnu_) 

and similarly 

A3 <-KI(u+ <u-) (ln ~+ )(1-1n u+). 

U+ n _  
Remark that A 2 is used only when 1 < - -  < - -  ~< K1, so that, by modifying the 

U_ /'/+ 

constant K, one can replace the factor (1 - in u_  ) by (1 - In u+). 

Obviously this formula remains valid - readjusting K - when reinterpreting ne 
(resp u_+) as x/previous n_+ (resp Ue). 

Remarks also that in all three cases, one uses the smaller of the factors In - -  u-Z-* 
U_ 

n _  
In ~++ . Thus we get simply 
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n _  
As already remarked before, the equivalence of  norms in R n implies that In - -  ~ K'y 1 

n+ 

In u+ (~< K'). In particular, if we assume for instance u+ > u_, we can replace - -  by 
U_ 

in l a i n  (~_+, eK' ) ] K " u + - u -  ~< ~ .  Now u+ > u _  is equivalent to e x u > O ,  sou+ - u _  
u+ 

= elu  + x l  - telU - x l  I = 2 min (elu,  x l )  = 2 min (lu I, Xl),  and u+ = lul + Xl. So we 

in u+ ] min ([u I,xx) 
can replace - -  by if u+ > u_, and thus also in the dual case. Thus 

u_ l u l + x l  
we get 

xl ^ lul) 
f l2;e,n I d l n 2 ( l + z ) < ~ C ~ e  Y l ^  [ul+-~l ( 1 - 1 n l ( e , x ) l ) .  

But Yl could have been any y / ,  and in particular their minimum A y i. Using now our 
previous formula I 

m d~(y)  im_l f Min (/3, (Y/)/=I) ~ ~<Km/3 [ln/3 
dx m 

we get 

f dr(Y-~)fl ~, I d l n  2 ( l + z ) ~ < C ' N ( 1 - 1 n  I ( e , x ) l ) y  I l ny l  m-1 
~rn II y /  e,n e 

where 

x l  ^ lu[ 
= - - .  

Y x l + l u l  

dr(x)  
We have to show that this is integrable ~--~---, at all points o f A  x (3 {x I <~x i V i} -- if 

l l x /  

another coordinate was minimal, let this play the role o fx  1- 
There is no problem if x 1 2> 0 - because In I ( e , x ) l  is integrable for Lebesgue 

measure, andy  [lny ira-1 is bounded. 

Fix now an e. If x 1 = O, and [ u I > O, then the factor (1 - In I ( e, x )  [) is locally 
bounded, and y is locally of the order of x l ,  so that we have to show the integrability 

r dr(x)  
of x I I ln x 1 [ ~ on {x 1 ~< xi } which we have already done before. 



The Shapley Value in the Non Differentiable Case 55 

There remains thus only the case where x 1 = u = 0. In that case, as we argued 

already before, there exists two different coordinates ] and ] ' ,  different from 1, such 

that x] > O, x f  > O, ejej, = - 1 .  We can assume without loss of  generality that ] = k, 

] '  = k - 1, and can change coordinates 

X 1 . . . X  k---~u, X 1 . . . X k _  2 

k k 
using the equations Z e i x  i = u ,  ~ x i = 1. 

i=2 i=1 

We therefore have in effect to prove that - assuming without loss of  generality 

that el = 1: 

f ( 1 - 1 n  lu + x l  I ) - -  In r - du II <oo 
l u l < l  X l + l u l  Alul i=1 Xi 

O<~x 1 <~xi<~ 1 

or, integrating over x i for i > 1 : 

f 
l u [ < l  

O < x < l  

x ^ l u l , , ( x + l u l )  dx 
( 1 - 1 n l u + x l ) ~ m  /x--~--iu I I l n x l k - 3 d u - - < ~ x  

or 

1 1 X A U  ( X + U  ) _ _  
in r [ in x [Sdu dx < ,,o 

f f [ 1 - 1 n l x - u l ] x + u  \ X A U  X 
0 0 

dx dx 
Replacing I lnxl  s by I ln(x  A U)I s, and - -  by - -  

X X A U  
sider x ~< u: 

, one sees it is sufficient to con- 

f I(O <~x <~u <~ 1 ) [ l - I n  ( u - x ) ]  
1 

X + U  
in r 1 + I ln xlSdudx < ~? 

Since In r t can be written as a polynomial in In (x + u) and in u, and since 
X 

Iln (x + u)l ~< Iln (u - x ) l ,  the whole thing amounts to prove that 

dudx 
f I l n ( u - x ) l ' l l n x l  s .... <oo 

O~x~u<~ 1 U + X 
(whatever be r >t 0, s ~> 0) 
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x 
or, letting z = - 

u 

1 dz 1 
f - -  f ( - in  u - i n  (1 - z ) ) r ( - l n  u - l n z ) S d u  < oo 
o l + Z o  

the integrand in the second integral is a polynomial in in u, whose coefficients are 

polynomials in In z and In (1 - z ) .  
Since any power of in u is integrable, the first integral yields a polynomial in In z 

and In (1 - z ) ;  since 1/1 +z  is bounded, the outer integral boils down to 

+ [lnzl r Iln(1 -z ) lSdz ,  
1 

which is finite for the same reason. 

This finishes the proof  of  Claim 3. [] 

It follows that 

drk(x)  . , ~ drn_k(.V) drk(x)  . 
lira f drn-k( 'Y) f ~ CM(X, y )  = J f ~ ( lim CM(X, Y)) 

Mooo II y I �9 II ] 9 M--+~o 

= -2  1I x] dr  k (x) n 
~n k [I y j  

d rn -k (Y)  

and therefore that 

(I le])  In [1 + (3//( ~ elsl)/N(e" s)) 2 ] 
1 e i < k  

lira lim f 2 I I  s i 
~--+OM-~, SCAn, Y, si<~ 

i<.k 

E (IIr~/) lnN(0  -x, r l ' y )  

= - A  k f drn-k(Y) 
An_k 1-I y j  

&As) 
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where 

Z (IIei) In l(e, x)l 
e 

A k = f drk(x). 
ak Fix i 

If  we use also A o = - 1, we get therefore 

[ 
P(v i >~ 0 V i)= (-1)n/2(2zr) -n I -An  + A o f 

I_ A n 

~, ( Il rl]) ln N(rl . y ) 

II y~ 
drn(y)  

AZsj  f 
~ E ( 0 , 1 }  y E a n  

34:(0 . . . . .  0),(1 . . . . .  1) (6 ,y)=O 

( I I  ~1i) In N(r? �9 y ) 
rl E (--1,1)n j l i~ i>~O 

H ~  
j : ~ / = O  

am_ Z~j(Y)] 

(remarking that A k = 0 if k is odd). Thus: 

P(vi>~O V i)=(-1)nl2(2rr)-n ~ E (o,E 1 } nAE6j 
I n N ( y )  

f dr._ z~j(y) 
II y [I = 1 1-I YI  

V i : S j y j =  0 j :  8./=0 

where 

- rn_X8 / is Lebesgue measure on the corresponding set, 

- the integrals are Cauchy principal values 

- for ~ = (1, ..., 1), the integral over the empty set is set to -1  

( I I e / )  in I(e,x)l 
ee ' [ - -1 ,1}  k 

- A o = - 1 ,  A k= f drk(x ). ak 1-Ix/ 

If  each v i has norm 2, total mass zero, and all v i are mutually singular,P(v i >~ 0 V i) = 2 -n 
obviously. Also Rv = [ -1 ,  1] n, so that N(y)  = sup (x, y ) =  ]~ [Yi = [[Y ][- 

x E [ - - 1 , 1 ]  n 
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Since we integrate on the un i t  ball ,  it follows that  in this case our equat ion  yields 

2 - n  = ( -  1)n/2 (2zr) - n  [-A n ] 

thUS 

A n = -(-1)nl2zr n 

thus 

(-1)n/2 (2rc)-nAk = -2-n[(-1)n/2rr-n(-1)-tq27rx ] 

= - 2  - n  [(-1 ) - (n -k ) /27 t - (n -k )  ] 

2 - n  

--A"_k 

Thus: 

P@i ~ 0 V i) = 2 -n 1 -  
(-  1)G~i/2 in N(y) ] 

E f d r~ j ( y )  I 6 ~ ( 0 , 1 }  n 7tEa/ i lyll=l 1-I y/ 
,54:0 vj:(1-Sj)yj=o j :6j=l 

N6j even 

This formula is valid for the case n even, say n = 2k. But  /19(/)1 "'-PZk--1 ~ O) = 

e(Vl "'" /:2k ) 0) + e(/)l  ,/'2 . . . . .  b'2k--1,--V2k ~> 0) can be computed  from this formula,  

and yields then the same formula with n = 2k - 1 : thus the formula is valid for all 

n ~ > l .  

Thus,  for all #1~> 1 : 

P(vi>~O V i E / ) =  2 - ( # t )  

where 

I in Nj(y)  J 1 - ~ f d r @ )  
4)eJc_t (Tri) #y Y ERJ ~jYJ 

[#J  even] [[yll =1 J 

N j 0 ' )  = sup ~ Yjuj(X). 
IIxII ~< 1 jEJ 
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Remark that,  by the symmetry of the norm (N/(y)  =Ni(-y)) , the restriction to # J  

even is not  necessary: the integral will be zero for # J  odd.  

The integrals have to be understood as Cauchy principal values, in the following 

sense: define a set C _c R J to be symmetric iff  y E C .=-. (lyi[)/~ J E C; say that  C 

consists only of  non zero elements i f f y  E C ~ y  i ~ 0 V ] EJ. Then the integral is to 

be understood as the limit of the integrals over an arbitrary sequence of  closed sym- 

metric sets Ci consisting only of  non zero elements, and such that  the measure of  the 

complement  of  C i goes to zero. 

The norm IIY II used to derive the formula was the l x -norm ~; ly i I, bu t  the formula 

of change of  variables for surface measures yields now that  it remains valid for any 

norm II "lI onR J such that  I[(Yl --. Yk)ll = [I(lYl I, lY21 . . . .  , lYk I)ll. 
The same formula permits to rewrite our expression using the surface measure a j  

on the unit sphere of  the norm N I :  

f 
P(vi(x)>~O V i E 1 ) = 2  #z[ + 

[ O~Yc__I 
[ #J even ] 

1 _ In Ilyll d e  " "] 
J Jty)/. 

(Tri) #'r ]EjY] J 

Remark: Obviously the formula we got is not  very transparent - this may be due to 

the fact that  it has to reflect the peculiar geometry of  the positive orthant.  I t  would 

therefore be interesting to have also an expression for the density over directions - i.e. 

on projective space. 

Sect ion  4: To  Mess Everything up: Some  Extens ion  Possibilities 

1 Extension of the Cylinder Measure 

Given a cylinder measure /~ on a locally convex space E with dual E ' ,  one can use 

Kolmogorov's existence theorem for a projective limit of  measures as done in the 

proof  of  Theorem 1, and a Hamel basis of  E ' ,  to obtain an equivalent characterization 

of  12 as a countably additive measure on the Baire a-field of  the weak completion E of  

E,  using also a recent result of  Edgar 4 . 

Using this, one can then best define the corresponding integral in the following 

way: let a vary in the increasing net  of  all finite subsets of  E ' .  For  any a,  and any 

4 "Measurability in a Banach space" Indiana University Mathematics Journal, Vol. 26, n ~ 4, 
pp. 663-677 (1977). 
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x E R \ E ,  let V~(x) = {y EEI~(.V) = ~(x) V ~0 E a}. For any function f on E, define 
its extension f to k" by f(x) = lim sup f (y)  at all x EEkE.  Finally define the 

a y~V, Ax) 
upper integral /](f)  as the upper integral of f for the countably additive measure/2 on 
the baire a-field alL'.  

Given /2, one can use finitely additive integration theory in the standard way 
(cfr for instance Dunford and Schwartz, Linear Operators, Part I). More precisely, 
one has: 

1) /2(1) = 1,/](-1) = -1 , / ]  is monotonic; 

2) a > 0 implies/](~f) = a/](f);  

3) / ] ( f +  g )  < / ] 0 e v g )  + / ] ( f A g )  < / ] 0  e) + / ] (~)  whenever /](f) < + 0% /](g) < + oo ( the  

first inequality is subadditivity, the second follows from the corresponding formula 

for upper integrals, and f r o m f v  g =fvg,  fA  ~ = f ^  g) ;  

4) / ] ( fv  (-n))  -+ /](f) V f , / ] ( f ^  O ) > - ~ 1 7 6  = lim / ] ( fAn) .  
n --e- ~ 

Those properties immediately imply that L = {f l / ] ( f )  + / ] ( - f )  ~< O} is a vector lattice 
containing the constants, and that s is a positive linear functional on L. Hence A = 
{ALI A EL}  is a boolean algebra and /~ a finitely additive probability on A (also 

denoted/~). 

Hence f E  L and s < t imply/ l ,  { f >  s } ~>/~* {f~> t} (reduce to s = O ~ f ~ <  t = 1, 
then f fd# is in between - we use /~ , (A)=sup (/](f) l f E  L, f<.I.4 }, and N*(A) = 
inf {/](f) l f E  L, f>~I.4 }). Therefore, if f E L ,  then for all but countably many t's, 
/~* {f~> t} =/~, ( f >  t}: (f~> t} and { f >  t} are in A. Hence any bounded f ~  L can 
be approximated uniformly by A-measurable step functions, and thus 

L C LI(A,u) ,  with /](f) = ffdl.t for f E L .  

Conversely properties (1) to (4) imply also that 

v f,  v fin)heN, [/]ft.) > -~176  < f - e ) )  -~ 0 V e > O ,  
- n__+o o 

lim sup sup/2[(ft ~ - fn)  + l = 01 ~ l im/]( fn) />/] ( f )  
n "-~ . o  k ~ n  

and hence that, if fn is a Cauchy sequence in L converging in 0-measure to f, then 
f E  L is the norm limit of fn. In particular, choosing f E s 1 (A,/a) and fn step func- 
tions, one obtains L = /_ 1 (A, la). 
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One concludes now easily that/~ is at least as good as the finitely additive integral: 

V f, fa(f) <~ f* fd~. Obviously, L = L 1 (A, ~) contains both  the cylindrically integrable 
functions and the bounded continuous functions on E.  

Of course, one could still get conceivably more integrable functions by refining 
/2 - for instance if one could prove r-smoothness of /a  on J~, one could use its regular 

extension to the borel sets of /~  for deffming/2; or one could try to get a lower f ,  for 
instance by restricting they E V~(x) to be of  essentially minimal norm. 

2 Using More Smooth Cylinder Measures 

By Theorem 1, the invariant cylinder measures corresponding to different pairs (m, o) 
are mutually singular. Thus the integral of  a function - and even its integrability - 

may depend in a highly irregular way on the pair (m, a). To smooth this out,  one 

could choose m and a by some probability distribution P(m, o). Since the correspon- 

dence preserves convolution, and because of the idea that in some sense the sum of 

two independent random elements of  B(I, C) is a fortiori random, one should certain- 
ly take P absolutely continuous with respect to Lebesgue measure, and in some sense 
invariant under convolution. Since 

f DXx(~)dQ(x) = f DXm + ax(x)dP(m, a)dQo(X) 

f D~m x +aXx)(X)dP(m, o)dQo(~O 

f D l+ax(~OdP'x(m, o)dQo(X) 

we see that for defining the value, we consider integrals of  a fixed function with respect 
to the distribution pX of ()~*n, Xo) (where (m, a) is P-distributed), and let the scale 
factor X go to oo. Asking that this family pX be invariant under convolution is asking 

that P be stable. This leads to choose m and a independently, m with the symmetric 

stable distribution of  index a ,  and a with the one side stable distribution of index 
(thus a < 1). The lira sup of the (upper-) integrals when the scale factor X goes to ,,0 is 

then clearly decreasing when a ~ 0, since for/3 < ~ the stable distribution with index 

/~ can be viewed as a mixture of  stable distributions with index a (choosing their scale 
factors according to the stable one-sided distribution with index/~/a). 

One is thus led to a formulation of the following type: 

- for any bounded measurable function f on R+, let 

o o  

p(f )  = lim lim sup f f(Xx)dPa(x). 
~-~0 h~ '~  0 
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where pa  is a one sided stable distribution with index a (its scale factor does not  

matter).  

Let  p denote a suitable extension (cfr n ~ 1) of  the invariant cylinder measure 

where m and o are chosen independently with stable distributions of  index a 

(a < 1) - symmetric for m and one sided for o. 

I f f  is a function of  several variables, let Px(f )  denote p of  the function of  a real 

variable x obtained by holding all variables but  x fixed in f. Similarly fix(C) will 

indicate that all variables but  X are held fixed in C- 

Let ~v(X)=PPx03x(DxX(X))), and Cv(X)ff-Ph(/ax(-DxX(X))): then v has a value 
Cv if ~v = ~_v and is additive. 

3 Interverting More Limits and Integrals? 

As a general rule, one gets functionals with a large domain by averaging before going to 

limits rather than after - in our context ,  this was already illustrated in "Values and 

Derivatives". Now the v appearing in the above formula for ~v is not the given game, 

but  obtained from it by the operator ff of section 1, which itself involves both averag- 

ing and limit operations.  

Let  us first show how ff could be replaced by an operator - say f - where the 

averaging occurs before the limit operations, in order to remove as much as possible 

the basic restriction that we can talk only of  games that have an extension in some 

sense.  

Remark first, that it is sufficient to compute w(x) = ~(v) (x )  for step functions X 

- either because V(w)[x, X'] ~< I l k ' - x l l  "llwll implies (for Ilwll < ~ )  that w can any- 

way be uniquely extended to B(I, C), or using the fact that the cylinder measures on 

B(I, C) are also cylinder measures or the space of step functions E B(I, C). 
We return to the basic idea underlying the proof  in [5] of both  theorem B and 

its application to the extension of  games - that  was used in Section 1. 

Let  X denote a step function, and let 7r denote a finite measurable partition such 

that X is constant on every element of  7r. 

Given any vector v of non atomic elements of FA, let,  for any A E n, Ot A denote 

an increasing family of  measurable subsets of A with v(oAt) = t v (A) (V  t : 0 <. t <<. l )  

(and with O~ -- r O1A =A) .  

For  any n > 0, for any permutat ion o of  ( 1 . . . . .  n }, and for e E {-1,  1 }n define 
X b  A ,  A =Oi/n \O( i -D/n ,  and, denoting (or, e) by co, let OAt 'w be defined by ( U Xg) (0)  

i <<.nt 
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UBo([nt]+l) where [x] denotes the integer part of x, and B k = ~  1 n +t \ O r  r '  ( ( k - ) / )  n t -  ~/n 
[nt] 

if e k = 1, B k = O~k/n\O~(k/n)_tn if e k = -1  -- and where tn = t - - -  
/,/ 

Then, for every co and t we still have v(Ot a ' w )  = tV(A),  and if co is chosen at 

1 
random, we have, for all x E A ,  IP(x E O C t ' ~ ~  <~n" (The e is not strictly neces- 

sary, it is just introduced to preserve the symmetry with the opposite order.) 
Let now, for any rr, and any collection 0 ~r,v of  such increasing families (Ot A )A e , r ,  

0 ~ t ~ l  

and any n, ~2 n denote the finite probability space where independently for each 

A @ ~r, some co = coa is chosen at random. 

Also. for any n-measurable ideal set function X, and any co E ~2n, let X~o = U 
A ~ r  

A ,  co A 1 2 
Ox(A) : t henx  I ~<X 2 ~Xco ~ Xco,v(xco) = v(x) V x, and I lE(xco)-Xl l  <~ 1/(2n). 

Let also, for a general zr-measurable function • 

Xoa = [max (0, min (1, x))lco �9 

Define now 

r~  1 1 
~*r',Orr'V,n(X) = ~ r  ! ( E a ( .  !)(v[(t + rX)w ] - v[(t  - r• ]))dt 

(where v still the constant sum game denotes corresponding to the originally given 

game). 

For any given zr, and any vector v, denote by Fv, .  the set of  all possible families 
0 ~r#. For any given zr, the F~, .  form a filter / : . ,  when v ranges over the increasing 

filtering set of  finite subsets of  the nonatomic elements of  FA.  
Similarly the partitions zr can be ordered by refinement. Then lira lira lira lira 

~----~ 0 ?r Ff/" n --+~176 
I]/T~V ," ", _ ~r,O~,vntX)-  4v(• should be the analog of  our 4 from Section 1 but with all limits 

done after any averaging. 
More formally, define a filter F on 4-tuples (r, rr, 0 ~r'v, n) [more formally on 

(R x (~ F~ , . )  x.N)] by F E  F if 3 e : V r : 0 <  I r l < e  3 lr o : V W > ~ o ,  3 / 2 ( = ( / ) 1 ,  
7r 

... vk) ) : V 0 ~'v E F v , .  3 n o : V n >~ n o (r,  n, 0 ~'v, n) E F. 
Then, we define 4 by v E Dom (4)  - [li~n 4 r'v " " . , O . # , n t X  ) exists for any step func- 

m 

iFm 4 ~'~ tion X] =~ [4(v)](X) = 1 .,O~,V,n (X) V X step function. 

Obviously Dom (if) is a closed (using 11 ~ II = 1), symmetric space, and 4 is a positive 
linear symmetric operator on Dom (4)- Further l[ 411 = 1 - this follows from com- 
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pletely similar computations as those in Section 1, and is the main point where the 

specific structure of  the 0 r'v (x <<- X' :* xo~ ~< x "  V co) is used. Similarly one gets, 
under mild continuity assumptions on v at r and L that [~(v)](/)  = v(/). 

under mild continuity assumptions on v at qSand I 1 Ea(nD[V(r(u+x)+)+ 

v(r(u +X)-)]du = 0  V• that [r and if(v) is linear o n  every plane 
I 

containing the constants. 

One could thus use this ~ followed by the operation described in the previous sec- 

tion. However it is now tempting - and possible - to put all averagings before any 

limit operation. 

But to do this, one may want to consider an alternative to integrating with respect 

to an appropriate extension of  the (finitely additive) cylinder measure - in order to 

sidestep the difficulties of  finitely additive integration theory (in what concerns the 

integrability of  functions, and in what concerns changing the order of  integration and 

the permutation of  limits and integrals - although the old paper s helps a good way for 
those last two questions). 

The cylinder measure Q can be obtained - as shown in the proof of  Theorem I - 

in the following way: first select m and o at random according to P, next, for any par- 

tition It, select independently on each partition element the (constant) value of  X on 

that partition element as a Cauchy (m, o) random variable. This gives an approxima- 

tion Q~r to Q, that converges weakly to Q on E when ~ is refined. Q~ is a (countably 

additive) probability carried by the finite dimensional subspace of B(I, C) of  all 
rr-measurable step functions. 

Now the operator D and the averaging for Q~r can without problem be pushed be- 

fore the l~m, together with all other averagings there is no integrability problem at 

least if v is of  bounded variation. On the other hand the limit over all refinements o f ~  

is best retained after the lira has been done (and before the lira over k (px)). 
F 

This was just to point out that the formulation adopted in this paper is by no 

means unique or optimal - and that in particular one could to some extent dispense 

altogether with the assumption that the game has an extension. It was adopted chiefly 

for expository reasons. 

Certainly a lot remains to be done - i.e., convincing theorems - to get a good 
formulation. 

5 .1. F. Mcrtens: "Integration des mesures non d~nombrablement additives: une g~n~ralisation du 
lemme de Fatou et du th~or~me de convergence de Lebesgue". Annales de la Soci~t~ Scientifique 
de Bruxelles, t. 84, 88,231 239 (1970). 
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