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The General Nucleolus and the Reduced Game Property 

M. Masch le r  1, J.  A.  M. Pot ters  2 and S. H.  Tijs  2 

Abstract: The nucleolus of a TU game is a solution concept whose main attraction is that it 
always resides in any nonempty e-core. In this paper we generalize the nucleolus to an arbitra- 
ry pair (U, F),  where FI is a topological space and F is a finite set of real continuous functions 
whose domain is U. For such pairs we also introduce the "least core" concept. We then char- 
acterize the nucleolus for classes of such pairs by means of a set of axioms, one of which 
requires that it resides in the least core. It turns out that different classes require different 
axiomatic characterizations. 

One of the classes consists of TU-games in which several coalitions may be nonpermissi- 
ble and, moreover, the space of imputations is required to be a certain "generalized" core. We 
call these games truncated games. For the class of truncated games, one of the axioms is a new 
kind of reduced game property, in which consistency is achieved even if some coalitions leave 
the game, being promised the nucleolus payoffs. Finally, we extend Kohlberg's characteriza- 
tion of the nucleolus to the class of truncated games. 

1 Introduction 

The nucleolus of  a coopera t ive  game with  side payments  (TU game)  was in t roduced  

in [Schmeidler ,  1969]. It  quickly  gained popu la r i ty  and was appl ied  in several areas 3. 

Perhaps  the mos t  a t t rac t ive  p rope r ty  o f  the nucleolus  is that  it is a un ique  po in t  in 

the core of  the game,  whenever  the core  is no t  empty.  Thus,  it m a y  be a good  can- 

didate  for  s i tuat ions in which it is desirable to have  a rule which selects one o u t c o m e  

in the core  o f  the game  4. 

The  nucleolus  is also a un ique  po in t  in every n o n - e m p t y  e-core (Schmeidler  

[1969]). This,  and o ther  nice proper t ies  o f  the nucleolus  induced Shubik  ([1983], 

page 340) to say tha t  " the  nucleolus  represents  as near ly  as any single impu ta t i on  can 

the loca t ion  o f  the  core  o f  the  game" ,  . . .  "its effect ive  center" ,  and,  " i f  the core  is 

empty ,  the nucleolus  represents  its ' l a t en t '  pos i t ion" .  

1 Professor Maschler, Institute of Mathematics, The Hebrew University, Givat Ram, 91904 
Jerusalem, Israel. 

2 j .  A. M. Potters and S. H. Tijs, University of Nijmegen, The Netherlands. 
3 We refer the reader to the survey [Maschler, 1992], where several properties of the nucleo- 

lus, as well as its applications are summarized and discussed. 
4 This desire is natural, for example, in problems of cost allocation. It is hard to imagine 

parties who are willing to share costs in a way in which they are asked to pay more than they 
would had they themselves bought the same benefits. 
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However,  the nucleolus is not  the only rule to choose a unique core point.  One 
can think of  others - the center of  gravity of  the core, for example. Why should one 
prefer the nucleolus? One reason might be the attractiveness of  its definit ion as an 
outcome of  a lexicographic minimizat ion procedure.  Other reasons are, perhaps,  
nice propert ies of  the nucleolus which may be relevant to the part icular  application.  
But these criteria are hard to grasp. What one needs is an axiomatic characterization 
o f  the nucleolus. If  one can characterize the nucleolus by means of  intuitively ac- 
ceptable and simple axioms, one can check for each appl icat ion if these are relevant 
to the needs. I f  they are, then the logical choice must be the nucleolus; but  - and this 
is equally impor tant  - if for some applications the axioms do not make sense, then 
the nucleolus should be rejected for them. Such a system of  axioms was given for the 
prenucleolus - a related solution concept - in the intriguing paper  [Sobolev, 1975] 5 
Sobolev's  axioms are intuitive indeed. The essential one among them is the require- 
ment  that  the solution concept be consistent or, equivalently, satisfy a reduced game 
property. Heuristically,  it requires that  at the solution point  every non-empty subset 
of  the players, who look at their payments and at the same time examine their "own 
game" (the reduced game on them), will not  want to move away, because they will 
find that  their payments  constitute the solution also for the reduced game 6. 

The idea of  lexicographically minimizing [maximizing] a vector of  objective 
functions need not  be applied only to TU games. Indeed, it was applied in several 
other conflict situations. Already in the forties, game theorists at RAND recom- 
mended a lexicographic maximizat ion 7 for Player  I and a lexicographic minimiza- 
t ion for Player  II,  who part icipate in a zero-sum two-person game. The idea was to 
exploit an opponent ' s  mistakes without sacrificing one 's  own safety levels 8. This 
recommendat ion is described in [Brown, 1950]. Eventually it was published in 
[Dresher, 1961]. We shall call the set of  recommended strategies the nucleolus o f  the 
game (for Player I / I I ) .  These nucleoli were encountered again more recently when 
van Damme proved that they constitute precisely the set of  proper equilibria for the 
game (see van Damme [1983]). 

Another  applicat ion of  a lexicographic minimizat ion was given in [Justman, 
1977]. There he tr ied to describe a process of  negotiat ion between players, but  ac- 
tually his model  could be applied in many other instances. Motivated by his results, 
Maschler and Peleg [1976] defined generalized nucleoli for a set-valued dynamic sys- 
tem which turned out to be the closed stable 9 sets of  the system. In a somewhat 
different setup, Pot ters  and Tijs [1992] introduced a general nucleolus 1~ by means 
of  which they were able to confront  the nucleolus of  TU games with the nucleolus of  
matr ix games. They found interesting correspondences between the two concepts 

5 Following Sobolev, axiom systems were introduced in [Potters, 1991] and in [Snijders, 
1991] to axiomatize the nucleolus itself. 

6 Consistency is a natural requirement. What is not so obvious is how to define the reduced 
game. Different definitions lead to different solution concepts (see, e.g., Hart and Mas- 
Colell [1989]). 

7 Precise definitions will be given in Section 5. 
8 We are indebted to Lloyd S. Shapley, who briefed us about the history of these discover- 

ies. 
9 Stable in the sense of Lyapunov. 

~o This is the one defined in Section 2. 
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and were able to establish for matrix-nucleoli an analogue of Kohlberg's characteri- 
zation of the TU-nucleolus in terms of balanced sets (see Kohlberg [1971]). 

This paper is concerned with the general nucleolus of Potters and Tijs and fur- 
ther generalizations, as well as applications. Specifically, we consider classes of pairs 
(II, F), where the II ' s  are topological spaces and the F's  are finite vectors whose 
components are real and continuous functions defined on YI. The nucleolus for such 
a class is defined in Section 2. The class itself Will be called the domain o f  the nu- 
cleolus. The main task of this paper is to characterize the nucleolus concept axioma- 
tically. It will turn out that the required axioms depend heavily on the domain. Dif- 
ferent domains require different sets of axioms! 

This is an interesting phenomenon. The characterization of the nucleolus by 
means of a lexicographic minimization (Section 2), does not depend on the domain 
of the nucleolus: Lexicographic minimization characterizes the nucleolus of each in- 
dividual pair (H, F), regardless of the class to which it belongs. Characterization by 
axioms, as done in Sections 3-6, depends forcefully on the intended applications; 
namely, on the class of the pairs that we consider as the domain of the nucleolus. 
Thus, the axioms can be regarded as "social norms" that apply to various potential 
circumstances. Different sets of circumstances require different norms. 

The paper is organized as follows: Section 2 provides the necessary notation 
and the definition of the general "least core" and the general "nucleolus". It also 
lists some basic properties from which, later on, axioms will be chosen. We prove 
that these are satisfied by the nucleolus whenever the domain is large enough to 
render them meaningful. 

In Section 3 we provide a system of axioms that characterize the nucleolus for 
any sufficiently rich domain. The deepest among the axioms, in our opinion, is the 
requirement that the nucleolus is a subset of the least core. In Section 4 we specialize 
in classes in which the components of F are convex functions. All applications of the 
nucleolus, done so far, are included in this case. It turns out that in this case we can 
omit one of the previous axioms. 

A special case of Section 4 is the case of the nucleolus of a matrix (zero-sum) 
game. Nevertheless, we cannot apply the axioms of Section 4 to this domain without 
some modifications. These we present in Section 5. 

Section 6 studies the nucleolus of a class of cooperative games that contains as a 
subclass the ordinary TU-games. This class contains TU games in which certain 
coalitions are not permissible and, in addition, cooperation (to form the grand coal- 
ition) is prohibited unless some coalitions' excesses are smaller than a priori given 
numbers. We call such game TU-games with permissible coalitions and permissible 
imputations, or truncated games, for short. We provide axioms that characterize the 
nucleolus for games of this class, which are different from those given by Sobolev. 
One such set of axioms makes use of a "reduced game property". However, instead 
of "reducing" the game to a subset of players, as is done in Sobolev, we "reduce" the 
game to a smaller set of permissible coalitions. A confrontation between Sobolev's 
axioms and ours ends the section. 

Section 7 generalizes Kohlberg's characterization of the nucleolus to the class of 
truncated games. This generalization throws light on the special role of the class 
~(x)=  {{i}:xi=v({i})}  in Kohlberg's characterization (see Kohlberg [19711 and 

also Sobolev [19751, Owen [1977] and Wallmeier [1983]). 
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2 The General Nucleolus 

M. Maschler, J. A. M. Potters and S. H. Tijs 

Our  object  of  study is a class f~ of  pairs (II ,  F ) .  In each pair ,  I I  is a topological  
space and F:  = {Fj-}j~M is a finite set of  real continuous functions on II .  This setup 
has many applications.  We give here two examples which should be sufficient for 
motivat ion:  

Example 2.1. f] is derived f rom the class of all TU games (N; v) on finite sets 
of  players. For  each game, I I  is the set of  preimputations of the game and 
F= {Fs}s=_N, where the various Fs's are the excess functions, Fs(x):= v ( S ) - x ( S ) .  

Example 2.2. f] is a class of  potential  "decision spaces". In each part icular  case a 
decision maker  has to make a decision x which is a point  in a "decision space" H. 
Any  such choice may affect a set of  cities M. The effect can be measured in mone- 
tary terms. Fj(x) is the damage caused to city j if the decision x is taken. 

The central concepts in this paper  are the least core 11 and the nucleolus defined 
by x2 

~ ( I I ,  F ) : =  {x~r I :  j~MV Fj(X)<_iVMFj(y ) for all y e I I }  

and 

(2.1) 

S / (F I ,  F ) : =  {x~FI: OoF(x)~l~x OoF(y) for all y ~ r I } .  (2.2) 

Here, O:~RM~8I m is the coordinate ordering map  13 and ' lex'  is the lexicographic 
ordering TM on ~m, m =  [M[.  For  the special case M = 0 ,  we define: 

2 ~ ( n ,  F ) =  ~4/(n,  F ) =  n .  (2.3) 

It should be noted that  both  the nucleolus and the least core may be empty sets. In 
view of  possible applicat ions in Section 6, we refrain f rom adding conditions that  
guarantee nonemptiness.  

We shall now state a few properties that a solution concept 15 ~, defined on a 
class ~), might have. We shall then show that  the nucleolus possesses these proper-  
ties. In subsequent sections, some of  these propert ies will serve as axioms. 

11 In Example 2.1 this is the smallest e-core (Shapley and Shubik [1966]) that is not empty 
(Maschler, Peleg and Shapley [1979]). 

12 In this paper, V and A are the max and min operators. 
13 Le., OoF(x) is an m-vector, m = IMI, with the same components as in F(x), but ordered in 

a weakly decreasing order. 
14 An m-vector a is lexicographically smaller than an m-vector b if, in the first coordinate 

where they differ, the coordinate of a is smaller than the coordinate of b. 
t~ A rule �9 that assigns to each element (II, F)  of D a subset q~(II, F)  of II. 
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(Po) (Restricted non-emptiness) r (l-I, F ) r  0 if  II is a nonempty compact set. 
(P0 (Non-discrimination) ~(YI, F ) =  l-I if  M=O. (In the absence of objective 

functions, every choice is equally good under ~ . )  
(P2) (Redundancy) oh(l-i, F) =qb(Yi, F_j) i f  Fj is constant on 1-I. (If  one of  the 

functions makes no distinction between the points of  l-I, it has no in- 
fluence on the outcomes under ~ . )  

(P3) (Inclusion in the least core) qb(H, F)C_ ~ ( Y I ,  F) .  (If the largest value 
among the Fj.(x)'s exceeds the largest value among the F j (y) ' s  for some y, 
then x will not be chosen under qb.) 

(P4) (Restriction to the least core) �9 (I-I, F ) =  �9 ( 2 ~ ( Y l ,  F),F).  (Points out- 
side the least core do not affect the choices under qb.) 

(Ps) (Invariance with respect to rearrangemenO I f  (II ,  F) and ( I I , /? )  are ele- 
ments o f  f~ and {Fj(x): j ~ M } -  {~(x): j ~ M }  for each x in YI, then 
~ (l-I, F ) =  qb(YI, F) .  Here, - means equality of  sets with counting multi- 
plicities x6. (The solution concept considers only what and how often val- 
ues of  F occur and does not care which functions take them.) 

(P6) (Invariance with respect to max/rain)  qb (Yi, F)  = �9 (Yi, F i v  F~, Fi ^ Fj, 
F_ij) for  every i, j e M ,  i e j .  (The outcomes under �9 do not change if we 
replace an Fi and Fj. by their maximum and their minimum and leave the 
other members of  F unchanged.) 

(P7) (Independence of  irrelevant alternatives) I f  Yl' is a subset of  I-I, with 
(Yi ", F) ~ f~, and 0 ~ r (I-I, F) c_ FI ', then qb (l-I, F )  = �9 (YI', F) .  (This is the 
well-known I IA property formulated for set-valued solution concepts.) 

(Ps) (Strong IIA property) I f  YI' is a subset o f  FI, with (1-I', F)~ ~ and if  
q~ (17, F)  n Yi' :~ 0 then �9 ( H ' ,  F)  = qb (l-I, F)  n 17 '. (This t ime one only re- 
quires that  ~(1-[, F)  intersects 1-I'.) 

(Pg) (Contravariance) I f A : I - I ' ~ Y i  is a continuous map and A - l q b ( H ,  F ) :~0  
then ~ ( Y I ' , F o A ) = A - l q b ( Y I ,  F) .  (This is an even stronger version of  
IIA.)  

(Pro) (Closedness) r (l-I, F) is a closed set for  all pairs (YI, F) in ~. 

In the following we shall prove that the nucleolus ~/Y has the above properties when- 
ever the appropriate statement is meaningful 17. 

Theorem 2.3. The nucleolus ~,, defined on an arbitrary class f~, satisfies P0-Plo, 
whenever the appropriate statement is meaningful. 

Proof." P1 holds by definition. 

16 Le., every value occurs among the Fj(x)'s and among the ~(x) 's  the same number of 
times. 

i7 For Example, property P2 would be meaningless if (1-I, F_i) had not been a member 
of ~. 
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Property P2 follows from a basic property of lexicographic ordering: If  ~8 
u, ve~R m-a, we~R, then O(u,w)Zle• iff O(u)Zle• Take u=F_j(x), 
v=F_j(y) and w=Fj.(x)=Fj(y). 

Properties P3 and P4 are obtained as follows: if OoF(x)~1~xOOF(y) then 
Vi~MFj-(x) -< Vj~MFj(y). Thus, xe JK(H,  F) implies x ~ 2 ~ ' ( H ,  F). 

If xe JK( I I ,  F)  then OoF(x)~e• 0oF(y) for all y in H and, in particular, for all 
y in ~ ( H ,  F). But x e 2 ~ ( 1 - I ,  F), hence xeJU(~z~ F), F). Conversely, if 
xeJK(~-~c~ then OoF(x)Z~exOoF(y) for all y in ~ ( I I ,  F). For 
y s I I \~cr  F)  we also have 0 oF(x)-%x 0 oF(y) (look at the first coordinate). So, 
xeJU(H,  F). 

For property Ps: Whether a point x in H is an element of the nucleolus or not is 
determined by the vector OoF(x), x~H. Since OoF(x) and Oo~(x) are the same vector 
for each point x in H, we find Ps. 

Property P6 is a special case of Ps. If  we replace F~ and Fj by their maximum 
and minimum, then for each x the resulting/~(x) will be a rearrangement of F(x). 

For property P9, we take y e J F ( H ' ,  FoA). Then Oo(FoA)(y)~, Oo(FoA)(y') 
for all y ' eH ' .  For x = A ( y )  we therefore have OoF(x)~exO~ ') for all x' in 
A (H '). Because X ( H ,  F) n A (H ') :~ 0, it follows that A (y) = xe~4/(H, F). Con- 
versely, if A ( y ) e ~ / ( H ,  F)  for some element y in H ' ,  then OoF(A(y))~ex O~ ') 
for all x '  in H and so, in particular, for x '=A(y ' )  with y ' e H ' .  Then 
y e JU(H ', FoA). 

P7 and P8 are special cases of P9. (Take for A the injection of H '  into H.) 
The proof of Po and Pm will follow from the algorithmic scheme below: 

Algorithm 2.4. In order to determine the nucleolus for a pair (H, F) in f2, take the 
following steps: 

(Step 1) 
(Step 2) 
(Step 3) 

(Step 4) 

(Step 5) 
(Step 6) 

Remove all functions from F which are constant on VI. 
I f  M=O then ~/(1-I, F ) = I I .  Go to Step 6. 
I f  M S  0 compute 2 ~ ( I I ,  F). I f  2 ~ ( H ,  F) = 0 then JK(H, F)  = 0. 
Go to Step 6. 
I f  m >_ 2, replace F= (F1 . . . . .  Fm) by F =  (F1 . . . . .  Fro), where 
Pp=Vj~pFj^Fp+iforp= 1 . . . . .  m - 1  and Pro= Vj_~mFj. 
Replace H with ~ c ~ ( I I ,  F). Go to Step 1. 
Stop. You have reached the general nucleolus. 

Proof." Step 1 is permissible by Property P2. Step 2 is correct by Property P1. Step 3 
brings us to the nucleolus by property P3. Step 4 is obtained by applying property P6 
several times. Step 5 is justified by property P4. At the end of Step 5 at least one of 
the functions, namely/?m, is constant and therefore it is removed when we return to 
Step 1. Thus, the algorithm ends after m runs at most. �9 

(Continuation of the Proof of Theorem 2.3): To prove property Po, note that if H is 
a nonempty compact set, then 2 ~ ( Y l ,  F) is also not empty and compact because F 

18 We switch to vector notation here, instead of set notation, merely to shorten the exposi- 
tion. 
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is continuous. So we never reach Step 6 via Step 3. Thus the nucleolus will not be 
found empty. 

There remains to prove property Plo. This follows from the fact that the algo- 
rithm stops at a certain least core, which is a closed set, because the F f s  are contin- 
uous functions (see (2.1) and (2.3)). �9 

3 Axioms  for the General Nucleolus 

In this section we shall characterize the nucleolus for every class that is 'rich enough'  
in the sense that it satisfies the following properties: 

For each (17, F)  in f2, 

(o0 ( 2 ~ ( 1 7 ,  F) ,  F )e f2 ,  
([3) (17, F_ j )e f2  whenever j e M  and Fj is constant on H, 
(7) For all pairs i, j in M, i C j ,  (17, F)  is also in f2. Here, /~= (/~1 . . . . .  Fm), 

where f k = F k  for k e M \ { i , j } ,  L=Fi^Fj ,  ~ = F i  vFj.  

Theorem 3.1. Let f~ be a class of pairs (17, F) satisfying (c0-(y) above. Let ~ be a 
solution concept satisfying: P1 (non-discrimination), P2 (redundancy), P4 (restriction 
to the least core) and P5 (invariance with respect to rearrangemenO. Under these 
conditions, 09 (17, F)  = JK(17, F).  

Discussion. To judge if these axioms make sense on intuitive grounds let us check 
them in the case of  Example 2.2. Similar checks should be performed for other ap- 
plications. For this example, a decision-maker should choose the nucleolus if he ac- 
cepts the following norms. 

(P1) This axiom follows if we want a choice to be governed solely by the dam- 
ages. In the absence of  reported damages, every choice is equally good. 

(P2) If  damage to a city does not depend on your actual choice, ignore the city. 
(Anyway, you cannot help the city.) 

(P4) This is perhaps the strongest norm. It says in this context that if the high- 
est damage under a choice x can be reduced by another choice, not only X 
should not be taken 19, but it should not influence the actual decision 2~ In 

19 That alone would be requirement P3. 
20 This incorporates an IIA-type property; in fact, we could replace P4 by P3 and PT. We 

could then prove that if ~ satisfies P1, P2, P3, P5 and P7 then q~ is the nucleolus for all pairs 
in which it is not empty. (Nonemptiness is needed: Indeed, let f2 he such that all the I-I's of 
its pairs are connected. Then, qb = I-I, whenever F is constant, and otherwise qb = 0 satisfies 
all of these five axioms and, in general, it differs from the nucleolus.) 
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(es) 

many social situations involving value judgement, lowering highest dam- 
ages as much as possible is an acceptable desire. In other applications one 
has a different goal: To lower damage to as many cities as possible. In 
such cases one may, for example, prefer to keep, or even slightly worsen, a 
highest damage, if that greatly improves many (even some) cities. If one 
has such a goal, then one should look at so-called 'compromises' between 
conflicting desires. In such cases the nucleolus should be rejected, or 
modified. 
This axiom says again that the decision should be governed solely by the 
package of damages (sets with multiplicities) and not influenced, for exam- 
ple, by questions such as which city suffers what damage. Again, that 
might not be appropriate: Some cities may have many inhabitants, so that 
the damage (assumed additive) for each member is small. In other cases, it 
is the opposite case: Although financially the damage per person is small, 
the decision-maker may anger many people, thus risking re-election. In all 
such cases the nucleolus is a bad choice and should either be modified or 
abandoned. 

Proof of Theorem 3.1: By induction on [M I =m. For m=0 ,  P1 yields 
(rI, F) = Yi = JK(YI, F). Assume that the theorem is true for ]M[ = m, some m. Let 

(YI, F ) ~  with [M I = m + l .  Then, by (a) and P4, r F)=cb(2~(YI ,  F),F).  
The rearrangment property P5 implies P6, which is a special case. We now replace 
several times Fi and Fj by their maximum and minimum, as in Algorithm 2.4 and we 
find that 

(H, F) = (I) ( 2 ~ ( F l ,  F),/~), (3.1) 

where P is the one defined in Step 4 of the algorithm. Now, Fm+ 1 is constant on the 
least core and can be omitted by P2. From the induction hypothesis we get: 

r (Fi, F) = X ( 2 ~ ( F I ,  F), /~ ') ,  (3.2) 

where F' =F-(m+l). We follow the same procedure with the nucleolus and finally 
find: 

r (fl, F) = d Z ( 2 ~ ( I I ,  F),/~') =/U(FI, F) .  (3.3) �9 

Corollary 3.2. The nucleolus is characterized by P1, P2, P4 and Ps. 

Proof: Theorem 2.3 and Theorem 3.1. 

It is clear from the proof that we could replace the rearrangement axiom P5 by 
the much weaker one P6 (invariance with respect to max/min), which is only a very 
special case of Ps. The reason for preferring P5 is simply because we do not have an 
intuitive scenario in which P6 makes sense. 
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Theorem 3.3. The axioms P1, P2, P4, P5 are logically independent; i.e., there are 
solutions which fail to satisfy exactly any one of them. 

Proof." 

(-~P1) W1 (H, F): = 0 for all pairs in f2 fails to satisfy P~ only (when f2 contains a 
pair (rI, F), where H r 0 and M =  0). 

(~P2) W2(1-I, F):= 2 ~ ( H ,  F) satisfies all axioms except P2, as the following 
example shows. Let (H,F)  be an element of f2, where H:=[0, 1], 
F:={F~,F2}, Fl(t):=t and F2(t):=1/2 for all t~[0,1]. Then 
2ga( r I ,  F) = [0, 1/2] 4 {0} = 2ga( r I ,  F_2). 

(~P4) We shall provide two examples that satisfy all axioms except P4. One of 
them will satisfy P7 but not P3 and the other will satisfy P3 but not P7. 
This we do in order to show that each of the two requirements which are 
implicit in P4 (see last footnote) are independent of the remaining set of 
axioms. 
(-nP3) Define W3(II, F):=H. It does not satisfy P3 if ~ contains a pair 

(H,F) for which ~ g : ( r I ,  F)#l-I .  It satisfies the remaining 
axioms P1, P2, P5, P7. 

(~PT) Take for f~ the class consisting of ([0, 1], F), where F(t)= 1 for 
0<_t_<1/2 and F(t)=2t for 1/2_<t_<1, ([0, 1/2],Flto, 1/21) and 
([0, 1/2], 13). Let W7 be {1/4} for the first pair, and [0, 1/2] for 
the other two. Then, klJ 7 satisfes P1, P2, P3 and Ps, but not P7. 

(-~Ps) Note that P6 is a special case of Ps. We shall provide here an example in 
which only P6 will not be satisfied. Let H be the segment [0, 1] and 
F =  {F1, F2} be defined by 

I21t for 0_<t_<l/2 F2(t)= (1 for 0_<t_<l/2 
F~(t)= for 1/2_<t_<l 2 - 2 t  for 1/2_<t_<l. 

Let f2 be the smallest class containing (H, F) and satisfying (~)-(7) 
above. Then ~ consists of (FI, F), (H, ff'I:=FI^F2, F2:=FlvF2), 
(H, F0({0, 1},F0 and ({0, 1}, 0). Define ~6(H, F ) = H ,  ~6 = {0, 1} for 
all other elements of f2. ~6 satisfies P1, P2, P4, but not P6 and therefore 
not Ps. �9 
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4 The General Nueleolus in the Convex Case 

We start this section by stating an unfortunate fact and a fortunate one. The unfor- 
tunate fact is that in the game theoretical applications of the nucleolus, the classes 
involved do not satisfy condition (7) of the previous section. For instance, the maxi- 
mum and the minimum of two excess functions in Example 2.1 are not themselves 
excess functions. The fortunate fact is that in these applications the Fj's are convex - 
even linear. We shall see in this section that in this case condition (7) is not needed. 
Accordingly, we shall speak in this section about classes. ~21 satisfying the following 
requirements: 

For each (H, F) in r 

(c 0 (2C~(l-I, F), F)e f ] , ,  
(~) ([I, F - j ) ~ l  whenever j ~ M  and Fj is constant on II, 
(6) II  is a convex and closed set in a topological vector space and each F s- is a 

real, continuous, convex function whose domain is II. 

Lemma 4.1. I f  (H, F) e ~)~ and M e  O, then there ex&ts a function F:o, Jo eM, which 
is constant on 2 ~ ( F I ,  F). 

Proof." We may assume that 2~(1 - I ,  F) r 0. Let w be the minimum value of Vj~M Fj 
in H. Then Fj(x) _< w for all j e M  iff x e ~ ' ~ ( F I ,  F). If every function Fj has a point 
xj in ~ ( F I ,  F) with Fj(xj) < w then, by convexity, 

for a l l j  in M. Then, Vj~MFj has a value less than w at [M I - I~*~MXk in l-I, in 
contradiction to the definition of w. �9 

We can now prove: 

Theorem 4.2. Let ~1 be a class o f  pairs (H, F) satisfying (u), ([3), (6) above, then the 
nucleolus on ~1 is characterized by P1 (non-discrimination), P2 (redundancy) and P4 
(restriction to the least core). 

Proof." The proof follows the same lines as the proof of Theorem 3.1 and Corollary 
3.2, except that we use Lemma 4.1 to get a function constant on 2~(1 - I ,  F). �9 

Algorithm 2.4 can be adapted to an algorithmic scheme to compute the nucleo- 
lus in a class ~1. Step 4 is not needed to obtain a constant function and can be 
skipped. The relevant examples in Theorem 3.3 all satisfy (a), ([3) and (8) and there- 
fore show that each of the axioms of Theorem 4.2 does not follow from the 
others. 
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For use later on, we state and prove two additional properties of  the general 
nucleolus defined on a class f~  satisfying (a), (13) and (6). (They are not true in other 
classes.) 

(Ply) (Deletion o f  the smaller o f  two functions with constant difference) I f  
(17, F ) ~  and Fi=Fj+)~  for  some i and j,  i ~ j ,  with 2e01+, then 
q5 (H, F )  = ~ (I-i, F_j).  

(P12) (Indifference) F is constant on �9 (II ,  F) .  

Theorem 4.3. The nucleolus o f  a class ~-~1 satisfying (~), (13) and (8) satisfies Pn and 
P12. 

Proof." Follow the Algorithm 2.4, skipping Step 4. The algorithm ends as soon as an 
empty set M is reached. As long as F~ is not deleted, ~ also is not deleted. When F,- 
becomes constant,  Fj too becomes constant and both are deleted. The only place 
where the computat ion handles Fg and Fj differently is in Step 3, when the least core 
is computed.  I f  2 > 0 then Fj plays no role and can be omitted. If  2 = 0 Fj can also be 
omitted because F,. is sufficient for the computat ion.  This proves Pl l .  As to P12, note 
that during the process one obtains smaller and smaller least cores and therefore all 
the functions that  were deleted are constant in the nucleolus. Eventually all func- 
tions are deleted zl. �9 

Remark. The following example shows that  Pll and P12 do not hold if we consider 
classes of  pairs satisfying (a), (13), (7) (see previous section). Here,  f] contains the 
pair (H, F) ,  where H = [0, 1], F =  {F~, F2, F3} with 

[1 for 0_<t_<l/2 [~ t  for 0_<t_<l/2 
F I =  2 ( l - t )  for I /2_<t_<l ,  F 2 =  for 1/2__t_<l 

and F3=F2-1 /2 .  In addition, f~ contains (I-I,F_3) and the smallest set of  pairs 
needed to be added to these pairs so as to satisfy (or), (13) and (7) of  the previous 
section. T h e n / / / ( H ,  F)  = {0} whereas M#(II, F_3) = {0, 1 }. Also, both  F1 and F2 are 
not constant on {0, 1} = ~ ( I - l ,  F~, F2). 

5 The Nucleolus of  Matrix Games 

Let A be an m x n matrix zero-sum game. We can associate with it a pair (17, F) ,  
where I-I: = Azz(A ) (the set of  mixed strategies for Player tI), and Fi(q) = eiAq for  ail 
q in AII(A). Here, M : =  {1 . . . . .  m}. Thus, Fi(q) is the payment  to Player I if he 
takes row i and II takes q. Our class f~2 will consist in this section of  all such pairs, 
for all matrix games. 

2~ One can easily provide another proof by induction which is based directly on the axioms of 
Theorem 4.2. 
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As in [Potters and Tijs, 1992] (see also Dresher [1961] and Brown [1950], as 
well as Section 1) the nucleolus o f  the game for Player II was defined by 

f III(A ) : = f ( A I I (A )) {F/}i~M).  (5.1) 

It is easy to see that  ~c~(Azz(A) ,  F )  = OIl(A), the set of  opt imal  strategies of  Player 
II in the matr ix game A.  

In this section we are going to axiomatize the nucleolus of  A .  We face two 
tasks: On the one hand, to formalize the axioms in game-theoretic terminology,  and 
on the other, to overcome the fact that  our class ~'2 2 does not  satisfy condit ion (o0 of  
the previous section. There are two ways to circumvent the last difficulty. We can 
extend the theory of  matr ix games to zero-sum games defined on polytopes.  
We can then apply Theorem 4.2 to this class. We can, however, adopt  a diffe- 
rent approach:  Consider Player  I I ' s  set of  opt imal  strategies. It is a polytope 
~ : =  c o n v  {q l ,  q2 . . . . .  qk}.  We can therefore identify the game in which Player  I I ' s  
strategies are restricted to ~ with a classical matrix game B, with m rows and k 
columns, with b,-j = ei A qj, i eM,  j eK: = { 1, 2 . . . . .  k }, and remain within the class of  
the classical games. Formal ly ,  that  means that  we replace axiom P4 by Po P3 and P9 
(contravariance).  With  these remarks we can now formulate:  

Theorem 5.1. The nucleolus for  Player H for  the class o f  matrix games is character- 
ized by the following axioms: 

(Po) O(A)  r 0 for  all matrbc games A.  
(PI) O ( A ) =  AH(A) / f  the entries in each row are constant. 
(P2) O ( A ) = O ( A _ i )  i f  the i-th row has constant entries and 22 [M I >_2. 
(P3) O(A)C_OH(A). 
(P9) I f  A:A-*AH(A)  is a linear map, where A is an arbitrary simplex, and i f  

A -  1 �9 (A) r 0 then �9 (A oA) = A -  1 �9 (,4). Here, A oA = :B is a matrix game 
with m rows and k columns, bii=eiAqs, i e{1  . . . . .  m},  j e { 1 ,  2 . . . . .  k}, 
where qs is the image under A o f  the j-th extreme point o f  A. 

Proof: By induction on m. If  m = 1 and the entries of  the row of  A are equal,  then, 
by P1, (I)(A)= AH(A)=  JF;~(A). I f  they are not equal then Or,(A) is a proper  face of  
AxI(A). By Po and P3, cI)(A) is a nonempty  subset of  On(A). Let A be the identity 
map of  OH(A) into Are(A) then, by P9, A - 1 (I) (A) = (I) (A oA). But A oA is a 1-row 
matr ix with equal entries. It follows that  (I) (,4) = A -  1 (I) (A) = Oxx(A) = Alan(A). Sup- 
pose now that  m >  1. By P3, O(A)c_OIx(A). The set OIl(A) is a convex hull of  finite- 
ly many extreme points and there is a simplex A and a linear map A : A  ~ AIz(A) with 
image Olx(A). Then, by P9, (I) (A oA) = A -  1 (I) (A). Now, at least one row i of  A oA 
has equal entries and can be omit ted by P2; therefore,  A -~ (I)(A)= ~ ( ( A  oA)_i).  
The same equality holds for ~izi, so, by the induction hypothesis 
A -  1 ,/I/if(A) = A -  1 �9 (A), therefore,  by P9, vK//z(A) = q5 (A). �9 

22 We do not wish to include matrix games with an empty matrix; therefore, we required 
IMI_>2 and added Po. 
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Remark. It can be proved that  the axioms of  Theorem 5.1 are logically independent .  
In fact, examples constructed on the basis of  the examples of  Section 3 will do. Here 
we show only that  the solution A~OH(A)  does not  satisfy P2. Take, for example 

 :(110) ' 

then Ozz(A)= A , ( A ) ,  but  Ozz(A_ 1)= {e2}. 

6 The Nueleolus of  a TU-Game with Permissible Coalitions and 
Permissible Imputations 

Schmeidler 's  [1969] classical nucleolus is obtained f rom a TU-game (N; v) if we take 
H to be the set of  imputat ions  23 (for a given coali t ion structure, usually {N}) 24, 
and F =  {Fs}s=u, where Fs is the excess function of  the coalit ion S, namely,  
Fs(x) = e(S, x)= v ( S ) - x ( S ) .  The class of  these nucleoli does not  satisfy (a) and (I]) 
of  the previous section, because the least core is usually not a set of  imputat ions  and 
because {Fs} has to be the set of  all excess functions of  a given game. In order to be 
able to use the setup and results of  the previous section we shall extend the class of  
games." 

(i) by allowing games in which certain coalitions are not permissible. 
(ii) by allowing games in which the set of  imputat ions is restricted a-priori to a 

given polyhedral  set 25. 

The games restricted in this way will be called truncated games, or, more informa-  
tively, TU-games with permissible coalitions and permissible imputations. Formal ly ,  
a t runcated game will be a quadruplet  (N, ~ ,  v, I-I), where N =  {1, 2 . . . . .  n} is the 
set of players, ~ is a subset of  2 n \ { 0 ,  N},  called the set of  permissible coalitions 26. 
v: ~ 9 ~  is the characteristic function and H - the set of  permissible imputations - is 
a set of  the form: 

I I =  { x ~ l N : x ( N ) = v ( N ) ,  x(U)>-au, for all U e  i f } .  (6.1) 

23 Preimputations, if we consider the prenucleolus. 
24 Note, however, that Schmeidler's original definition took H to be an arbitrary closed set in ~N. 
25 One could deal with richer classes, but we wish to restrict the classes to a reasonable mini- 

mum for our purpose. 
26 Not allowing N in ~ is a technical convention. Actually, we are discussing the nucleolus 

for the grand coalition, so that N will form. The convention has been created because the 
excesses of N and 0 are constant. 
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Here, ~" is a, possibly empty, collection of  coalitions and the numbers av, U e  ?Z, 
are given numbers 27. 

Remarks.  Ordinary  TU-games are, of  course, t runcated games. They are obtained 
by taking 9 =  2N\  {0, N},  ~ '= { {i}: i ~ N  and ali} = t ) ( { i } ) } .  

Discussion. It is easy to interpret ~ .  As suggested by its name, we extend the scope 
of  the cooperative games to situations in which the format ion  of  some coalitions is 
out of  the question: The members of  such coalitions are not  on speaking terms with 
each other, or an anti- trust  law prevails, or communcat ion barriers exist, or, simply, 
people do not  wish to be bothered;  these are among the many good examples which 
may be found.  It is more difficult to interpret 1-1. To do so, we have to go back to 
the idea of  the core, remembering at the same time that  we constantly discuss a 
cooperat ion of  all the players towards  forming the grand coalition. A requirement 
for being in the core means that  the players will not  cooperate unless each coalit ion 
gets at least its worth.  Implicit  in H is a generalization of  this concept. The players 
will not  consent to cooperate in forming N unless it is guaranteed that certain coali- 
tions 28 (members of  i f )  receive at least certain amounts  (the amounts  av). Such 
a priori restrictions may occur in real life. Actual ly  29, we can regard Yi as a general- 
ization of  the (strong) e-core. An  outcome x belongs to the (strong) e-core iff  the 
excess of  each coalit ion (other than 0 and N)  is not  larger than e. In I I  we require 
that  various coalitions have excesses not  larger than certain numbers - not  necessar- 
ily the same for all. For  coalitions not  in f f  we lay no a priori restrictions on their 
excesses. This way of  looking at I I  stresses again the fact that  the nucleolus is t ied to 
the core concept; namely, it s a rule which selects outcomes that  reside in any non- 
empty "generalized" core. 

Note that  in ordinary TU games v(N)  and v({i}), i~N,  have a double connota-  
tion: On the one hand they provide a monetary  expression of  the worth of  each 
coalit ion, and in this capacity they resemble any other v(S).  On the other hand, they 
serve to form a priori reduction of  the space of  imputat ions to those which are both 
individually rat ional  and efficient. Here the two roles are extended to other coali- 
tions. 

For  TU-truncated games we define the least core and the nucleolus by 

~ ( N ,  ~ ,  v, Yl):= ~ ( Y i ,  {e(S, " ) } s ~ ) ,  (6.2) 

A/(N, ~ ,  v, I-O:=H(n, {e(S, ")}sr (6.3) 

Note that  the classical nucleolus and the classical prenucleolus of  a game are parti-  
cular nucleoli of  this type. Note,  however, that  if r I  is not  bounded and if some 

27 Other classes can be defined; for example, permissible imputations for coalition-structures 
other than {N}. 

28 This can be the situation even if these coalitions are not permissible. A permissible coalition 
can threaten to form (in order to improve the payments to its members). In contrast, a 
coalition can simply refuse to cooperate to form N (for the same purpose) even if it is not 
allowed to form. 

29 We are indebted to R. J. Aumann for this remark. 
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coalitions are missing from ~ ,  both the nucleolus and the least core may be 
empty 3~ 

Let f23 be a class of  truncated games satisfying (o0 and (13) of  Section 431. Then, 
by Theorem 4.2, the nucleolus for this class is characterized by axioms P1, P2 and 
P4, which make perfect sense within the framework of  truncated games. The pur- 
pose of  this section is to provide a different axiomatic characterization, using the 
concept of  a reduced game. However, contrary to classical reduced games in which 
one discards sets of  players, here we shall discard sets of  coalitions. 

Definition 6.1. Let (N, ~ ,  v, II) be a truncated game and let 3 - b e  a subset of  ~ .  
Let x be a point in II .  The reduced game of  (N, ~ ,  v, 17) on ~ at x is the truncated 
game (N, ~ , v ]  ~U,, I I ~ ) ,  v~here 

i - [ x c p ~ : = r l o  {y~N:y(S)=x(S) for all S e ~ \ 2 T - } .  (6.4) 

Here, v] 3 - i s  the restriction of  the domain of  v to 2K. Thus, in the reduced game, the 
set of  permissible coalitions is restricted to ~,, and 17 is also reduced to those impu- 
tations that have the same excess at x for coalitions of  S outside 37. 

Comment. The original Davis-Maschler [1965] reduced game is nevertheless closely 
related to this one. Remember that a classical reduced game on a subset of  players 
T, at a preimputation x, is given by 

fmax {v(Sw Q) - x ( Q ) :  Qc_N\ T} 
1)~v (S) 

(x(S) 
if O r  

(6.5) 
if S t {T ,  0}. 

Compare this formula with the one obtained by reducing (N, 2N\{N, 0}, v, I-I) at 
x on ~ . ' =2N\ ({N ,  0}W {{i}: ieN\T}) .  In this reduced game we freeze the pay- 
ments to the members of  N \ T  at MY\r; thus, in effect, only the players in T are 
playing. For them, the space of  preimputation is the same as that of  (T; v}) and 
every nonempty proper ~2 subsets of  T can ensure v~r(S), and no more, by choosing 
proper partners Q from N\T,  paying them the fixed rate x(Q). Now, formally, there 
are more options in the reduced game of  this section: Several coalitions of  the type 
S u Q  are permitted, for Q's being subsets of  N \ T  and a fixed S, SC T. If  S=O, the 
excesses of  these coalitions in the reduced game are constant and they can be omitted 
for the purpose of  computing the nucleolus (Axiom P2). If  $ 4  0 then the difference 
of  the excesses in the reduced game, 

O(Su Q1, y) - # ( S w  Q2, y) = [v(Su Q,) -y (S )  -x(Q1)l  - [v(Sw Q2) - y (S )  - x(Q2)l 

30 Precisely because of this feature we included the possibility of an empty nucleolus in the 
axiomatization of Sections 3 and 4. 

31 Clearly (6) is also satisfied. 
32 Note the special role of T: even if max v ({ (Tu Q) - x (Q): Q_CN\ T}) is greater than x(T), 

this fact plays no role in determining the space of preimputations of both reduced games. 
Similarly, 0 has no effect. 
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is constant in y, for every y in H ~ 3 - ;  so by Pll, only the Q's for which 
v(Su Q) -x (Q)  is maximal need to be considered for the purpose of looking for the 
nucleolus. Thus, for a society that believes in the nucleolus, the two reduced games 
are equivalent. 

Definition 6.2. We say that a solution concept ~, defined on a class of truncated 
games, satisfies the reduced game property, or is consistent, if it satisfies 

(P13) (reduced game property) x r  ~ ,  v, II) implies x~eP(N, ~,, v[ ~,, 
I I ~ ) ,  whenever (N, ~,, v[ ~,, I I % ~ )  belongs to the domain of o#. 

Lemma 6.3. The nucleolus defined on an arbitrary class of  truncated games satisfies 
the reduced game property. 

Proof." The intersection of JU(N, ~ ,  v, H) and 1-I%~9- for x in the nucleolus con- 
tains the point x. Therefore, by the strong IIA property P8, JK(N, ~ v, 1-I~9-) 
is equal to this intersection. On H%~ 3-, e(S, y)=  constant whenever S~,c~\5~,, so 
we can remove these coalitions without changing the nucleolns. Thus, we find that 
x e d ( N ,  ST,, vl ~,, I I ~  ). �9 

Discussion. One interpretation of the reduced game property runs as follows: Sup- 
pose x in a solution q~ is being proposed, then someone may improve his payment by 
manipulation. He approaches members of a coalition S (or several coalitions) and 
tells them: "Please make your coalition unavailable (= nonpermissible). In return I 
shall give you x(S) (or slightly more)". If this manipulation were beneficial, then q5 
could be criticized for being unstable, or inconsistent. Satisfying the reduced game 
property means that this manipulation cannot benefit any player. 

Although the reduced game property is essentially a special case of the strong 
IIA property, we can use it to axiomatize the nucleolus: 

Theorem 6.4. Let ~ v  be the class of  all 33 truncated games on a fixed set of  players 
N. Let ~b be a solution concept for this class that satisfies the following axioms: 

(P1) (non-discrimination) ~(N,  ~ ,  v, I I ) = I I  i f  ~9% 0, 
(P2) (redundancy) ~ (N, ~ ,  v, II)----(b(N, ~,9~\{S}, v, II), if  e(S,.) is constant 

on 1-[, 
(P3) �9 (N, ~,, v, r I ) c  Y ~ ( N ,  ~ ,  v, H), 
(P13) ~ satisfies the reduced game property. 

Under these conditions, O(N, ~ ,  v, l-I) c_A/'(N, ~ ,  v, H) for every truncated game 
in f2U. 

Proof: The proof is by induction on the number m of permissible coalitions. If 
[S~[ =0, then �9 is the nucleolus by P1. Assume the claim is true for truncated 

33 Actually, the theorem is true for every class of truncated games that, with each (N, S, v, H), 
contains all the other truncated games mentioned in the theorem and in the proof. 
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games with fewer than m permissible coalitions and let (N, S~, v, 17) be a truncated 
game with m permissible coalitions. We can assume that none of  them has a con- 
stant excess on 17 and that O(N, ~ ,  v, H):~ 0. By P3, 

(6.6) 

where ~ . '=  { S e ~ :  e(S, .) is not constant on 2 ~ ( N ,  ~ ,  v, 17)} and x is any point 
in ~ (N ,  ~ ,  v, 17). By Lemma 4.1, (N, 5~,, v] ~ ,  1 - I % ~ )  has fewer than m permissi- 
ble coalitions; therefore, by the reduced game property and the induction hypo- 
thesis, 

�9 (N, S, v, n)=_ OCN, ~,  vl ~ ,  rI%~)___~(N, ~,  vl ~,  n % ~ ) .  (6.7) 

If  x~JK(N,  ~, ,v  I ~,, 1 7 ~ ) ,  then Oo{e(S, X)}s~s~e= Oo{e(S, Y ) } s ~  for all y in 
1 7 ~ .  Therefore, Oo{e(S, x ) } s ~ e x  Oo{e(S, Y ) } s ~  for all y in I I ~ 9 - .  But 
17%_~9-_D 2 ~ ( N ,  S~, v, H) (see 6.6), therefore, x~./U(N, ~ ,  v, 17). �9 

In view of  Theorem 2.3 and Lemma 6.3 we can now paraphrase Theorem 6.4 
by 

Corollary 6.5. The nucleolus of the class ON is the largest solution concept satisfying 
P1, P2, P3 and P13. 

Comparison between our axioms and the axioms of Sobolev [1975]. Sobolev's class 
of  games is richer in the sense that it requires that the domain of  the nucleolus con- 
sists of  all TU n-person games 34, whereas we can stay with the class of  all truncated 
games on a fixed set of  players N. Our class is richer in the sense that it contains 
truncated games - not only ordinary TU games. Sobolev's axioms characterize only 
the prenucleolus. Ours characterize simultaneously the nucleolus, the prenucleolus 
and many other nucleoli. 

However, Sobolev's result is deeper, and his proof  is quite ingenious, whereas 
our proofs are much simpler. This is due to the fact that we require the solution to 
be in the least core - an axiom that is not needed in Sobolev's theory. We feel that 
this is an important axiom because it points out what the nucleolus is all about: A 
desire to minimize maximum excess as a primary goal. This makes it a core-moti- 
vated solution; namely, a solution concept that "points" to the location of  the core, 
and if it is empty - to its latent image (Shubik [1983], see also Section 1). 

'Being a subset of  the least core'  is equivalent to 'being a subset of  every non- 
empty (strong) e-core'.  The importance of  nonempty e-cores to economics is known. 
For example, Wooders [1991] shows that under proper conditions, replications of  
economies (even with empty cores) lead to nonemptyness of  the strong e-cores, for 

34 For example, if the domain is the class of all TU games on 4 players, or less, take as a 
solution any non-nucleolus kernel point for some 4-person games, together with the nu- 
cleoli points for all other games. This "solution" satisfies all Sobolev's axioms, but it is not 
the nucleolus (B. Peleg, oral communication). 
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all sufficiently large replications and to convergence of the e-cores to the Walrasian 
payoffs of the limit market. 

7 Characterization of  the Nucleolus of  a Truncated Game by 
Balanced Collections 

Let x be an imputation in a TU-game (N; v). Define 

3t (x) : :  {S:e(S, x)>_t}, (7.1) 

~(x):= {{i} :xi=v({i})}. (7.2) 

Kohlberg [1971] proved that a necessary and sufficient condition that x is the nucleo- 
lus of the game is that whenever ~ t ( x ) ~  0, 2t(x)to ~(x) is weakly balanced 35 with 
positive coefficients for the coalitions of ~.~t(x). Sobolev [1975] showed that a simi- 
lar condition for the prenucleolus holds, if one replaces ~(x) by the empty set. 
Related theorems for other nucleoli appear in Owen [1977], Wallmeier [1983], Pot- 
ters and Tijs [1990]. Note the special role of the single person coalitions. These are 
the coalitions responsible for the determination of the space of imputations. This 
suggests that a similar characterization holds for the nucleolus of truncated games. 

Definition 7.1. Let 2 and ~ be two collections of coalitions. We shall say that 2 is 
balanced with the help of  ~,, if positive 2s'S exist for each S in ~ ' a n d  non-negative 
pu's exist for every U in ~ such that 

2 s e s +  ~, p u e u = e N .  (7.3) 
S ~  U~  

Here er is an n-tuple consisting of zeroes and ones, whose i-th coordinate, ieN, is 1 
iff ie T (i.e., er is the characteristic vector of  T). 

For an imputation x in a truncated game (N, ~ ,  v, H) we now define 

~ , (x) :=  { S e ~ : e ( S ,  x)>_t} , (7.4) 

T(x): = { Ue ~':x(U)= au}, (7.5) 

(see (6.1)). We can prove: 

Theorem 7.2. An imputation x in H is a nucleolus point of  a truncated TU-game 
(N, ~ ,  v, H) if  and only if  ~t (x)  is balanced with the help of ~(x),  whenever 
~,(x)~ 0. 

35 I.e., the balancing coefficients are allowed to be zeros. 
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To provide a proof  we need some notation, definitions, and two lemmas. 

Definition 7.3. The str&t least core of a truncated game, denoted 
2 W ( N ,  ~ ,  v, l-I)*, is given by 

2 g ' ( N ,  S5, v, rI)*:= {xeZ~g'(N, S5, v, I-I): ~'(x) = ~ } ,  (7.6) 

where 

2(x) :=  {SeSP:e(S, x) = V e(T, x)} 
TEeD 

(7.7) 

~ ' : =  { S ~ : e ( S ,  x) = V e(T, x) for all x e 2 W ( N ,  ~ ,  v, FI)}. (7.8) 
T E ~  

Thus, 2 ( x )  is the set of  maximum excess permissible coalitions at x, whereas B 
consists of  those permissible coalitions that achieve maximum excess at all points of  
the least core. The strict least core contains the relative interior 36 of  the least core, 
but may contain also some boundary points. 

Lemma 7.4. Let (N, ~ ,  v, I-I) be a truncated TU-game, ~5~ ~ O. A necessary and suf- 
ficient condition for  an imputation x in FI to belong to the strict least core is that 
~ ( x )  is balanced with the help o f  ~(x)  (see (7. 7), (7.5), and Definition 7.1). 

Proof." Consider the following pair of  dual LP problems: 

(P) xe~t u, te~li (D) 

- x ( N ) =  -v (N)  Z ~  ~ . v ~ . ~ v  wu+ ~s~. i~sYs=Z for all i~N 
x(U)>av for all U~ ~" wv>_O ~ . s ~ Y s  = 1 
x(S)+t>>_v(S) forall S e ~  ys>_O 

min t max ~.v~ee wvav+ ~ . s ~ y s v ( S ) - z v ( N ) .  

Let f be the minimum value of  (P). A point (x, f) is in the solution space of  the 
primary program (P), iff x belongs to the least core of  the truncated game. Let (2, f) 
be a point of  the relative interior 37 of the solution space of  (P), then, 

and 

~ ( 2 ) =  { S ~ : x ( S ) = v ( S ) - f  for all solutions (x, f)} = ~ ,  

~0~)= {Ue  f Z : x ( U ) = a v  for all solutions (x, f)}. 

(7.9) 

(7.10) 

36 Namely, the interior of the core relative to the least manifold that contains the least core. 
This convention will be used in this section. 

37 ibid. 
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Then, by the strong complementary slackness theorem, we know that there is an 
optimal solution (2, { ~ s } s ~ ,  {~u}u~g)  of the dual problem (D), with .gs>0 iff 
S t  ~ ( 2 )  (and v~, > 0 iff U t  ~(~)). Since at least one .fs is positive, ~ must be positive 
and hence, 

2s:=f~s/2 for S t ~  and pu:=CVu/~ for U t ~ "  (7.11) 

provide a solution of (7.3) for 3 and ~(2). If  x ~ 2 ~ ( N ,  ~ ,  v, [I) # then 
~ ( x )  = 2 and ~ ( x ) _  ~(2). Hence, 2 ( x )  is balanced with the help of ~(x). 

Conversely, let x be a point in H for which ~ ( x )  is balanced with the help of 
~(x).  Let t : = V s ~  e(S, x). With this notation, (x, t) is feasible for the primary 

problem (P). There exist positive ~-s, S t  2 ( x )  and non-negative Pu, Ue ~(x) such 
that (7.3) is satisfied for 2 = ~ ( x )  and ~ =  ~(x). Define: z:=(~.s~(x)2s)  -~, 
ys:=2sZ for S e a ( x ) ,  ys :=0  for S t ~ \ ~ ( x ) ,  Wu:=PuZ for U t  ~(x),  Wu:=0 for 
U t  fd \  CE(x). Then, (z, { Y s } s ~ ,  { W u } w g ) ,  is a solution of the dual problem (D) 
which satisfies the complementary slackness conditions with (x, 0. Thus, both solu- 
tions are optimal for their respective LP programs. In particular, x is a least core 
point. Further, if S t  ~ (x ) ,  then e(S, y)= t for every point y in ~ c ~ ( N ,  ~ ,  v, H), 
since, otherwise, (y, t) and (z, {Ys}s~ ' ,  {Wu}u~ ee) fail to satisfy the complemen- 
tary slackness condition. Thus, ~ ( x ) =  ~ and x e 2 ~ ( N ,  ~ ,  v, H)*.  �9 

Let F = (N, ~ ,  v, H) be a truncated game and let x be a fixed point in 17. Ar- 
range the excesses of the permissible coalitions in a strictly decreasing order: 
e~(x)>ez(x)> �9 �9 �9 >ek(x), (k_< [fiz[) and denote by ~,-(x) the set of coalitions hav- 
ing the i-th excess: 

~,.(x)= {SeS~ i=1,  2 . . . . .  k.  (7.12) 

We shall now define new games, Ff: = (N, ~ v~, H) by 

vx(S) = [v(S)-e j (x)+ei(x)  if S t ~ . ( x ) ,  j < i ,  (7.13) 
(v(S) otherwise. 

Note that 

 (xlrD= U (7.14) 
l<_j~i 

i.e., F x was obtained from F by decreasing the worths of all coalitions in 
Ul_<j_<i ~,~j(x) so that their excesses at x will all be ei(x). (Here, [Ff means "refer- 
red to F~".) 

Lemma 7.5. x e I I  is a nucleolus point o f  F i f f  x e ~ ( F f ) *  for  all i, i=1,  
2 . . . . .  k. 

Proof." Let x t I I \ 2 ~ ( F ~ )  for some i. Then, there is a point y in I I  with 
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V e(S, ylF'7) < sY~ e(S, x[rX)=ee(x). 
S E c 7  ~ 

(7.15) 

It follows from (7.13) and (7.15) that if S e ~ . ( x ) ,  j< i ,  we have 

e(S, y) = v(S) - y (S) < eg(x) + ej(x) - ei(x) = ej(x) <_ e~ (x) , 

and for 

S e @ ( x ) ,  j> i ,  e(S ,y)=e(S,  Ylrf)<e,(x)<_el(x). 

This shows that x is not a nucleolus point, or, in other words, any nucleolus point x 
must belong to 2ga (F~  :) for every i. 

Let x be a point in ~ ( F ~ ) \ ~ a G ~  ~ for some i. We may assume that 
i is the first index with this property. Let y be a point of  ~ g a ( F ~ ) * .  Then, 
e(S,y) = e(S,x) = ei(x) for all coalitions S in ~,@(FX). Here, ~ ( F ~ :  = {S~SP:  e(S,y) 
= V r ~  e(T, y), for all yE2GP(N,  ~ ,  v'7, FI)}. Further, e(S, y)<ei(x) for all S not 
in ~(FX),  and there is at least one such coalition S*, not in ~.~(FT), satisfying 
e(S*, x) = ei(x). This shows that x~JY(F).  We have shown that any nucleolus point x 
belongs to S~(F, .*)~ ,  for every i. 

Conversely, let x be an element of  2 ~ ( F D  * for every i, i = 1, 2 . . . . .  k, and 
let y be any other point of  17. We shall prove that 

0 o {e(S, X ) } s ~ , ~  Oo {e(S, Y ) } s ~ .  (7.16) 

Indeed, if not, then there exists a smallest index i having the property that ~,-(x) 
contains a permissible coalition S* with e(S*, y) 4: e(S*, x). If  there is a permissible 
coalition S, not in ~,@1(x)va22(x)vo... vo~i_~(x) with e(S,y)>ei(x) then (7.16) 
holds. Therefore, we may assume that e(S,y)<_e(S, x)=ei(x) for all S in ~G~,-(x). In 
this case, e(S*,y)<e(S*,x)=ei(x)  and x~,cgga(FD #. This contradiction shows 
that (7.16) holds after all; namely, x ~ / ( F ) .  �9 

Proof o f  Theorem 7.2: If  S'~= 0 then JK(F) = 17 and the requirement of  balanced- 
ness is vacuously satisfied. Suppose Sa=f0, then x is a nucleolus point iff 
x ~ 2 C ~ ( F D  ~ for all indices i (Lemma 7.5). This, by Lemma 7.4, is equivalent 
with ~ / ( x l F T ) = ~ ' l ( x ) w . . .  u ~ i ( x )  being balanced with the help of  ~(x) for 
all i, i = 1 ,  2 . . . . .  k. �9 
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