
Algorithmica (1994) 11:291-319 Algorithmica
�9 1994 Springer-Verlag New York Inc.

Network Flow and 2-Satisfiability

Tomfis Feder 1

Abstract. We present two algorithms for network flow on networks with infinite capacities and finite
integer supplies and demands. The first algorithm runs in O(mx/-K) time on networks with m edges,
where K = O(mZ/log 4 m) is the value of the optimal flow, and can also be applied to the capacitated
case by letting K be the sum of the finite capacities alone. The second algorithm runs in O(wm log K)
time for arbitrary K, where w is a new parameter, the width of the network. These algorithms as well
as other uses of the notion of width lead to results for several questions on the 2-satisfiability problem:
minimizing the weight of a solution, finding the transitive closure, recognizing partial solutions,
enumerating all solutions. The results have applications to stable matching, where w corresponds to
the number of people and m to the instance size (usually m ~ w2).

Key Words. Network flow, 2-Satisfiability.

1. Introduction. The maximum-f low problem has been extensively studied. The
complexity of the fastest-known algori thms is essentially nm on networks with n
vertices and m edges, with an addit ional logari thmic factor that can be usually
at tr ibuted to the data structures used (e.g., see [31]). This paper examines two
special cases in which faster algori thms can be obtained. The model adopted here
is that of networks with integer supplies and demands at the vertices, where all
the edges have infinite capacities.

The first case is that of flow problems for which the value K of the opt imal flow

is relatively small (not too close to m2). In that case we obtain an O(mx/-K) time
bound. A s tandard reduction yields results for the more c o m m o n capaci tated case
(with a single source and a single sink), where K is now the sum of the finite edge
capacities alone. This extends k n o w n results for the case of networks where all
edge capacities are 1 (parallel edges allowed) and for the case of networks where
all vertex capacities are 1. The second case is that of networks which are not too
wide. We define the width of a ne twork and prove an O(wm log K) time bound for
networks of width w, which holds for all values of the parameters.

Fo r general blocking flows on acyclic networks, the bes t -known result
is the O(mlog(n2/m)) bound of Goldberg and Tarjan [11]. We prove an
O(m log(w2/m + 2)) bound for the case of infinite capacities.

These results can be applied to the 2-satisfiability problem. Fo r general 2-
satisfiability instances, the problem of finding a minimum-weight solution is known
to be ~A/~-complete, and indeed as hard to approximate as the vertex-cover
problem, for which the bes t -known results guarantee an asymptot ic approxima-

1 Bell Communications Research, 445 South Street, Morristown, NJ 07960, USA.

Received August 20, 1991; revised January 3, 1992. Communicated by Harold N. Gabow.

292 T. Feder

tion factor of 2. We show that the blocking-flow result can be used to obtain a
factor of 2 approximation to the minimum-weight solution in O(m log(w2/m + 2))
time, where m is the number of clauses and the width w is bounded above by the
number of variables. An algorithm obtained independently by Gusfield and Pitt
[18] gives the same approximation guarantee in O(nm) time, where n is the number
of variables. For bipartite 2-satisfiability instances, on the other hand, the problem
can be reduced to network flow, and therefore a minimum-weight solution can be
obtained in O(mx/K) time if K is small, or in O(wm log K) time in general, where
K is the weight of an optimal solution. We also show that the transitive closure
of a 2-satisfiability instance can be obtained in O(wm) time; this can be used to
recognize partial solutions for a given instance efficiently. Finally, the solutions of
a 2-satisfiability problem can be enumerated, with O(m) preprocessing time, in O(d)
time per solution, using O(m) space. Here d is the maximum degree of the
2-satisfiability instance, with d < w. The results of Gusfield [13] for stable
matching give implicitly an enumeration algorithm that has O(wm log w) pre-
processing time and takes O(m) time per solution, using O(m) space.

Our main application of these results is in stable matching. An account of much
of the literature on the structure and algorithms for this problem can be found in
[15]. It is known that the set of solutions to a stable-matching problem (and to
more general stability problems) is characterized by a 2-satisfiability instance (see
[13], [7], and I-8]). Both the number of variables and the number of clauses can
be as large as the total size m of the preference lists in the stable-matching instance.
However, the number of people w in the stable-matching instance gives a bound
on the width of the 2-satisfiability instance, with m ~ w z in the case of complete
preference lists. Thus algorithms whose complexity depends on the width, rather
than just the number of variables or clauses, are particularly useful. The results
mentioned above for the 2-satisfiability problem yield the following, for stable-
matching instances with w people and preference lists of total length m: For the
nonbipartite stable-matching problem, known as the stable-roommates problem,
finding a minimum-weight solution is X~-ha rd [7], [8], but a solution within a
factor of 2 of the optimum can be obtained in O(m log(w2/m q- 2)) time. (Note that
the logarithmic factor goes away if m ~ w2.) Here an algorithm of Gusfield and
Pitt [18] has an O(m 2) time bound. For the bipartite stable-matching problem,
known as the stable-marriage problem, a minimum-weight solution can be found
in O(mx//-K) time if K is small, or in O(wm log K) time in general, where K is the
weight of an optimal solution. In particular, the egalitarian stable-marriage
problem, which has K _< m, can be solved in O(m l"s) time (independently of w).
An algorithm of Irving et al. [23] gives an O(m 2 log m) time bound for the weighted
stable-marriage problem, and an O(m 2) bound for the egalitarian stable-marriage
problem. With O(wm) preprocessing time (a transitive-closure computation), the
stability of a set of k pairs can be determined in O(k 2) time. In particular, the
stability of a single pair can be determined in constant time. An algorithm of
Gusfield and Irving for this problem 1-15] has O(m 2) preprocessing time, and the
same query time. Finally, all stable matchings can be enumerated after O(m)
preprocessing time in O(w) time per solution, using O(m) space. An algorithm of
Gusfield [12] has the same complexity in the marriage case; in the roommates

Network Flow and 2-Satisfiability 293

case [13] the algorithm has O(wm log w) preprocessing time and takes O(m) time
per solution, using O(m) space.

The remainder of the paper is organized as follows. Section 2 gives some basic
definitions and preliminary results. Sections 3 and 4 give the two maximum-flow
algorithms. Section 5 describes the blocking-flow algorithm. Sections 6 and 7 give
the applications to the 2-satisfiability problem, and Section 8 describes the
enumeration algorithm. Section 9 gives the applications to stable matching.
Section 10 concludes with some open questions.

2. Flow Problems and Width. A capacitatedflow problem is defined by a directed
graph G = (V, E) with two distinguished vertices, a source s and a sink t, and a
positive (possibly infinite) integer capacity cap(u, v) on every edge (u, v). For
convenience we define cap(u, v) = 0 if (u, v) is not an edge in G. A flow on G is an
integer-valued function f on vertex pairs satisfying the following three properties:

(1) f(v, u) = - f (u , v). If f(u, v) > 0, we say that there is a flow from u to v.
(2) f(u, v) < cap(u, v). If (u, v) is an edge such that f(u, v) = cap(u, v), we say that

the flow saturates (u, v).
(3) For every vertex u other than s and t, ~v f(u, v) = O.

The value of a flow is the net flow out of the source, ~v f(s, v). The maximum-flow
problem is that of finding a flow of maximum value. Given a flow f , the residual
network R(f) is the graph with vertex set V, source s, sink t, and an edge (u, v) of
capacity res(u, v)= cap(u, v) - f(u, v) (the residual capacity) for every pair (u, v)
such that res(u, v) > 0. A flow 9 in the residual network R(f) can be transformed
into a flow g + f in the original network (and vice versa, by subtracting f instead
of adding f) .

A cut X,)? is a partition of the vertex set V into two parts X and X = V - X
such that X contains s and _~ contains t. It will sometimes be convenient to view
a cut as an assignment of boolean values to the vertices in V, with the vertices in
X given the value 1 and the vertices in X given the value 0. The edges across the
cut are the edges that start in X and end in)?. The capacity of a cut is the sum
of the capacities of the edges across the cut. A cut of minimum capacity is a
minimum cut. The f low across the cut is the sum of all f(u, v) with u e X and v E X;
it can be shown that the flow across any cut is equal to the flow value. By the

"capacity constraint, the flow across any cut cannot exceed the capacity of the cut.
Therefore the value of a maximum flow is no greater than the capacity of a
minimum cut. The max-flow rain-cut theorem states that these two quantities
coincide. Thus, for a minimum cut, the flow across the cut equals the capacity of
the cut; this property holds for a given cut if and only if all the edges that start
in X and end in)~ are saturated, and there is no flow along the edges that start
in)? and end in X. (See [34] for a more detailed exposition.)

Sometimes the flow problem has the following special structure. All directed
edges have infinite capacities and link vertices other than the source and the sink,
except for finite capacity edges (s, u) joining the source to a vertex other than the
sink, and finite capacity edges (v, t) joining a vertex other than the source to the

294 T. Feder

sink. In that case we discard the finite capacity edges, the source, and the sink,
and say that vertex u is a supply vertex with supply cap(s, u), and that vertex v is
a demand vertex with demand cap(v, t). We can assume without loss of generality
that no vertex is both a supply and a demand vertex. We apply the terms residual
supply (demand) and saturated supply (demand) to a vertex u (resp. v) as they
would apply to the corresponding edge (s, u) (resp. (v, t)); the flow out of u
(resp. into v) in the simplified network is just the flow along (s, u) (resp. along
(v, t)).

We refer to this problem with only infinite capacities, supplies, and demands as
the uncapacitatedflow problem. An important special case is the bipartite matching
problem: here the vertex set is the union of two disjoint sets V = V 1 u V2, with
edges of infinite capacity directed from V1 to V2, and where vertices in V~ have
supply 1 and vertices in V2 have demand 1.

We let n = I V I be the number of vertices and let m =] EI be the number of edges
in a directed graph G. We also associate with G a third parameter, the width of
G. We define two closely related notions of width. The implicit width of G is the
maximum cardinality of a set of vertices S with the property that, given two distinct
vertices u and v in S, there is no directed path in G from u to v. Our algorithms
actually require the notion of explicit width, defined as follows. A path cover for
G is a set of vertex-disjoint directed paths in the transitive closure of G whose
union contains all the vertices in G. By Dilworth's theorem I-4], the minimum
number of paths in a path cover for G equals the implicit width of G. We say that
G has explicit width w' if a path cover for G consisting of w' paths is known. We
always add the edges of the paths in the known path cover (at most n - 1 edges)
to the graph G, in the uncapacitated flow problems; this does not affect the flow
results, since these infinite capacity edges correspond to infinite capacity paths in
the graph.

It is possible to find a path cover consisiting of w paths for a graph of implicit
width w by running a costly min-flow algorithm. For our purposes, however, even
a good path cover can sometimes be useful. The lemma below implies that, for
the flow algorithm of Section 4, the distinction between implicit and explicit width
will cost at most a logarithmic factor.

LEMMA 2.1. A greedy algorithm finds a path cover with w' <_ w log n paths for a
graph of implicit width w in O(w'm) time.

PROOF. First transform the graph into an acyclic graph G by merging strong
components, and determine a consistent linear order, in O(m) time [33]. The
algorithm now marks the vertices of G in some order, starting from the graph
with all vertices unmarked. At each stage, it finds in O(m) time a path in G
containing the largest possible number of unmarked vertices, then mark these
vertices. Since a path cover with w paths exists, some path in that cover must
contain at least a fraction 1/w of the unmarked vertices; hence each path found
will mark at least this many. After w log n paths have been found, the number of
unmarked vertices left is at most n(1 - 1/w) w~~ < 1, so all vertices are marked
and hence covered. []

Network Flow and 2-Satisfiability 295

The following result gives a simple illustration of the notion of width.

LEMMA 2.2. All the edges in the transitive closure of a directed graph which involve
at least one vertex from a given path P can be obtained in O(m) time. Therefore the
transitive closure can be obtained in O(wm) time for a 9raph of explicit width w.

PROOF. Let ul ~ Uz ~ " " ~ ur be the path P. For every vertex v, let ~p(v) be the
greatest i such that the edge u i ~ v is in the transitive closure of the graph. If no
such i exists, we let ~0(v) = 0. Note that an edge (u j, v) is in the transitive closure
if and only i f j < q~(v). To obtain q~(v) for all vertices v, we consider i = r , . . . , 2, 1
in turn. For each i, we find all vertices v that are reachable from ui in the graph,
set ~p(v) = i since ui ~ v is in the transitive closure, and remove these vertices and
incident edges from the graph. After the last value i = 1 has been considered, we
set ~0(v) = 0 for all vertices v that were not removed from the graph. The correctness
of the algorithm follows from the fact that if q~(v) = i, then a path from ul to v
cannot go through a vertex v' with ~o(v') > i. The time complexity is O(m) since
every vertex and every edge of the graph is considered and removed only once.
The edges in the transitive closure that are of the form v ~ ui can be obtained
with the same algorithm, after reversing all directed edges in the graph. []

A capacitated flow problem (with both finite and infinite capacity edges) can be
reduced to an uncapacitated problem (with infinite capacity edges only) by using
the following standard reduction. For each capacitated edge (u, v) of positive finite
capacity c, introduce two new vertices x and y with demand and supply c,
respectively, and replace (u, v) by three directed edges (u, x), (y, x), and (y, v) of
infinite capacity. An amount f _< c of flow along (u, v) in the original problem can
then be represented with an amount f of flow along (u, x) and (y, v), and an amount
c - f of flow along (y, x). The resulting uncapacitated maximum-flow problem
will then have an maximum flow whose value differs from that of the original
capacitated flow problem by exactly the sum C of the finite capacities c. Note that
if the optimal flow for the original capacitated problem is finite, then its value is
at most C. This reduction may significantly increase the number of vertices of the
graph, but it does not increase the number of edges by more than a factor of 3.
Therefore any time bound for the uncapacitated problem which depends only on
the number of edges and the value of the optimum flow (or even on the total
supply and demand) can be translated into a time bound for the capaci-
tated problem in terms of the number of edges and the sum of the finite capacities
alone.

For uncapacitated flow problems, the measures of implicit and explicit width
are those associated with the underlying graph. For capacitated flow problems,
we consider an alternative notion of width; this notion is of interest mainly because
it allows a reduction from uncapacitated networks of explicit width w to capaci-
tated networks of width 2w, and because we can give a fast flow algorithm for the
later. In the capacitated case, which has a source, a sink, and edges of both finite
and infinite capacity, we define the cut width as the maximum number of edges
across a finite capacity cut. The reduction from the uncapacitated to the capaci-

296 T. Feder

~/1 qA2 Ur

-}-Cl o c -}-c2 rx~ ~:~ "}'r

~I ?22 Ur

CI C 1 ~- C 2

O0

s

Cl + c~ + -.. + cT

Fig. 1. Providing flow at supply vertices.

tated case that does not increase the width by more than a factor of 2 is as follows.
Given an uncapacitated network G and a path cover of w paths for G, we construct
a capacitated network G' by adding vertices and edges to G as follows (see Figure
1). For each path P in the path cover with vertices ut, u z , . . . , u,, and infinite
capacity edges (ui, u~+l), we create a new path with new vertices u'l, u~ u;,
u'~+ 1 = s (where s is the source). We add infinite capacity edges (u}, u}+ 1) and (u' i, ui)
for 1 < i _< r, as well as finite capcity edges (u'~+ 1, u'i) of capacity Ci = ~j<~ c j, where
cj is the supply of vertex uj in the uncapacitated problem. A similar construction

t ! i t is carried out for the demands: we create a new path with new vertices t = Uo, ul,
u~ u7 (where t is the sink), add infinite capacity edges (u'/_ 1, u'/) and (ul, u'i') for
1 < i _< r, as well as finite capacity edges (u'/, u'/_ i) of capacity Di = ~j>~ dj, where
dj is the demand of vertex uj in the uncapacitated problem. This network will have
a cut width at most 2w: all the finite capacity edges are on the paths of u'~ and u'/,
and the set edges across a finite capacity cut X, J~ cannot contain two finite
capacity edges from the same path of u~ (or of u~') because if it contains two edges
(u'i+ 1, u'i) and (u)+1, u)) with i < j , then u'~+ 1 is in X, u) is in)~, and u) is reachable
from u'~+ 1 along an infinite capacity path that must go across the cut, contradicting
the fact that the capacity of the cut is finite.

LEMMA 2.3. An uncapacitated flow problem on a graph of explicit width w can be
reduced to a capacitated flow problem of cut width at most 2w, without increasing
the number of vertices and edges by more than a constant factor.

PROOF. We show a correspondence between flows in an uncapacitated network
G and in the capacitated network G' constructed from it, in both directions. Given
a flow on G, for each path P as above, if f~ is the flow out of vertex ul with supply
cl (and 0 _< fi -< ci), we assign flow fl to the new infinite capacity edges (u'i, ui), and
assign flow ~j_<ifj to the finite capacity edges (u'i+l, u}). Demand vertices are
handled similarly, so that if fl is the flow into vertex ui with demand di (and
0 < f~ _< dl), we assign flow f~ to the infinite capacity edges (u~, u'/) and assign flow

Network Flow and 2-Satisfiability 297

~j>_i f j to the finite capacity edges (u'[, u'[_ 1). It is easy to check that the capacity
bounds and flow conservation laws hold, and that the value of the flow in G' is
the same as in G. This completes one direction of the reduction.

In the other direction, given a flow on G', we first perform a simple transforma-
tion on the flow; this transformation ensures that the flow for the uncapacitated
network satisfies the supply and demand constraints. Let F~ be the flow along the
edge (u'~+ 1, u'~), so that the flow along (u'~, ui) is F i - F~_ 1 by flow conservation
(with F o = 0 by convention). Let F; = F r and F~ 1 = min(F~, Cg_ 1) by induction,
for 1 _< i _< r. Now assign flow FI to the edge (u'i + 1, u}) and flow F~ - F'i- 1 to the
edge (u'i, ui); increase the flow along (u~,ui+ 0 by F ' i - F i. We can check by
induction that F~ _< F'~, and directly that flow conservation and capacity bounds
hold. Furthermore, the flow along (u}, ui) is F ~ - F'i-1 = max(0, F) - C i - O <-
C~ - C~ _ 1 -- cg. Thus if we remove all the u'i vertices and let the flow out of supply
vertex u~ be FI - FI-1, then this amount of flow will satisfy the supply constraint
c~ as required. The analogous transformation for the demand vertices is as follows.
Initially the flow along (u'[, u'[-0 is F i and the flow along (ui, u'[) is F i --F~+I,
where Fr+1 = 0. We let F'; = F1 and F}'+I = min(FT, DI+I) by induction, assign
flow FI' to the edge (u~', u~'_l) and flow F'[- F'i'+l to the edge (ui, ui'); we increase
the flow along (ui_l , ui) by F ' i ' - F i . The flow along (ui, u~') is F ' [- F'[+I =
max(0, F'[- D~+I) <_ Dg - Di+ 1 = dr, so we can remove all the ui' vertices and let
the flow into demand vertex u i be F'[- F~'+ 1, satisfying the demand constraint di.
This completes the other direction of the reduction. []

Some flow algorithms use as a subroutine the computation of a blocking flow
in a capacitated acyclic network. A blocking f l ow is a flow such that every directed
path from the source to the sink traverses a saturated edge. In the uncapacitated
case, this means that if there is a directed path from a supply vertex to a demand
vertex, then at least one of the two vertices must be saturated. The acyclicity
assumption can be removed in the uncapacitated case, because the graph can be
made acyclic by merging strong components and combining the corresponding
supplies and demands, in O(m) time [33].

The efficient implementation of flow algorithms often requires a data structure
called dynamic trees, due to Sleator and Tarjan [31], [34]. This data structure is
used to maintain a collection of vertex-disjoint rooted trees, with costs associated
with the vertices, under the following operations. The maketree(v) operation creates
a new tree containing the single vertex v, previously in no tree, with cost zero;
findroot(v) returns the root of the tree containing vertex v; findcost(v) returns the
pair (w, x) where x is the minimum cost of a vertex on the tree path from v to
findroot(v) and w is the last vertex (closest to the root) on this path of cost x;
addcost(v, x) adds x to the cost of every vertex on the tree path from v to
findroot(v); link(v, w) combines the distinct trees containing vertices v and w by
making v a child of w, where v must be a root ; cut(v) divides the tree containing
vertex v into two trees by deleting the edge joining v to its parent, where v must
not be a root; and evert(v) makes v the root of the tree containing v. In the
algorithm of Section 3 we also need to be able to perform the addcost operation

298 T. Feder

separately for vertices at even and at odd depth in the tree. This modified version
of the addcost operation can be incorporated into the dynamic-tree data structure.
This data structure makes it possible to execute an arbitrary sequence of any of
these operations in time O(log t) per operation, where t is the size of the largest
tree obtained during the execution.

3. Maximum Flow when the Optimum Is Small. We are given a maximum flow
instance on a directed graph G = (V, E) with infinite capacities and integer supplies
and demands, where I VI = n and IEI = m. Our strategy for this problem is the
following. We first view the problem as a flow problem in an auxiliary graph H,
and give an algorithm for obtaining a maximum flow on H. We then show how
the algorithm on H can be implemented efficiently without explicitly constructing
the graph H. We assume that G is acyclic. This can be ensured via an O(m) strong
components computation [33], where strong components are replaced by single
vertices and the corresponding supplies and demands are combined.

The auxiliary graph is a bipartite graph H = (A u B, F). The set A consists of
the supply vertices in G, the set B consists of the demand vertices in G (with supply
and demand values inherited from G), and F contains a directed edge of infinite
capacity (a, b) with a s A and b ~ B if and only if there is a directed path in G from
a to b. The graph H is thus essentially the transitive closure of G, Clearly, a
maximum flow in H corresponds to a maximum flow in the original graph G. For
convenience, we assume that in the original graph G, the supply vertices have
in-degree zero and the demand vertices have out-degree zero. This property can
always be enforced for a supply vertex v by introducing a new vertex v' and an
infinite capacity edge from v' to v, and moving the supply from v to v'; a similar
transformation works for demands.

A maximum flow in H can be obtained by matching supplies in A to demands
in B by a multiset M of edges in F: the number of occurrences of the edge (a, b)
in M is the flow from a to b, and the number of edges in M involving a vertex
a ~ A (resp. b ~ B) must be at most the supply (resp. demand) of the vertex. A
maximum matching (one that maximizes the size of M) can be found with the
Hopcroft and Karp matching algorithm, or equivalently with Dinits's flow
algorithm [5], [21], [34]. This is done as follows. Suppose that some flow f in
H is known. This flow induces a residual network which consists of the same
infinite capacity edges from A to B, but which also contains edges (b, a) of capacity
c whenever f has a flow of value c > 0 along an edge (a, b) in H. Furthermore,
supplies and demands have been updated in this residual network in accordance
with the flow f. (That is, the supply at a vertex a ~ A has been reduced by the
amount of flow leaving a in f , and the demand at a vertex b ~ B has been reduced
by the amount of flow entering b in f.)

From this residual network, a layered network is defined as follows. The vertices
in A with positive supply in the residual network are at level 0, and so are the
vertices in B adjacent in H to vertices of A at level 0. For i > 0, the vertices in A
at level i are the vertices of A that are not at smaller levels and are adjacent to
vertices at level i - 1 in B through a capacitated residual edge; the vertices in B

Network Flow and 2-Satisfiability 299

at level i are the vertices of B that are not at smaller levels and are adjacent in H
to vertices of A at level i through an uncapacitated edge. The last level l is the
level that contains vertices in B with positive residual demand. The value l is the
length of the layered network. The layered network contains precisely those vertices
that are at some level 0 _< i < l and those edges of the residual network that are
either infinite capacity edges joining a vertex in A at level i to a vertex in B at
level i for some i, or finite capacity residual edges joining a vertex in B at level
i - 1 to a vertex in A at level i. Therefore the layered network is acyclic. The
algorithm finds a blocking flow 9 in this layered network, that is, a flow that
cannot be increased by adding flow from a supply vertex to a demand vertex along
unsaturated edges of the layered network. This blocking flow can now be added
to the previous flow f to obtain a new flow f ' = f + 9. If we now construct the
residual network and the layered network corresponding to f ' , it is known that
the new layered network must have length at least l + 1. This in turn implies that
the number of phases, i.e., the number of times that the flow f and the correspond-
ing residual network are updated before the final optimal flow is obtained, is at
most 2 , j K , where K is the value of the optimal flow (see below for a justification
of this bound).

If we could implement each phase in O(m) time, we would then have an O(m~/K)
algorithm, as desired. However, even if we put aside the complexity of obtaining
H from G via a transitive-closure computation, we face the difficulty that both the
number of edges from A to B in H, and from B to A in the residual networks,
could be as large as m 2 (i.e., we could have G sparse but H dense), giving an O(m 2)
complexity for each phase. We handle this difficulty differently for the two types
of edges: For the capacitated residual edges from B to A, we maintain a "forest"
solution, thus keeping their number bounded by O(m) (in fact by n - 1). For the
uncapacitated edges from A to B, we avoid computing the transitive closure
explicitly, and work instead with edges in the original graph G, whose number is
bounded by m. This gives the desired bound.

We first show how the number of capacitated edges from B to A in the residual
graph can be kept within an O(m) bound. The main idea to achieve this is to
maintain a "forest" solution (sometimes known as a "spanning-tree" solution).
Suppose then that the edges from B to A in the resudual network at the beginning
of a phase form a forest (when viewed as undirected edges). We ensure that, after
the blocking flow is obtained, the residual network is updated so that this forest
property is maintained. This means that the number of residual edges is in fact
always at most n - 1. A priori, each edge (a, b) from A to B along which the
blocking flow 9 sends a positive flow must be added as an edge (b, a) to the residual
network. It may happen that the addition of a new residual edge (b, a) completes
a cycle among the edges from B to A in the residual network (when viewed as
undirected edges). If this happens, we perform the following transformation. Let
6 be the minimum residual capacity of an edge (b', a') in this newly created cycle
of capacitated residual edges. Note that the cycle has an even number of edges,
since the residual network is bipartite. The edges (b", a") on the cycle may thus be
alternatively labeled even and odd, with the edge (b', a') of capacity 6 labeled even
by convention. We then decrease the flow f from A to B along (a", b") if (b", a")

300 T. Feder

is an even edge by 6, and increase the flow by 6 for an odd edge. This
transformation preserves the validity of the flow f. Furthermore, the edge (b', a')
is now no longer a residual edge, so the residual edges from B to A constitute
once again a forest. Since this transformation creates no new residual edges, the
length of the layered network will still increase in each phase from l to at least

l + 1, so the number of phases is still bounded by 2x/K. The trees in the forest
can be maintained as dynamic trees. This data structure enables us to find the
tree path from b to a (use evert to make a the root), to find the minimum capacity
edge on this path (with findcost at b), to update the capacities of edges along the
path (with addcost, provided that even and odd depth costs are updated separately,
as mentioned in Section 2), and to link and cut trees in time O(log n) per operation.
Thus, if R is the total number of capacitated residual edges created during all
phases of the algorithm, then the complexity of maintaining a forest solution is
O(R log n). Later we see that R = O(K log n), giving an O(K log 2 n) time bound.

We now show how to compute a blocking flow in the layered network efficiently.
(See Figure 2.) Recall that the layered network can contain a large number of
infinite capacity edges from A to B, but only O(m) capacitated edges from B to A
(by the forest property). We say that a vertex or an edge in G is at level i if i is
the least number such that the vertex or edge can be reached in G from a vertex
in A at level i. Note that if (a, b) is an edge in H with both endpoints at level i,
then each path from a to b in G must be contained in level i. For given such a
path, it is clear by definition that all vertices and edges along the path are at level
i or smaller; if some such vertex or edge were at a level j < i, then this vertex or
edge, and hence b itself, would be reachable in G from a vertex in A at level j, so

A B

~ level 0 graph ~

Fig. 2. Representation of the layered network.

Network Flow and 2-Satisfiability 301

b would be at level j or smaller. Levels of vertices can be determined by giving
length 0 to all infinite capacity edges in G, length 1 to all finite capacity edges in
the residual graph, and performing a shortest-path computation from the set of
vertices in A at level 0, in O(m) time.

We have this partitioned the vertices and edges of G into disjoint levels;
the edges (a, b) in H with a and b at level i are represented by paths in G
within level i. We can discard the edges in G that join vertices in two
different levels, since they do not represent any edge in the layered network;
after discarding such edges, we refer to the vertices and edges in level i as
the level i graph. If we now combine level i graphs for all i with the capacitated
edges joining two adjacent levels in the residual network, we have an implicit
representation of size O(m) for the layered network, with capacitated edges from
B to A in the layered network given explicitly, and infinite capacity edges
in the layered graph from A to B given implicitly by paths in G within a
level. We refer to this graph as the representation of the layered network, illustrated
in Figure 2. This representation is acyclic, because each level is acyclic and
capacitated edges only go from level i to the next level i § 1. An O(m log n)
blocking-flow algorithm [31], [34] can be run directly in this representation graph.
We sketch here such an algorithm, but with some modifications that lead to a
better time bound for our problem. The reader is referred to [11], [31], and [34]
for details.

The algorithm executes the following two steps in alternation:

(1) Repeatedly remove all vertices of out-degree zero other than the unsaturated
demand vertices in B at level l, together with their incoming edges, and remove
the edges of capacity zero as well.

(2) Traverse a path from an unsaturated supply vertex to an unsaturated demand
vertex, and send flow along this path until either the supply, the demand, or
one of the capacitated edges along the path is saturated.

Note that the path started at an unsaturated supply vertex can always be
extended until an unsaturated demand vertex at level l is reached, since all the
other vertices have nonzero out-degree and the graph is acyclic. An additional
requirement is that whenever a path reaches a vertex that had previously been
visited, it proceeds from this vertex along a previously visited edge, if there is
any such edge left in the graph. As a result, at any point in time, there is at
most one outgoing edge for each vertex that has been visited but has not been
removed, so the visited edges remaining in the graph form a collection of
in-trees. These trees can be maintained using dynamic trees, linking trees when
a new edge is visited and cutting trees when an edge is removed. The edges
on the path in step (2) that belong to dynamic trees are not visited, because
whenever a path reaches a dynamic tree, it can proceed directly from the root
of the tree. As a result, each edge is visited only twice, once the first time it is
visited during step (2) at which point it becomes part of the dynamic trees,
and once when it is removed during step (1). Thus the number of dynamic-tree
operations is O(1) per edge, with an additional O(1) per path created in step (2).
The number of such paths is also O(m), because each path saturates an edge or a

302 T. Feder

vertex. This gives a total of O(m) dynamic-tree operations for an O(m log n) time
bound.

We introduce two modifications in this algorithm. First, we never link
dynamic trees in different levels. Therefore the path in step (2) always visits the
capacitated edges joining different levels and knows the vertices in A and B visited,
hence the path in the (explicit) layered network used to increases the flow. Second,
we enforce a fixed bound t on the dynamic-tree size as in [11-]. These modifications
give an additional cost due to the fact that certain edges are visited but not
incorporated into the dynamic trees by the path in step (2). Each such edge costs
a constant number of dynamic-tree operations; we give an upper bound on the
number of such edges. The edges not incorporated into the dynamic trees because
of the first modification are the l capacitated edges joining different levels
along the path. The edges not incorporated because of the second modification
are edges whose endpoints belong to two dynamic trees, where one of the two
trees has at least t/2 vertices (oterwise the bound t on the joint tree size would be
met and the edge would be incorporated into the dynamic trees). The number of
trees with at least t/2 vertices is at most t2n/tJ, and each such tree is charged
at most twice, once by the edge where the path enters the tree, and once
by the edge where the path leaves the tree at the root. Therefore at most
2L2n/tJ edges are visited because of the second modification. This gives an
additional O(l + t2n/tJ) dynamic-tree operations per path. If the flow increase in
a phase is h, then the number of paths in step (2) is at most h, giving a total of
O(m + (l + k2n/tJ)h) dynamic-tree operations per phase. Each operation takes
O(log t) time, so the time bound for the blocking-flow computation at each phase
is O((m + (l + k2n/t_J)h) log t).

To bound the total time complexity of the algorithm, we use the following
fact, which is again known from standard matching algorithms: if the flow
after a layered network of length l has been obtained is K', then the optimum
flow K > K' differs from K' by at most K'/l. We can cover the possible values
of l (0 < 1 < n) with log n intervals of the form L _< 1 < 2L plus the additional
value 1 = 0. I fh is the amount of flow when the length is 1, then 2L<_I<2L h < K/L
and ~L_<I<ZL lh < 2K. Therefore ~o___t<, lh < 2K log n. Note that the number of
capacitated residual edges created in a phase is at most (l + 1)h. Therefore the
number R of such edges created in all phases is indeed O(K log n) as claimed,
giving the O(K log 2 n) bound for maintaining a forest solution.

We choose t = max(2, min(2n + 1, K/12)), so that the dynamic-tree size bound

is reduced to a constant as the length l of the layered network approaches x//K;
intuitively, later phases push less flow, and so dynamic trees that can handle the
interaction between the different paths where flow is sent become less necessary.
By the bound in the preceding paragraph and the fact that log t < log(2n + 1),
the O(lh log t) term of the time spent in each phase gives an O(K log 2 n) bound
overall. The remaining term is O((m + L2n/tlh)log t). For the phases with
l > L = ~/-K, we have t = 2 and 2t>_L h < K/L = w/-K. The number of such phases

is, as a result, also at most n /~ . The term is then O(m + nh) for each phase and

O (m ~) for all phases l > v/K.

Network Flow and 2-Satisfiability 303

For the phases with 1 < l < v/K, we again consider intervals of the form

L < l < 2L, where L is of the form L = x / ~ / 2 i with i ___ 1. Then

Y" (m + k2n/t_Jh) log t <_ (Lm + 2n((2L)Z/K)(K/L)) log(K/L 2)
L<_I<2L

< (mx/~/2i+ 8nx/~/2i)(2i).

Adding this expression for all i > 1, we obtain an O(mv/K) bound for all phases

1 < l < x / ~ .
As a last observation, note that the tree-size bound t = K/l 2 depends on the

unknown optimal flow value K. However, if the flow at the end of the first phase
is K', then since l > 1 at that point, the flow in subsequent phases will increase
by at most K'/l <_ K', so 1(/2 <_ K' < K. Thus the flow K' at the end of the first
phase provides an adequate estimate for K. The first phase itself is run with t
growing from 1 to at most K '2, with t = i 2 for the ith path. The term for the first
phase (which has l = 0 and h = K') is thus

O((m + (t2n/12j + t2n/22_j + t2n/32j + . . "))(log K'))

= O((m + n) log K') -- O(m log K).

THEOREM 3.1. A maximum flow of value K in an uncapacitated network with m
edges can be obtained in O(mx/~ + K log 2 m) time. This gives an O(mx/~) time
bound for K = O((m/log 2 m)2).

As presented, the algorithm gives the solution in terms of direct edges from
supplies to demands, each of which corresponds to an infinite capacity path in
the graph. If we want to know what the actual flow along the edges of the original
graph is, we need to map the direct edges back to the path to which they
correspond. This path can be recovered (and the corresponding flow assigned to
it) by using the dynamic-tree structure that represented the path when the direct
edge was first discovered. This structure may no longer exist at the end of the
algorithm, and a re-execution of the algorithm to recreate the structure and assign
flow to the corresponding paths will then be necessary. For most applications,
knowledge of the actual infinite capacity path followed from a supply to a demand
is not needed.

Note that if K = O(m), then it is not necessary to miaintain a forest solution to
ensure an O(m) bound on the number of residual edges, and furthermore the bound
on the running time holds even if the O(log t) time used to implement dynamic
trees is increased to O(x//t/log 2 t).

In view of known bounds for network fl0w, an O(mx/-K) bound is only of interest
if K _< (n log n) 2. This leaves open a relatively narrow range of values for K where

the O(mx/~) bound cannot at present be achieved (namely, w/K ~ n ,.~ m, up to
logarithms).

304 T. Feder

4. Maximum Flow when the Width Is Small. This section describes a simple and
efficient flow algorithm for networks of small width. We describe the algorithm
in the framework of capacitated networks (with edges of finite or infinite capacity).

The algorithm uses capacity scaling. Starting from a network G, each finite
capacity c is replaced by [_c/2_], and a maximum flow in this modified network G'
is obtained. By doubling this flow, we obtain a maximum flow in a network G"
with capacities 2[_c/2]. If we consider a corresponding minimum cut X, X ~ in G",
then all the edges across the cut must be saturated, and must therefore have finite
capacity. Therefore the number of such edges is at most the cut width w. We now
restore the original capacities c of the network G. This increases all capacities by
either 0 or 1, depending on whether c is even or odd. Therefore the capacity of
the cut X, 3~ increases by at most w. It follows that a maximum flow in G differs
from the maximum flow in G" by at most w units of flow. We may thus perform
w augmentations, each running in O(m) time, to obtain a maximum flow in G.

We have reduced a flow problem with optimum flow K to a flow problem with
optimum flow at most K/2, by means of the reduction from G to G'. This reduction
has time complexity O(wm) and is referred to as a scaling phase. After (log K) + 1
such scaling phases, we are left with a network with maximum flow value 0; when
this network is reached, it is easily recognized in O(m) time. An optimum flow for
the original network can now be reconstructed in O(wm) time per scaling phase,
for a total O(wm log K) time. By Lemma 2.3, uncapacitated networks can be
reduced to capacitated networks without affecting the size or maximum flow value
of the given instance, provided that the notion of explicit width is used for the
uncapacitated network.

THEOREM 4.1. A maximum flow of value K in a capacitated (uncapacitated) network
with m edges and of cut width (resp. explicit width) w can be found in O(wm log K)
time.

5. Uncapacitated Blocking Flow. We now turn our attention to the problem of
finding blocking flows in an uncapacitated network. Our algorithm is based on
the O(m log n) algorithm (for acydic networks) of [31] and [34] that uses dynamic
trees. We also use the bounded tree size idea from the O(m log(n2/m)) algorithm
of 1-11], but do not require finger search trees due to the fact that all capacities
are infinite. Infinite capacities also make it possible to replace the parameter n by
the potentially smaller explicit width w, thus obtaining an O(m log(w2/m + 2))
algorithm. The given graph G has infinite capacities, supplies, and demands. Recall
that we can assume without loss of generality that the graph is acyclic in the
infinite capacity case. We are also given a set of w vertex-disjoint paths P1,
P2, . . . , Pw in G that jointly cover all the vertices in G.

The algorithm proceeds by performing a series of depth-first searches on G,
starting at different vertices of G. The depth-first searches are used to send flow
from supplies to demands; we first concentrate on the rules that guide the execution
of these searches, and only later indicate how these searches are used to send flow.
A depth-first search retreats from a vertex v only if it succeeds in saturating the

Network Flow and 2-Satisfiability 305

demand at v (this saturation is described later). Otherwise, the depth-first search
stops (and the next depth-first search is started). As a result, if the depth-first search
retreats from v, then the demand at v and at every vertex reachable from v is
saturated, so no flow can be sent through v, and we can remove the vertex v
together with its incoming edges from G. This also implies that a vertex v is
removed from G only after all the vertices reachable from v have been removed
from G. In particular, the vertices on a path Pi that have not been removed from
G always constitute an initial segment of Pi. We denote the current initial segment
by Qi and the first and last vertices of Qi by u~ and v i, respecively. When the
depth-first search advances from a vertex v, it always proceeds along an edge
visited by an earlier depth-first search, if such an edge exists. As a result, for every
vertex v remaining in G, there is always at most one edge out of v that has been
traversed so far. This implies that the visited edges form a collection of in-trees.

In choosing an edge out of a vertex v, we always give priority to the edge joining
v to the vertex following v on the path Qj that v belongs to, if v # v i. As a result,
there is always at most one visited edge out of Q j, and this edge is infact an edge
(v, w) out of v = vj. If w belongs to Q j,, then we view this visited edge (vi, w) as
an edge joining Qj to Q j,. This implies that the visited edges joining two different
Qj form a collection of in-trees on the set of Qj. At any point during the execution
of a depth-first search, there is a single path R contained in the edges visited by
the depth-first search joining the vertex where the search started to the current
vertex; the remaining edges visited by the depth-first search have been removed
from G because a retreat was performed through them. We always start a
depth-first search at the vertex u~ of some Qi; by the priority rule, the current path
R will immediately and subsequently contain the initial segment Qi. We can now
specify how a vertex v is saturated before the depth-first search retreats. This is
done simply by sending flow from the lowest unsaturated supply vertex u in Q~
to the vertex v, along R, so that either the supply at u or the demand at v is
saturated. Therefore, when the depth-first search terminates because it cannot
saturate the demand at v, all the supply vertices on P~ will have been either
saturated or removed from G. The total number of depth-first searches performed
is at most w, one for each Pi. By the time all these searches terminate, all supply
vertices will have been either saturated or removed from G. The total number of
depth-first searches performed is at most w, one for each P~. By the time all these
searches terminate, all supply vertices will have been either saturated or removed
from G, and in either case no additional flow can be sent from them to an
unsaturated demand, so we indeed have a blocking flow.

To implement this algorithm efficiently, we represent the in-trees joining the Qj
using dynamic trees. The nodes in the dynamic trees correspond to paths Qj. Each
path Qj is represented separately by a doubly linked list, and we also remember
the end-vertex vj of Qj. When a depth-first search advances from a vertex v in a
Q j, it can always go directly to the vertex v j, so the edges contained in Qj are
never visited when the search advances. In fact, the depth-first search can proceed
directly to the vertex v j, of the root Q j, of the tree containing Qj. Therefore, when
the search advances, it only visits edges joining two different Qj that were not
visited by an earlier depth-first search, and adds each such edge to the dynamic

306 T. Feder

trees so that later searches will not need to examine it when they advance. When
the depth-first search retreats from the vertex v~ of a root Q j, it removes vj and
its incident edges from G. An edge joining some Q j, to this root Qj is of the form
(vi,, w) with w in Q j, and is only removed from G if w = vi; therefore only some
of the edges joining the root Q~ to its children Qy are removed. The initial segment
Qj is also shortened when the last vertex vj is removed, and vj is updated
accordingly. If the tree whose root is Q~ was entered by the depth-first search
through a vertex v in some Q j,,, then the depth-first search retreats from the old
v~ to the vertex v j, of the root Q j, of the tree containing Qf after the updates
(possibly j ' = j).

Only a constant number of dynamic-tree operations are performed for each
edge in G, namely, those performed when the edge is seen for the first time by the
advance of a depth-first search, and those performed when the edge is seen for the
last time and removed from G. Therefore the number of dynamic-tree operations
is O(m), and each operation takes O(log(w + 1)) time because the total number of
nodes in the dynamic trees is at most w. This gives an O(m log(w + 1)) time bound.

To improve on this time bound, we introduce a bound t on the maximum
dynamic-tree size, and never link two Q~ if this linking would result in a dynamic
tree with more than t nodes, Note that if a link is not performed, then one of the
two trees involved must have at least t/2 nodes. We must now account for the
traversal of an edge e by the advance of the depth-first search that does not result
in a link. The edge e goes from the root Qj of a tree to a node Q~, of a tree rooted
at some Qj~. If the depth-first search later retreats from the vertex v j,, of Qf~, then
we charge the forward traversal of e to this retreat; otherwise we charge the
traversal of e to one of the two trees involved, whichever is of size at least t/2.
Note that in this second case the charged tree remains unchanged until the end
of the depth-first search. There are at most 2wit such trees, and each is charged
by at most two edges, one where the depth-first search enters the tree and one
where the depth-first search leaves the tree at its root. Therefore every such tree
is charged a constant number of dynamic-tree operations by the depth-first search,
and we have an additional O(w/O dynamic-tree operations per depth-first search
for a total of O(wZ/t) dynamic-tree operations over all w searches. Each dynamic-
tree operation takes O(log(t + 1)) time, giving a total O((m + wZ/t) log(t + 1)) time
bound. Letting t = w2/m + 1 gives an O(m log(w2/m + 2)) time bound.

THEOREM 5.1. A blocking flow in an uncapacitated network with m edges and
explicit width w can be found in O(m log(wE/m + 2)) time.

Note that if m = ~"~(w2), then we can let t = 1 and still obtain a linear-time
algorithm without dynamic trees. The efficiency of this O(m + w 2) algorithm comes
solely from the fact that we avoid traversing paths Pj by always jumping to the
end-vertex of the path. This simplifies the implementation considerably.

Since the edges inside the paths Pj are skipped, the algorithm (with or without
dynamic trees) remembers the flow only along edges that join two different paths
Pj and P j,. If at the end of the algorithm we need to know the flow for the edges
inside a path P j, we can just traverse P~ from its start-vertex and use flow

Network Flow and 2-Satisfiability 307

conservation at each vertex to infer the flow along the edges of Pj. This can be
done in O(m) time.

6. 2-Satisfiability. In this section we show how the results from the previous
sections can be applied to solve several questions related to the 2-SAT problem.
A 2-SAT instance is a set of boolean variables {xl, x2 x,} and a set of m
clauses u v v, where each of the two literals u and v is either a variable x i or its
negation ~ . A solution to a 2-SAT instance is an assignment of boolean values
to the boolean variables x~ such that all the clauses are satisfied. It is sometimes
convenient to view the clauses as two implications fi ~ v and ~-~ u. This can in
turn be represented by an implication graph with vertices x i, ~ and directed edges
(fi, v) and (~, u) corresponding to each clause. The width of the 2-SAT instance is
then simply the width of this directed graph (as defined for uncapacitated flow
graphs). We also use here the terms implicit and explicit width. The transitive
closure of a 2-SAT instance I is the 2-SAT instance whose implication graph is
the transitive closure of the implication graph of I. By Lemma 2.2, we have:

THEOREM 6.1. All the clauses in the transitive closure of a 2-SAT instance which
involve at least one literal from a given path P can be obtained in O(m) time. Thus
the transitive closure can be obtained in O(wm) time for a 2-SAT instance of explicit
width w.

The compatibility graph of a 2-SAT instance is an undirected graph on the set
of literals with an edge (u, v) for each clause u v v of the 2-SAT instance. We
assume that the trivial edges (u, ~) are always present. A partial solution to a
2-SAT instance is an assignment of values to a subset of the variables that can be
extended to a complete solution by some assignment of values to the remaining
variables. A partial assignment can be represented by a subset S of the vertices in
the compatibili ty graph: if a literal u has been assigned the value 1, then the vertex
u is included in S (thus fi is included in S if u has been assigned the value 0); if u
has not been assigned a value, then both u and fi are included in S. A vertex cover
in a graph is a set of vertices S with the property that at least one of the two
endpoints of every edge is in S. Many results on the 2-SAT problem depend
implicitly on the following observation:

LEMMA 6.1. The partial solutions to a solvable 2-SAT instance are the vertex covers
of the compatibility graph of its transitive closure.

PROOF. Transitive closure in the implication graph corresponds to closure under
the resolution rule in the compatibility graph. That is, if there is a clause u v v
and a clause g v w, then there is also a clause u v w.

A partial solution to the 2-SAT instance corresponds to a vertex cover of the
compatibili ty graph because at least one literal of each clause involving two
variables with assigned values in the partial solution is satisfied. To prove the

308 T. Feder

converse, suppose that we have a vertex cover. Note that all vertex covers
correspond to partial assignments because they include at least one of the two
complementary literals u, ~ (given the presence of the edge ,(u, 3)). We show that
if we reduce the vertex cover to a minimal vertex cover (by repeatedly removing
vertices from the cover while preserving the vertex-cover property until no more
vertices can be removed), then the corresponding extended partial assignment is
indeed a complete assignment and hence a solution to the 2-SAT instance (since
all the clauses are satisfied by the vertex-cover property). Thus the partial
assignment was indeed a partial solution. Suppose then, toward a contradiction,
that we have a minimal vertex cover in which, for some literal v, both v and ~ are
in this cover. Consider first the case where there is no selfqoop edge (v, v) or (~, ~).
By minimality, v cannot be removed from the cover, so an edge (u, v) with u not
in the cover must exist. Similarly, ~ cannot be removed from the cover, so there
is an edge (~, w) with w not in the cover. However, then, by resolution, there is an
uncovered edge (u, w), a contradiction. If there is one self-loop, say the edge (~, ~),
but not the edge (v, v), then we can still conclude that there is an edge (u, v) with
u not in the cover, and then resolution yields edges (u, ~) and (u, u), so u must be
in the cover, a contradiction. If both self-loops (u, u) and (fi, 3) are present, then
the 2-SAT instance has no solution. Therefore, if a solution exists, then every
minimal vertex cover contains only one of v, ~ for each such pair, and hence defines
a 2-SAT solution. []

Note that the preceding proof also shows that the complete solutions to a
solvable 2-SAT instance are the minimal vertex covers of the compatibility graph
of its transitive closure. The lemma implies that given a partial assignment to k
variables of a transitively closed 2-SAT instance, it can be checked whether this
partial assignment is a partial solution by just checking the clauses involving these
k variables (at most O(k 2) clauses). The reason is that the corresponding set S
contains both u and 3 for every unassigned u, so all edges involving unassigned
literals are automatically covered, and only edges involving the remaining 2k
literals need to be checked. Using the transitive-closure result of Theorem 6.1, we
obtain the following:

THEOREM 6.2. Given a 2-SAT instance with m clauses and explicit width w, it can
be determined, after O(wm) preprocessin9 time, whether a query assionment to k of
the variables is a partial solution, in O(k 2) time.

7. Optimization on 2-SAT Instances. We now consider the minimum-weight
2-SAT problem. An instance of this problem is a 2-SAT instance with a non-
negative weight associated with each variable. The weight of a solution is
the sum of the weights of the true variables (variables of value 1 in the
solution). In the minimum-weight 2-SAT problem, the aim is to find a solution of
minimum weight for a 2-SAT instance. If we consider the compatibility graph of
its transitive closure, with weights assigned to the vertices, and define the weight
of a vertex cover to be the sum of the weights of vertices in the cover, then the

Network Flow and 2-Satisfiability 309

minimum-weight 2-SAT problem can be viewed as a minimum-weight minimal
vertex-cover problem.

Unfortunately, the minimum-weight vertex-cover problem is X~-comple te ,
even if all weights are 1. This also applies to the minimum-weight 2-SAT problem,
because a graph on vertices xi can be viewed as a 2-SAT instance on the variables
xi, with clauses x i v xj corresponding to edges (xl, x j) and where the variables x i
inherit their weight from the graph (the 2-SAT instance is monotone and transitively
closed). Therefore the minimum-weight 2-SAT problem is also JV~-complete.

On the other hand, algorithms exist for approximating the minimum-weight
vertex cover within a factor of 2 of the minimum weight, and these algorithms
thus give solutions within a factor of 2 for the minimum-weight 2-SAT problem
[2], [3], [17], [20], [25]. We describe one algorithm for the minimum-weight
2-SAT problem in terms of blocking flows, and this enables us to use the efficient
blocking-flow algorithm from the last section.

The algorithm is as follows. Given a weighted 2-SAT instance, we consider its
implication graph. In this graph we assign a supply to 2 equal to the weight of x
and a demand to x equal to the weight of x, for each variable x; the edges are
given infinite capacities. We now find a symmetric blocking flow in this un-
capacitated network; symmetric here means that the flow out of supply vertex
equals the flow into demand vertex x. The set S of saturated demands x together
with all vertices 2 then gives a partial solution to the 2-SAT instance, which can
be extended to a complete solution.

We first prove the correctness of the algorithm, and then discuss its implementa-
tion. If (x, y) is an edge of the compatibility graph of the transitive closure, then
there is a path from 2 to y in the implication graph, with infinite capacity edges.
Therefore a blocking flow must saturate the supply vertex 2 or the demand vertex
y, and this means by the symmetry condition that either x or y must be saturated.
Therefore the set S is a vertex cover of the compatibility graph of the transitive
closure, and hence a partial solution by Lemma 6.1. Extending it to a complete
solution means reducing S to a minimal vertex cover, and this can only reduce
the weight of S,

The weight of S is at most the value of the blocking flow. The reason is that
the weight of S is the sum of the saturated demands, i.e., the sum of the flow into
saturated demand vertices, while the value of the flow is the sum of the flow into
all demand vertices. On the other hand, let T be a solution to the 2-SAT instance
represented as a vertex cover of the compatibility graph of the transitive closure.
Charge the amount of flow from a supply 2 to a demand y along some path to
one or the other of these two vertices, depending on whether x or y is covering
the edge (x, y) in T. The total flow is thus charged to supplies 2 or demands x
such that x is in T, and neither is ever charged more than its corresponding supply
or demand, which equals the weight of x. This shows that the total flow is never
more than twice the weight of T. We have therefore proved that the weight of S
is at most twice the weight of T, and so the solution obtained from S has weight
at most twice the weight of any other solution, as desired.

To implement this algorithm we use the blocking-flow algorithm from Section
5. To ensure the symmetry condition, whenever we send flow in the implication

310 T. Feder

graph from supply ~ to demand y, we also send the same amount of flow from
to x (in the case x ~ y). This modification can be easily incorporated into the
algorithm and does not affect the O(m log(wZ/m + 2)) time bound. The saturated
demands x define a partial solution. We can extend a partial solution to a complete
solution using any O(m)-time algorithm for 2-SAT (e.g., see [6]). We therefore have:

THEOREM 7.1. A solution to the minimum-weight 2-SAT problem with weight within
a factor of 2 of the optimum can be obtained in O(m log(wE/m) + 2) time for instances
with m clauses and explicit width w.

An O(nm) algorithm was given by Gusfield and Pitt [18].

Note. If the given 2-SAT instance is transitively closed, then we only need to
send flow from a supply :2 to a demand y along a single edge (rather than a path).
We can then enforce the symmetry condition by working directly with the
undirected edge (x, y) of the compatibility graph rather than the two directed edges
(2, y) and (y, x) of the implication graph. Each edge is considered once and assigned
a flow that saturates either x or y, giving an O(m) algorithm. This simple linear
algorithm can be applied to the minimum-weight vertex-cover problem, because
the corresponding 2-SAT instance (see above) is always transitively closed. See
also [2] and [18].

A 2-SAT instance is bipartite if the corresponding compatibility graph is a
bipartite graph G = (U u V, E). Note that for each pair of complementary literals
u, fi, one of them must be in U and the other one in V, since the edge (u, fi) is in
G. The fact that G is bipartite also tells us that every edge (u, v) in the implication
graph must join either two vertices in U or two vertices in V, and that implications
u--* v in U correspond to impliations ~--* fi in V. We therefore restrict the
implication graph to the subgraph induced by the vertices in V, which always
contains exactly one of each pair of complementary literals u, ft. If u e U, then
setting u = 0 must be interpreted as setting fi = I in V (and setting u = 1 as setting
fi = 0 in V).

The minimum-weight solutions to a bipartite weighted 2-SAT instance can be
obtained as follows. For each variable x e U, assign a supply to 2 (in V) equal to
the weight of x. For each variable y e V, assign a demand to y equal to the weight
of y. Then find a maximum flow in the implication graph of the 2-SAT instance
with infinite capacities (in V). Now augment the 2-SAT instance by adding the
following constraints: If 2 is an unsaturated supply vertex, set x = 0. If y is an
unsaturated demand vertex, set y = 0. If there is positive flow along an edge u ~ v
in the implication graph, then add the constraint v --, u to the 2-SAT instance. The
minimum-weight solutions to the original 2-SAT instance are then precisely the
solutions to the modified 2-SAT instance. Thus a particular minimum-weight
solution can be obtained by solving the modified 2-SAT instance. Note that the
modified instance is simpler: some variables have been replaced by constants, and
the literals u and v for which a constraint v ~ u has been added must now satisfy
u = v and can thus be replaced by a single literal.

Network Flow and 2-Satisfiability 311

To prove the correctness of this algorithm, recall the definition from Section 2
of uncapacitated flow problems in terms of capacitated problems with a source s,
a sink t, and capacitated edges (s, ~) (resp. (y, t)) for supply vertices ~2 (resp. demand
vertices y). We can view the solution to the 2-SAT instance as cuts in this network
by setting s = 1 and t = 0, while using for the remaining vertices in V their values
assigned as literals in the solution. Furthermore, the weight of a solution is the
capacity of the corresponding cut. To see this, note that an edge (u, v) in the
network with u = 1 and v = 0 cannot be an infinite capacity edge, because it would
then be an edge (u, v) in the implication graph and the constraint u ~ v in the
2-SAT instance would be violated. For capacitated edges, we have u = 1 and v = 0
iff (u, v) is (s, ~) and x = 1, or (u, v) is (y, t) and y = 1. Thus the true variables
(variables set to 1) correspond to the edges across the cut, with the weight of the
variable corresponding to the capacity of the edge, proving the claim.

Therefore the least possible weight for a solution is the weight of a minimum
cut. By the max-flow min-cut theorem, given a maximum flow, the minimum cuts
are the cuts such that if (u, v) = (1, 0), then the edge (u, v) is saturated, and if
(u, v) = (0, 1), then the edge (u, v) has no flow 1-34]. For uncapacitated edges (u, v),
this means that we cannot have (u, v) = (1, 0), since these edges cannot be saturated;
thus all the implications u ~ v from the implication graph must be satisfied
(implying that all minimum cuts are solutions to the 2-SAT instance). Furthermore,
if there is a positive flow along (u, v), then we cannot have (u, v) = (0, 1), i.e., the
additional constraint v ~ u must also be satisfied. For capacitated edges (s, ~)
(which have s = 1), if this edge is not saturated (the supply ~ is not saturated),
then we cannot have ~ = 0, i.e., we must have x = 0. Similarly, for capacitated
edges (y, t) (which have t = 0), if this edge is not saturated (the demand y is not
saturated), then we cannot have y = 1, i.e., we must have y = 0. These conditions
characterize the minimum cuts and therefore the minimum-weight solutions to
the 2-SAT instance. From the flow algorithm of Sections 3 and 4 we obtain:

THEOREM 7.2. A minimum-weight solution of weight K for a bipartite weighted
2-SAT instance with m clauses and explicit width w can be found on O(mx/~) time
for K = O((m/log 2 m) 2) and in O(wm log K) time for arbitrary K. In fact, a complete
description of all minimum-weight solutions can be found within this time bound.

The link between bipartite 2-SAT and max flow can also be implicitly found in
[23]. By Lemma 6.1, it can also be viewed as the well-known link between vertex
cover and matching for bipartite graphs (see [-19]).

8. Enumeration of 2-SAT Solutions. The last section looked at the problem of
finding particular solutions to a 2-SAT instance. This section examines the
problem of finding all solutions. Given a 2-SAT instance, we can run a strong
components algorithm to transform it into an acyclic instance (an instance with
an acyclic implication graph) in O(m) time. Two literals in the same strong
component of the implication graph have the same value in all solutions, and can
therefore be treated as a single literal. We assume that the 2-SAT instance contains

312 T. Feder

no implications of the form u ~ ft. If it does, then we may set u = 0 and remove
all occurrences of u from the 2-SAT instance. This type of implication may remain
present in a hidden form, as a chain of implications such as u ~ v ~ fi; detecting
this would require executing a transitive-closure algorithm. Fortunately, these
hidden occurrences are of no consequence in the solution given below.

The maximum degree d of a 2-SAT instance in this acyclic form is the max imum
over all literals u of the number of clauses of the form u ~ v. If the 2-SAT instance
has explicit width w, then we m a y assume that, for each path P in the correspond-
ing path cover, and each literal u, there is at most one literal v in P such that the
clause u --. v is present in the 2-SAT instance. The reason is that if v' follows v on
the path P, then the clause u -~ v' can be inferred from u--* v ~ v', and therefore
does not need to be included in the 2-SAT instance. Hence d _< w.

It is well known that a solution to a 2-SAT instance with m clauses on the
variables xl x, can be found in O(m) time. Given such a solution, we may
rename all variables for convenience so that the given solution has xi = 0 for all
1 < i _< n (the all-zero solution). Once this is done, all clauses must be of the type
xl v x-~ or of the type xi v xj. The clauses of the first type can be viewed as
implications x~ ~ xj. These implications form an acyclic graph, so we can perform
a topological sort (in O(m) time) and rename the variables to ensure that i < j for
all such clauses. The clauses of the second type are symmetric in x~ and xj and
can therefore always be written as implications x~ ~ ~ with i < j.

We therefore assume that the 2-SAT instance is given by implications of the
form x i ~ xj or x~ ~ x-~ with i < j . We now observe the following proper ty: given
a solution x = xax2"'" x , with at least one x~ = 1, if we change the last such xi
(i.e., x~ = 1 and xj = 0 for all j > i) to x~ = 0, then we obtain another solution.
This proper ty holds because if the new assignment violates some clause, it must
be a clause involving xi which forbids xl = 0. This can only be a clause x~ ~ xj
with xj = 1 and j > i, contradict ing the assumption that x~ was the last variable
equal to 1 in the given solution.

We refer to the solution obtained from a solution x by changing the last x~ = 1
to x~ = 0 as the parent of the given solution x. The solutions thus form a tree
rooted at the known all-zero solution. We do not build this solution tree explicitly;
however, the execution of the recursive enumerat ion algori thm corresponds to a
depth-first search started at the roo t of the tree.

Given a current solution x, the index is the largest l such that xz = 1. By
convention, the index is 0 if x is the all-zero solution. No te that the children of x
in the solution tree are the solutions that can be obtained from x by setting xj = 1
for a single j greater than the index of x. We say that an implication (either xi --+ xj
or x~ ~ x~ with i < j) is active if the antecendent (either ~ or x3 has value 1 in the
current solution x. We say that a variable x i is active if ~ is not the consequent
of any active implication.

LEMMA 8.1. The children of a solution x are precisely the solutions obtained from
x by setting xj = 1 for a single active xj with j greater than the index of x.

PROOF. The fact that xj must be active is clear: if not, then ~ is the consequent

Network Flow and 2-Satisfiability 313

of an active implication whose antecedent equals 1, and setting xj = 1 violates
this implication. On the other hand, it xj is active, then all implications with
consequent ~ are inactive (antecedent equal to 0), and setting xj = 1 does not
violate these implications. No implication of the form xj--* ~ can be violated
either, because such an implication has k > j and therefore x k = 0 by the definition
of index. []

Therefore, in order to determine the children of x, it is sufficient to maintain a
list of the active variables x j, ordered by the value of j. When we set x~ = 1 for
some i, the implications of the form x~ ~ ~ become active and those of the form
xi ~ xj become inactive (the opposite happens if we set x~ = 0). We can maintain
a count of the number of active implications that have ~ as a consequent, for
each x~. When this count becomes zero, the variable xj becomes active and is
added to the active list. When the count becomes nonzero, the variable xj becomes
inactive and is removed from the active list.

The algorithm maintains globally the current solution x, the active list of
variables L, and a count for each xj as explained above. Initially, x is the all-zero
solution, and L and the counts are set appropriately. The algorithm starts with a
call to enumerate(O, 0). (Ignore for now the output calls and the depth argument.)
The two assignments to x~ within enumerate are meaningless in the top-level call
which has index = 0 by convention, and they can be ignored in that special case.

procedure enumerate(index, depth);
begin

set i = index and x i = 1;
if depth is even then output the current x;
update the active implications with antecedent xi or ~ ;
determine those xj that have just become active or have just become

inactive;
remove from the active list L the xj that have just become inactive,

but remember their position in L (their predecessor in L) in an
auxiliary local list N;

let M be the ordered list of xj that have become active;
merge M into the ordered list L by traversing both lists in reverse

order;
as each variable xj is inserted in the merged list, call

enumerate(j, depth + 1);
stop when j = i has been reached;

if depth is odd then output current x;
set xi = 0, and restore the active list by adding the x~ from N and

removing those from M;
update the active implications with antecedent xl or ~ ;

end;

The above procedure can be implemented so that it takes O(d) time at the
beginning and at the end of each call, plus an additional O(1) in between recursive

314 T. Feder

calls (ignore for now the output calls). To see this, note that the number of active
implications to be updated in the beginning is at most 2d; the corresponding count
update then tells us which variables should become active or inactive (again at
most 2d). The variables that become inactive can be removed from L in 0(1) time
per variable if L is maintained as a doubly linked list. Thus the operations before
the merge take O(d) time. As we merge the two lists, we do a recursive call for
each element in the merged list, thus spending 0(1) time between recursive calls.
Since the merge is done starting from the end of the lists, the merged L is always
correct from xj on, and this is the only portion of L that is used inside the recursive
call. The operations after the merge again take O(d) time.

The reason for outputing the even-depth solutions at entry time, and the
odd-depth solutions at exit time, is that after a solution x is output, the next
solution to be output will be at most the third solution visited after x. This can
be easily verifed: Suppose that an even-depth node e 1 has just been output. If e 1
has a child 01, then either 01 has no children and is immediately output, or 01 has
a child e 2 that is immediately output. If e 1 has no children, then we return to the
parent 02 of e 1, and again either 02 has no children following e 1 and is immediately
output, or its next child e 2 is immediately output. The other case is that of an
odd-depth node 01 which has just been output. Then the algorithm returns to the
parent el of 01. If e 1 has a next child 02, then either 02 has no children and is
immediately output, or it has a child e 2 that is immediately output. If el has no
next child, then the algorithm returns to the parent 03 of el, which again has either
no next child and is immediately output, or has a child e 3 which is immediately
output. Thus, in all cases, the next node to be output is one of the next three
nodes to be visited.

Since the algorithm spends O(d) time at each node before moving to an adjacent
node, the time between outputs is O(d). Since adjacent solutions in the search tree
differ in only one bit xi, solutions that are consecutively output differ in at most
three bits, and it is sufficient to output the values of the three bits that have
changed (in constant time). The space used at each node is proportional to the
number of clauses involving xi for the current index i, and is therefore O(m) overall.
The information maintained globally also takes O(m) space.

THEOREM 8.1. The solutions to a 2-SAT instance with m clauses and maximum
degree d can be enumerated after O(m) preprocessing time in O(d) on-line time per
solution, using O(m) space.

9. Applications to Stable Matching. The stable-matching problem is the problem
of pairing up people in a given set so that certain preference constraints are satisfied
[9], [15], [24], [29]. Gusfield characterized the set of stable solutions of a
stable-matching problem in terms of a partial order of dual rotations, and showed
that this partial order can be found in O(wm log w) time for instances with w people
and total preference list length m [13], and in O(m) time for the bipartite version
of the problem ['12]. Subramanian showed that the stable-matching problem can
be viewed as a special case of the boolean network stability problem on the class

Network Flow and 2-Satisfiability 315

of adjacency-preserving networks. For stable-matching instances, the boolean vari-
ables in the corresponding network are variables x~j, where i is a person and j is
a position in the preference list of person i, with 0 < j < l(i), where l(i) is the length
of the preference list of person i. In a stable solution, we have x~j = 1 if and only
if person i is not matched to any of his first j choices [32].

Following this work, this author showed that the stable solutions for adjacency-
preserving networks can be characterized by a 2-SAT instance on the correspond-
ing boolean space. Thus the stable solutions to a stable-matching instance can be
characterized by a 2-SAT instance on the variables xi~, whose values are then
interpreted as described above. Furthermore, this instance can always be found
in O(m) time [7], I-8]. The characterization of Gusfield mentioned above can in
fact be interpreted in this framework.

If we let m = ~,~ l(i) be the size of the stable-matching instance, then clearly the
number of x~j variables is O(m). It has been shown (both in the context of Gusfield
[12] and of Feder [7]) that the number of clauses of the 2-SAT instance is O(m)
as well. On the other hand, if w is the number of people in the stable-matching
instance, then the 2-SAT instance has explicit width O(w). To see this, note that
x~j ~ x~i_ 1) is a valid clause, that is, if person i is not matched to any of his first
j choices, then person i is not matched to any of his first j - 1 choices either. Thus
the variables x~ for a fixed i form a path, and the total number of paths to cover
all literals is proportional to the number of people. In the case of complete
preference lists, we have m ,~ w 2.

The fact that person i is matched to his j th choice in a stable solution can be
stated as (Xi(j_ 1), X i j) = (1, 0). Thus a simultaneous pairing for a set of k people
can be described by assigning values to at most 2k boolean variables. Theorem 6.2
then gives:

THEOREM 9.1. In a stable-matching instance with w people and of size m, it can be
determined, after O(wm) preprocessing time, whether a query pairing for k people is
stable, in O(k 2) time.

In fact, if the k people (paired-up with some other arbitrarily chosen k people)
are chosen from a fixed set of k' people, then the preprocessing time can be reduced
to O(k'm). This is so because in that case the appropriate x~ variables all belong
to the k' paths corresponding to the fixed k' people i.

In the weighted stable-matching problem, there is a nonnegative weight w~j
associated with each entry j in the preference list of person i. These weights are
nondecreasing in j for i fixed. The weight of a stable solution is the sum of the
weights w~j such that person i is matched to his j th choice in the stable solution.
The goal is then to find a stable solution of minimum weight. The weight of a
solution can be equivalently described as the sum of the weights of the variables
xij such that x~i = 1, where the weight of a variable xij is set to w~/+ a) - w~j, and
W~o = 0 by convention. The egalitarian stable-matching problem is the weighted
stable-matching problem with w# = j. Thus each variable x~j has weight 1.

The weighted stable matching can then be viewed as a weighted 2-SAT problem.
Indeed, it can be shown that even the egalitarian stable matching is X ~ - c o m p l e t e

316 T. Feder

and as hard to approximate as vertex cover [7], [8]. On the other hand, Theorem
7.2 gives the following:

THEOREM 9.2. A solution to the weighted stable-matching problem with weight
within a factor of 2 of the optimum can be found in O(m log(w2/m + 2)), where w is
the number of people and m is the size of the instance.

Note that in the typical case m ~ w 2, the running time is linear in the size of
the instance, and the implementation is considerably simplified because dynamic
trees are not needed (see Section 5).

The bipartite version of the stable-matching problem is the stable-marriage
problem, where people are either men or women and can only list people of the
opposite sex. In that case it can be shown that the corresponding 2-SAT instance
becomes bipartite [7], [12]. Theorem 7.2 then gives an efficient algorithm for the
problem.

THEOREM 9.3. A minimum-weight stable marriage of weight K for an instance with

w people of size m can be found in O(mxf-K) time if K = O((m/log 2 m)2), and in
O(wm log K) time for K arbitrary. The egalitarian case has K < m and can thus be
solved in O(m ~'s) time. The algorithm gives in fact a description of all minimum-weight
solutions.

Note that in the egalitarian case, where K < m, the O(m~K) algorithm of
Section 3 does not require maintaining a forest solution (the number of capacitated
residual edges will never exceed m), thus simplifying the implementation. Pittel
[28] has shown that a random egalitarian-marriage instance with complete lists
(i.e., m ~ w z) has K ~ 2w 1"5, so the algorithm will often run in less than the O(m l"s)
time bound. The algorithm of Irving et al. [23] is also based on maximum flows;
the time bounds are then obtained by using the O(nm tog n) Sleator-Tarjan
algorithm for the weighted case and the O(mK) Ford-Fulkerson algorithm in the

egalitarian case [31], [34]. An O(mX'51x//~m) time bound for the egalitarian-
marriage case was obtained by Ng [26].

We can also enumerate stable solutions using Theorem 8.1.

THEOREM 9.4. The stable solutions to a stable-matching instance with w people
and size m can be enumerated after O(m) preprocessing time in O(w) on-line time per
solution, using O(m) space.

In the case k = 1, for a stable-marriage problem, the time to find all stable pairs
can be reduced from the O(wm) time of Theorem 9.1 to O(m) [121. It has in fact
been shown that even in the roommates case, the problem can be reduced in O(m)
time to the question of finding all the trivial variables of the 2-SAT instance, i.e.,
the variables that have the same value in all solutions. This can be seen from
the fact that if xi~ and xi(j_l) are both trivial, then there is a solution with
(xi~, xi(j- 1)) = (1, O) iff any arbitrary solution has this property; if at least one of

Network Flow and 2-Satisfiability 317

them is nontrivial, then a solution of this kind can only exist if the two variables
are not in the same strong component of the implication graph, and in that case
there is a solution with x~j # xitj-1) which can only be (xij, x~j_l)) = (1, 0). This
has lead to the conjecture (in the case of complete preference lists) that an O(m)
algorithm can be obtained for finding all stable pairs in a general stable-matching
problem; this was also conjectured for the egalitarian stable-marriage problem
[15]. It was earlier believed by this author that such an algorithm for the
stable-pairs problem did exist, in view of the fact that other questions (minimizing
the weight of solutions, enumerating solutions) manage to avoid the explicit
computation of a transitive closure. We now know, however, that for these two
problems, the dependency on transitive closure and bipartite matching, respec-
tively, is inherent, as stated below. Let the partial transitive-closure problem be
the problem of determining, given a directed graph G with n vertices and m edges
as well as an arbitrary set S of n edges not in G, which edges of S are in the
transitive closure of G. Let the bipartite matching with multiplicities problem be
the problem of determing, given a bipartite graph G with n vertices, m edges, and
multiplicities m(v) associated with the vertices adding up to at most m, the
maximum size of a multiset of edges T such that each vertex v is an endpoint of
at most re(v) edges in T. (Thus the standard bipartite-matching problem is the case
re(v) = 1 for all v.) It can be shown that the stable roommate pairs problem and
the egalitarian-marriage problem are at least as hard, for instances with n people
and lits of length m, as the partial transitive closure and the bipartite matching
with multiplicities problems, respectively. Linear-time algorithms are therefore
unlikely. On the other hand, if an approximation factor of 2 can be tolerated, then
Theorem 9.2 gives an O(m) algorithm for the egalitarian-matching problem in the
case of complete preference lists; in fact, running r phases of an algorithm similar
to the one in Section 3 will guarantee a 1 + 1/r approximation factor in O(rm log m)
time. By contrast, for random instances, the man/woman optimal solutions are a

factor of x/w/2 log w away from the optimal egalitarian solution [28].
Other versions of stable matching can also be solved by the approach presented

here. The lexicographic stable-marriage problem, for which an O(wm 2 log 2 w)
algorithm was given by Irving et al. [23], can be solved in O(wl/2m3/2) time; the
basic idea takes advantage of the fact that flow algorithms give not only a single
solution, but also a characterization of all solutions. The balanced stable-marriage
problem is Y~-comple te but can be approximated within a factor of 2 in
O(m log(w2/m + 2)) time. See [8] for details.

10. Conclusion and Open Problems. We have presented two algorithms for the

uncapacitated maximum-flow problem. The O(mx/K) algorithm owes its efficiency
to an implicit transitive-closure representation via dynamic trees. The gradual
reduction of the dynamic-tree size ensures that the associated logarithmic cost
averages out to a constant over the entire execution of the algorithm. The time
bound currently applies up to values of K that are slightly larger than (m/log 2 m) 2.
An open problem is to extend the bound to all K <__ w 2. This would yield, in

318 T. Feder

combination with the second algorithm, a stronger O(min(x/K, w)m log(K/w 2 + 2))
bound. The second algorithm runs in O(wm log K) time. This complexity is
achieved by combining capacity scaling with the notion of width. An open question
is whether the dependency on K can be significantly reduced (as in [-1] for example)
or removed (as in the capacity-scaling min-cost flow algorithm of Orlin [27])
without increasing the main wm factor.

For the 2-satisfiability problem, besides the optimization results that follow from
the network-flow approach, we have studied the problems of recognizing partial
solutions and of enumerating all solutions. The latter has an O(m + dS) time
complexity if the total number of solutions is S. The question of whether counting
(a # P-complete problem even in the bipartite case [30]) is easier than enumerating
remains open. The fact that consecutive solutions found by the algorithm differ
in only a constant number of bits suggests that faster algorithms might be
achievable.

The common element in the various results is the use of the width of a graph,
showing that combinatorial problems are sometimes easier in skinny graphs than
in more general graphs. These graphs arise naturally in the context of stable
matching. The approach may well be applicable to other graph problems whose
structure is the superposition of a simple collection of paths with a more complex
structure.

Acknowledgment. I would like to thank Serge Plotkin for helpful suggestions
during this work.

References

[1] R.K. Ahuja, J. B. Orlin, and R. E. Tarjan, Improved Time Bounds for the Maximum Flow
Problem, Technical Report CS-TR-118-87, Department of Computer Science, Princeton Uni-
versity, 1987. (SLAM J. Comput., to appear.)

[2] R. Bar-Yehuda and S. Even, A linear time approximation algorithm for the weighted vertex
cover probiem, J. Algorithms, 2 (1981), 198-203.

1-3] K. Clarkson, A modification of the greedy algorithm for vertex cover, Inform. Process. Lett.,
16 (1983), 23-25.

1-4] R.P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math., 51 (1950),
161-166.

[5] E.A. Dinic, Algorithm for solution of a problem of maximum flow in a network with power
estimation, Soviet Math. Dokl., 11 (1970), 1277-1280.

1-6] S. Even, A. Itai, and A. Shamir, On the complexity of timetable and multicommodity flow
problems, SlAM J. Comput., 5 (1976), 691-703.

1-7] T. Feder, A new fixed point approach for stable networks and stable marriages, Proc. 21st A CM
Symp. on Theory of Computing (1989), pp. 513-522. (Submitted to J. Comput. System Sci.)

[8] T. Feder, Stable Networks and Product Graphs, Ph.D. dissertation, Technical Report STAN-
CS-91-1362, Stanford University (1991).

1-9] D. Gale and L. S. Shapley, College admissions and the stability of marriage, Amer. Math.
Monthly, 69 (1962), 9-15.

1-10] A.V. Goldberg and R. E. Tarjan, A new approach to the maximum flow problem, Proc. 18th
ACM Syrup. on Theory of Computing (1986), pp. 136-146.

Network Flow and 2-Satisfiability 319

[11] A.V. Goldberg and R. E. Tarjan, Finding minimum-cost circulations by successive approxima-
tion, Math. Oper. Res., 15(3) (1990), 430-466.

[12] D. Gusfield, Three fast algorithms for four problems in stable marriage, SIAM J. Comput., 16(1)
(1987), 111-128.

[13] D. Gusfield, The structure of the stable roommate problem: efficient representation and
enumeration of all stable assignments, SIAM J. Comput., 17(4) (1988), 74~769.

[14] D. Gusfield and R. W. Irving, The parametric stable marriage problem, Inform. Process. Lett.,
30 (1989), 255-259.

1_15] D. Gusfield and R. W. Irving, The Stable Marriage Problem." Structure and Algorithms, MIT
Press Series in the Foundations of Computing, MIT Press, Cambridge, MA (1989).

[16] D. Gusfield, R. Irving, P. Leather, and M. Saks, Every finite distributive lattice is a set of stable
matchings for a small stable marriage, J. Combin. Theory Ser. A, 44 (1987), 304-309.

[17] D. Gusfield and L. Pitt, Equivalent approximation algorithms for node cover, Inform. Process.
Lett., 22(6) (1986), 291-294.

[18] D. Gusfield and L. Pitt, A Bounded Approximation for the Minimum Cost 2-SAT Problem,
Technical Report CSE-89-4, University of California, Davis (1989).

[19] F. Harary, Graph Theory, Addison-Wesley, Reading, MA.
[20] D.S. Hochbaum, Approximation algorithms for the set covering and vertex cover problems,

SIAM J. Comput., 11(3) (1982), 555-556.
[2l] J.E. Hopcroft and R. M. Karp, An n 5/2 algorithm for maximum matching in bipartite graphs,

SIAM J. Comput., 2 (1973), 225-231.
[22] R.W. Irving and P. Leather, The complexity of counting stable marriages, SIAM J. Comput.,

15(3) (1986), 655-667.
[23] R.W. Irving, P. Leather, and D. Gusfield, An efficient algorithm for the optimal stable marriage,

J. Assoc. Comput. Maeh., 34(3) (1987), 532-543.
[24] D.E. Knuth, Mariages stables et leur relations avec d'autres problkmes combinatories, Les Presses

de l'Universit6 de Montrral, Montrral, Qurbec (1976).
[25] G.L. Nemhauser and R. E. Trotter, Vertex packing structural properties and algorithms, Math.

Programming, 8 (1975), 232-248.

[26] C. Ng, An O(n31x/~) Algorithm for the Optimal Stable Marriage Problem, Technical Report
90-22, University of California, Irvine (1990).

[27] J.B. Orlin, A faster strongly polynomial minimum cost flow algorithm, Pror 20th A CM Symp.
on Theory of Computing (1988), pp. 377-387.

[28] B. Pittel, On likely solutions of a stable marriage problem, Manuscript.
[29] G. P61ya, R. E. Tarjan, and D, R. Woods, Notes on Introductory Combinatorics, Birkh/iuser,

Basel (1983).
[30] J.S. Provan and M. O. Ball, The complexity of counting cuts and of computing the probability

that a graph is connected, SIAM J. Comput., 12(4) (1983), 777-788.
[31] D.D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comput. System Sci., 26

(1983), 652-686.
[32] A. Subramanian, A New Approach to Stable Matching Problems, Technical Report STAN-CS-

89-1275, Stanford University (1989).
[33] R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972),

146-160.
[34] R. E. Tarjan, Data Structures and Network Algorithms , Society for Industrial and Applied

Mathematics, Philadelphia, PA (1983).

