
Algorithmica (1994) 11:320-340 Algorithmica
�9 1994 Springer-Verlag New York Inc.

Algorithms and Complexity Analysis for
Some Flow Problems

Edith Cohen 1 and Nimrod Megiddo 2

Abstract. Several network-flow problems with additional constraints are considered. They are all
special cases of the linear-programming problem and are shown to be ~-complete. It is shown that
the existence of a strongly polynomial-time algorithm for any of these problems implies the existence
of such an algorithm for the general linear-programming problem. On the positive side, strongly
polynomial algorithms for some parametric flow problems are given, when the number of parameters
is fixed. These algorithms are applicable to constrained flow problems when the number of additional
constraints is fixed.

Key Words. Parametric flow, Constrained flow, Strongly polynomial time.

1. Introduction. An algorithm for the l inear-programming problem over the real
numbers is called strongly polynomial if it performs no more than a polynomial
number of elementary operations (additions, subtraction, multiplications, divi-
sions, comparisons, and data transfers) in terms of the number of variables and
constraints. If the problem is posed over the rationals, then it is also required that
the algorithm be polynomial in the usual sense.

Strongly polynomial algorithms are known only for special cases of the linear-
programming problem. For example, Megiddo [24] gave a strongly polynomial
algorithm for l inear-programming problems with inequality constraints, where the
objective function and each of the constraints depend on at most two variables.
Tardos [28] gave a strongly polynomial algorithm for l inear-programming prob-
lems where the entries of the constraints matrix (but not necessarily those of the
objective function and the right-hand side vector) are integers bounded by a
polynomial in terms of the number of variables and constraints. Her algorithm
applies to many network-flow problems. It is still not known, however, whether
the generalized max-flow problem [16] can be solved in strongly polynomial time.

Since the general l inear-programming problem is known to be in the class ~ ,
it is not interesting anymore to consider polynomial-time reductions of the general
problem to various special cases [1], [10], [20], unless the reduction runs in
strongly polynomial time. It is interesting to consider strongly polynomial reduc-

1 Currently at AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA. Work
on the paper was done while at Stanford University and IBM Almaden Research Center. This research
was partially supported by NSF PYI Grant CCR-8858097.
2 IBM Almaden Research Center, San Jose, CA 95120-6099, USA, and School of Mathematical
Sciences, Tel Aviv University, Tel Aviv, Israel.

Received August 10, 1990; revised December 26, 1991. Communicated by Harold N. Gabow.

Algorithms and Complexity Analysis for Some Flow Problems 321

tions of the general linear-programming problem to various special cases. Also,
since the linear-programming problem is known to be N-complete 3 [9], it is
interesting to consider logspace reductions. In this note we consider the following
network-flow problems, and give strongly polynomial and logspace reductions
from the general linear-programming problem to these problems. On the positive
side, we show that some parametric flow problems with a fixed number of
parameters have strongly polynomial algorithms. In particular, we discuss strongly
polynomial special cases of problems described below.

PROBLEM 1.1 (Balanced-Costs Circulation). Given a digraph G = (V, E) with
real costs per unit of flow c~ ~R (e ~ E) associated with the edges, find a
nontrivial circulation x = (xe)~ , i.e., x ~ > O (e ~ E) , x ~ 0 , and, for every
vE V,

E Xiv ~ E Xvi~
i:(i,v)~E i:(v,i)EE

such that the "cost" is balanced at the vertices, that is, for every vertex v e V,

E XivCiv ~ Z XviCci"
i: (i, v)eE i: (v, i)eE

The set of circulations with balanced costs is invariant under the operation of
adding the same constant to each of the costs.

The problem of a flow in a network with pairs of homologous edges is defined
as follows. A set of pairs of edges is given and a flow where members of each pair
carry equal amounts of flow has to be found. The latter problem and a related
one of networks with bundles were studied by Berge and Ghouila-Houri [2],
Ghouila-Houri [14], [15], and Hoffman [19]. The result of [28] implies that these
problems are solvable in strongly polynomial time. The problem of a flow in a
network with pairs of homologous edges can be generalized as follows into a
problem for which it is still not known whether a strongly polynomial-time
algorithm exists.

PROBLEM 1.2 (Fixed-Ratios Circulation). Let G = (V, E) be a digraph, let le,
ue ~ R + (e ~ E) be lower and upper bounds, respectively, on the flow in an edge e,
and let cr S ~ R+, where S c E x E. Find a nontrivial circulation x = (xe)~,~, i.e.,
l~ < x~ <__ ue, and, for every v E V\{s , t},

E Xiv ~ E Xvi'
i:(i,v)~E i:(v,i)~E

such that, for every pair (ei, e2) E S, Xe~ = o~(e~, e2)Xez.

3 Complete for the class ~ under logspace reductions.

322 E. Cohen and N. Megiddo

REMARK 1.3. The constraints of the form Xe~ = ct(e 1, e2)Xe2 imply by transitivity
more constraints of this type, so we may assume without loss of generality
that S is transitively closed, so that if {(el, e2), (e2, e3)} c S, then (el, e3) ~ S and
�9 (e 1, ea)= ~(e 1, eE)ct(e2, e3). Similarly, we may assume without loss of generality
that if (el, e2) E S, then (e2, el) E S and 0~(e2, el) ~-- 1/~(el, e2). Thus, we assume S is
an equivalence relation over E.

PROBLEM 1.4 (Circulation with Fixed Forks). A digraph G = (V, E), where V is
partitioned into three sets U, Fin, and Fnut, is given. The vertices in Fin (resp. Font)
have in-degree 2 and out-degree 1 (resp. out-degree 2 and in-degree 1). Also given
is a function a: Fin u Fou t ~ [0, 1]. The vertices Fin (resp. Four) are called in-forks
(resp. out-forks). Find a nontrivial circulation x such that:

(i) If v ~ Fou t and {(i, v), (v,j), (v, k)} c E, and j < k, then

x o = ~(v)xio and X~k = (1 -- Ct(V))Xio.

(ii) If V S Fin and {(v, i), (j, v), (k, v)} c E and j < k, then

x jr = offv)xvi and Xkv = (1 -- ~(V))XvI.

PROBLEM 1.5. If the graph G is bipartite and all the edges are between U and
F = Fin u Fou t, then we refer to the problem as the bipartite version of Problem
1.4.

We show that the existence of a strongly polynomial algorithm for any of
the problems stated above implies the existence of a strongly polynomial algorithm
for Problem 1.5. Also, these problems are ~-complete. This is dearly the case for
Fixed Forks. It is also easy to see that a circulation with fixed forks is a special
case of a circulation with fixed ratios. In Section 2 we give a strongly polynomial
time and Ar~ reduction 4 from Problem 1.5 to the Balanced-Costs Circulation
problem. In Section 3 we show that the existence of a strongly polynomial
algorithm for Problem 1.5 implies the existence of such an algorithm for the general
linear-programming problem. Also, Problem 1.5 is ~-complete. The combination
of these results implies the following theorem.

THEOREM 1.6. For each of the following:

(i) Circulation with Balanced Costs (Problem 1.1),
(ii) Circulation with Fixed Ratios (Problem 1.2), and

(iii) Circulation with Fixed Forks (Problems 1.4 and 1.5),

the problem has a strongly polynomial algorithm if and only if the general linear-
programming problem has one. Moreover, all these problems are ~-complete.

4 An jC-cg reduction is one that can be carried out in polylogarithmic time with a polynomial number
of processors.

Algorithms and Complexity Analysis for Some Flow Problems 323

In Section 4 we review a technique developed by the authors in [5] (see also
[4], [6], and [7]). We apply the technique to obtain strongly polynomial algo-
rithms for parametric flow problems when the number of parameters is fixed. If
the number of parameters is not fixed, then these parametric problems are
~-complete, and the existence of a strongly polynomial algorithm for any of them
is equivalent to the existence of such an algorithm for the general linear-
programming problem. The existence of strongly polynomial algorithms for
parametric problems with a fixed number of parameters has consequences as
follows. If either the number of "forks" in Problem 1.4 is fixed, or the number of
equivalence classes in S of Problem 1.2 is fixed, then the respective problems can
be solved in strongly polynomial time. Moreover, similar generalizations of the
maximum flow and the minimum-cost flow problems also have strongly poly-
nomial algorithms. Some of the results of Section 4 also follow from a scheme
very similar to that of [5], which was introduced later by Norton et al. [26].

2. Bipartite Fixed Forks is Reducible to Balanced Costs

PROPOSITION 2.1. The Bipartite Fixed Forks problem is reducible both in strongly
polynomial time and in jV'Cg to the Balanced-Costs problem.

PROOF. Consider an instance of Problem 1.4 on a graph G = (V, E) with costs
c e (e �9 E), where V = U u Fi, w Fout. We reduce the problem to an instance of
Problem 1.1. Define G' -- (V', E') as follows. Let V 1 and V 2 be two copies of V,
and let W x and W 2 be two copies of E. Let

V t = V 1 k.) V 2 k..) W 1 k_) W 2.

For every vE V we denote by V 1 E V 1 and V 2 �9 V 2 the corresponding vertices. For
1 W 1 W 2 every e �9 E we denote by we �9 and We 2 �9 the vertices that correspond to e.

We now associate weights c* (e �9 E) with the edges of G. Consider a vertex v �9 Fi,
(resp. v �9 Fo,t) with incident edges (v, i), (j, v), and (k, v) (resp. (i, v), (v,j), and (v, k)),
where j > k. Let c* = 1, e*, = ~(v), and Ck* = 1 + C~(V) (resp. C* = 1, cv* = ~(v), and
c*k = 1 + ~(v)).

To each edge e �9 E there correspond five edges in E'. If e -- (i, v) where i �9 U
and v �9 F = Fin v Fou t, then the corresponding edges are (see Figure 1):

(i) el = (w 1, v 1) with cost c*.
(ii) e2 = (v2, w 2) with cost c*.

(iii) e3 = (i 1, w~) with cost 0.
(iv) e 4 = (w~, i 2) with cost 0.
(v) e 5 = (w~, w~) with cost 2c*.

If e -- (v,/) with i � 9 U and v �9 F, then the corresponding edges are:

(i) el = (v 1, w~) with cost c*.
(ii) e2 = (w~, v 2) with cost c*.

324 E. C o h e n a n d N. M e g i d d o

w~ - 2c: ~ 1 2c: w~

i 1 ~ i 2 i 1 - i 2
e=(i , v) , v e F, i ~ U e = (, , i) , v s F, i s U

Fig . 1. T h e r e p l a c e m e n t in G' of a n edge e ~ E.

(iii) e 3 = (w~, i 1) with cost 0.
(iv) e4 = (i2, w 2) with cost 0.

= W 1 (v) e5 (e , W ~) with cost 2c*.

1 and 2 i f and It is easy to see tha t a flow x has ba lanced costs at tlae vertices We We
only if xe2 = Xel and xe3 = xe4 = xe5 = 1Xe,.

If u e U, then all the edges of E' inc ident on either u I or u 2 have zero cost, and
hence every flow has ba lanced costs at the vertices u 1 and u 2.

Cons ide r a vertex v e Fin (resp. v ~ Four) with incident edges e = (v, i), e' = (j, v),
and e" = (k, v) (resp. e = (i, v), e' = (v, j), and e" = (v, k)), where j > k. A flow x has
ba lanced costs at the vertices v 1 and v 2 if and only if

x(e 0 = o:(v)x(e'l) + (1 - e(v))x(e'~) and x(e2) = o~(v)x(e'2) + (1 - o~(v))x(e'~).

It is easy to see tha t a flow x = (xe) is feasible for p r o b l e m 1.4 in G if and only if

the flow x ' defined by x'e, = x e (e ~ E) has ba lanced costs in G'. []

3. Linear Programming Reduces to Bipartite Fixed Forks. In this sect ion we

present the fol lowing theorem.

THEOREM 3.1. The Bipartite Fixed Forks problem (Problem 1.J) has a strongly
polynomial algorithm if and only if the general linear-programming problem has one.
Moreover, the former is ~-complete.

F o r the p r o o f of the theorem, we show tha t all the fol lowing p rob lems have
logspace and s t rongly po lynomia l - t ime reduct ions to each other :

(i) G iven a mat r ix A ~ e m • d and a vector b ~ R m, decide whether an x exists such

tha t A x <_ b.
(ii) G iven A and b as above, decide whether an x exists such tha t A x < b.

d (iii) G iven A as in (i), where, for i = 1 m, ~ j : 1 Aij = 0, decide whether there

is an x such tha t A x < O.
(iv) Given A as in (iii), where in addi t ion , for i = 1 m, max1 <j< d [Aijl = 1, and

each row has at most three nonzero entries, decide whether there is an x such

tha t A x < O.
(v) Given A as in (iv), decide whether there is a y such tha t Ary = O, y > O, and

y ~ 0 .
(vi) The Bipar t i te F ixed F o r k s p rob l em (P rob lem 1.5).

Algorithms and Complexity Analysis for Some Flow Problems 325

Problem 1.4 is a special case of the linear-programming problem, and hence (vi),
as a special case of Problem 1.4, is reducible to (i). Proposition 3.2 gives the
reduction from (i) to (ii), Proposition 3.3 reduces (ii) to (iii), Proposition 3.4 reduces
(iii) to (iv), Proposition 3.5 [17] reduces (iv) to (v), and Proposition 3.6 reduces (v)
t o (vi).

PROPOSITION 3.2. The problem of deciding feasibility o f a system o f weak linear
inequalities A x <_ b can be reduced in strongly polynomial time to the problem o f
deciding feasibility o f a system of strict linear inequalities A' x < b'. Also, the latter
is ~-complete .

PROOF. Given A E R m• and b ~ R m, denote P = { x E R d I A x < b}. Suppose we
have an oracle which decides, for any matrix A' and any vector b', whether A ' x < b'
is feasible. We use the oracle to decide whether A x <_ b is feasible. Consider the
following iterative step. If A x < b is feasible, then obviously so is A x < b.
Otherwise, a row Aj. such that Aj .x = bj for all x e P, can be found as follows.
For every k (k = 1 m), consider the system Sk, consisting of the inequalities
Ai.x < bl (i = 1 , k). Let j be the first index such that Sj is infeasible.

Let A' e R (m- 1) • ca- 1) and b' ~ R " - 1 be the system generated when one variable
is eliminated, using the equality A j . x - - b j . The system A ' x <_ b' is feasible if
and only if the system A x <_ b is. We repeat the same process with A' and b'.
If only one variable remains, we test the feasibility of the system directly. Other-
wise, repeat the iterative step. The ~-completeness of the problem of deciding
a system of strict linear inequalities follows by a simple adaptation of the proof
of [9]. []

PROPOSITION 3.3. Given a matrix A ~ R "• and a vector h E R m, in O(md) time
(and in jffcg) we can compute a matrix A ' E R (m+a)• with the following
properties:

(i) v d + 2 t Z.~j = 1 Aij = 0 for i = 1 m.
(ii) An x E R d+ 2 exists such that A' x < 0 if and only i f an x ~ R d exists such that

A x < b .

PROOF. Let F c R e +2 be the d-dimensional fiat

F = f d+2 t x G R d + 2 l X d + 2 - Xd+ 1 = 1, Z Xi = 1 .
i=1

Let M: R e --+ F be the affine transformation defined by

I xl if l _ < i < d ,
(M(x))~ = --�89 i f i = d ' + 1,

[1 - �89 i f i = d + 2.

326 E. C o h e n a n d N. M e g i d d o

Denote by M - I : F - - * R d the inverse t ransformat ion, i.e., (M - ~ (x)) ~ = x ~
(i = 1 d). Let L: R d x R ~ R d+z be defined as follows:

(a i + � 8 9 1 8 9 if l < i < d ,

(L(a, b))i = ,~ w if i = d + l ,

b if i = d + 2 ,

where w = b - (2/(d + 2))eTa. I t is easy to verify that (L(a, b))TM(x) = aTx -- b, and
eTL(a, b) = 0. Therefore, for all vectors x, a ~ R d and b ~ R we have aTx < b if
and only if (L(a, b))TM(x) < 0. Define A' as follows. F o r i = 1 , m, let A' i. =
(L(Ai., bi)) T. The (m + 1)st row of A' is defined so as to represent the constra int

Xd+ 2 ~ Xd+ 1.

Denote

P = { x ~ R a l A x < b},

P' = { x ~ R d + 2 1 A ' x < 0).

We need to show that P = ~Z~ if and only if P ' = ~Z~. I t is easy to verify
that P = ~ if and only if P ' c~ F = ~ . It remains to be shown that if P ' r ~ ,
then F n P ' ~ ~ . No te tha t if x ~ P', then, for every ~ > 0, ~x ~ P', and, for
any c~, x - ~e ~ P'. Suppose tha t y ~ P', it follows that, for y ' = 1/(yd+ 2 -- Yd+ I)Y,
Y ~ + 2 - Y~+I = 1. I t is easy to verify tha t y" = y ' + ((eTy ' - 1) /d)e~P ' , e T y " = 1,

and Ya+2 -- Ya+I = 1. Hence, y" ~ P ' n F. []

PROPOSITION 3.4. Suppose A ~ R mXd is a ma t r i x where ~d= 1 Ai# = O, f o r i =

1 m. In O(md) t ime (and in JV'Cg), we can compute a ma t r i x A ' ~ R m'• d, where

m' = O(md), such that:

(i) ~=1 A~j = 0 (i = 1 m').

(ii) Each row o f A ' has at mos t three nonzero entries.
(iii) For every row o f A' , the m a x i m u m absolute value o f an en try in the row is i.
(iv) A n x ex i s t s such that A ' x < 0 i f and only i f an x ex i s t s such that A x < O.

PROOF. We first show how to conver t the system to an equivalent one where
each constra int involves at mos t three variables, and the sum of the coefficients
is 0. Consider an inequali ty of the form ~ = 1 a~xl < 0 where ai :/: 0 (i = 1 , k)

k and ~ = 1 a~ = 0. Wi thou t loss of generality, assume ~ i = 3 ai :/: O. I t is easy to verify
that (x 1 , Xk) satisfies the inequali ty ~ = a aixi < 0 if and only if a scalar r exists
such that

k k k

aax l + a2x2 -{- ~ 2 ai < 0 and ~ ~ ai > ~ aixl .
i = 3 i = 3 i = 3

These two lat ter inequalities have 3 and k - 1 variables, respectively, and the

Algorithms and Complexity Analysis for Some Flow Problems 327

sum of the coefficients in each of them is 0. Hence, by considering all constraints
with k > 3 variables and repeating this step k - 3 times we get an equivalent
system with properties (i) and (ii). This can be done in a polylogarithmic number
of phases. To conclude, we note that by multiplying a row by a positive constant,
or omitting rows where all entries are 0, we do not alter the feasibility of the
system. Thus, we may divide any row by the largest absolute value of an entry in
the row. []

PROPOSITION 3.5 [17]. For any A E Rm • an x >_ O, x =/= O, exists such that A x = O,
if and only i f there is no y such that ATy > O.

PROPOSITION 3.6. Suppose A ~ R d • ~ satisfies:

(i) ~ia=l Ai i= 0, for j = 1 m.
(ii) Each column o f A has at most three nonzero entries.

(iii) In each column, the largest absolute value o f an entry in the column is 1.

Under these conditions, we can construct in O(m + d) time an instance BFF(A) of
the Bipartite Fixed Forks problem (Problem 1.5) such that there is a one-to-one
correspondence between the circulations that solve BFF(A) and vectors y >_ 0 for
which A y = O.

PROOF. With each matrix A as above we associate an instance BFF(A) of
Problem 1.5 as follows. The vertices of the bipartite digraph correspond to the
columns and rows of A, and the edges correspond to the nonzero entries of A.
The set U (I U I = d) consists of vertices which correspond to the rows, and the set
F = Fin w Fout (IFI = m) consists of vertices which correspond to the columns. If
a vertex v ~ F corresponds to a column of A with exactly one positive entry, then
v ~ Four; otherwise, v ~ Fin. If the entry Ai~ is positive, (resp. negative) place an edge
from the vertex which corresponds to the ith row (resp. j th column) to the vertex
corresponding to the j th column (resp. ith row). Construct the function ~:
F --* [0, 1] as follows. Consider a column Aq and the corresponding vertex v. Let
~(v) = Iakjl where k is the smallest number such that IAkjl r {0, 1}. If such a k
does not exist, then the column has two nonzero entries { - 1, 1}, and we choose
~(v) = 1.

What remains is to verify that there is a one-to-one correspondence between
circulations x: E - ~ R + which solve BFF(A) and vectors 0 < y e R m such that
Ay = 0. Choose edges el, . . . , e,, such that ej corresponds to an entry with absolute
value 1 in the j th column (j = 1 , m). (If there are two such entries take
either one.) Consider a circulation x which solves BFF(A). It is easy to see
that the flow values on the edges e l , . . . , e~ uniquely determine the flow on the
rest of the graph.

To conclude the proof, note the following facts:

(i) The vector y, defined by yj = x (e) (j = 1 m), satisfies A y = O.
(ii) If y _> 0 is a vector such that A y = 0, then a unique solution x for BFF(A)

exists such that x(ej) = yj (j = 1 m). []

328 E. Cohen and N. Megiddo

4. Algorithms for Parametric Flow Problems. The authors have obtained in [5]
a strongly polynomial-time algorithm for the parametric minimum-cycle problem
with a fixed number of parameters (see [7] and [4] for a full version). The scheme
used in [5] is fairly general and applies to parametric extensions of other
problems. Norton et al. [-26] used a similar scheme to obtain strongly polynomial-
time algorithms for various other problems. In particular, they showed how
under certain conditions, a strongly polynomial algorithm for a class of linear-
programming problems can be extended to handle a fixed number of additional
constraints and variables. When additional variables are considered, both the
scheme of [26] and a direct application of the scheme of [5] assume the existence
of a strongly polynomial algorithm that works for arbitrary right-hand side
vectors. The scheme of [26] requires, in addition, a strongly polynomial algorithm
for the dual problem for any right-hand side vector of the dual, i.e., any objective
function of the primal problem. If a fixed number of constraints are added, the
scheme of [5] also requires a strongly polynomial algorithm for the dual problem.
Consider, for example, the linear-programming formulation of the max-flow
problem. An arbitrary right-hand side vector can be interpreted as a set of arbitrary
supply and demand constraints associated with the vertices. Assuming an arbitrary
objective function means we are looking at the general rain-cost flow problem. In
Section 4.1 we summarize the scheme of [5] as presented in [7]. In Section 4.2
we apply this scheme to get strongly polynomial-time algorithms for some
parametric extensions of flow problems with a fixed number of parameters. The
linear-programming formulations of these parametric problems yield flow prob-
lems with additional variables.

The extensions of algorithms have interesting implications with regard to the
Fixed Ratios and the generalized flow problems. In Section 4.3 we show that
strongly polynomial algorithms exist for the generalized flow and min-cost
generalized flow problems, when the number of edges with gains or losses is fixed,
and for the Fixed Ratios and rain-cost with Fixed-Ratios problems, when the
number of equivalence classes of edges is fixed. The max-flow problem with a fixed
number of forks is a special case of the problem of max-flow with fixed-ratios.
These problems can be represented as linear programs of max-flow with a fixed
number of additional variables. Strongly polynomial-time algorithms for these
problems can also be derived using Theorem 3.1 of [26].

4.1. Review of a Scheme for Strongly Polynomial Algorithms. For the sake of
completeness, we review the scheme used in [5] and [7]. We also discuss how it
applies to obtain strongly polynomial algorithms for parametric extensions of
problems.

An algorithm that computes a function g: Rd ~ R is called piecewise affine if all
the operations it performs on intermediate values that depend on the input vector
are additions, multiplications by constants, comparisons, and making copies.

The main tool we use can be stated as follows. Consider a piecewise affine
algorithm d that computes values of a concave function g: ~ ~ R, where the
domain ~ c R d is given as an intersection of k half-spaces. We assume that ~ is
accessible in a way which allows us to follow the computation path for any given

Algorithms and Complexity Analysis for Some Flow Problems 329

input. We also assume that so' performs at most T operations including C
comparisons. Furthermore, the C comparisons can be organized into r phases,
where all the comparisons within a single phase are independent. We denote the
number of comparisons in phase i by Cg (i = 1 , . . . , r).

THEOREM 4.1. The function 9 can be maximized usin 9

k T flog Ci
i

operations.

The scheme given in [5] and [7] integrates techniques from [23] and [25].
Theorem 4.1 also holds when the range of g is R l (l > 1) and the notions of

maximum and concavity are defined with respect to the lexicographic order as
follows. The function 9 is concave with respect to the lexicographic order if, for
every ~ e [0, 1] and x, y ~ .~, ~g(x) + (1 - ~)g(y) < l~g(~x + (1 - ~)y).

REMARK 4.2. Note that if the conditions hold for g : ~, then they also hold for a
restriction of 9 to a polyhedron ~' ~ ~.

We now discuss how and when Theorem 4.1 can be applied to obtain strongly
polynomial algorithms for parametric extensions of the problem (with a fixed
number of parameters). We view a problem S: ~ ~ R ~ as a mapping from a set
of instances into l-tuples of real numbers. We say that S(P) is the solution of the
problem for the instance P e N. A d-parametric extension of ~ has the form
~a = (jr D.) where:

(i) ~ c R a is a polyhedron given as an intersection of half-spaces.
(ii) ~r ~ ~ ~ is a mapping from points L ~ ~ c R a to instances of N.

Each parametric instance P a t Na corresponds to a subset of instances

We refer to ~'(~,) E ~ as the instance induced by ~.. By a solution of the parametric
problem for an instance p d = (~ , ~) E ~ e we mean as follows. Consider the
maximum (relative to the lexicographic order) over all possible values of the
parameters L e ~, of the solutions of the induced instance J/g(L). If the maximum
is finite, then a solution consists of the maximum and a vector k ~ R d that belongs
to the relative interior of the set of parameter values which maximize S. Formally,
to solve an instance of pd ~ ~a we have to do the following: if either ~ = ~ or
S(Jk'(~.)) is unbounded on ~, then these facts have to be recognized; otherwise, a
pair (m, ~,*) s R x R d, where m = m a x z ~ S(~/(k)) and k* e rel int{~,lS(dg(k)) = m},
has to be computed.

For a parametric instance pal, consider the function 9:-~ ~R~ defined as

330 E. Cohen and N. Megiddo

g(k) = S(~/(k)). Note that the solution of pd is a vector which maximizes
g. Theorem 4.1 can be applied for solving pd if we are given an algorithm
d which computes S(J/C(k)), and the conditions of the theorem hold for d
and g.

REMARK 4.3. When we attempt to apply the method described above to obtain
strongly polynomial time bounds, we may encounter a difficulty as follows.
Sometimes we may have a problem that satisfies the conditions of Theorem 4.1,
but the polyhedron .~ (i.e., the domain of O) is either not given explicitly or has a
superpolynomial number of facets. The latter occurs in the parametric minimum-
cycle problem. A simplified version of the parametric minimum-cycle problem used
in [5] is as follows:

Let G = (V, E) be a digraph where affine forms of d variables are associated
with the edges, so the corresponding function 9 maps sets of values for
the parameters k e R d to the value of the minimum-weight cycle in the graph
with the induced scalar weights. Compute a k e R n at which the value
of the minimum-weight cycle relative to the induced scalar weights is
maximized.

The function O is not defined at vectors k for which the graph has negative
cycles relative to the induced weights. The weight of a cycle c is an affine form.
hence, we can compute a half-space Hc such that the weight of the cycle relative
to ~. is nonnegative if and only if ~. e H c. The domain of g is the intersection
of the half-spaces He, where c is a simple cycle in G. We now show that the
number of facets in the domain of g may be n ~tl~ Carstensen [3] constructed
a family of acyclic graphs, with affine forms of one parameter 2 associated
with the edges, such that the parametric shortest (s, 0-path function has n n~l~
breakpoints. We consider the graphs of Carstensen's construction, with an addi-
tional edge (t, s), with the affine form - # + c (where c is some constant) associated
with it. The resulting graphs have two-parameter affine forms associated with the
edges and cycles which consist of an (s, 0-path and the edge (t, s). For each
graph, consider the polygon consisting of all the values of ~l and # for which there
are no negative cycles. It is easy to see that we can choose, independently for
each graph, a sufficiently large constant c such that these polygons have n n~l~
edges. Gusfield [18] showed that the number of facets in a parametric shortest
(s, 0-path function is n ~176176 Using a similar argument, it can be shown that the
same holds for parametric minimum cycle. Obviously, we want to avoid computing
the domain of 0. In order to overcome this difficulty we "extended" the domain
of the function g to R d- 1. We note that in [5] we asked for a minimum cycle
of at most n edges in the graph. This parametric problem is well defined for any
~. ~ R d. The corresponding function g' coincides with g on the domain of g and is
concave. Moreover, g' is maximized in the domain of g if the latter is not empty.
It follows that we can apply Theorem 4.1 to maximize g'. Below we consider
concave extensions of functions where the extended domains are polyhedra with
a polynomial numbers of facets. Another way to optimize a function g over
a domain with superpolynomially many facets is to construct a "separation

Algorithms and Complexity Analysis for Some Flow Problems 331

oracle," i.e., an algorithm that for a given ~, returns a half-space that

(i) contains the domain of g and
(ii) has k on its boundary.

The use of a separation oracle is required by the scheme of [26] and can be easily
incorporated into the scheme of [5].

4.2. Parametric Extensions of Flow Problems. The max-flow problem [12] has
well-known strongly polynomial algorithms r8], [11]. We consider parametric
extensions of the max-flow problem where the capacities and the supplies and
demands at the vertices are replaced by affine forms of d variables. A vector ~, ~ R d
corresponds to a set of values of the parameters. We refer to the resulting capacities
as the capacities induced by ~,. We discuss problems such as finding k ~ R d which

(i) maximizes the max flow relative to the induced capacities, or
(ii) allows for a feasible circulation subject to the induced capacities.

Parametric flow problems were previously considered by Gusfield [18] and by
Gallo et al. [,13].

We first consider the max-flow problem where the capacities are affine forms
with d variables and we want to find a k E R d that maximizes the max-flow relative
to the induced capacities.

PROBLEM 4.4 (Max-Flow with Parametric Capacities). Let G = (V, E) be a di-
graph, let s, t E V be two distinguished vertices, and let c e (e ~ E) be d-variable
affine forms ("parametric capacities") associated with the edges. Find a ~. e R e
which maximizes the maximum (s, 0-flow relative to the induced capacities.

PROPOSITION 4.5. The parameric max-flow problem (Problem 4.4) can be solved in
strongly polynomial time for any fixed number of parameters.

PROOF. Let g(~,) be the value of the maximum flow relative to the capacities
induced by ~,. The domain of g is the intersection of the half-spaces which guarantee
that all the edges have nonnegative capacities. Denote the domain of g by ~. We
show that the function g is concave. The maximum flow equals the minimum
capacity of a cut. The capacity of each cut is an affine form of ~,. Hence, the
minimum cut is a piecewise linear and concave function of ~,. It is easy to verify
that all the other conditions of Theorem 4.1 are satisfied as well. []

Consider a network with both upper and lower bounds on the flow in each
edge. Both bounds are replaced by affine forms. As in Problem 4.4, the goal is to
find a vector k ~ R d relative to which the max-flow in the induced network is
maximized. This problem is called max-flow with parametric bounds.

We wish to find a strongly polynomial-time algorithm for the problem that is
based on a piecewise affine max-flow algorithm. This problem, however, suffers
from a difficulty similar to the one described in Remark 4.3. The domain of the

332 E. Cohen and N. Megiddo

search consists of values of k e R d for which the induced network has a feasible
circulation. We require that, for all edges, the upper bounds are not smaller than
the lower bounds, and they are both nonnegative. To guarantee feasiblilty, we
need additional requirements (see [19]) as follows. We need to assure that all the
(s, t)-cuts allow nonnegative flow, and all other cuts allow a zero flow. The number
of cuts (and hence the number of half-spaces whose intersection defines the domain
of g) may be exponential. We overcome this difficulty by considering a concave
extension of the function g to a domain with a polynomial number of facets. Later
in this subsection, we define the parametric min-discrepancy max-flow problem
which is a generalization of the problem of max-flow with parametric bounds. We
then proceed to show that the latter has a strongly polynomial-time algorithm.

DEFINITION 4.6. Let G = (V, E) be a digraph, let u~ ~ R + (e 6 E) be capacities on
the edges, and let ~, ~ R (v ~ V) be supplies or demands associated with the vertices.
A vector x = (Xe)e~ E such that 0 < x~ < u~ (e ~ E) is called a pseudoflow. The excess
of the pseudoflow x at a vertex v ~ V is

excess(v)= Z x , ~ - Z xo,.
i:(i,v)EE i:(v,i)~E

The discrepancy of the pseudoflow x is

A(x) = ~ t~v - excess(v) l.
vEV

We seek a pseudoflow which minimizes the discrepancy, and refer to its dis-
crepancy as the minimum discrepancy of the network.

PROBLEM 4.7 (Minimum Discrepancy Pseudoflow). Given a network G = (V, E)
with capacities ue e R + (e ~ E) on the edges, and supplies or demands av ~ R (v e V)
associated with the vertices, find a minimum discrepancy pseudoflow (see Defini-
tion 4.6) in G.

REMARK 4.8. Given an instance of problem 4.7, we construct an instance of the
max-flow problem on a network G' = (V', E') with two distinguished vertices s',
t ' e V' and capacities U'e (e ~ E'), where

v' = v ~ {s', t'},

e ' = {(v, t')lv ~ v, zl < 0} ~ {(s', v) lv E v, a, > 0} u e ,

and

f ~ if e ~ E,
u'e = if e = (s', v),

crv if e=(v , t ') .

It is easy to verify that the sum of twice the value of the max-flow in G' plus the

Algorithms and Complexity Analysis for Some Flow Problems 333

minimum discrepancy in G equals ~i~v I~il. Furthermore, it is easy to compute
a min-disc pseudoflow in G from a max-flow in G'.

Consider the parametric version of Problem 4.7 where capacities, supplies, and
demands are replaced by affine forms. The algorithm that computes the minimum
discrepancy relative to the values induced by a given ~, is piecewise affine. This
follows from the fact that the construction of G' is piecewise affine and leads to a
max-flow problem in a network with capacities that are affine forms of ~,. The
final step is to apply the parametric max-flow algorithm which is piecewise affine
as well. The domain of ~,'s for which the problem is well defined has a polynomial
number of facets. It follows from Theorem 4.1 that the parametric problem can
be solved in strongly polynomial time for any fixed number of parameters. A
consequence of this claim is that the problem of a feasible circulation with
parametric bounds can be solved in strongly polynomial time for any fixed number
of parameters.

We now consider a generalization of Problem 4.7 where we compute a maximum
flow which minimizes the discrepancy.

DEFINITION 4.9. Suppose a network G is as in Definition 4.6, and s, t 6 V are two
distinguished vertices. The discrepancy of a pseudoflow in a network with
distinguished vertices is redefined to be

A(x)= - ~ I%-excess(v) l.
v e V \ (s , t}

A min-disc maximum (s, t)-flow in G is a pseudoflow x = (Xe)ee E such that
excess(s) + excess(t)= 0 and x maximizes the pair (-A(x), f(x)) (where f (x) =
excess(s)) relative to the lexicographic order. The value of the min-dic maximum
(s, t)-flow is the pair (- A , f) which corresponds to the optimal pseudoflow.

PROBLEM 4.10 (Min-Disc Max-Flow). Given a network G as in Definition 4.9,
compute a min-disc maximum (s, 0-flow in G.

REMARK 4.11. Problem 4.10 can be solved by two applications of a max-flow
algorithm. First, compute a minimum-discrepancy pseudoflow x in the network
G with the edge (t, s) added to E (see Remark 4.8). Consider the pseudoflow x on
the network G. It is easy to verify that

(i) excess(s) + excess(t) = 0, and
(ii) the pseudo flow x minimizes A(x).

Construct the residual network G' with residual capacities relative to the pseudo-
flow x. Compute a maximum (s, 0-flow x' in G'. The combined pseudoflow
x + x' is a min-disc maximum (s, 0-flow in G.

The claim made in Remark 4.8 carries over to Problem 4.10. When the capacities
and demands are replaced by d-variable affine forms, the algorithm that computes
the solution of Problem 4.10 for a fixed k e R d is piecewise affine. See [22] for a

334 E. Cohen and N. Megiddo

related p rob lem as follows. Given a ne twork and k pairs of sources and sinks
(ai, t3 (i = 1 k), compute a pseudoflow x such tha t

(i) excess(v) -- 0 if v r {0" 1 , O'k, t I t k } ,

(ii) excess(o-i) + excess(ti) = 0 for every i (i = 1 , . . . , k), and
(iii) x maximizes the k-tuple (excess(o-0 excess(o-k)) relative to the lexicographic

order.

Consider the pa ramet r i c version of the problem, where the capacit ies and the
supplies and demands at the vertices are replaced by affine forms:

PROBLEM 4.12 (Parametr ic Min-Disc Max-Flow). Let G = (V, E) be a digraph,
let u e for e ~ E and a~ for v e V be d-variable affine forms cor responding to
capacities on the edges and demands or supplies at the vertices, respectively. Find
a k e R d which maximizes the value of the min-disc m a x i m u m (s, 0-flow in the
induced network.

PROPOSITION 4.13. The problem of parametric rain-disc max-flow (Problem 4.12)
can be solved in strongly polynomial time for any f ixed number of parameters.

PROOF. We limit the domain of the search to values of k e R e for which the
induced capacities are nonnegative. The po lyhedron ~ is the intersection of the m
half-spaces {u e >_ 0} (e e E).

Denote by g: ~ ~ R 2 the function which m a p s k ~ .~ to the solution of P rob lem
4.10 on the induced network. In order to apply T h e o r e m 4.1, we need to show
that the function g is concave. Observe that R e m a r k 4.11 implies that the other
condit ions of Theo rem 4.1 are satisfied. Suppose that {kl, k 2 } C ~,~. Let X(e i) ~R+
(e s E , i = 1, 2) be the min-disc m a x i m u m (s, t)-flows in the induced ne twork
relative to k i, with values (- - A i , f /) . Let 0-~i)(i = 1, 2, v e V\{s , t}) be the demands
induced by ki, and let U(e i) (e ~ E, i = 1, 2) be the capacities induced by k i. Let
s ~ I-0, 1] be any number . Let k' = s k 1 + (1 - s)k 2. The capacities induced by k'

, . (1) (1 - s)u(~ 2), and the induced demands are 0-v = a r e b/e = s u e At- ' s o -(1) --~ (1 s)0- (2).

We need to show that g(k') > lexSg(k0 + (1 - s)g(k2). Let x'e (e~E) be the pseu-
doflow x'e = SX(e 1) + (1 -- S)X~ 2). Deno te by excess'(v), excessl(v), and excessz(v) the
flow excesses at a vertex v~ V relative to the pseudoflows x', x (1), and x r
respectively. Let g(kl) = (- A l , f 0 , g(~'2) = (- - A 2 , f2) , A ' = Z w v \ { s , t } I0-'v -

excess'(v)l, and f ' = excess'(s). It is easy to verify that x ' is a feasible pseudof low
relative to the capacities u' and tha t excess ' (s)= excess'(t). Hence, g (k ')> lex
(- - A ' , f ') . No te that excess'(v) = s excessx(v) + (1 - s) excess2(v), and f ' =
excess'(s) = sfx + (1 - s) f 2. I t follows that

A' = ~ [a 'v -excess ' (v) [
v ~ V\{s , t}

= ~ Is0-(~ l) + (1 + s)a(o 2) - s excessl(v) -- (1 - s)excess2(v)[
v ~ Vk{s, t}

< Z (s[0-~ 1) - excessl(v)[+ (1 - s)[0-~ 2) - excess2(v)[)
v e V\{s , t}

= sA~ + (1 - s)Az.

Algorithms and Complexity Analysis for Some Flow Problems 335

Now we can show that g is concave:

P

g(k') _ , e x (- A , f ') _>lex(--aA1 - (1 - a)A 2, afl + (1 - ~)f2)

= ~g(~' l) -]'- (1 - - oOg(~2). []

COROLLARY 4.14. The following parametric problems can be solved in strongly
polynomial time for any fixed number of parameters:

(i) Problem 4.12 with distinguished vertices with demand or supply, and the value of
L e R a is constrained so that the induced demands are nonnegative and the
induced supplies are nonpositive.

(ii) Max-flow with parametric bounds.
(iii) Feasible circulation with parametric bounds.

PROOF. Part (i) follows immediately from Remark 4.2. We need to replace the
search domain ~ by its intersection with the O(n) half-spaces a~ _> 0 if v is a
demand vertex, and o-v _< 0 if v is a supply vertex. It is easy to see that the
intersection of these half-spaces equals the set of vectors relative to which the
induced demands are nonnegative and the induced supplies are nonpositive.

To prove part (ii), consider an instance of the parametric bounds max-flow
problem. Let G = (V, E) be a network, let s, t e V be two distinguished vertices,
and let l~, Ue (e e E) be d-variable affine forms. Assume, without loss of generality,
that the edges incident on the source and the sink have zero lower bounds on the
flow. We define a corresponding instance of the min-disc maximum (s, t)-flow
problem on a network G = (V, E), where U'e and tr~ are capacities and demands.
The capacities are u'~ = u e - l~ (e e E), and the demands are

y, l.o- Z
{u[(u,v) EE} {ul(v,u)~E}

The search domain is the intersection of the half-spaces that guarantee that
u'e >_ le >_ 0 (e~E). Consider Problem 4.12 on the network with capacities u'~ and
demands av. Suppose that k e ~ maximizes the min-disc maximum (s, t)-flow in
the induced network, and (- A , f) is the optimal value. Consider the original
parametric bounds max-flow problem. It is easy to see that a vector k ~ ~ exists
for which the induced network has a feasible flow if and only ifA = 0. Furthermore,
if A = 0, then k is the solution of the original problem, and f is the value of the
corresponding max-flow.

Part (iii) is a special case of part (ii), where we consider only the first coordinate
of the min-disc max-flow pair. A k exists which induces capacities allowing a
feasible circulation if and only if A = 0. []

REMARK 4.15. Consider Problem 4.10 with parametric lower bounds on the flow.
We show that if ~ is fixed, then this problem can be solved in strongly polynomial
time. The solution is based on the techniques we used to solve the parametric
bounds max-flow problem. Define the "edge-discrepancy" h(x) of a pseudoflow x

336 E. Cohen and N. Megiddo

as the sum, over all the edges for which the flow is smaller than the lower bound,
of the difference between the lower bound and the flow. For an instance of Problem
4.12 with lower bounds, let ~ be the intersection of all the half-spaces that
guarantee that the bounds are nonnegative and that the upper bounds are not
smaller than the respective lower bounds. Define the function 9: ~ ~ R 3 as follows.
For k e ~, consider the induced network, and let 9(k) be the maximum over all
pseudoflows of (-h(x) , -A(x) , f(x)) relative to the lexicographic order. The
domain of 9(k) is ~. Using arguments similar to the ones used for Problem 4.12,
we can show that:

(i) The evaluation of g can be done by a piecewise affine algorithm (see Remark
4.11).

(ii) g is concave (see the proof of Proposition 4.13).

Denote by (- h , - A , f) the maximum value of g. It is easy to verify that if
h = 0, then the k which maximizes g is the solution of the original instance of
Problem 4.12 with lower bounds, and if h ~ 0, then the original instance has no
solution.

4.3. Applications to Fixed Ratios and Generalized Flow. In this subsection we
discuss the relation between the parametric extensions given in the previous
subsection and the fixed-ratios flow and generalized-fow problems. We give
strongly polynomial-time reductions from these problems to Problem 4.12. It
follows that the subclasses of the fixed-ratios flow and generalized-flow problems,
which correspond to instances of Problem 4.12 with a fixed number of parameters,
have strongly polynomial-time algorithms.

Fixed-Ratios Flow

PROBLEM 4,16 (Fixed-Ratios flow). Consider a network G = (V, E) where l, u, ~,
and S are as in Problem 1.2. Suppose s, t e V are two distinguished vertices. A
maximum fixed-ratios flow is an (s, t)-flow of maximum value, which satisfies the
additional constraints of a fixed-ratios circulation (see Problem 1.2).

PROBLEM 4.17 (Flow with Fixed Forks). Consider a network G =(V,E)
where a and V are as in Problem 1.4. Suppose s, t ~ V are two distinguished
vertices. A maximum flow with fixed forks is an (s, t)-flow of maximum value,
which satisfies the additional constraints of a circulation with fixed forks (see
Problem 1.4).

It is easy to see that Flow with Fixed Forks is a special case of the Fixed-Ratios
Flow problem.

PROPOSITION 4.18. A linear-time reduction from instances of the fixed-ratios flow
problem to instances of the max-flow problem with parametric bounds exists such

Algorithms and Complexity Analysis for Some Flow Problems 337

that:

(i) There is a trivial correspondence between the solutions of the two problems.
(ii) The number of parameters equals the number of equivalence classes relative

to S.

PROOF. Given an instance of a fixed-ratios flow problem, define the correspond-
ing instance of the max-flow problem with parametric bounds as follows. We use
the same network G and the same pair of distinguished vertices s, t. Let l'~, u'~
(e s E) be the affine forms which define the lower and upper bounds. If an edge e
is not a member of any of the pairs in S, then we define l'~ = le, U'e = Ue. Otherwise,
we associate a parameter with each equivalence class of edges. Suppose that
{e~ eik} is an equivalence class. Let 2 be the parameter associated with this set.
The flow values on these edges are related. Hence, we can find a vector a e Rk+ as
follows. For every feasible fixed-ratios flow xe (e E E), a fl ~ R+ exists such that

, ,

ain' x e ,) = fla. Define the parametric. . bounds, u,.,j = le,j = a j2. Restrict. the
of the search ~ to its intersection with the O(m) half-spaces gwen by

(e~ <_ aj2 <_ u~. It follows from Remark 4.2 that Theorem 4.1 still holds when we
intersect the ~omain with polynomially many half-spaces. To conclude the proof,
note the following. A fixed-ratio flow exists in G if and only if a ~, e ~ exists relative
to which the induced network has a feasible flow. Moreover, if k is the solution
of the parametric problem and x is the max-flow in the network induced by k,
then x is a maximum fixed-ratios flow in G. []

COROLLARY 4.19. The problem of Fixed-Ratios Flow can be solved in stronoly
polynomial time for any fixed number of equivalence classes relative to S.

COROLLARY 4.20. The problem of Flow with Fixed Forks can be solved in strongly
polynomial time for any fixed number of forks.

Generalized Flow. The generalized-flow problem [21], [16] is as follows. A
network G = (V, E) is given with lower and upper bounds le, ue (e ~ E), respectively,
on the flow, a distinguished vertex s ~ V, and a vector ~ = (Te)e~E of 9ain factors.
Find a pseudoflow x that maximizes

Xsi - - Z ~is Xis
i: (s, i) eE i: (i,s) eE

under the generalized-flow conservation conditions

Z xvl- Z vlvx,v=0
i:(v,i)~E i:(i,v)~E

It is not known whether the generalized-flow problem can be solved in strongly
polynomial time. We show that if the number of edges e with 7e ~ 1 is fixed, then
the problem can be solved in strongly polynomial time. This result holds even

338 E. Cohen and N. Megiddo

when the vertices have supplies or demands and edges have lower bounds on the
flow.

PROPOSITION 4.21. A linear-time reduction from instances G of the generalized-flow
network problem with d edges with gains or losses to instances G' of the parametric
rain-disc maximum (s, O-flow network problem with d parameters exists, such that if
~. and (- A , f) constitute the solution of the parametric problem and x is the min-disc
maximum (s, t)-pseudoflow relative to the capacities and demands induced by ~., then:

(i) A -- 0.
(ii) f is the value of the max-flow in G.

(iii) Given ~, and x, a max-flow in G can be constructed easily.

PROOF. Consider an instance of the generalized-flow problem on a network
G = (V, E), with capacities ue ~ R+ (e e E), and two distinguished vertices s, t ~ K
Let ei = (vl, wi) ~ E (i = 1 , d) be the edges with gains or losses, and let 7i be the
gain factor associated with e~. Define the corresponding instance of the parametric
min-disc max-flow problem on a network G'= (V, E'), with s and t as the
distinguished vertices, where the capacities u e (e ~ E') are scalars, and the demands
a~ (v e V') are affine forms. Associate a parameter)~i with the edge e i (i -- 1 , d).
In the network G':

(i) E' = E \ { e , , . . . , ed}.
(ii) The capacities are u'e = Ue (e e E').

(iii) The demands a, for v e V are crv = ~ i l v,=,~)-~, - ~ilw,=v~ ~i)'e,"
Replace .~ by its intersection with the half-spaces 2i _< uei. To prove correctness,
consider any k ~ 2. Let (- A, f) be the value of the rain-disc max-flow, and let Xe
(e e E') be a feasible min-disc pseudoflow (i.e., A(x) = A), relative to the capacities
and demands induced by k. Let x' be a pseudoflow in G, where x'~ = x~ (e e E'),
and x'e, = ,~, (i = 1 d). It is easy to see that A - 0 if and only if x' is a generalized
flow in G. []

COROLLARY 4.22. The generalized-flow problem, with a fixed number of edges with
gain factors other than 1, can be solved in strongly polynomial time.

REMARK 4.23. Tardos [27] gave a strongly polynomial-time algorithm for the
min-cost circulation problem. Consider the parametric extension of the problem
where the bounds on the flow on some edges are parametrized. Tardos's algorithm
is piecewise affine in these bounds. Hence, the parametric extension of the rain-cost
flow problem, where the number of parameters is fixed, can be solved in strongly
polynomial time. Interesting applications are strongly polynomial-time algorithms
for the min-cost generalizations of"

(i) The fixed-ratios flow problem, where the number of equivalence classes of
edges is fixed.

(ii) The generalized-flow problem, where only a constant number of edges have
gain factors other than 1.

Algorithms and Complexity Analysis for Some Flow Problems 339

References

[1] G.M. Adel'son-Velskii, E. A. Dinic, and A. V. Karzanov. Flow Algorithms. Science, Moscow,
1975. In Russian.

[2] C. Berge and A. Ghouila-Houri. Programming, Games and Transportation Networks. Wiley, New
York, 1965.

[3] P.J. Carstensen. The Complexity of Some Problems in Parametric, Linear, and Combinatorial
Programming. Ph.D. thesis, Department of Mathematics, University of Michigan, Ann Arbor,
MI, 1983.

[4] E. Cohen. Combinatorial Algorithms for Optimization Problems. Ph.D. thesis, Department of
Computer Science, Stanford University, Stanford, CA, 1991.

I-5] E. Cohen and N. Megiddo. Strongly polynomial and NC algorithms for detecting cycles in
dynamic graphs. Proc. 21st Annual ACM Symposium on Theory of Computing, pp. 523-534.
ACM, New York, 1989.

I-6] E. Cohen and N. Megiddo. Maximizing Concave Functions in Fixed Dimension. Technical
Report RJ 7656 (71103), IBM Almaden Research Center, San Jose, CA 95120-6099, August
1990.

[7] E. Cohen and N. Megiddo. Strongly polynomial time and NC algorithms for detecting cycles
in periodic graphs. J. Assoc. Comput. Mach. To appear.

[8] E.A. Dinic. Algorithm for solution of a problem of maximum flow in networks with power
estimation. Soviet Math. Dokl., 11:1277-1280, 1970.

[9] D.P. Dobkin, R. J. Lipton, and S. P. Reiss. Linear programming is log-space hard for P. Inform.
Process. Lett., 8(2):96-97, 1978.

1,10] D.P. Dobkin and S. P. Reiss. The complexity of linear programming. Theoret. Comput. Sci.,
11:1-18, 1980.

[11] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network
flow problems. J. Assoc. Comput. Mach., 19:248-264, 1972.

1,12] L.R. Ford, Jr., and D. R. Fulkerson. Flows in Networks. Princeton University Press, Princeton,
NJ, 1962.

[13] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm and
applications. SlAM J. Comput., 18:30-55, 1989.

1-14] A. Ghouila-Houri. Recherche du riot maximum darts certains rrseaux lorsqu'on impose une
condition de bouclage. Proc. 2nd International Conference on Operations Research, London,
p. 156. American Mathematical Society, Providence, RI, 1960.

I-15] A. Ghouila-Houri. Une grnrralisation de l'algorithme de Ford-Fulkerson. C. R. Acad. Sci. Paris,
250:457, 1960.

1-16] A.V. Goldberg, I~. Tardos, and R. E. Tarjan. Network Flow Algorithms. Technical Report
STAN-CS-89-1252, Stanford University, 1989.

[17] P. Gordan. Ober die auflSsung linearer gleichungen mit reelen coefficienten. Math. Ann.,
6:23-28, 1873.

[18] D. Gusfield. Parametric combinatorial computing and a problem of program module distribu-
tion. J. Assoc. Comput. Mach., 30:551-563, 1983.

1-19] A. J. Hoffman. A generalization of max-flow min-cut. Math. Programming, 6:352-359,
1974.

[20] A. Itai, Two-commodity flow. J. Assoc. Comput. Mach., 25(4):5964511, 1978.
[21] E.L. Lawler. Combinatorial Optimization: Networks andMatroids. Holt, Reinhart, and Winston,

New York, 1976.
[22] N. Megiddo. A good algorithm for lexicographically optimal flows in multi-terminal networks.

Bull. Amer. Math. Soc., 83:407409, 1977.
[23] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.

J. Assoc. Comput. Mach., 30:337-341, 1983.
[24] N. Megiddo. Towards a genuinely polynomial algorithm for linear programming. SIAM J.

Comput., 12:347-353, 1983.
[25] N. Megiddo. Linear programming in linear time when the dimension is fixed. J. Assoc. Comput.

Mach., 31:114-127, 1984.

340 E. Cohen and N. Megiddo

[26] C.H. Norton, S. A. Plotkin, and l~. Tardos. Using separation algorithms in fixed dimension.
Proc. 1st A C M - S I A M Symposium on Discrete Algorithms, pp. 377-387. ACM-SIAM, New
York/Philadelphia, 1990.

[27] I~. Tardos. A strongly polynomial minimum cost circulation algorithm. Cornbinatorica,
5(3):247-255, 1985.

[28] E. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs. Oper. Res.,
34:250-256, 1986.

