
Algorithmica (1994) 1/:200-225 Algorithmica
�9 1994 Springer-Verlag New York Inc.

Flow in Planar Graphs with Vertex Capacities 1

Samir Khuller 2 and Joseph (Seffi) Naor 3

Abstract. Max-flow in planar graphs has always been studied with the assumption that there are
capacities only on the edges. Here we consider a more general version of the problem when the vertices
as well as edges have capacity constraints. In the context of general graphs considering only edge
capacities is not restrictive, since the vertex-capacity problem can be reduced to the edge-capacity
problem. However, in the case of planar graphs this reduction does not maintain planarity and cannot
be used. We study different versions of the planar flow problem (all of which have been extensively
investigated in the context of edge capacities).

Key Words. Planar graphs, Vertex capacities, Network flow, Circulation problem.

1. Introduction. The computation of a maximum flow in a graph has been an
important and well-studied problem, both in the fields of computer science and
operations research. Many efficient algorithms have been developed to solve this
problem, see, e.g., [-GTT]. In this paper we concentrate on flow in planar graphs.
Research on planar flow is motivated by the fact that more efficient algorithms,
both sequential and parallel, can be developed by exploiting the planar structure
of the graph. This is important, in particular for parallel algorithms, since
maximum flow in general graphs was shown to be P-complete [GSS]. The planar
flow algorithms are not only "good" because they are extremely efficient, but they
are also very elegant. Planar networks also arise in practical contexts such as VLSI
design and communication networks, and hence it is of interest to find fast flow
algorithms for this class of graphs.

In the popular formulation of the planar flow problem a single source vertex s
and a sink t are considered. Each edge has a capacity, and one wishes to find the
max-flow from s to t. This problem has been extensively investigated by many
researchers starting from the work by Ford and Fulkerson [FF] who developed
an O(n2)-time algorithm for the special case of st-graphs (when the source and
sink are on the same face). This algorithm was later improved to O(n log n) time
in [IS]. By introducing the concept of potentials, Hassin [HI gave an elegant

1 A preliminary version of this paper appeared in the Proceedings of the First Integer Programming
and Combinatorial Optimization Conference, Waterloo, Canada, May 1990, pp. 367-383. Samir Khuller
is currently supported by NSF Grant CCR-8906949. Part of this research was done while he was visiting
the IBM Thomas J. Watson Research Center and was supported by an IBM Graduate Fellowship at
Cornell University. Joseph Naor's work was supported by Contract ONR N00014-88-K-0166 while
he was a post-doctoral fellow in the Department of Computer Science at Stanford University.
2 Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA.
3 Computer Science Department, Technion, Haifa 32000, Israel.

Received August 3, 1990; revised June 30, 1991. Communicated by Harold N. Gabow.

Flow in Planar Graphs with Vertex Capacities 201

algorithm that runs in O(nx~g n) time using Frederickson's shortest-path algo-
rithm [F]. Itai and Shiloach [IS] also developed an algorithm to find a max-flow
in an undirected planar graph when the source and sink are not on the same face.
This algorithm was improved by Reif [R] who gave an algorithm to find the value
of the max-flow in O(n log 2 n) time. Hassin and Johnson [HJ] completed the
picture by giving an O(n log 2 n) algorithm to compute the flow function as well.
Frederickson speeded up both these algorithms by an O(log n) factor, by giving
faster shortest-path algorithms IF]. The problem of finding a minimum cut in a
directed planar graph turned out to be much harder and was first solved by
Johnson [J] (both sequentially and in NC) who also gave algorithms to compute
the flow function. Recently, Miller and Naor [MN] have pointed out that the
general maximum-flow problem in planar graphs is when there are many sources
and sinks. They showed that when demands are fixed, the problem can be reduced
to a "circulation problem" (with lower bounds on edge capacities), and also gave
an efficient algorithm for this case. Note that the multiple source-sink problem
cannot be reduced to the single source-sink version since the reduction may
destroy planarity.

In this paper we consider the version of the problem in which the vertices as
well as edges have capacity constraints. Vertex capacities may arise in various
contexts such as computing vertex disjoint paths in graphs [KS], and in various
network situations when the vertices denote switches and have an upper bound
on their capacities. For the case of general graphs this problem can be reduced
to the version with only edges having capacity constraints by a simple idea of
"splitting" vertices into two and forcing all the flow to pass through a "bottleneck"
edge in between. In planar graphs this reduction may destroy the planarity of the
graph and thus cannot be used. (The reduction is described on p. 205 of IBM]
from which the violation of planarity is obvious.)

We show how to exploit the structure of the planar graph to develop efficient
algorithms for the problem.

Notice that in the case of general graphs, as opposed to planar graphs, the single
source-sink problem with edge capacities is usually the "basic" problem because
most other formulations of the flow problem can be easily reduced to this problem.
An example where this is not true is the problem of finding the maximum flow
between each pair of vertices. The famous result of Gomory and Hu [GH1] does
not hold for graphs with vertex capacities because the reduction from vertex
capacities to edge capacities results in edges that are not symmetric. However,
Granot and Hassin [GH2] showed how to extend the Gomory-Hu cut tree to
graphs with vertex capacities.

An application where vertex capacities play an important role is in reconfiguring
VLSI/WSI (Wafer Scale Integration) arrays. Assume that the processors on a wafer
are configured in the form of a grid, and, due to yield problems, some are going
to be faulty. Instead of treating the whole wafer as defective, the nonfaulty
processors can be reconfigured in the form of a grid. We assume that multiple
data tracks are allowed along every grid line. It was shown in [RBK] that, in this
context, the reconfiguration problem can be abstracted combinatorially as finding
a set of vertex disjoint paths from the faulty processors (the sources) to the

202 s. Khuller and J. Naor

boundary of the grid (the sink). This is a special case of a multiple-source/single-
sink planar flow problem where all vertex capacities are equal to 1. This problem
is also referred to as the escape problem in the textbook by Cormen et al. [CLR,
p. 6261. The algorithm given by [RBK] has a running time of O(n 2 log n) where
n is the number of grid points. Our algorithms improve over this result by an

O(x/n) factor. The reader is referred to [BL], [CT], [GG], [RB], and [RBK] for
more details and bibliography of this problem and on the connection between
flow problems and reconfiguration. (The main concern of [RB] and [BL] is the
single-track model.)

We develop algorithms for computing a minimum cut when the graph has vertex
and edge capacities. When the graph has only edge capacities the minimum cut
corresponds to a cycle in the dual graph that separates the source from the sink.
With vertex capacities the minimum cut consists of both edges and vertices. We
show that, for the single source-sink case, the minimum cut corresponds to a
"cycle" in the dual graph when "jumping" over faces is permitted. Our algorithms
are as fast as the corresponding algorithms for computing the minimum cut with

only edge capacities. For the case of st-graphs we obtain an O(nx~g n) algorithm
for finding the minimum cut (flow value). For the case of finding an s-t minimum
cut in an undirected planar graph, we are able to extend the algorithm in [IS]
and JR] to obtain an O(n log n) algorithm for finding the value of the max-flow
even when the graph has vertex capacities. To find the minimum cut in a directed
planar graph is more expensive and costs O(n 1"5 log n) [MN]. Some of our
algorithms also parallelize, yielding efficient NC algorithms.

For the case of st-graphs we obtain an O(n log n) algorithm to compute the flow

function. We also give an algorithm that can be implemented in O(nx/~g n)
time after one call to a sorting procedure. Thus we can obtain a randomized

O(nlx~n)-t ime algorithm by using the randomized sorting algorithm of [FW].
This algorithm also parallelizes, with a running time of O(log 3 n) using O(n 2)
processors on an EREW PRAM. The multiple source-sink problem with given
demands reduces to the circulation problem by a modified reduction of [MN]. To
obtain a circulation we use the planar separator theorem to develop a divide-and-
conquer algorithm that utilizes the st-graph case as a subroutine. The complexity
of the algorithm is O(n 1"5 log n).

A brief outline of the paper is as follows: In Section 2 we discuss some basic
flow notation used in the rest of the paper. Section 3 deals with the problem of
computing the min-cut in a planar graph, with the subsections dealing with the
various cases considered. Section 4 provides the algorithms to compute the flow
function (the flow through each edge). Section 5 concludes with some open
problems.

2. Terminology and Preliminaries. We assume that the graph G = (V, E) has a
fixed planar embedding. For each edge e G E, let D(e) be the corresponding dual
edge connecting the two faces bordering e. Let ~ = (F, D(E)) be the dual graph of
G, where F is the set of faces of G and D(E)= {D(e)leeE}. There is a 1-1

Flow in Planar Graphs with Vertex Capacities 203

correspondence between primal and dual edges and the direction of a primal edge
e induces a direction on O(e). We use a left-hand rule: if the thumb points in the
direction of e, then the index finger points in the direction of D(e) (keeping the
palm face up). For a vertex v, in(v) refers to the arcs that are carrying incoming
flow to vertex v. Similarly, out(v) refers to those arcs that are carrying flow out of
the vertex v.

Associate with each edge e e E, a capacity c(e) > O, and also with each vertex
v ~ V - {S, T}, a capacity c(v) > O. Let S = sl, . . . , s~ and T = tl tk be two sets
of distinguished vertices, called sources and sinks, respectively. We assume that the
vertices in S and T have no capacities. Otherwise, suppose that vertex s E S has
capacity c(s); add to the graph a new distinguished vertex s' adjacent only to s,
such that the capacity of the edge joining s and s' is unbounded. Remove vertex
s from S and add s' to S. By performing this step for every capacitated vertex in
S, and an analogous step for every capacitated vertex in T we obtain the required
property.

A function f : E ~ Z is a legal flow function if and only if:

(i) Ve ~ E, 0 < f(e) <_ c(e).
(ii) Vv ~ V - {S, T}, 2eein(v) f (e) = Z t(v) f(e).

(iii) Vve V - {S, T}, ~,e~i,(v)f(e) < C(v).

We assume that G is biconnected; otherwise, we can add edges with zero
capacities appropriately to ensure that.

The cost of a dual edge is defined to be the capacity of the corresponding
primal edge. The capacity of an edge may sometimes also be referred to as its
cost .

In the maximum-flow problem, we are looking for a legal flow function that
maximizes the amount of flow entering T (or leaving S). The amount of flow
entering the sink is also called the value of the flow function. A circulation is a
legal flow function where condition (ii) is applied to every vertex in the graph, i.e.,
there are no sources and sinks.

A natural generalization of the flow problem is when edges have a lower bound
different from zero on their capacity; in this case, the capacity of an edge is denoted
by [a, b], where a < b.

Miller and Naor [MN] reduced the problem of finding a flow in a graph with
multiple sources and sinks (with specified demands), to the general problem of
computing a circulation in a graph. We concentrate on the circulation problem
too, since their reduction can be modified appropriately to work even when vertices
have capacities.

The residual graph is defined with respect to a given flow. Let e = (v, w) be an
edge with capacity [a, b] and flow f. In the residual graph e is replaced by two
directed edges (v, w) and (w, v) with capacities [0, b - f] and [0, f - a], respec-
tively.

A spurious cycle is a directed cycle along which the flow can be reduced, without
any of the edges violating the lower bounds on their capacities.

A special case of planar flow is when the source and sink are on the same face.
These graphs are called st-graphs.

204 S. Khuller and J. Naor

A potential function p: F ~ Z is defined on the faces of a planar graph. Let e
be an edge in the graph G, and let D(e) = (g, h) be its corresponding edge in the
dual graph such that D(e) is directed from g to h. The potential difference over e
is defined to be p(h) - p(g). The following proposition, proved in [H] and [J], can
be easily verified.

PROPOSITION 2.1. Let C - ~ - C1,... , C k be a cycle in the dual graph and let f l , . . . , fk
k be the potential differences over the cycle edges. Then ~ = x fi(e) = O.

It follows from the proposition that the sum of the potential differences over all
the edges adjacent to a primal vertex is zero.

A potential function is defined to be edge consistent if the potential difference
over each edge is not larger than its capacity. Such a potential function induces
a circulation in the graph. If the circulation satisfies the vertex capacities as well,
the potential function is defined to be consistent. The use of a potential function
as a means of computing a flow was first suggested by Hassin [H], and was later
elaborated in [H J] and [J]. Miller and Naor too, use the idea of potentials to
solve the problem of computing the circulation.

The model of parallel computation used is the Exclusive-Read Exclusive-Write
(EREW) Parallel Random Access Machine (PRAM). A PRAM employs synchro-
nous processors all having access to a shared memory. An EREW PRAM does
not allow simultaneous access by more than one processor to the same memory
location.

3. Computing the Minimum Cut. In this section we show how to compute the
minimum cut when vertex constraints are introduced into a graph containing a
single source and sink. The problem of computing the minimum cut more
efficiently (than in a general graph) when there are many sources and sinks is still
open even with only edge capacities.

We first explain how weights are assigned to dual edges in a directed graph.
Given a primal edge e of capacity c(e), it has two dual edges corresponding to it:
one is directed according to the left-hand rule and has cost c(e); the other is in the
converse direction and has cost 0 (see Figure 1). For an undirected primal edge we
introduce an undirected edge in the dual graph of cost c(e).

When the graph has vertex as well as edge capacities, a cut is not just a set of
edges, but a subset S _ E u V with the property that every path from s to t contains

4~

0 .:"

c(e)

Fig. 1. Dual graph in case of a directed graph. Nodes of the dual (o) and primal (e) graph.

Flow in Planar Graphs with Vertex Capacities 205

X2

Fig. 2. Cycle in the dual graph. C = [xl, x2 xT]; x2, x4, xs, x7 are faces in the dual graph and
xl, x3, x 6 are edges in the dual graph.

an element of S. A minimum cut is defined to be a set S of minimum capacity. In
the dual graph a cut corresponds to a set of edges and faces (that correspond to
the vertices in the cut). These edges and faces can be "l inked" together (see Figure
2) and induce a "l inked" cycle in the dual graph that separates the faces
corresponding to s and t.

In the dual graph we define a new shortest-path computat ion as follows:

DEFINITION 3.1. We are given a planar dual graph 9 with a cost c(ei) on each
edge el, and a cost of c(fj) on each face fj (this cost is the capacity of the
corresponding primal vertex). We define a linked cycle to be a sequence of edges
and faces [x~; x2; . . . ; xk] so that each x~ and x~+~ share a common vertex. (See
Figure 2 for an example.) The length of a linked cycle is the sum of the costs of
the edges and the costs of the faces the cycle " jumps" over (to move from one
edge to another). The shortest linked cycle is defined to be the linked cycle with
the least length.

Under this definition, the minimum cut corresponds to the shortest "l inked"
cycle in the dual graph that separates s from t. We now show how to modify the
dual graph so that such a cycle can be computed efficiently.

REDUCTION. Given a planar dual graph @(F, D(E)) with costs on the edges and
faces, we compute a new planar graph 9'(F', D(E)') as follows: Let F ' = F u Fv,
where each vertex in Fv corresponds to a face of 9 (that corresponds to a vertex
in G). (Essentially for each face in 9 we introduce a new vertex in 9 ' .) Introduce
edges in 9 ' from fv ~ Fv to every vertex on the corresponding face. Each of these
edges is given a cost of c(v)/2 where c(v) is the cost of the corresponding face v. These
edges are undirected and can be traversed in both directions. Thus D(E)' =
D(E) u {(fv, fl)lfl E F and fl is on the face corresponding to f~} (see Figure 3).
Clearly, @' is planar since fv can be introduced in the corresponding face of 9 .
The cost of the minimum-length path between two vertices incident on a face of
9 is clearly < c(v) (by going through f~).

206 S. Khuller and J. Naor

c o a = c (v) / 2 -~",~

Fig. 3. A face in the dual graph.

LEMMA 3.2. The minimum cut in G is given by the length of the shortest cycle in
~' that separates s from t.

PROOF. We show that a cycle in @' corresponds to a cut (with vertices and edges)
in G. A cut that is an s-t cut corresponds to a cycle that separates s from t. Clearly,
the minimum cut corresponds to such a cycle of least length.

Consider a cycle C' in ~ ' . It is easy to see that C' in ~ ' corresponds to a linked
cycle C in ~ (or edges and faces). The vertices (edges) in C' that are not vertices
(edges) in ~ correspond to the faces in ~ that are in C. The edges of linked cycle
C correspond to edges of G that are in the cut, and the faces of C correspond to
the vertices of G that are in the cut. Clearly, the faces of @ (vertices of G) in the
interior of C, are separated from the faces in the exterior of C. Thus the linked
cycle C corresponds to a cut that separates s from t. []

We have now reduced the problem of finding the minimum cut in a planar
graph with vertex capacities to that of finding the minimum-length cycle separating
s from t in a new planar graph, ~ ' , that has only edge capacities. The efficiency
of computing this cycle varies with respect to whether the source and sink are on
the same face, or whether the graph is directed. In the following subsections we
handle the different cases. In Section 3.1 we deal with the case of an st-graph
(undirected and directed). In Section 3.2 we deal with the case of undirected graphs,
when there is no restriction on the location of s and t. It turns out that the known
algorithms in the literature can handle the computation in the reduced graph ~' .
In Section 3.3 we deal with the case of a directed graph. The known method for
computing minimum cut [MN-I has to be modified. (This is because vertex
capacities cause an altered structure to the rain-cut.)

3.1. The Case of st-Graphs. We begin by concentrating on the special case of
st-graphs, when both the source and the sink are on the same face. We assume

Flow in Planar Graphs with Vertex Capacities 207

8 m

",,,, ,.,..-'"

t*

Fig. 4. The dual graph with edge/face costs for the undirected st-graph case. Nodes of the dual (o) and
primal (e) graph.

this face to be the infinite face. We introduce two dual vertices s* and t*
corresponding to the infinite face (see Figure 4) and construct the modified
graph 9 ' as defined earlier.

The value of the maximum flow is given by the length of the shortest path from
s* to t*. This corresponds precisely to the minimum cut between s and t.

For example, in Figure 5, the three directed primal edges shown in the figure
have edge capacities of ca, r c4, respectively. The primal vertex has capacity c 3.
The min-cut consists of two forward edges and a vertex that have capacities of
cl, c4, and c3, respectively. The length of the path in the directed dual graph can
be easily seen to be c1 + c3 + c4 (the edge with capacity c2 contributes 0 to the
length of the path since it is in the opposite direction). Running a shortest-path
algorithm on this graph will yield the shortest linked cycle, and that will yield the
min-cut separating s from t.

8"
O ,

".. C!

1[":".. 0

~..":

..: e4
d

t"

Fig. 5. Min-cut in the case of a directed st-graph (edge costs refer to costs on dual edges). Nodes of
the dual (o) and primal (o) graph.

208 S. Khuller and J. Naor

Using Frederickson's algorithm IF], the shortest path from s* to t* can be

found in O (n x / ~ n) time. To implement the same algorithm in parallel we use
the algorithm by [PR] for computing shortest paths in planar graphs. The
algorithm runs in 0(log 3 n) time and uses O(n x'5) processors on the EREW PRAM
model.

THEOREM 3.3. We can compute the value of the max-flow in an st-graph (directed

or undirected) in O(n~/log n) time. Moreover, we can implement this algorithm in
O(log 3 n) time using O(n 1"5) processors on an EREW PRAM.

3.2. The Single Source-Sink Case for Undirected Graphs. In [R] it was shown
that the minimum cut (or the value of the max flow) can be computed efficiently
even when the vertices s and t are not on the same face in an undirected planar
graph. Using Frederickson's algorithm for shortest paths in planar graphs as a
subroutine, we obtain a running time of O(n log n). We note that by using the
"jumping" over faces idea (apply the algorithms of Reif and Frederickson to @'
instead of ~), we get an O(n log n)-time algorithm for computing the minimum
cut in the graph even when the vertices have capacities.

3.3. Matrix Method To Compute the Minimum Cut in a Directed Graph. The
problem of finding a minimum cut (between a single source-sink pair) in
the directed-graph case is considerably harder than in the undirected case
and was dealt with in [J]. Recently, an elegant technique was developed in
[MNl to find the minimum cut. We show that an appropriate modification
of the method is able to find the minimum cut even when vertex capacities are
present.

Assume that the reduced graph @' has been computed. The minimum cut in G'
corresponds to the shortest cycle in 9 ' that separates s from t. We first show how
to test whether the length of the shortest cycle separating s from t in 9 ' is greater
than or equal to some value f. To do that, in G', a directed path P is added from
t to s, such that the capacity of every edge in P is [f, f] . Intuitively, the path P
carries the "return flow" from t to s; the fact that the lower bound on every edge
in P equals the upper bound assures us that f units of flow are indeed returned
to the source. The graph with the return flow is denoted by G" and its dual by
9". In the dual graph, for an edge with capacity I-f, f] we add an edge of cost f
by the usual left-hand rule (rotate the edge clockwise), and add an edge of cost
- f by rotating the edge anticlockwise. (Like in Figure 5, except that we replace
the 0 by --f.)

Let C be a cycle separating s from t in 9' . In the dual graph ~" the length of
every such cycle C is reduced by f units. However, this will only happen if P does
not meet C in a capacitated vertex; otherwise, the "jumping over faces" may ignore
the negative capacity introduced by P (see Figure 6). Notice that if c(e 0 +
c(e2) - - f >_ c(v), then the "effect" of the edge with cost - - f is completely ignored,
and the addition of the path P will not reduce the capacity of each s-t cut by f
(since it is shorter for the cycle to "jump" over vertex v).

Flow in Planar Graphs with Vertex Capacities 209

i t

l

i I

l

.

8 ~ t :: ' ...- p

t
I
t
l

Fig. 6. Example to show what goes wrong when the return path is routed through a capacitated vertex.
Smallest linked cycle jumps over v. Vertex v has capacity c(v).

We do not discuss here the precise details of how the path P is added to the
graph G' without meeting capacitated vertices. In Section 4.3 we discuss the more
general problem of reducing a flow problem to a circulation problem; the reader
is referred to that section for details on how the return path is added.

We summarize with the following lemma.

LEMMA 3.4. I f the dual graph ~" contains a negative cycle, then the capacity of
the minimum cut in G' is strictly less than f.

Our aim is to obtain the largest value o f f so that 9 " does not have any negative
cycles. In [MN] the value of f is found via a parametric search that takes at most
O(log n) iterations, where at each iteration f is updated, and the transitive closure
is recomputed to check for negative cycles. To prove the correctness of this
algorithm (Lemmas 6.1 and 6.2 in [MN]), two conditions must be met:

�9 All the negative edges have the same value, i.e., - f .
�9 All the negative edges form a directed path from t to s.

Since these conditions are satisfied in G", we can apply this parametric search. It
is further shown in [MN] how to implement the parametric search using the
method of nested dissection of [LRT]. We obtain:

THEOREM 3.5. The minimum cut in a directed planar graph can be found in
O(n 1"5 log n). A parallel implementation uses O(n 15) processors and O(log 4 n) time
on the E R E W PRAM.

4. Computing the Flow Function. The main difficulty in computing the flow
function with vertex capacities is that the potential function computed in the dual

210 S. Khuller and J. Naor

graph with "jumping over faces" is not consistent. As a consequence, computing
the flow function becomes much more complicated than in the case where there
are only edge capacities.

The first ease we deal with are st-graphs (both undirected and directed). In
Section 4.1 we present an O(n log n) implementation of the "uppermost-path"
algorithm due to Ford and Fulkerson [FF] that handles vertex capacities as well.
In Section 4.2 we give a parallel algorithm to find the max-flow in an st-graph
(directed and undirected) that works by canceling the spurious cycles in the graph.

A sequential implementation of the parallel algorithm takes O (n l ~) time
without counting the time for the step that requires sorting. (Thus we could obtain

an O(n lox/i~)-time randomized algorithm by using the fast randomized sorting

algorithm due to [FW] that runs in O(n lx /~) expected time.) We describe our
algorithms for undirected graphs, the extensions to the directed-graph case are
straightforward using the modified dual graph for directed graphs (see Figure 1).

If the source and sink are not on the same face, then we first find the value of
the max-flow by the parametric search technique. The problem then reduces to a
fixed-demand problem. If there are many sources and sinks in the graph (with
fixed demands), then we reduce it to the problem of computing a circulation. This
is done in Section 4.3 similarly to [MN] by "piping" the flow back from the sinks
to the sources, via a path that must not go through any capacitated vertices.

In Section 4.4 we present an efficient algorithm for computing a circulation
when edges have lower bounds and vertices are capacitated. This tackles the case
when the demand of each source and sink is known. We show how to compute
a circulation that will satisfy the demands, or determine that a feasible circulation
does not exist.

4.1. Computing the Flow Function in st-Graphs. Hassin [-HI showed that it
is possible to compute a maximum flow function (for the edge-capacity
case) as follows: for each edge (i,j)sE, let (i',j')~D(E) be the associated dual
edge.

DEFINITION 4.1. The potential u(f) of a face f (or a vertex f in the dual graph)
is defined to be the length of the shortest distance from s* to f.

The flow on edge (i,j) is defined as follows: f(i , j)= u(j ')- u(i'). This yields
an edge consistent potential function since u(j')< c(i,j)+ u(i') (the potentials
satisfy the shortest-path property), and hence a valid flow function. The flow
moves through the edge always keeping the face with higher potential to its
right.

In the case of vertex capacities, defining the flow through an edge to be the
difference of the potentials of the faces on each side as computed in 9 ' (with
jumping over faces), yields a flow function that may violate vertex-capacity
constraints. We illustrate the inconsistency of the potential function by an example
in Figure 7. All the capacities of the edges that are not shown are considered to
be high. The min-cut is due to the edge incident at t of capacity 1, and the vertex
v of capacity 2. The rest of the potentials are as shown on the faces of the graph.

Flow in Planar Graphs with Vertex Capacities 211

0

..." -.

: 3 v2
V 1 .- -~ ~ . ~ -

c v : 2 V ."
�9 .. . : "

. . . '

" ' " " : . . - "

. O"

t* *

Fig. 7. Example to show violation of vertex capacities. Incoming flow to v is 3 (exceeds the capacity).
Min-cut = 3.

Note that v is the vertex that has excess flow through it. The cancellation of the
"spurious cycle" of length three (v - vl - Va - v), of unit flow, rooted at v has the
effect of producing a valid flow function, without changing the value of the
max-flow.

We now give an O(n log n) algorithm to compute a valid flow function in an
undirected st-graph that has vertex capacities. The algorithm can be extended to
the case of directed st-graphs quite easily by using the ideas in [IS] to find the
directed uppermost path in each iteration. For details on the uppermost-path
algorithm we refer the reader to [IS] and [FF] (see also [NC]).

We briefly outline the modifications to the algorithm to handle vertex capacities.
The algorithm begins by pushing flow through the uppermost path from s to t
(see Figure 8).

The capacity of the uppermost path is defined to be the least residual capacity
of either an edge or a vertex. At least one edge or vertex on the uppermost
path gets saturated by pushing a flow of value equal to the capacity of the
path. The saturated edge/vertex is deleted from the graph, and the process is
repeated using the uppermost path in the residual graph until s is disconnected
from t.

Care needs to be taken to make the uppermost path simple each time we delete
the saturated edge or vertex. The reason for this is the presence of vertex capacities
in the graph. In the case of only edge capacities, pushing a flow of value equal to
the capacity of the uppermost path does not violate any capacity constraint.
Suppose there are vertex capacities present and the path is nonsimple at a vertex
that has a capacity. Pushing a flow of value f on this path actually increases the
incoming flow to this vertex by at least 2f units, which could cause a violation
in the capacity constraint of this vertex. This is the main modification to the
algorithm presented in [IS]. The algorithm discards pieces of the graph in making
the path simple at each pushing step. By the following proposition we can see that

212 S, Khuller and J, Naor

. ~ uppermost path

t ~ ~ v . ~ saturated edge

saturated edge

~ :..->

" ~ loop -...

. . ' �9 t ' - .
. - x i . .

o - ' - "~,; �9

Fig. 8. Uppermost path may be nonsimple.

the value of the flow function computed by this modified uppermost-path algo-
rithm is the same as the value of the rain-cut.

PROPOSITION 4.2. The process of making the augmenting path simple at each step
does not decrease the amount of flow pushed on that augmenting path.

IMPLEMENTATION. The capacities of the edges and vertices are kept in a heap. At
each step we choose the minimum from the heap, which defines the amount of
flow to be pushed at that step. After deleting the appropriate edge or vertex we
need to update the uppermost path to make it simple. If the bottleneck was due
to an edge, this is done by simply traversing the edges on the face adjacent to the
edge (the face other than the external face) and introducing them into the heap.
During this traversal, we can detect if any of the vertices already belong to the
uppermost path and are causing a nonsimplicity. If this condition is detected the
entire subchain causing the nonsimplicity is discarded and the corresponding
values from the heap are deleted. As can be seen in Figure 8, not just a subchain
but the entire portion of the graph that lies in the "loop" needs to be deleted.
However, note that this is done only once for each edge/vertex (when they are
introduced into the uppermost path); once they are deleted, they remain deleted,

Flow in Planar Graphs with Vertex Capacities 213

and are never encountered again. If the bottleneck on the path is due to a vertex
v, to recompute the new uppermost path we need to traverse the faces adjacent
to v (clockwise from the forward edge of the path incident on v). During the
traversal we ensure that the new path is simple and discard all the edges and
vertices that belong to the segment of the path causing the nonsimplicity.

THEOREM 4.3. A maximum flow function can be computed in O(n log n) time for
the case of st-graphs, even when the vertices have capacities.

PROOF. An O(n 2) implementation of the algorithm is trivial. There are at most
O(n) augmenting paths (uppermost paths) because at each augmentation step we
delete an edge or a vertex. Even though the entire description was for undirected
graphs, the algorithm can be easily modified to work for the case of directed graphs
(see [IS]). Finding the bottleneck edge and updating the flow through each edge
can be easily done in O(n) time. Using a simple trick developed in [IS], we can
keep the capacities in a heap that makes it easy to find the bottleneck edge/vertex.
Moreover, when introducing exposed elements into the heap we adjust their
capacities in a manner that avoids the need to update the residual capacities of
the edges/vertices already in the heap. Each element is deleted at most once and
thus we get a running time of O(n log n). We leave the details to the interested
reader. []

As mentioned earlier, essentially the same algorithm works for the case of
directed graphs. The main modification is that we need to obtain the uppermost
directed path in each iteration, and to keep it simple in each step.

4.2. The Parallel Algorithm for st-Graphs. We develop a two-phase parallel
algorithm to find a valid max-flow in the case of st-graphs. We first give an informal
overview of the algorithm and then proceed to outline it in detail. In the first
phase we compute the potential of each face by a shortest-path computation in
the dual graph with s* as the source. This is done with jumping over faces
permitted (which can be reduced to a shortest-path computation, as was shown
in Section 3). If there are no capacitated vertices, then clearly this yields a valid
flow function. In certain cases it may also happen that this procedure yields a
valid flow function even in the presence of vertex capacities. In general, it does
not yield a valid flow function (as the earlier example showed) due to the presence
of "spurious cycles."

In the second phase we show how to fix all the "unhappy vertices" (that have
excess flow through them). To motivate the second phase let us see what goes
"wrong" when we compute potentials via jumping over faces. Consider a vertex
v that has capacity cv, and its incident faces. We assume that the incident faces
have potential values p~, p~, . . . , p ~ _ i (where d(v) is the degree of v). We can
assume that p~ is the smallest potential value and that the ordering of the faces
is anticlockwise (see Figure 9 for an example). Number the faces such that p~ is
the potential of face i. The edge incident on v between face i and (i + 1) (rood d(v))

214 S. Khuller and J. Naor

\
Fig. 9. A capacitated vertex and the potentials of its incident faces.

is called e i. Since the potentials were computed with "jumping over faces" we
know that

[p ~ - p ~ [< c v , Vi, j,

[PY - P~+ 1 [< ce,, Vi.

If we traverse the faces starting from face 0 in an anticlockwise direction,
whenever the potential goes up it corresponds to an edge with incoming flow. The
amount of incoming flow is the same as the change in potential. Correspondingly,
whenever the potential goes down, it corresponds to an edge with outgoing flow.
(In Figure 10 we illustrate a vertex v with seven edges incident on it, and the
corresponding potential sequence.) Clearly, each jump in the potential, either up
or down, is bounded above by min(cv, Ce) where Ce is the capacity of the
corresponding edge. As we do the traversal, the total incoming flow could easily
exceed c v.

We now show a correspondence between the uppermost-path algorithm and
the shortest-path algorithm. This is important for understanding how the po-
tentials can be adjusted to cancel the relevant spurious cycles. The uppermost-path
algorithm really corresponds to growing a shortest-path tree To from s*. The
augmenting path at each step corresponds to the "fringe" of the faces correspond-

t
potentials

I PY ~ P~

0 i 2 3 4 5 6 0

Fig. |0. Potentials of faces incident on v.

Flow in Planar Graphs with Vertex Capacities 215

ing to vertices in tree TD at various stages of a Dijkstra shortest-path computation.
When the fringe is nonsimple, the uppermost path is also nonsimple and needs to
be made simple. The flow function computed by assigning potentials, directly
corresponds to an uppermost-path algorithm without making the path simple at
each step--this is precisely what causes excess flow to go through capacitated
vertices.

In the second phase we try and cancel all the "spurious cycles" that cause
capacitated vertices to be unhappy. The idea is to consider various snapshots of
the dual tree. Examining the snapshots of the dual tree encode the various stages
of an uppermost-path algorithm. The nonsimplicities are easy to detect and the
potentials can be adjusted to cancel some spurious cycles (at least enough cycles
so as to satisfy the capacity constraints of all vertices).

We now outline the algorithm in more detail. We first describe a sequential
implementation of the algorithm and then show how it can be implemented in
parallel.

NOTATION. By fv we denote the face corresponding to dual vertex v. Assume that
all the potentials have been sorted in nondecreasing order Pl, P2 Plvl, where
[F[is the number of faces. (Pl is the potential of s* and is 0.)

DEFINITION 4.4. Define T~ = { j l j < i}. T~ consists of the i vertices in T o that
have the smallest potential values.

DEFINITION 4.5. Define R i = [_) {fjlj < i}. R ~ is the union of the set of faces
corresponding to vertices in T~.

We refer to the boundary of R ~ as 6R i (this can be easily computed from the
embedding of To).

ALGORITHM FOR THE st-GRAPH CASE.

Step 1. Add a directed edge of infinite capacity from t to s. This has the effect
of "splitting" the infinite face into two faces (see Figure 11). The dual vertex
corresponding to the infinite face is s*, and the new face (vertex in the dual graph)
formed by the addition of the return edge is called t*.

Step 2. Construct the dual graph (with edge costs and face costs) and compute
the shortest-path tree T o in the dual graph. (This can be done by reducing the
problem to a regular shortest-path problem as shown in Section 3.) When there
are face costs, the "parent" of a vertex v in the shortest-path tree is not necessarily
adjacent to v (however, it must share a common face with v).

Step 3. There are f - 1 phases; in the ith phase do:
Identify the nonsimplicities in 6R i that were not present in 6R i- 1. (In Figure

11 the shaded region is R i. R i- 1 is R ~ - i.) If the addition of i to R i- 1 created a
nonsimplicity, then continue, else the phase ends.

216 S. Khuller and J. Naor

�9 " .-' . . " . . ' .-" . " -" , ' , " . ' . " .-~ ." . - . .'i

. "" .." . . ' . Y .."" ..-"" ..-" ..."O..'" 8"" ..""'.-"" . . . ' " . . Y - " ' . - " .'"" Y . ' " " " " Y .. '" ..'~

....... / i ~ . ' -~ ' -~ .~g~ i~ ~ ~ ~n~e~ i / 7 i i
..." ..." . ' ...- �9 �9 ' | . " l s ~." " . . . " " . . . " . . . " ..-

.."" R I ..." . . - . " . [j ' " f " ., ..- " ..- . . . " " . - "
�9 " " 2- - . y l l t ~ " . . ' " " .. " �9 -" .."" .'" . . ' . . " .'"" . . , -~.~ .." l o o p l J "'" "" "'" ~ ~ i ' " " "
"'" " ' """ " """ " " ~ ' " ' " i "" ~ , ' . . ' " .." ~ - ~ . " o ~ " �9 . '" .." j _ ~ - M - . . ' - - ~ _ - - " Z'_

. . " . . - . . ' p ~ ~ ." - ~ , - - _ ~ ~ ~ ~ " " . - " . . .

iii iii /i.
i.l.i !i ii;; iii.ii ill.--iiiii

. . " " . * .-" ..." . ."

' ." .." ",.....-", �9 --"-" ,"...-.."/. / -."7-" i....",
Fig. 11. Region R i and a " loop."

If i is not marked "done," then define loop~ to be the finite region enclosed by
the nonsimple portion of fiR ~ (see Figure 11). Also redefine the potential of all the
faces in loop, to be p~. Mark all the dual vertices in loopz as "done."

Step 4. Define the flow on each edge to be the difference of the potentials of the
adjacent faces. As before, the convention is that the flow moves in the direction
with the smaller potential on the left.

We briefly comment on the implementation of Step 3, and then show why the
algorithm works.

IMPLEMENTATION OF STEP 3. If we have a list containing the vertices that belong
to 6R i- 1, then it is easy to walk around the vertices of face Pi and obtain the list
for fiR ~. When doing this walk we can also detect if we traverse any vertices
that are already on 6R i- ~. This will detect nonsimplicities in the boundary. Once
this is detected, it is easy to traverse the nodes in loopi and mark them as "done."
(A vertex is set to "done" once we are sure that its potential does not need to be
changed again.)

In general, R i is the set of faces that have been "reached" by the dual
shortest-path tree at the start of phase i. Each time an edge on the uppermost
path is saturated, it corresponds precisely to growing the region R i by annexing
a new face (the next "closest" face from s*). Each uppermost path corresponds
directly to a fringe of the dual tree T~ at the snapshot of the algorithm in phase
i. We identify the various augmenting paths and make them simple at each
step by completely discarding the "loops" as was done in the uppermost-path
algorithm.

Flow in Planar Graphs with Vertex Capacities 217

CORRECTNESS OF THE ALGORITHM. We now prove that the algorithm obtains a
valid flow function.

LEMMA 4.6. Setting the potentials of all the faces in loopi in T~ to be pi, preserves
edge capacities.

PROOF. The flow on all the internal edges of the loop becomes zero since the
potentials of all faces is Pi- Notice that the flow on the edges of the boundary of
the loop is only decreased; since the higher potentials (of faces in the loop) are
lowered, this keeps the flow to be less than the capacity of the corresponding
edge. []

Reducing the potential has the effect of "deleting" the loop and making the
augmenting path simple. It also has the effect of making all the unhappy vertices
in the interior of the loop happy.

In this manner we can identify all spurious cycles and cancel them, obtaining
a flow function that does not violate any capacitated vertices.

The loops are canceled in the first dual tree that they occur (i.e., a loop is
canceled in T~, if it is not contained in a loop in T~ for j < i).

DEFINITION 4.7. In a circular sequence a local maximum is a contiguous set of
identical values (from position i to j), that are greater than the values at positions
i - 1 a nd j + 1. We refer to the contiguous set of values forming a local maximum
as a locally maximal chain.

EXAMPLE. Consider a sequence of values 5, 5, 4, 4, 6, 6, 6, 3, 5, 5. In this sequence
there are two local maxima, one is the consecutive chain of 6's at positions 5, 6,
and 7, the other is the consecutive chain of 5's at positions 9, 10, 1, and 2. These
are also the locally maximal chains.

After all the potentials have been adjusted by the above algorithm (Step 3) we
can show the following property:

LEMMA 4.8. For a capacitated vertex v, if we consider the sequence of potentials
of faces incident on it (in anticlockwise order) starting from the smallest potential,
there is only one local maximum.

PROOF. If V belongs to the interior of some loop, then the property is trivially
true as all the potentials of the faces incident on it are the same. Suppose that
there are two locally maximal chains (the proof is similar for more than two such
chains). Let the potentials of the two chains be Pv~ and Pv2. The faces between these
two faces (from both sides) all have lower potential. Let us assume that pv, < Pv2.
Suppose that in the sorted potential sequence p~, has position i. If we consider
the dual tree T~-1, then there will be a nonsimplicity formed in the boundary.
This is because the faces corresponding to the two maximal chains are not in R i- 1,
and are separated by faces that belong to R i- 1. (The faces in between all have a

218 s. Khuller and J. Naor

lower potential than Pv,.) Either pv, or P~2 is in the loop formed due to the
nonsimplicity, which would have caused a lowering of one of p~, or Pv2 by Step 3
of the algorithm, thus giving a contradiction. []

THEOREM 4.9. The algorithm described above obtains a valid flow function, satisfy-
ing:

(i) Edge capacity constraints.
(ii) Vertex capacity constraints.

(iii) Flow conservation constraints.

PROOF. The first phase produces a flow function that satisfies all the constraints
in (i) and (iii). Since the potential of t* does not change in the second phase we
still have a max-flow. The second phase only reduces flow on edges as was shown
in Lemma 4.6 so the edge capacity constraints are not violated. The fact that the
incoming flow to a vertex is the same as the outgoing flow follows from Proposition
2.1. This proof does not require that the potential function be computed by a
shortest-path computation, but works for any potential values. We now show that
all the vertex capacity constraints are met. If the vertex is an interior vertex on
any " loop" that is identified in the second phase, then the flow through the vertex
is zero and it trivially satisfies its capacity constraint.

Consider a potential sequence of a vertex v, p~ P~v)- 1. Let p~ be the local
maxima (by Lemma 4.8 it is unique). By definition p~ is the lowest potential in
the sequence. If we traverse the faces anticlockwise, the potentials are all non-
decreasing until p~ and then nonincreasing until p~. This follows from the fact
that the local maxima is distinct. Since the maximum difference of potentials of
any two faces incident to v is bounded by c(v), it is easy to see that all the
capacitated vertices do not have any excess flow through them. We can now bound
the incoming and outgoing flows by c(v). []

PARALLEL IMPLEMENTATION. Steps 1 and 2 are easy to execute by doing a
shortest-path computation in parallel [PR], [MN]. Once we have the tree To,
using O(n 2) processors we can compute all the subtrees T~ (by allocating n
processors for each i). After we compute the subtrees the only remaining step is
to obtain the nonsimple sections of these subtrees. Since we have O(n) processors
for each subtree T]9, this is easy to compute. Each face computes the smallest j
such that it occurs in a loop in TJo, and adjusts its potential to be p~-. Now define
the flow on an edge to be the difference of the potentials of its adjacent faces.

We now get the following theorem.

THEOREM 4.10. A max-flow in an st-graph (directed and undirected) can be found
in O(log 3 n) time on an E R E W P R A M using O(n 2) processors.

PROOF. We use the algorithm by [PR] to compute the shortest-path tree in
parallel (tree rooted at s*). The second phase is easy to implement in O(log n) time
using O(n) processors for each dual tree T~. []

Flow in Planar Graphs with Vertex Capacities 219

ALTERNATE SCHEME. Note that each dual subtree Tb constructed corresponds
to an augmenting path (via the "fringe" of the tree). Each edge of the graph belongs
to some set of augmenting paths. To obtain a legal flow function, we simply have
to cancel flow on all the nonsimple portions of the augmenting paths (by the
amount of flow that was pushed on that augmenting path). For each edge e, we
can compute the set of augmenting paths it participates in. This can be done by
examining all the fringes of the faces of nodes in the snapshots of the dual tree
T o. We then compute the set of augmenting paths for which e is on the nonsimple
part of the boundary and reduce the flow by an amount equal to the capacity of
all these augmenting paths. This method would also yield a parallel algorithm of
the same complexity.

This algorithm can be used to compute k vertex-disjoint s- t paths in an st-planar
graph in NC, for arbitrary k. The parallel algorithm of [KS] works in N C for
only fixed values of k (but for general graphs).

4.3. Reduction f rom Flow to Circulations. We now show how to transform a flow
problem to a circulation problem with lower bounds on the edges. This is done
by adding new edges that return the flow from the sinks back to be sources. These
edges have lower bounds so as to ensure that the demands of the sources and
sinks are satisfied. This reduction works for both undirected and directed graphs,
but generates a directed graph.

We first compute a spanning tree T in G (on the sources and sinks). (We treat
G as an undirected graph for the purpose of computing T.) Notice that if there is
only one source and sink, then T is a path. Let us denote the demand of a vertex
v by d(v) and assume that if v is a source, then d(v) < 0, whereas if v is a sink, then
d(v) > O.

An edge e E T separates the tree into two subtrees TI and T2. Let r(e) be
~ ~ T, d(v) = - - ~ r2 d(v). The previous equality follows from the fact that T is a
spanning tree and the sum of the demands is zero. We add an edge parallel to e
whose capacity is [It(e) f, [r(e)]]. The direction of the edge depends on the sign of
r(e). If r(e) is positive it points from T 1 to T2, otherwise it points from T 2 to T r

In the new graph we compute a circulation and obtain a legal flow that satisfies
the demands by removing the newly added tree edges.

It is crucial for the algorithm in Section 3.3 that return flow edges are inserted
without being adjacent to capacitated vertices. Let us now elaborate on how this
is done. Assume that T is a simple path. (The procedure easily generalizes to trees.)
T is inserted edge-by-edge; assume that we are currently inserting the edge v --. w
with return flow [l,/], where w is capacitated and v is not. This condition is initially
satisfied as the sources and sinks are not capacitated (see Figure 12).

Let u be the vertex that succeeds w on the path and let u* and v* be any faces
adjacent to u and v, respectively. Let e* , . . . , e~' be a path in the dual graph from
v* to u* and let el e k be the corresponding primal edges. The idea is that the
path will arrive at u through the edges el, . . . , ek instead of w. To do that, we create
a "crossing" by adding a vertex a i. The path from v to u will go through the

220 S. Khuller and J. Naor

capacitated vertex
g W

Fig. 12. Embedding the edge v ~ w. -~, these edges have capacity [l,/].

vertices al a k by adding new edges with capacity [l, 1]. This is repeated for
each edge on T. Notice that the last vertex on T is not capacitated. In this manner
we are able to "bypass" all the capacitated vertices to return the flow from the
sinks to the sources.

Since the degree of each vertex a~ is exactly four, with the flow on the return
edges being a fixed value l, by conservation of flow, the flow on the old edges is
not affected, both in value and direction. Hence, when the return edges and the
vertices a~ are removed, we still have a legal flow.

This procedure increases the size of the graph by O(n) vertices, since there are
O(n) edges of the spanning tree that need to be embedded.

4.4. Computing Circulations. In this section we show how to use the planar
separator theorem [M] to obtain a solution for the circulation problem when the
graph contains edge capacities (upper and lower) as well as vertex capacities. We
assume that the graph is triangulated. This approach is similar to the algorithm
developed by [JV].

AN OVERVIEW OF THE ALGORITHM.

1. Find a separating cycle C of size O(x/n). Let the interior and exterior of Step
G be denoted by Gl and G E.

Step 2. Recursively find a circulation in G I + C and GE + C.

Step 3. Merge the circulations computed in Step 2, to obtain a circulation in G.

Let us now elaborate on each step. In the first step we compute a separating

cycle of size O(x/n). However, we require a separating cycle that has no capacitated
vertices on it. To obtain such a cycle, we first find a separating cycle in the dual
graph ~. The vertices on this cycle correspond to a set of faces in the primal graph,
such that faces corresponding to adjacent vertices on the cycle share a common
edge (edges in Ec). This cycle can be decomposed into two cycles C1 and C2 and
a set of edges Ec between them. We introduce a new vertex in the middle of each
edge in Ec, and connect a cycle C through the new vertices by adding new edges
with zero capacity. (See Figure 13.) Call the new graph G'. This cycle is directed
clockwise, and its edges have zero capacity.

Flow in Planar Graphs with Vertex Capacities 221

set of faces corresponding to
C2 ~ " ~ - - ~ ~ . ~ dual separating cycle

~, I I

edges in Ec

Fig. 13. Finding an uncapacitated separating cycle.

LEMMA 4.11. The cycle C is a separator of size O(xfn) such that the number of
vertices in GI and GE is bounded by cn (c < 1).

PROOF. In the dual graph the size of the separating cycle is O(x/~) where f is
the number of faces in G (and the number of vertices in the dual). We know that
f = 2n - 4 (if the graph is triangulated by adding extra zero capacity edges). Hence

the separating cycle C has size O(x/~).
The number of dual vertices in each component of ~ after deletion of the cycle

is upper bounded by 2f. Thus the number of faces in each component of G after
deletion of C, is upper bounded by ~f. The number of vertices is about �89 + O(1).
Thus we establish that the number of vertices in each component of G is

~-n + O(x/n) (due to addition of new vertices to form the cycle). []

LEMMA 4.12. Any circulation in G' induces a circulation in G.

PROOF. Since all the extra edges added in G' have zero capacity, a circulation in
G' directly yields a circulation in G by dropping the edges that have zero capacity
(and thus no flow). We can also easily drop the vertices that were added to create
the separating cycle. []

In the second step we compute a circulation recursively in G~ + C and G E -[- C.
Since edges have lower bounds we have to ensure that a feasible solution exists
in the graph restricted to G~ + C and GE + C. This is done by giving each edge
on C an infinite capacity during the recursive calls.

LEMMA 4.13. A feasible solution exists in G I + C and G E + C.

PROOF. Let us assume that there is a feasible circulation Z in G. We show that

222 s. Khuller and J. Naor

in G~ + C there is also a feasible circulation after the capacities of the edges have
been changed to infinity. (The proof for G~ + C is similar.) Consider the restriction
of Z to GI. Clearly, all the vertices strictly in the interior of C satisfy the flow
conservation requirement (as they are not affected in any way). The only vertices
that are affected are the ones on the boundary of the cycle C (the new uncapacitated
vertices). Some of them suddenly become deficient in the flow they receive (due
to deletion of the edges in the exterior of C) and some have excess flow. Since Z
was a legal circulation, the sum of the excesses equals the sum of the deficiencies.
The edges of C are now used to redistribute all the excesses to the deficient vertices.
Hence the graph G t + C has a legal circulation. []

In the third step we merge the two solutions obtained previously. The merged
flow satisfies the flow conservation constraint for each vertex, but the capacity of
the edges of the separator are violated, since their "real" capacity is zero. We now
discuss how this is fixed. However, notice that vertex capacities are not violated
due to the merging step because the vertices of the cycle C are not capacitated.

Let e = (v ~ w) be an edge of C with flow f~. Since it has zero capacity, the flow
from v to w needs to be redirected, i.e., v becomes a source that needs to send fe
units of flOW to the sink w, but not via the edge e. Notice that the source v and
sink w are on the same face. The redirection is performed in the residual graph
(with respect to the current circulation). The edges in the residual graph have no
lower bounds. Suppose an edge e has capacity [a, b] in G and flow f in the current
solution. In the residual graph there will be two edges, directed in opposite
directions, with capacities b - f and f - a. In pushing flow in the residual graph,
vertex capacities are "active" for only a subset of the vertices, since when we push
flow on an edge it is actually either increasing or decreasing the flow through the
vertices incident on it. (For example, pushing flow through an edge in the residual
graph may be decreasing the actual flow that was pushed in an earlier step; in
this case we do not want the vertex capacity to be "active.") The vertex capacity
applies only to the situation when the flow through the vertex is increasing. It is
easy to see that a simple modification to the algorithm presented in the earlier
section will work. This procedure is repeated for each edge on the separator.
Observe that if the vertices of C were capacitated, then it is not possible simply
to merge the solutions.

If at any step there is no way of redirecting the flow in the residual graph from
v to w, then the algorithm halts and claims that there is no circulation in the
graph. The correctness of this claim can be easily seen from the following argument.
Suppose that there is a circulation C in the original graph, and let C' be the current
circulation, in which the flow cannot be redirected from v to w. Then C -- C' is a
collection of residual cycles such that augmenting them in C' will redirect the flow
from v to w.

Since the size of the separator is O(x//n) we obtain:

THEOREM 4.14. The complexity of computin 9 a circulation in a planar 9raph with
vertex capacities is O(n 1"5 log n).

PROOF. The algorithm makes recursive calls to two graphs that are bounded in

Flow in Planar Graphs with Vertex Capacities 223

size by 2n + O(x/rs (where n is the number of vertices in the graph). The cost of

merging the solutions is O(n ~'5 log n) as we make O(x/rn) calls to a procedure that
pushes a given amount of flow in an st-planar graph. Each call to the algorithm
costs us O(n log n) time (using the algorithm presented in the previous section).

Thus, letting the running time be T(n), we have

T(n) < C 1 for n < n o,

T(n) < T(n 0 + T(n2) + c2n 1"5 log n.

Note that el, c2, no are constants.

Fll, n z < ~n + O(w/rn).

Hence, we know that

.1, n2 _ In +

A similar recurrence is obtained in [3VJ, but since the proof of the recurrence is
not given, we outline it for completeness.

We show that T(n) = Cn 1"5 log n, for n >_ n'. The left-hand side is

(C - c2)n 1"5 log n < Cn~ "5 log n 1 + Cn12 "5 log n 2.

We prove this by showing that the left-hand side is smaller than a lower bound
for the right-hand side (by replacing n/3 for n~ and n2):

/n'~1.5 (c- 2),,l log,<-zct5) log 7,

2C
(C - c2) log n _< ~ (log n - log 3),

3 w / ~ l o g 3 _ + c z - C logn.

This gives us the value of n' (which is a constant). The equation holds for all
n > n'. []

Notice that our algorithm for computing a circulation is slower than that of
[MN] (for edge capacities) by only a logarithmic factor. For the case of computing
a max-flow the complexity of our algorithm (Sections 3.2 and 4.4) is the same as
that of computing a min-cut (the value of the max-flow).

224 S. Khuller and J. Naor

5. Conclusions and Open Problems. We have shown a simple reduction for
computing the minimum cut in a graph with capacitated vertices to a graph that
has only edge capacities. However, this reduction holds only if there is one source
and sink. If there are many sources and sinks, then it is not true that the minimum
cut is equal to a collection of cycles of minimum capacity that separates the sources
from the sinks in @', i.e., with "jumping over faces." The reason is that two cycles
in this collection are not necessarily "independent" (if they share a common
capacitated vertex). We conjecture that if there are many sources and sinks, then
a simple reduction of the above form does not exist.

It seems that the major difficulty with vertex capacities is in computing the flow
function. Suppose that we want to compute the flow function via a potential
function in a similar way to [MN]. As already pointed out, even if we use "jumping
over faces" for computing the potential function, we do not necessarily get a legal
circulation (see Figure 7). To obtain a legal circulation, a set of spurious cycles
has to be identified and canceled. Can these cycles be efficiently identified? If the
graph contains only one source and sink, then the spurious cycles have a more
special structure. In every spurious cycle the flow on an edge needs only to be
decreased and never increased. Can the spurious cycles in this case be efficiently
identified? In the case of undirected graphs with a single source and sink, our
algorithm is slower than that of [HJ]. We conjecture that the special structure of
the spurious cycles will enable them to be canceled easily.

In the case of st-graphs the cycles have a special structure that is exploited by

the parallel algorithm. We conjecture that a deterministic O(nln/l~o~gn) algorithm
exists to compute the flow function for st-graphs that works by canceling these
spurious cycles.

Another natural open problem is how to compute the flow function in parallel.
We can do that only for st-graphs. Can that be done for more general classes of
planar graphs? How difficult is it to compute a circulation in parallel (with vertex
capacities)?

Acknowledgments. We would like to thank Hal Gabow, Donald Johnson, Gary
Miller, and Vijay Vazirani for fruitful discussions. We would also like to thank
the referees for providing extremely valuable comments on an earlier draft of the
paper.

[BL]

IBM]

[CLR]

References

Y. Birk and J. B. Lotspiech, A fast algorithm for connecting grid points to the boundary
with nonintersecting straight lines, Proceedings of the second Symposium on Discrete Algo-
rithms, pp. 465-474 (1991).
J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, Amsterdam
(1977).
T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA (1990).

Flow in Planar Graphs with Vertex Capacities 225

[CT]

[F]

[FF]

[FW]

[GG]

[GH1]

[GH2]

[GSS]

[GTT]

[H]

[H J]

[IS]

[J]

[JV]

[KS]

[LRT]

[M]

[MN]

[NC]

[PR]

I-R]

[RB]

[RBK]

B. Codenetti and R. Tamassia, A network flow approach to reconfiguration of VLSI arrays,
IEEE Transactions on Computers, Vol. 40, No. 1, pp. 118-121 (1991).
G. N. Frederickson, Fast algorithms for shortest paths in planar graphs, with applications,
SIAM Journal on Computing, Vol. 16, pp. 1004-1022 (1987).
L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Canadian Journal of
Mathematics, Vol. 8, pp. 399-404 (1956).
M. L. Fredman and D. E. Willard, Blasting through the information theoretic barrier with
fusion trees, Proceedings of the 22nd Annual Symposium on Theory of Computing, pp. 1-7
(1990).
J. W. Greene and A. E1-Gamal, Configuration of VLSI arrays in the presence of defects,
Journal of the ACM, Vol. 31, No. 4, pp. 694-717 (1984).
R. E. Gomory and T. C. Hu, Multi-terminal network flows, SIAM Journal on Applied
Mathematics, Vol. 9, pp. 551-570 (1961).
F. Granot and R. Hassin, Multi-terminal maximum flows in node-capacitated networks,
Discrete Applied Mathematics, Vol. 13, pp. 157-163 (1986).
L. Goldschlager, R. Shaw, and J. Staples, The maximum flow problem is log space complete
for P, Theoretical Computer Science, Vol. 21, pp. 105-111 (1982).
A. V. Goldberg, E. Tardos, and R. E. Tarjan, Network flow algorithms, in Paths, Flows and
VLSI-Layout (B. Korte, ed.), Springer-Verlag, New York, pp. 101-164 (1990).
R. Hassin, Maximum flows in (s, t) planar networks, Information Processing Letters, Vol. 13,
page 107 (1981).
R. Hassin and D. B. Johnson, An O(n log 2 n) algorithm for maximum flow in undirected
planar networks, SlAM Journal on Computing, Vol. 14, pp. 61~624 (1985).
A. Itai and Y. Shiloach, Maximum flow in planar networks, SlAM Journal on Computing,
Vol. 8, pp. 135-150 (1979).
D. B. Johnson, Parallel algorithms for minimum cuts and maximum flows in planar networks,
Journal of the ACM, Vol. 34, No. 4, pp. 950-967 (1987).
D. B. Johnson and S. Venkatesan, Using divide and conquer to find flows in directed planar
networks in O(n 1"5 log n) time, Proceedings of the 20th Annual Allerton Conference on
Communication, Control and Computing, University of Illinois, Urbana-Champaign, IL,
pp. 898-905 (1982).
S. Khuller and B. Schieber, Efficient parallel algorithms for testing k-connectivity and finding
disjoint s-t paths in graphs, SIAM Journal on Computing, Vol. 20, No. 2, pp. 352-375 (1991).
R. J. Lipton, D. J. Rose, and R. E. Tarjan, Generalized nested dissection, SlAM Journal on
Numerical Analysis, Vol. 16, pp. 346-358 (1979).
G. L. Miller, Finding small simple separators for 2-connected planar graphs, Journal of
Computer and System Sciences, Vol. 32, pp. 265-279 (1986).
G. L. Miller and J. Naor, Flow in planar graphs with multiple sources and sinks, Proceedings
of the 30th Annual Symposium on Foundations of Computer Science, pp. 112-117 (1989).
T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithms, Annals of Discrete
Mathematics, Vol. 32, North-Holland, Amsterdam (1988).
V. Pan and J. H. Reif, Fast and efficient solution of path algebra problems, Journal of
Computer and System Sciences, Vol. 38, No. 3, pp. 494-510 (1989).
J. H. Reif, Minimum s-t cut of a planar undirected network in O(n log 2 n) time, SIAM Journal
on Computing, Vol. 12, No. 1, pp. 71-81 (1983).
V. P. Roychowdhury and J. Bruck, On finding non-intersecting paths in a grid and its
application in reconfiguration of VLSI/WSI arrays, Proceedings of the First Symposium on
Discrete Algorithms, pp. 454-464 (1990).
V. P. Roychowdhury, J. Bruck, and T. Kailath, Efficient algorithms for reconfiguration in
VLSI/WSI arrays, IEEE Transactions on Computers (Special Issue on Fault Tolerant
Computing), Vol. 39, No. 4, pp. 48ff489 (1990).

