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The Equilibria of a Multiple Objective Game 

By J. Z h a o  1 

Abstract: For a multiple objective game, we introduce its cooperative, non-cooperative, hybrid and 
quasi-hybrid solution concepts and prove their existence. JEL #: C70, C71, C72 

1 Introduction 

The  conf l ic t ing  interests or  object ives are a pe rpe tua l  ob jec t  abou t  which economics  
and  o ther  social  sciences concern .  There  are essential ly three classes o f  conf l ic t ing 
interests:  the  confl ic ts  a m o n g  several decis ion makers ,  the  confl ic ts  wi th in  an in- 
d iv idual ,  and  the confl ic ts  in bo th  cases. The  first  class o f  confl icts ,  the  conf l ic t ing 
interests a m o n g  several decis ion makers ,  is s tudied  in the convent iona l  game  theory,  
where each player  tr ies to maximize  a scalar  payoff .  The  second class o f  confl icts ,  
the  conf l ic t ing  preferences wi thin  an indiv idual ,  appears  to be the  subject  o f  in- 
d iv idua l  decis ion theory.  Because single object ive op t imiza t i on  p rob lems  are 
technica l  in tha t  one  could  ask an expert  or  a compute r  to solve them,  the  ind iv idua l  
decis ion m a k i n g  is concep tua l ly  non- t r iv ia l  only  in mul t ip le  obj  ective m a t h e m a t i c a l  
p r o g r a m m i n g  ( M O M P )  2. Whi le  the  th i rd  class o f  confl icts ,  the conf l ic t ing  interests 
involved a m o n g  several decis ion makers  as well as wi th in  each indiv idual ,  is the  sub- 
ject  o f  mul t ip le  object ive  game ( M O G )  3, which happens  whenever  players in a 
game have mul t ip le  object ives or  a vector  payof f  to opt imize.  
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Though more than 35 years have passed since the first publication on MOG by 
Blackwell (1956) 4, only few subsequent papers appeared: Shapley (1959), Contini 
et al. (1966), Zeleny (1975), Hannan  (1982), Charnes et al. (1987), Borm et al. (1988) 
and Charnes et al. (1990). These papers share two common features: they all con- 
sider the non-cooperative solutions; all of  them except those of  Charnes et al. deal 
with the Two-person games, and all these Two-person game studies except that of  
Contini et al. are restricted to Two-person matrix games. 

Blackwell formalized the Two-person zero-sum vector matrix game, which is 
also the topic of  Shapley and Zeleny. Blackwell concerns only the minimax property, 
Shapley shows the existence of strategic equilibria assuming each player will choose 
a weakly efficient or efficient solution given the choices of  the rivals, while Zeleny 
uses the method of  linear multiple objective mathematical  programming to deal 
with the same problem. Hannan ' s  paper is a short note indicating one error in the 
example of  Zeleny's paper. Borm et al. consider the general Two-person matrix game 
(non-zero sum) and study its comparative statics (the continuity of  solutions with 
respect to parameters in the game). Contini et al. begin with a general Two-person 
MOG but end up with a MOMP, the player simply maximizes his expected vector 
payoff  because the other player is the Nature. While Charnes et al. (1987) study the 
more general n-person M O G  where all players' choices are limited to a cross-con- 
strained set, and both their results (1987, 1990) are also limited to the non- 
cooperative solutions. 

Here we are interested in the general n-person M O G  problem. We shall define 
the cooperative, non-cooperative, hybrid and quasi-hybrid solution concepts in the 
next section of the paper. As the readers shall see, the cooperative and non- 
cooperative solutions are two particular kinds of  hybrid solutions. In Section 3, we 
shall provide the sufficient conditions for the existence of  these solutions, and we 
shall conclude the paper  with some remarks in Section 4. 

2 Definitions of Equilibria 

A multiple objective game (MOG) is defined as I '  = { N , X  i, t, ti}, where N = 
[ 1,2 ..... n } is the set of  players. For each i E N ,  X i is player i ' s  strategy set, which 
is assumed to be a non-empty subset in some finite-dimensional Euclidean space 
( X  i C RL(i)), u i : X = IIn=l X i - -  R m (i)  is player i 's  vector payoff, which is a real 
mi-dimensional vector function. We shall adopt the following notations: For any 
two vectors a ,  b E R n, a >_ b e, a i >_ b i ,  all i ; a > b r a _> b and a ~ b; a > >  
b e, a i > b i ,  all i. For any number in the forms of  m i ,  s i etc., they shall be changed 
to m ( i )  and s ( i )  when they appear as subscript or subscript. 

It is clear that MOG differs from the conventional game only in the payoff  func- 
tions. Here each player has a vector payoff  to optimize, while in the conventional 
games players all have scalar payoffs to optimize. So when m 1 = ... = m n = 1, I" 

becomes the conventional n-person game in normal form; when n = 1, m 1 > 1, I ~ 
becomes the standard MOMP problem; and when n = m 1 = 1, F becomes the 
single objective mathematical  programming problem. Thus MOG is much more 
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general than either the conventional game theory or the M O M P  model. Judging 
from the wide applications of  the conventional game theory and MOMP, one can 
imagine the much wider applications of  MOG that will emerge in the near future. 

For future development, we shall review the concept of  proper efficiency in 
M O M P  (Geoffrion, 1968) and its existence (Lemma 1). A general multiple objective 
mathematical  programming problem is defined as: 

VM5: M a x  F(x) = { f l ( x )  ..... fro(x)} ,  m > 1, (1) 
x E Y  

where Yis the feasible choice set, which is assumed to be a non-empty subset in some 
finite-dimensional Euclidean space, f / :  Y -- R, i = 1 ..... m, are the objective func- 
tions to be maximized. Clearly, this i s a  degenerated M O G  problem for the case of  
n = l a n d m  1 = m >1. 

For the above MOMP problem, its Weakly Efficient Solution set is defined as: 

R *  = {Yc E Y [{x E Y I F ( x )  > >  F(2)} = IO}, 
w e  

that is, 2 is a Weakly Efficient Solution if there is no x E Y such that f i  ( x )  > f i  (2) 
for all i; its Pareto Efficient Solution or Efficient Solution set is defined as: 

= {2 Y i{x r I > F(2)} = 0}, 

that  is, 2 is an Efficient Solution if there is no x E Y such t h a t f i ( x )  >_ f i ( x )  for 
all i and there is at least one j satisfying j~(x) > J)(2);  and its Properly Efficient 

or Properly Pareto Efficient Solution (Geoffrion, 1968) is defined as: 

Definition 1." An efficient solution 2 (2 E R~) is a Properly Efficient Solution, if 

there is L > 0 such that for any i a n d x  @ Ysat is fyingf / (x)  > f i ( 2 ) ,  there is always 
f i ( x )  - fi(-X) 

a j  * i such that j~ (x) < j~ (2) and _ L .  
j ) ( 2 )  - f j ( x )  

LetA~ = {X E R m l X i _ 0 ,  Em l x  i = 1] denote the m - l simplex, a n d A + +  = 

{X E R m ] X i > 0, E m l  X i = 1} be the interior of  A~.  For each X C A~, le t fx(x  ) 

= X 'F(x )  = ~m 1 {Xif/(x)}, andR*(X) = {2 E Y I V x  E Y, fx(2)  ___ fx(x)} = 

Arg-Max {fx(x) I x E Y}, where Arg-Max {f(x) I x E Y}, denote the solution set 
of  any optimization problem Max {f(x)  t x E Y}. Let RDe denote the set of  all pro- 

perly efficient solutions, then Geoffr ion 's  representation theorem (1968) can be 
given as: 

L e m m a  1: I f  the objective functions f i( x ), i = 1,2 ..... m, are all continuous and con- 
cave in x, and Y is a convex and compact  set, then 

5 VM stands for vector maximization. 
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R* = U {R*(x)}. 
pe X@A~+ 

Now let us define the solutions for a M O G  problem. Let JUdeno te  the set o f  
all nonempty  subsets o f  N, then each element o f  JYrepresents a coali t ion o f  players. 
For each coali t ion S E ~,,  let I S I denote the number  o f  elements in S, and R S = 
I I i E  S Rm (i) denote the { ~i  E S miJ-dimensi~ Euclidean space whose coordinates 
have as groups o f  subscripts the members  in S. For a n y x  = {x 1 ..... x n } E X ,  u = 
{u 1 ..... u n] E R N I I i E N R m ( i ) ,  where x i i i i u i = = = {x1 ,x  2 ..... XL(i)  } E X i, 

[ui 1 u i u i ! E R m(i), l e tx  s = {xi l i E S} E X S = ] - [ i E s X i b e t h e  strategies 
' 2 . . . . .  m ( i ) "  

of  coali t ion S; x_ S = X N \  S = {x i I i ~ S} E X _  S = I I i r  X i b e  the strategies o f  

the players not  in the coali t ion S (or in the complementary  coali t ion N \  S); 
u S = {ui[  i E S} ~ R S a n d u _ s  = UN\  S = {uil i E S ]  E R -S  = 1- I i r  

the projections o f  u on R S and R -S  respectively; K S : X S -- R S be the worst vector 
payoffs to S and be defined as 

- f f s ( X s )  : {-ffs(Xs)i [ i E S} E R S 

for each x S E X S, where for each i E S, 

Us(Xs) i  = { Inf  u j (Xs ,  x_s) I J = 1,2 ..... m i ] E  Rm(i)  
X_sEX_ s 

is player i ' s  worst or  guaranteed vector payoff,  given coali t ion's choice x S. For each 
coali t ion S E K ,  we shall write ( x  S, X_s) = x for convenience. The cooperative and 
non-cooperat ive solutions are then defined as: 

Definition 2: A joint  strategy ~ = {21,~2,...,~'n] E X i s  a N a s h  e q u i l i b r i u m  of  the 
M O G  I" = {N, x i, ui},  if for each i E N, ~.i is a properly efficient solution o f  the 
vector maximizat ion problem 

VMi(x_i):  
M a x . { u i ( x i , ~  i) = 

x l E X  l 
[U~(Xi,~ " i), ui2(xi, x -  i) ..... U i (xi,  x i)]}. - m ( i )  

(2) 

That  is, 2 is a Nash equilibrium if each player i chooses a properly efficient solution 
~i as a best response to all others '  strategies ~-i-  

Definition 3:  A jo int  strategy ~ = {~ .1 ,~2 . . . . .  ~ n ]  E X is a core s o l u t i o n  6 of  the 
general M O G  1" = { N , X  i, ui}, if for each coali t ion S E M/,, 

: {xs Xs l - s(xs) >> = Q .  

6 As in the conventional game theory, the core so defined follows Aumman's idea of a-core 
(1961). 
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Where -ffs(Xs) is the worst payoff  of  coalition S when x S is chosen, and u(~)S is 
the projection of  u(x--) onto R S. In other words, 2 is a core solution if no coalition 
S can, by choosing another  strategy available to S, guarantee a higher payoff  for 
each of its members indepedently of  the actions of  the outside players. 

Similarly, a vector y E R N is a core vector (or in the core) of  the M O G  F if it 
is feasible and if for each coalition S E M#,, 

~s(Y)  = {Xs E X S [ -Us(Xs) > >  YS} = O. 

By feasible we mean that  there exist x E X such that u(x)  = UN(X) >-- y. Thus a 
joint strategy x is a core solution if and only if u(x)  is in the core. 

I f  the M O G  in Definitions 1 and 2 are degenerated to a game with scalar 
payoffs, the two solutions so defined are exactly the same as their counterparts in 
the conventional game theory. In the non-cooperative equilibrium, each player i 
takes other 's  strategies as given and chooses a best response. Since the player solves 
a vector maximization problem (2), there are a variety of  solutions that can be 
chosen as the best response: weakly efficient solutions, efficient solutions or proper- 
ly efficient solutions. Both Shapley (1959) and Charnes et al. (1990) take the efficient 
or non-dominated solutions as the best response, while in this paper  a properly effi- 
cient solution of  (2) is chosen as the best response. 

Though the Core and Nash equilibrium are widely applied, it has been shown 
that they are both particular hybrid solutions, which are associated with different 
partitions of  players. Recall that a partition of players { 1,2 ..... n} is a collection of  
coalitions A = {S1,S 2 ..... Sk} such that U S i = N a n d  S i f3 Sj = O for i :~ j .  For 
each partition A = {S 1, S 2 ..... S/c}, let k = k(A) = denote the number of  coali- 
tions in A. Then a partition A will induce k parametric multiple objective games: 

FS(X S) = {s, Xi ,  u i (xs ,  X_s) } (3) 

for S = S 1, S 2 ..... S k . For the fixed parameter  x_ s ,  each Is(x_s) has IS[ players and 
is simply a new MOG. The concept of  hybrid solutions can now be given as: 

Definition 4: For each partition A = {S1, S 2 ..... Sk] of players in the M O G  F = 
{ N , X  i, ui}, a joint strategy ~ = {Xs(1),Xs(2) ..... ~S(k)} E X is the hybrid solution 

corresponding to/x if for each coalition S E A, Xs is a core solution FS(~.S). 
Like the earlier cooperative and non-cooperative solutions, the hybrid solution 

so defined is also exactly the same as that  in the conventinal game theory if the MOG 
is degenerated to a game with scalar payoffs. The following Lemma 2 is a existence 
theorem of  hybrid solutions in a conventional game, whose proof  can be found in 
Zhao (1990). 

Lemma 2: Given a partition A = {SI, S 2 ..... S k } of  players in the general n-person 
game in normal form r = {N, X i, vi}, the set of  the corresponding hybrid solutions 
is nonempty if F satisfies: (1) for each player i, X iis a closed bounded convex subset 
in RL(i); (2) for each coalition S E A, vi(x),  i E S, are all continuous in x = 
( X s , X s )  and are quasiconcave in x S. Where for each i E N, v i : X = IIn=l 
X i -- R is player i ' s  scalar payoff. 
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As seen from the previous three definitions, the cooperative, non-cooperative 
and hybrid solutions have the following characterizations. First, the heart of  the 
non-cooperative solution is the strategic behavior and the individual rationality. It 
requires that each player chooses a best response given all other players' strategies, 
and at the equilibrium no player has any incentive to deviate alone. A properly effi- 
cient solution of  (2) is defined as the best response in this paper. 

Next, the pith of  the Core is the coalitional improving behavior and the group 
rationality. It assumes that players are free to from coalitions and each member  in 
the coalition expects to be better off  by joining. A core solution is reached if no 
coalition can guarantee a higher payoff  for each of its members indepedently of  the 
actions of  the outside players, thus no coalition has any incentive to object or block 
such a joint arrangement.  

Last, the essence of  hybrid solution is the partition of  players and the coex- 
istence of  competit ion and cooperation. It assumes competit ion across coalitions 
and cooperation within each coalition. A hybrid equilibrium is reached if each 
coalition in the given partition chooses a core solution of  (3) as a best response to 
all other coalitions' strategies. Thus at the equilibrium no coalition in the partition 
has any incentive to deviate alone. 

Note also that "strategic behavior"  simply means "taking other 's  choices as 
given." In this aspect the hybrid solution generalizes the strategic behavior of  an in- 
dividual player to that of  a group of  players. In the Nash equilibrium, each player 
takes all other 's  strategies as given, because no cooperation with other players is 
allowed; while in the hybrid equilibrium, each coalition takes all other coalitions' 
strategies as given, because no cooperation with other coalitions is allowed. 

Now given coalition S E . 4 / a n d  given the complementary strategies x_ S. The 
coalition S can, in stead of  playing the cooperative M O G  as in (3), solve the follow- 
ing parametric vector maximization problem: 

VMs(x_s): Max Us(Xs,X s) , (4) 
xsEXs 

where the complementary strategies x S are the fixed parameters, and there are 
~ i E s m i  objectives to be maximized. 

Thus under the assumption that each coalition takes the complementary 
strategies as given, there are two different classes of  solutions available to the coali- 
tion: one comes from the earlier multiple objective game (3), and the other comes 
from the vector maximization problem (4). I f  players in the coalition S play the 
cooperative MOG, a core solution will be chosen; and if the coalition solves the VM 
problem (4), a properly efficient solution will be chosen by S. This leads to the 
following concept of  S-efficiencyT: 

It appears that Dubey (1986) first defines the S-efficiency in a conventional n-person game, 
where he originally calls it "T-efficient" for each coalition TE~.. Here we use "S'" because 
the conventional symbol for a coalition is S rather than T. It should also be noted that the word 
"S-efficient" has appeared earlier in the context of multiple objective mathematical program- 
ming (Zhao, 1983). This is defined as follows. Consider the VMproblem as given in (1). For 
each subset S of {1,2,...,m], ~ is called S-efficient if ~ is an efficient solution of Max 
{Fs(x) I x C Y], whereFS(X ) = {f/(x)] i E S]. 
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Definition 5" For any coalition S E~ , ,  a joint  strategy Y = {yl ,y2  ..... ~.n} : 
(Ys,X-s) E X is an S-properly efficient solution of P if Xs is a properly efficient 
solution of  the vector maximization problem VMs(2.S). 

Similarly, ~ = (Xs ,X-s) is an S-efficient (S-weakly efficient) solution of  P if 
~S is an efficient (weakly efficient) solution of  VMs(~_S). 

Now assume that each coalition S solves the parametric M O M P  problem (4). 
A partition A = {S1,S 2 ..... S k} of  players will then be associated with [A = k 
parametric M O M P  problems: 

VMs(x_S): Max Us(Xs,X_s) , for S = SI,S 2 ..... S k. 
x s 6 X  s 

(5) 

Based on these behavioral assumptions, we can define the quasi-hybrid solution 
as :  

Definition 6: For each partition A = {S1,S 2 ..... Sk] of  players in the M O G  P = 

{N, Xi,  ui], a joint strategy X = {yl ,y2  ..... ~n] = {~S(1),XS(2) ..... Xs(k)} is the 

Quasi-hybrid solution corresponding to A if for each coalition S E A, Xs is a pro- 
perly efficient solution of  vector maximization problem VMs(Xs).  

Note that  the behavioral assumption of  solving the parametric M O M P  problem 
(4) is neither cooperative nor non-cooperative nor hybrid in the standard sense, that 
is why we call it quasi-hybrid solution. 

With the Definitions 4 and 6, we are now ready to turn to the existence theorems 
in next section. 

3 Existence Theorems 

In the following Theorems 1 and 2, we shall adopt  the convention that  a vector func- 
tion is continuous and concave if and only if all its components are continuous and 
concave. 

Theorem 1." Given a partition A = {S1,S 2 ..... S k} of  players in the M O G  F = 
{ N , X  i, ui}. The corresponding hybrid solution set is non-empty I f  I '  satisfies: (1) 
for each player i, X i is a closed bounded convex subset in RL(i); (2) for each coali- 
tion S E A, uJ(x) , j  E S, are all continuous i n x  = (Xs,X_s) and are quasiconcave 
in x S. 

That  is, if all the strategy sets are closed bounded convex, the payoffs of  each 
coalition are quasiconcave in the coalition's own strategies and are continuous in 
all strategies, then there exists at least one joint strategies ~ = { ~ . l , y 2  . . . . .  ~ n ]  = 

{Xs(1) ,2s(2) ..... YS(k)] such that for each coalition S E A, ~S is a core solution of  

rs(~_s). 
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P r o o f  o f  Theorem k Our  p r o o f  consists o f  three steps. Given the par t i t ion  A = 
{S1,S 2 ..... Sk},  in Step 1 we first construct  a game  17" with scalar payoffs .  In  Step 
2 we show that  r *  satisfies the sufficient condit ions in L e m m a  2, and thus F* has 
at least one hybrid solut ion for  the corresponding part i t ion.  In  Step 3, we shall 
derive a hybrid solut ion for  the original M O G  I '  f rom the hybrid solut ion of  I '*  
found  in Step 2. 

Step  1: The defini t ion o f  F = {N, X i, u i} tells us that  for  each i E N, player i has 
m i objectives and  L i choice variables. For each player i, let us introduce m i new im- 
age players [ al,i a2i ..... am (i) ] whose scalar payoffs  are the componen t s  o f  u i respec- 

tively; tha t  is, f o r j  = 1,2 .... m i, the scalar payof f  to image player a~is u~, where u i 
i " " " J J 

= {U 1, U~ ..... U~n(i )} E Rm(t)  is the .vector  payof f  o f  the original player i in F. 
Next assign each image player a~ some choice variables y ( i , j )  f rom the original 

choice variables x i [ x i x i x i ~ E X i. Three cases should be distinguished. = t 1' 2 - ' -  L( i )  j 
Case (1): m i < L i. In  this case player i has more  choice variables than  objectives. 
For j = 1 ..... m i -1,  let image player a( controls x("  for  j = mi,  let ai  controls  

J J ' m( i )  
X i X i b X i" f o r j  = mi ,  y ( i , m i )  = m(i) ..... L ( i ) "  tha t  is, f o r j  = 1 ..... m i - l , y ( i , j )  = j ,  

x x t ~ Case (2): m i = L i. In this case player i has the same number  o f  m(i)  .. . . .  L( i )  j" 
objectives as that  o f  choice variables. F o r j  = 1 ..... m i, let y ( i , j )  = xj .  Case (3): 

m i > L i . In  this case player i has more  objectives than  choice variables. F o r j  -- 
1 ... . .  L i ,  l e t y ( i , j )  = x j ;  f o r j  = L i + l  ..... m i ,  l e t y ( i , j )  = t ( i , j )  E [0,1]. H e r e t h e  

image players aj ( j  = L i + 1 .. . . .  m i) are d u m m y  players in the sense tha t  their  choice 

variables t ( i , j )  ( j  = L i + l  .. . . .  m i )  have no effect on any player 's  (including 
themselves) payoff .  For t h o s e y ( i , j ) ' s  tha t  are componen t s  o f x  i E X  i, their  ranges 
are taken as the project ions o f  X i on the corresponding subspaces respectively, 
these project ions are obviously closed bounded  convex sets. Thus  for  all y ( i , j )  

( i = 1 ..... n; j = 1 .. . . .  mi),  their ranges are closed bounded  convex sets in some finite- 
d imensional  Eucl idean space. 

When  we have finished above ass ignments  for  all i E N, we get a game  I '* that  
has fi = I~n= 1 mi players, and each player has a scalar payof f  u/. " and some choice 

J 
variables y ( i , j )  ( i  = 1 ..... n ; j  = 1 .. . . .  mi) .  

S tep  2: The par t i t ion  A = { S 1 , S 2 ..... S k} of  players in the original M O G  P apparent -  
ly defines a par t i t ion  A* = [S T, S~ ..... S~} o f  players in the new game 1-'*, where 
S* = {aJ ] j E S i, r = 1 .. . . .  m j }  is a coali t ion o f  IS *l =  j s(i) mj players in r*.  
Consequently,  the paramet r ic  M O G  (3) played by each coali t ion S i ( i  = 1,2 ..... k) 
is changed to a paramet r ic  game with scalar payoffs  played by I S/*I = Z j E s ( i )  m j  

new players. For each S E A  = IS  1, S 2 ..... Sk],  since u i ( x ) ,  i E S, are all cont inuous  
in x = ( x  S, x . s )  and are quasiconcave in x S,  it is obvious tha t  for  each coali t ion o f  
the image players S* E A* = {ST, S~ ..... S~c}, its payoffs  are all cont inuous  in 

y = { y ( j , r )  l j  E N ,  r = 1 .. . . .  m j }  = {Ys*,Y-s*} and are quasiconcave in Ys*(Ys* 

= {y  ( j ,  r)  [j E S, r = 1 ..... m j  ]). By our  cons t ruc t ion  in step 1, the doma in  of  each 
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y ( i , j )  is a closed bounded convex set. Thus by Lemma 2, I ~ * has a hybrid solution 
= {Ys*(1), YS*(2) ..... Ys*(k)} corresponding to the partition/x*. 

Step 3: Given the parti t ion A = {S1,S 2 ..... Sk} and A* = IS* S* S*~ let the t 1' 2 ' " "  k j, 
hybrid solution ~ obtained above be written as ~ = {Ys*(1), YS*(2) ..... YS*(k)] = 

{xs*(1), YcS*(Z),'",xs*(k), t]  = {x,t}, where ~ = {~S,~.S} (for each S E A) is the 

projection o f f  on X = -  I I i E N X i  , that is, ~ is obtained by dropping off  those com- 
ponents of  fi that are t ( i , j ) ' s  in Step 1. Then we claim that for each coalition 
S E [S 1,S z ..... Sk},u s = {ui(y) l i E S} = {uJ(y)  l j E  S , r  = 1 ..... mj} = {ui(~)l 
iES}  is also a core payoff  vector of  I'S(-2_ s) (defined in (3)). Since u s is the core 
vector payoff  of  coalition S* E A* in I'*, and any sub-coalition of S corresponds to 
a class of  sub-coalitions of  S* = { aJ I J E S, r = 1,..., mj }, the claim is obvious. 

Thus Xs is a core solution of I'S(~.S) for each coalition S E A. This proves our 
theorem. 

Q.E.D. 

Notice that the arbitrariness in assigning choice variables to the image players 
in r*  suggests that for any partition of  players, the set of  the corresponding hybrid 
solutions in the M O G  12 is not only nonempty but also not unique, because for each 
particular way of  assignment, we can get at least one core paof f  vector correspon- 
ding to it. 

Our proof  also suggests an algorithm for solving a hybrid solution in general 
and for solving a core solution in particular to the M O G  problem, which can be im- 
plemented with three stages. In stage 1 we construct a new game with scalar payoffs, 
as done in the above proof; in stage 2 we construct a map satisfying the conditions 
of  the Kakutani 's  fixed point theorem (as done in Zhao (1990)); then in stage 3 we 
can approximate the solution (any fixed point of  the map) by employing the 
available algorithms of  finding a fixed point. 

Theorem 2: Given a parti t ion/x {S 1, S 2 ..... S k} of  players in the M O G  r = {N, 
X i, ui}. The set of  the corresponding quasi-hybrid solutions is non-empty I f  P 
satisfies: (1) for each player i, X i is a closed bounded convex subset in RL(i); (2) for 
each coalition S E A, uJ(x), j E S, are all continuous in x = (Xs,X_s) and are 
quasiconcave in x S. 

That  is, if all the strategy sets are closed bounded convex, the payoffs of  each 
coalition are quasiconcave in the coalition's own strategies and are continuous in 
all strategies, then there exists at least one joint strategies 2 = {~.1,~.2 ..... 2n]  = 
{~S(1),2S(2) ..... 2S(k)} such that for each coalition S E A, Yc S E X S is an 
S-properly-efficient solution of  VMs(YC_S). 

Note that Theorem 2 generalizes the earlier existence theorems by Nash (1950), 
Shapley (1959) and Charnes et al. (1990). First, consider the finest parti t ion where 
each coalition consists of  a single player. In this particular case Theorem 2 says each 
player i chooses a best response to all other 's  strategies 2_ i in the sense that he or 
she chooses a properly efficient solution of VMi(Yc_i) as in (5). Since proper effi- 
ciency implies efficiency, the existence result in Theorem 2 is stronger than that of  
Shapley. Obviously, when m 1 = ... = m n = 1, our solution is exactly the original 
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Nash equilibrium. Next consider the general partition where each coalition has at 
least two players. Under the assumption that each coalition behaves strategically or 
competitively, our theorem says that each coalition S in the given partition chooses 
a properly efficient solution of  VMs(~_ S) as a best response to the complementary 
strategies X-s" While in Carnes et al. (1990), no strategic behavior across coalitions 
is considered, and our result is apparently more general and stronger. 

Proof  o f  Theorem 2: For each coalition S ( S  = S 1 , S 2 ..... Sk) in the given partition 
A, define a map 3S : X-S -- 2Xs by 

6s(X s)  = Arg- Max ZjC S zm__(J 1) [uJ (Xs, X_S)} (6) 
x s E X  S 

for each x_ S E X. S. Since ~ ( X s ,  X_s), j E S, r = 1 ..... mj ,  are all continuous in x 
= (x S, X_s) and quasi-concave in x S, X s = II ja  s XJ is closed bounded convex set, 
it is clear that 6 S, whose image is the set of  optimal solutions to the parametric pro- 
gramming problem (6), has a nonempty closed bounded convex value and has a clos- 
ed graph. Thus f o r X  = I I i E N X i  = HS~ A X S = 1J.kl= ] XS(i) ,  the map 6: X - - 2 X  
defined by 

O(x) = 1-[s~ ~ 6s(X_ s)  = rr~_ ~ Os(~)(X_s(i)) (7) 

for eachx  = [x 1 ..... x n ] = {Xs(1) , Xs(2) ..... Xs(/c)} E X, satisfies the conditions of  

Kakutani 's  fixed point theorem. Thus 6 has a fixed point 2 = {~'s(1),Xs(2) ..... 

xS(k) } E 6 (2). Then, by Lemma 1, for each coalition S E A, Xs is an S-properly- 

efficient solution of VMs(x_s).  
Q.E.D. 

Although the conditions in Theorem 1 and Theorem 2 are exactly the same, we 
have two different classes of  solutions. This is because we have assumed two dif- 
ferent behavioral assumptions. To see the distinction of  the two solutions, consider 
a special case where each player has a scalar payoff  and Ax is the coarsest partition 
consisting of  the grand coalition alone. In Theorem 2 players are assumed to solve 
the vector maximization problem given in (5), and they shall achieve the proper effi- 
ciency; while in Theorem 1 players are assumed to play the cooperative game (3), 
they shall choose a core solution and achieve only the weak efficiency. Thus the 
hybrid and quasi-hybrid solutions for a given partition have different levels of  effi- 
ciency or welfare. 
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4 Conclusions 

We have discussed the conventional  game theory  studies the conflicts among  several 
individuals, multiple objective mathemat ica l  p rogramming  (MOMP)  studies the 
conflicts within an individual, and multiple objective game (MOG) studies the 
general conflicts in bo th  cases. 

For a multiple objective game, we have defined and proved the existence o f  two 
classes o f  solutions: the hybrid solution and the quasi-hybrid solution. Both  solu- 
tions are associated with a par t i t ion o f  players, and bo th  assume the strategic 
behavior  o f  each coalition. A coali t ion in the quasi-hybrid solution solves a para- 
metric vector maximizat ion problem (5), while players o f  each coali t ion in the 
hybrid solution play a cooperative multiple objective game (3). Similarly as in the 
conventional  game theory, the cooperative and non-cooperat ive  solutions are two 
part icular  kinds o f  hybrid solutions. Nash  equil ibrium is exactly the quasi-hybrid 
solution corresponding to the finest parti t ion, while the core is exactly the hybrid 
solution corresponding to the coarsest parti t ion. 

It is clear that  our  Theorems 1 and 2 generalize the existence theorems o f  the 
Core, Nash  equilibrium and hybrid solution in conventional  game theory. I f  the 
M O G  in Theorems 1 and 2 are degenerated to a game with scalar payoffs,  then 
Theorem 1 for the coarsest part i t ion becomes the Scarf  core existence theorem 
(1971), Theorem 1 for the general part i t ion becomes the existence o f  hybrid solution 
as Lemma 2, and both  Theorems 1 and 2 for the finest part i t ion become the ex- 
istence o f  Nash equilibrium (1950). 
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