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Abstract Assignment games with side payments are models of certain two-sided markets. It 
is known that prices which competitively balance supply and demand correspond to elements 
in the core. The nucleolus, lying in the lexicographic center of the nonempty core, has the 
additional property that it satisfies each coalition as much as possible. The corresponding 
prices favor neither the sellers nor the buyers, hence provide some stability for the market. 

An algorithm is presented that determines the nucleolus of an assignment game. It gen- 
erates a finite number of payoff vectors, monotone increasing on one side, and decreasing on 
the other. The decomposition of the payoff space and the lattice-type structure of the feasible 
set are utilized in associating a directed graph. Finding the next payoff is translated into 
determining the lengths of longest paths to the nodes, if the graph is acyclic, or otherwise, 
detecting the cycle(s). In an (m, n)-person assignment game with m = min (m, n) the nucleo- 
lus is found in at most 1/2.m (m + 3) steps, each one requiring at most O (m-n) elementary 
operations. 

1 Introduction 

The nucleolus was introduced by Schmeidler (1969) as a single-point solution con- 
cept for cooperative games. It is the unique payoff  that lexicographically minimizes 
the vector of nonincreasingly-ordered excesses over the set of imputations. It is 
well known that the nucleolus is always in the core of  a game, provided the latter is 
nonempty.  The assignment games with side payments,  introduced by Shapley and 
Shubik (1972), are games with always nonempty  core. For  these games the worth 
of any coalition is completely determined by knowing the worth of  all two-person 
subcoalitions. The core has a lattice-type structure that implies the existence of  
two special vertices. The core can be characterized by a small set of  linear inequal- 
ities and equations. In this paper we present an algorithm that exploits these prop- 
erties of  an assignment game to locate its nucleolus. 

The practical methods to find the nucleolus of  general cooperative games in- 
clude the weighted-sum approach of  Kohlberg (1972) leading to a single, but  ex- 
tremely large LP. In order to ensure that the highest excess gets the largest weight, 
the second highest excess gets the second largest weight, and so on, coefficients 
f rom a very wide range must appear  in the constraints (causing some serious nu- 
merical difficulties even for 3 or 4 players), and all possible permutations of the 
coalitions must be present among the constraints (enlarging the size of the LP 
enormously).  In Owen 's  (1974) improved version one has to solve a single minim- 
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ization problem with 2n+ l+n  variables and 4 n + l  constraints for an n-person 
game. 

Maschler, Peleg and Shapley (1979) gave an alternative definition of the nu- 
cleolus. They describe a finite process that iteratively reduces the set of payoffs to 
a singleton, called the lexicographie center of the game. It is then shown that the 
unique final payoff is exactly the nucleolus. This constructive definition is more 
appropriate for a practical implementation. In fact, each iteration can be carried 
out by solving linear programs with n + 1 variables and 2 n constraints including 
only - 1 ,  0, or 1 coefficients. Recently Sankaran (1991) proposed such a formula- 
tion with at most O (2 n) LPs to be solved for an n-person game. 

Computing the nucleolus of a cooperative game can be cast as a special case 
of a multiobjective optimization problem, in which the conflict among the objec- 
tive functions is resolved in a lexicographic way. In different general settings 
Maschler, Potters and Tijs (1992) investigate the properties of and provide axioms 
for such optimizations. They also present an extension of the iterative process de- 
scribed in Maschler et al. (1979) for their general setting. 

For assignment games a method based on linear programming does not seem 
to be well-suited, since the combinatorial structure of the characteristic function 
cannot be effectively translated into a continuous problem formulation. While 
solving an assignment problem, the ordinary primal simplex method encounters 
difficulties caused by degeneracy. It is outperformed by specifically designed algo- 
rithms, such as Kuhn's (1955) well-known algorithm based on combinatorial argu- 
ments. In the same spirit we apply graph-related techniques instead of linear pro- 
gramming. 

In the special case, when there are alternative optimal assignments such that 
the graph (whose nodes are all the mixed pairs appearing in some optimal assign- 
ment, with any two nodes connected if they have a player in common) contains a 
spanning tree, Granot and Granot (1992) characterize the location of the nueleo- 
lus. As a consequence of their investigation of the relationship between the kernel 
and the core, they show that under the above condition the nucleolus is the unique 
vector in which the individual payoffs are maximized in a lexicographic sense. Fur- 
ther, the payoff vectors in the core are determined by a single parameter, and the 
only coalitions which play a role in determining the nucleolus are the single-mem- 
ber coalitions. Thus, the nucleolus can be computed in linear time. However, with- 
out the spanning tree condition, as the authors themselves point out, the above 
characterization ceases to hold even for the well-known horse market example 
(see Shapley and Shubik (1972)) which has a line segment as its core. As for the 
general case, when the mixed pairs as well as the individual players play a role 
(due to the characteristic function they are sufficient), we are not aware of any 
specific method. 

In a general assignment game the graph described in the preceeding para- 
graph is decomposed into several connected components. In fact, they are cliques, 
i.e. maximal complete subgraphs. For example, in case of a unique optimal assign- 
ment each one is an isolated node. Roughly speaking, the main problem is to find 
binding relationships between players related to different components, that would 
add new edges to the graph and reduce the number of components. Unfortunately, 
one cannot easily obtain an optimal assignment on a matrix from optimal assign- 
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ments on some of its submatrices, so combining the components cannot be done 
by working merely on the components. 

Geometrically, the problem translates to decomposing the payoff space into 
fewer and fewer orthogonal subspaces. All but one of these subspaces are in one- 
to-one correspondence with the above components. The remaining one is related 
to the missing edges, i.e. to the complement of the graph. That subspace contains 
the nucleolus, and it is shrinking until it becomes a line, so the above special case is 
obtained. The authors were able to exploit a similar geometric  approach to locate 
the nucleolus for general cooperative games. That will be the topic of a subsequent 
paper. 

The organization of the paper is as follows. After recalling some basic defini- 
tions and known results in Section 2, we define the lexicographic center of an as- 
signment game in Section 3. This is a specialized version of Maschler et al.'s (1979) 
definition, incorporating the simplifications which are possible for such games. For 
example, the set of coalitions can be restricted to individual players and certain 
two-player coalitions, and the lattice-type structure of the core is inherited by all 
subsequent payoff sets. In Section 4 we discuss the partition of the coalitions into 
so-called settled and unsettled blocks. This plays a fundamental role in associating 
a graph to the optimization problem to be solved in each iteration. The structure 
of the feasible payoff sets is investigated in Section 5. Following the arguments of 
Shapley and Shubik (1972) for the core, we establish the existence of the two spe- 
cial vertices for each set. Also here, the reformulation of the optimization problem 
into finding the lengths of longest paths to the nodes of a directed graph is intro- 
duced, and the equivalence of the two settings is shown. The algorithm is present- 
ed in Section 6. It generates a finite sequence of payoffs leading to the nucleolus, 
such that each one is the special vertex of the current feasible set, providing 
monotonicity for the subsequent payoffs. It is shown that for an (m, n)-person 
game with m = m i n  (m, n), the algorithm determines the nucleolus in at most 
1/2.m(m+3) steps, each one requiring at most O(m.n)  elementary operations. 
We illustrate the process on a (4, 5)-person game in Section 7. 

2 Preliminaries 

Let us recall some basic definitions. A p-person cooperative game with side pay- 
ments is given by the finite set of players P={1 . . . . .  p} and by the characteristic 
function V : 2 e ~ R  satisfying V(0 )= 0  and V(P)>- ~ V({i}). Given a game (P; V), 

i c P  

the excess of a coalition SCP  at a payoff vector x e R  p is e(S, x ) = V ( S ) - x ( S ) ,  
where x(S)  = ~ xi if S~0 ,  and =0  if S=0 .  The negative excess f(S, x) = -e (S ,  x) 

i t S  

will be called the satisfaction of S over x. It represents the contentment (or discon- 
tentment if negative) of the coalition as a whole with the given total payoff. An 
imputation is a vector x = (x~ . . . . .  Xp) such that x ( P ) =  V(P) and xi >--V({i}) for all 
i~P. We denote the set of imputations by I=I(P; V). The set C=C(P; V )  of 
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imputations such that x(S) >_ V(S) for all SCP is called the core. The set of impu- 
tations is always a nonempty polytope, but the core can be empty for some 
games. 

The nucleolus, one of the single-point solution concepts, was introduced by 
Schmeidler (1969). For each xeI(P; V) let F(x) denote the 2P-vector whose com- 
ponents are the numbers f(S, x), SCP, arranged in a nondecreasing order, i.e., 
Fj (x) -< Fk (x) whenever j < k, and Fj (x) =f(S, x) for some S such that every S C P 
occurs exactly once as j runs through 1 . . . . .  2 p. Let > L denote the usual lexico- 
graphic order of vectors (i.e. y >/~ z if there exists an index J0 such that yj = zj for all 
j<jo and yjo>ZJo), and ---L its weak form (i.e. Y->L z i f y > L  z or y=z). The nu- 
cleolus of a game is the set of those imputations which lexicographically maximize 
the vector of ordered satisfactions over the set of imputations. Formally, 

v=v(P; V)={xeI(P; V):F(x)>-L F(y) YyeI(P; V)}. (2.1) 

Schmeidler showed that every game possesses a nonempty nucleolus that consists 
of a single point. Since 

C={xeI:f(S, x)>_O vSCP},  (2.2) 

so v C C, provided the core is nonempty. 
Assignment games with side payments were introduced by Shapley and Shu- 

bik (1972). These games are models of two-sided markets, where each player on 
one side can supply exactly one unit of some indivisible goods and exchange it for 
money with a player from the other side whose demand is also one unit. When a 
transaction between i and j takes place certain profit aij-> 0 occurs. The worth of a 
coalition is given by an assignment of the players within the coalition which max- 
imizes the total profit of the assigned pairs. Therefore the characteristic function is 
fully determined by the profits of the mixed pairs. 

We call the two types of players as row and column players, and denote their 
sets by M and N, respectively. Throughout the paper we assume without loss of 
generality that m =  [M[ _< IN[ =n.  Since the worth of coalition S u  T, SCM,  T C N  
depends only on the submatrix (au)(s ' T), we can identify the coalition with the 
index set (S, T) = {(i, j): i e ~q, j e T }. 

It will prove convenient to introduce a fictitious row and column player, and 
to agree that both are 'present '  in any coalition. By labelling them with 0, the set of 
players is P = ( M ,  N)  =(/~r Nu{0}). Also, from now on (S, T) stands for the 
coalition of SCM, OeS and TCN, Oe T. With this notation we write (0, 0) for the 
empty coalition, (i, 0) for row player ieM, (0, j) for column player j eN .  Naturally, 
only fictitious profit can be made with a fictitious player. Thus we will assume 
aoo=aio=aoj=O for all ieM,  j e N  in the augmented profit matrix A=(ai])(M,N). 
On the other hand, the payoff is fictitious too, so uo= v0=0 in any payoff vector 
(u, v)=(u0, ul . . . . .  Urn; V0, Vl . . . . .  V,). The set of payoffs is denoted by 
U V C R  IMF •  INI. By an (S, T)-matching tz we mean a correspondence between S 
and Ttha t  induces a matching/2 on (S, T) = (S\{0}, T\{0}), and (0, 0)e/z, (i, 0 ) e ~  
if { jeT:( / ,  j) e/2}=0, (0, j ) e /z  if {ieS:(i, j) e/2}=0. That is to say,/~ is a matching 
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between 'real' players, and all unmatched players are assigned to the fictitious 
player of the other type. 

The characteristic function of an assignment game with augmented profit 
matrix A = (aij)(M,N) is given by 

V(S, T)=Max  I ~2 aij: for all (S, T)-matching/x 1. (2.3) 
(i,j) e tx J 

Since A _ 0 we can assume without loss of generality that/x is a full (S, T)-match- 
ing, i.e./2 is onto for at least one of S or 1 e. The decomposable nature of the char- 
acteristic function is inherited by the satisfaction, providing significant reductions 
in finding the nucleolus. Namely, by introducing the notation f~j(u, v):=f(({i}, {j}), 
(u, v)) we have the following 

2.4. Lemma. Let V(S, T)= ~ aij for some (S, T)-matching /x. Then for any 
( i , ] ) s g  

payoff (u, v)~UV, f((S, T), (u, v))= 2 j~j(u, v). 
(i , j)  e ,a  

Proof f((S, T), (u, v))=(u, v)(S, T ) -  V(S, T)= ~, u, + ~, v j -  ~, aq 
i ~ S  j e t  ( i , j ) e t z  

= ~, (ui+vj-aq)+ ~, (ui+vo-aio) 
(i , j)  e f x  i e S  

(i ,o) e ~  

+ Z (Uo + Vj-- a0i) + (Uo + v0-- a00) 
j e t  

(o,j) e 

= E f j ( u , v ) .  �9 
(i,y) ~ 

The following alternative characterization of the core is immediate. 

2.5. Corollary. For assignment game A (M, N), 

C={(u, v)eUV:f((M, N), (u, v))=0, ]}j(u, v)_>0 v(i,j)r N)}. 

Shapley and Shubik (1972) showed that for assignment games the core is 
never empty, and that the set in Corollary 2.5 is precisely the set of dual optimal 
solutions to the linear program that solves the combinatorial problem in (2.3) for 
V(M, N). Their LP approach also provides a practical method to determine a 
point of the core. Further important properties, that are related to complementary 
slackness, are easy consequences of Lemma 2.4 and Corollary 2.5. 

2.6. Corollary. Let o-be an optimal (M, N)-matching (i.e. V(M, N)= ~ aij). 
If (i, j) ~ cr then J~j (u, v) = 0 for all (u, v) ~ C. (i,j) Eo- 

Proof Let (u, v)eC. ThenO=f((M,N), (u, v))= ~ ]~j(u, v)_>0implies~j(u, v) 
= 0 for all (i, j) e o'. (~,j) e~ �9 
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This means that the optimally matched players share the exact profit they can 
make, but an unmatched player receives nothing in any core allocation. 

3 The Lexicographic Center of Assignment Games 

An alternative definition of the nucleolus was given by Maschler, Peleg and 
Shapley (1979). It is an iterative process that constructs the set of payoffs which 
lexicographically maximize the vectors of ordered satisfactions. It is shown that 
this optimum set is a single point, called the lexicographic center of the game, that 
coincides with the nucleolus. Next we present a version of this definition special- 
ized to assignment games, and certain results that are needed in the sequel. 

3.1. Definition. Let o-be a fixed optimal (M, N)-matching for an assignment game 
A(M,  N). We construct a sequence (A ~ E ~ . . . . .  (A ~ Is p+I) of partitions of 
(M, N) such that E~ ~ and a nested sequence X ~  p+I of sets of 
payoff vectors, as follows: 

Initially, let A~ E~ N)\o-, X~ v)eUV:(u,  v)_>(O, 0), f~j(u, v) 
= U 0 =0 V(i, j )eA  ~ fi:(u, v)>--oe ~ V(i, j)es where ol ~ Min )~:( , v ~ with u ~ = 

(i ,])  ~ E  ~ 
a~(O VieM, v~ vjeN.  

For r = 0, 1, ..., p define recursively 

(1) d + l =  Max Min J~j(u, v) (u,v)~Y" (i,j)~N r 

(2) x r+ l={  (u' U)~Xr:gr(u' t:):= Min fO(u' U)=cer+l ~ 2r 

(3) s ={(i, j) s~r:f/:(u, v) =constant on X r+l} 

( 4 )  ~r+l=~r\~r+l, Ar+l=Aru2r+a, 

where p is the last value of index r for which s162 
The set X 0+1 is called the lexicographic center of A (M, N). 

Before we prove the correctness of the definition, and show that it gives the nu- 
cleolus, let us make the following 

3.2. Remarks. Compared to the definition in Maschler et al. (1979), the main dif- 
ferences are: 

(i) Excess is replaced by satisfaction, hence Min and Max are inter- 
changed. 

(ii) In (3) all constant functions are put aside, not just those at the current 
guaranteed level of satisfaction a r+ 1. 

(iii) The satisfactions of only the relevant coalitions (single players and mixed 
pairs) are considered, instead of all coalitions. 
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(iv) The  initial feasible payoff set X ~ is not  the whole imputation set, but  a 
subset restricted by some constraints which are valid in the (nonempty)  
core, hence for the nucleolus. 

(v) Changes (i) and (ii) can be made in general, but (iii) and (iv) are specific 
to the structure of assignment games. 

Following the arguments of Maschler et al. (1979), first we show that the 
above iterative process is finite. 

3.3. Lemma. The number  p in Definition 3.1 is finite. 
For  r = 0 . . . .  , p, 

(i) the a r+l are well defined; 
(ii) the X r+l a r e  nonempty,  compact,  and convex; 
(iii) the E;+I ={(i, j) eEr: f7(u,  v) = d +1 V (u, v) e X  ~+1} are nonempty;  
(iv) if r___l then d + l > a  ~. 

Proof. The functions g r=  Min )~j are well defined for all r such that ~r~O. As a 
(i,j) e.Z' 

minimum of finitely many continuous and affine functions, gr is continuous and 
concave. It follows that claim (ii)r_ 1 implies claim (i)r, and (i)r implies (ii)r as long 
as Zr:#O. Since X ~ satisfies (ii)-1, both (i)r and (ii)r are proved by induction up to 
r = p .  

We prove (iii)r for O<_r<_p by contradiction. To this end, suppose that 
Z[+I=O for some O<_r<_p. It means that for each (i, j ) ~ r r  there is a point 
(u, v ) u e X  ~+1 such that fij((u, v ) u ) > a  ~+1. Define (ft, ~)=(1 / IE r l )  Z (u, v)u. 

(i,j) ~2~" 

By convexity (a, O) is also in X r + 1 C X r. Since for every (i, j) ~ E ~, fq (u, v) _ a r + 1 for 
any (u,. v ) ~ X  ~+~, and the inequality is strict for (u, v)u, so fit(a, ~)> a r+l. Hence  
gr(t2, O)> ar+l ,  a contradiction to the definition of a r+l. This also proves the fin- 
iteness of p, since at each iteration a nonempty set E~+ 1 D ~ '+  1 is removed from ~ r 
to obtain E ~+1. 

If l<_r<_p then E r r  and none of the functions J}j, (i, j )~IU, are con- 
stant on X ~ (this second assertion may be false for r=O).  On the other  
hand, for each (i, j ) e E r ,  f~j(u, v)-> a r at any (u, v ) ~ X  ~. By repeating the previous 
construction we can find a point (g, ~ ) e X  ~ such that gr(O, ~ ) > a  ~. Therefore ,  
d + l =  Max g~(u, U ) > O l  r. 

(u, v) e X  ~ 

To completely establish the correctness of Definition 3.1, next we show that 
the lexicographic center is independent  of the choice of the optimal assignment. 

3.4. Lemma. In Definition 3.1, 

(i) a~ implies C C X ~  
(ii) a~ implies X ~  
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(iii) c~1_>0 and X1CC; 
(iv) if the opt imal  (M, N)-match ing  is not unique then cea =0 ,  X ~ =  C. 

Proof Claims (i) and (ii) are immedia te  f rom the definitions and Corollary 2.6. 
As for claim (iii), in case o~~ we have al_> o~~ and X 1 C X ~  In case 

a~ let (a, ~)eC( : / :0) .  By Corollary 2.5, fi](a, ~)>_0 for all (i, ])e(M, N), thus 
g~ e)___0. Since (a, O ) e X  ~ it follows that  d =  Max g~ v)>_O, and that  the 

(u, v) ~ x  ~ 

set X 1 where gO attains its max imum on X ~ is in the core. 
To  show (iv), let r r  an alternative opt imal  (M, N)-matching,  and 

(io, jo) e r \  a C  ~~ By Corollary 2.6, fiido (u, v) = 0 for all (u, v) e C. Hence  c~ 1 cannot  
exceed 0 and X 1 cannot be a proper  subset of the core. �9 

3.5. Corollary. The lexicographic center X 0+1 is independent  of the choice of or. 

Proof. In case of more  than one opt imal  assignment, (9/1 ~---0 and X I =  C. Further,  
s r = 0  for any opt imal  r, so all the consequent  parts of the definition (including 
X ~ are independent  of the choice of o-. �9 

Due to the removal  of all the functions which are constant on the feasible set 
of the subsequent  iteration, we have the following 

3.6. Lemma. For  any r, l <_r<_p, dim(Xr+l)<dim(Xr).  

Proof Let  (i, j)~r+l r The function fq(u, v) is constant on X r+l but not con- 
stant on X r, because otherwise it would have been removed  earlier (r___ 1). Sup- 
pose dim (X r+ 1) = dim (X r). Since X r+ l C X r and f0 is affine linear, so )~j must  be a 
constant on X r as well, a contradiction. �9 

3. 7. Example. An assignment game with dim (X 1) = dim (X~ 
Consider the game whose augmented  profit  matrix is [o0 
A =  0 [~] 1 

0 2 [ ]  " 

0 2 0 

An  opt imal  assignment is o-={(i, i ) : i = 0  . . . .  , 3}. Then a o = - 2 ,  and X ~ can be 
identified with {Ul e R :  0 <_ Ul - 4} because once ul is fixed then vl = 4 - ul is given, 
the other  variables all must be  0. So d i m ( X  ~ =1.  By L e m m a  3.4(iv), X I = C  be- 
cause z =  {(0, 0), (1, 1), (2, 3), (3, 2)} is also an optimal  assignment. For  the core we 
get Ul---1, and vl---2 implying ul---2. It  is easy to see that  C can be identified with 
{ l / 1  e R  : 1 ~__ b/1 ~--- 2}, thus dim (X 1) = 1, too. �9 

Next,  we show that  d i m ( X  ~ =0.  
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3.8. Theorem. The lexicographic center of an assignment game consists of a single 
point. 

Proof. It follows from Definition 3.1 that for every (i, j)~A ~ (0_<r_<p+l), ]}j 
is constant on XL Since AP+I=(M, N) and XP+I~O, so in particular every 
3~o (u, v) = u~, i e M, and foj (u, v)= vj, j ~ N, is constant on X p+ 1. This is possible only 
if X p + l  is a single point. �9 

In order to prove that the lexicographic center coincides with the nucleolus 
we need the following 

3.9. Lemma. For any r, O<_r<_p, if (u, v )eX  r+l and (y, z ) e X r \ X  r+l then F(u, v) 
> L F(y, z). 

Proof. First, we observe that if (u, v ) e X I C C  and (y, z ) e I \ C  then F(u, v)>r 
F(y, z), so we can assume without loss of generality that (y, z) is also in the core. 
Then for any coalition (S, T), f((S, T), (u, v))>_O and f((S, r ) ,  (y, z))>_0. 

Claim. I f f ( (S ,  T), (u, v ) ) < a  r+l then f((S, T), (y, z))=f((S, T), (u, v)). To 
prove this, let f((S, r), (u, v))< a r+l, and for some (S, T)-matching/x, V(S, T)= 

aij hold. By Lemma 2.4, f((S, r), (u, v))= }2 )~j(u, v). Further, for core 
(i,j) �9 IX (i,j) �9 Ix 

elements the satisfactions are nonnegative, hence )~j(u, v ) < a  r+l for all 
(i, j ) e # .  Since (u, v ) e X  r+l, none of (i, j )e /x  can be in E r. Thus /xC2~ r, and 
all the functions f~j, (i, j)e/z,  are constant on XL This implies f~j(u, v)=3~j(y, z) 
for all (i, j)e/x, which in turn implies our claim f((S, T), (u, v))=f((S, T), (y, 
z)). 

On the other hand, since (y, z )eX~\X r+ 1, there must be an (i, j )E~  r such that 
J~j(y, z ) < d  +1. At the same time ]}j(u, v)___o~ "+1. This implies that more compo- 
nents of vector F(y, z) are less than a r+l, than of vector F(u, v). Naturally, such 
components appear in the first positions in both vectors. Moreover, the claim 
shows that the entries of F(u, v) which are smaller than o~ r+l are repeated in 
F(y, z). If k is the first index such that F~(u, v)~Fk(y, z) then Fk(u, v)> 
Fk(y, Z), hence F(u, V)>L f (y ,  Z). �9 

3.10. Theorem. The lexicographic center of an assignment game as given in Defi- 
nition 3.1 coincides with the nucleolus of the game. 

Proof. By Theorem 3.8, let X ~ ={(a, ~)}. As in the proof of Lemma 3.9 we have 
F(a, f~)>-L f ( y ,  z) for all (y, z)eI, therefore v={(a, ~)}. �9 
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4 Settled-Unsettled Partitions 

T. Solymosi and T. E. S. Raghavan 

In this section we investigate the structure of the partit ion (M, E ~) of (M, N)  in a 
fixed iteration r, 0_< r_< p, of Definition 3.1. We call X = X  r the current feasible 
payo f f  set, and A = A r, ~ = E ~ the current set of settled, unsettled coalitions, respec- 
tively. Coalition (i, j ) c A  is settled because its satisfaction fq is constant on X. Co- 
alition (i, j) c E  is unsett led because J~j varies on X (except perhaps in some degen- 
erate games, like in Example 3.7, but even there only for X = X ~  The fixed opti- 
mal (M, N)-matching ~r of Definition 3.1 will often be used in the sequel, but  it will 
turn out, as it did for the definition itself, that  the particular choice of o-has rele- 
vance for the case X = X  ~ only. Although in ~ the fictitious row player might be 
matched to more  than one column player (in addition to the fictitious column 
player, to the optimally unmatched 'real'  players in case of IMI < [N]), it will 
prove convenient to write "(i, o-(k)) cA"  instead of the precise "(i, j ) e A  for some 
(or all) (k, j ) c t r "  even for k = O ~ M .  

The most important  feature of the partit ion is formulated in the following 

4.1. Lemma.  The settled-unsettled partit ion (a,  E) satisfies 

(i) (i, o-(k))~A implies (k, o-(i))cA; 
(ii) (i, o ' (k) )eA and (k, cr( j ) )eA implies (i, o-(j))cA; 

for all i, j, k e M. 

Proof. Let us recall that for i c M = M \ { 0 }  there is a unique partner  ~r(i)ck2 
=N\{0}, and for i = O c M ,  o-(0)={0}~aN\cr(M), so each column is a partner  of a 
row. Remember  also that throughout  the paper  I MI ___ [N]. 

To show (i), let (i, o-(k))cA. It implies j~(k) --- constant on X. Since f i~(i)-0 
and fk~(k)=--O on X ~  by combining these three equations we get 
fio-(O +fko-(k) --fio'(k) ---- constant on X. It follows that Uk + Vo-(O -- constant on X, hence 
fko-(i)--constant on X. Without loss of generality i C k, so (i, ~r(k))cA = A r implies 
r--- 1. Thus, fk~(0 - constant on X = X r implies (k, o-(i)) e A. 

Claim (ii) is shown similarly. Let  (i, o-(k))cA and (k, or(j))cA, implying that 
U~+Vo-(k) and Uk+Vo-u) are constant on X. By adding these two and subtracting 
Uk+ Vo-(k)=ak~(k) we get that u~+ v~(j) is also constant on X. As before this means 
(i, o-(j)) e a .  �9 

Given a (A, ~) partition, we define a relation on the rows by 

i - k  if and only if (i, o - (k) )ch  (4.2) 

for all i, k ~ M ,  and we say that rows i and k are tied. By Lemma 4.1 we immediately 
have the following 
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4.3. Corollary. The relation - is an equivalence on M. 

Let  us denote  by Mo, Mz, .. . ,  Md the equivalence classes of - ,  and by No, 
N1, ..., Nd the sets of the corresponding partners,  i.e. Np=o'(Mp), O<_p<_d. We 
require 0eMo,  hence 0eNo.  Naturally, No, N~ . . . . .  Nd is a parti t ion of N, so it 
defines an equivalence on N. We say that  two columns are tied if their partners  are 
tied, and write o-(i) - o-(k) if and only if i -  k. The partit ions of M and N induce a 
part i t ion of (M, N )  into blocks, namely (M, N ) =  U (Mp, Nq). We also say 

O~p,q~d 

that  two mixed pairs are tied if the two row and the two column players are 
tied. 

Now we are ready to state the main result. It asserts that  (i) the settled coali- 
tions are exactly the pairs of players such that  one is tied to the optimally matched 
par tner  of the other, and (ii) the satisfactions of tied coalitions can vary only in an 
identical way. 

4.4. Theorem. The sett led-unsettled part i t ion (h, E) satisfies 

(i) 2x = [.J (Mp, Np), hence ~ = U (Mp, Nq); 
O<--p<--d O<--p~q~d 

(ii) if (i, j), (k, e) e (Mp, Nq) then fij--fke is constant on X. 

Proof. To show (i), first let (i, j )e  (Mp, Np) for some p,_ 0 _ p  _< d. There  exists 
keMp such that j=~r(k) .  Since i - k  so (i, j )= ( i ,  o:(k))eA. Hence U (Mp, Np) 

O<--p<--d 

CA. Conversely,  let (i, j ) e A  and j=o - (k ) ,  keMp for some p. Since (i, j ) =  
(i, cr(k))eA,  so i - k ,  implying (i , j)e(Mp, Np). Hence  AC U (Mp, Np). 

O<_p<_d 

To show (ii), first we prove  that  i - k ,  i, k e M, implies u i -  Uk =--constant on X. 
If  i - k  then (i, ~r(k))eA. Thus f,.~(k)=U~+V~(k)--ai~(k)--constant on X. By sub- 
tracting fk~(k~ = Uk + V~(k) -- ak~(k) =-- 0 we get u~-- Uk =-- constant on X. Similarly we 
can show that  if columns j and ~ are tied, then v j -  Ve =- constant on X. Now if (i, j), 
(k, e) e (Mp, Nq) then ( ~ j - f k e )  (u, v) = (u i -  uk) + (v j -  Ve) - (aij- ake), a constant  on 
X because i -  k and j -  ~. @ 

4.5. Corollary. Let A = A r = ( M 0 ,  No)u. . .U(Md, Nd) and r>_l. Then dim (xr).-~d. 

Proof By Theo rem 4.4(ii), for each p = 1 . . . . .  d there are linear functions of the 
form (f~o-fko) (u, V)=Ui--Uk, i, keMp,  which are constant on X = X  r. We can 
choose IMp I - 1  linearly independent  ones for each l<_p_<d. Any  two of these 
functions related to different equivalence classes are also linearly independent .  In 
the settled class Mo even the functions ui = u i -  Uo are constant on X r. So there are 

d 

]Mo[ + ~ ([Mp]-1)= [ M ] - d  linearly independent  linear functions which are 
p = l  

constant  on X r. Hence  d i m ( X  r) _<d, because once the values of ui, i eM,  are fixed, 
the values of vj, j e N ,  are given by vj=ai~-ui for all (i, j) eo-. 
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On the other hand, if r__ 1 then the functions rio (u, v) = ug, iE LJ Mp are 
l <--p<_d 

not constant on X ~. Although the satisfactions of tied players must change by the 
same amount, but there is no binding relation between players from different 
classes. So we can find d linearly independent vectors in X ~, by changing the var- 
iables in only one class at a time, and keeping the others unchanged. (Again, the 
values of vj, j e N ,  are given by v]=aq-u i  for all (i, j)eo-.) Hence dim(Xr)>_d.  �9 

4.6. Example. An assignment game with dim (2(~ < d (0) = t MI- 
Consider the profit matrix A = [  2 21]. The unique optimal assignment is 

o-(i) =i, i=1,  2. It is easy to see that u2=u~, v , = 2 - u l ,  v 2 = 2 - u 2  must hold in X ~ 
so X~ Therefore, d i m ( X ~  [a~l =min([N/] ,  IN[). 

5 The Feasible Payoff Sets 

In this section we investigate the structure of the feasible payoff sets X ~, 
O<r<_p+ 1, in Definition 3.1. It turns out that all these sets have the lattice-type 
property of the core, characterized by Shapley and Shubik (1972). 

First let us give an explicit description of these sets. 

5.1. Lemma. Let v denote the nucleolus payoff, and let co=fq(v  ) for all (i, j) 
e(M, N). For r = l  . . . . .  p + l ,  

x r  = y r : =  {(U, U) e gw:j~](u ,  v)  = ci] v ( i ,  j )  e A t ,  f z j (u ,  v)  ~. og r V ( i ,  J) e ~ r } .  

Proof. For any r, 1 <_r<_p+ 1, the XrC Y~ inclusion comes immediately from the 
definitions and from v e X  r. We prove XrD yr  by induction on r. 

Let r = l  and (u, v ) e Y  1. The nonnegativity of (u, v) comes from a~_>0 and 
cq_>0 for all (i, ] )cA 1. In fact, cq=0 for all (i, ] )eh~ and Min c q = a  x 

(i,j) ~:~, 
because v e X  1. Since al__oz ~ and Y~~163 (u, v ) e X  ~ It follows that 
(u, v ) e X  1 because Min fq(u,  v)>>_a 1 and Min ci]=a 1 imply g~ v ) = a  1. 

(i,j) e~s 1 (i,j) e s 
Let us now assume X ~ = Y  ~ for some r, l<_r<_p. Let (u, v)~yr+l(#:O). 

Since v ~ X  r+~, Min c q = a  r+~. This together with Min fq(u, v ) > d  +~ imply 
(i,]) ~s (i.j) ~s247 

Min fq(u, v ) = d  +1. From d + ~ > a  r and A~CA r+~ it follows that not only 
(i,]) e 2~ 
(U, v) GYr(=x r) but also (u, v ) e X  ~+1. �9 

If we extend the above definition of M r also to the case r = 0, then obviously 
X ~ 1 7 6  v)>-(O, 0)}. Now for O<_r<_p and ar<_a<_ce r+l we define 

Y(r,  a):= {(u, v) e UV:fi] (u, v) = cq v (i, ]) ~ At, fi] (u, v) >_ a v (i, ]) ~ s r}. (5.2) 
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Evidently, as a increases Y(r, a) shrinks. In fact a r+z is the maximum value of oL 
for which Y(r, a) is nonempty. 

Next we show that the lattice-type property of the core holds for any of the 
sets Y(r, a). 

5.3. Lemma. For any O<_r<_p and ofr~--O{~a r+l, if (U 1, vl),  (U 2, v2)eY(r, a) then 
(u 1~2, v l^2)er ( r ,  a), where ul~2=max(u/1, u{) V ieM and v]^2=min(v 1, v 2) 
v jeN.  

Proof Let (u 1, vl), (u 2, vZ)eY(r, a). Obviously (u lv2, V1^2)~ UV. For  (i, j )~Er  
we have u~Z+v)>_u~+v]>aq+a and u~2+vZ>u~+v~>_aq+a, implying 
u ] ~ 2 + v] ^ z > aq + a. For (i, ]) �9 h ~ we have u] + v~ = aq + cq = u 2 + v 2, so if u] ~ 2 = u] 
(or u 2) then v)^Z= v) (or v~). In either case u~ ~ 2+ v]^Z= aq + cq. �9 

Since the lemma also holds for the set {(u, v ) _  (0, 0)}, the set X(0, a):= Y(0, a) 
c~{(u, v)_> (0, 0)} also possesses the lattice-type property. In light of Lemma 5.1, we 
define X(r, a):= Y(r, a) for l <_r<_p and ar < a < a  r+l. 

It is now easy to show the existence of the two special vertices. 

5.4. Theorem. Fix any 0 - r <_ p and ar--~ 0/---~ O/r + 1. Let /Ai = ai (r, a) denote the max- 
imum payoff for ieM,  and _vj=vj(r, a) the minimum payoff for j eN ,  over all 
payoff vectors in X = X ( r ,  a). Then (a, v)eX.  Also, for the analogously defined 
u_~,ieM, Oj, j eN ,  (u_, O)eX. 

Proof. Since X ~ is compact and X C X  ~ all the ai, _vj are well defined. In fact, 
every ai, ieM,  and _vj, j eN ,  is attained in an extreme point of the polytope X. 
Applying Lemma 5.3 repeatedly to these finite number of payoff vectors, we get 
the theorem. �9 

We refer to (a, _v) as the u-best (v-worst) corner of X. Clearly, if a <  a '  then 
ai(r, a)>-ai(r, a ')  for all ieM, and v_](r, a)<v_j(r, a')  for all j e N .  

Next we introduce the tools to be used to find these special vertices of the 
subsequent feasible sets. 

5.5. Definition. Fix any O<_r<_p and ar<-a<-o~ r+~. Let E = E  r. Let (a, v) denote 
the u-best corner of X = X ( r ,  a). We call the unsettled coalitions in E= =E=( r ,  a) 
={(i, j)e~:)~j(a,  _v)=a} active, the ones in E> =E>(r ,  a)={(i ,  j)~E:J~j(a, V) 
> a} passive. 

Recall that by Theorem 4.4 both the rows and columns are partitioned into 
d + 1 equivalence classes for some d > 0. Further, these two partitions induce a par- 
tition of (M, N)  into (d + 1) 2 blocks of tied coalitions. 

5.6. Definition. Fix any O<_r<p and ar<-a<-a r+l. Let d=d(r).  Define the di- 
rected graph G=G(r ,  a) =(D,  E)  on the set of nodes D = ( 0  . . . . .  d} by the set of 
arcs E = {(p, q) : 0 <_p ~ q <_ d, (Mp, Nq) n E = (r, a) r 0}. The graph G is proper if it is 
acyclic and contains no incoming arc to node 0, and improper otherwise. 
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A fundamental result for the algorithm is the following 

5. Z Theorem. For any 0 -< r_< p and a r <_ a <_ a r + 1, G = G (r, a) is proper if and only 
if a <  d +1. 

Proof  First, let G be proper. Denote by f (p) the length of the longest path in G 
ending in node p. Since the graph is proper, f (p) is a well-defined, nonnegative 
integer for any 0 _ p  <_ d, and of course f (0) = 0. Define (s, t) ~ UV by 

&= - e ( p )  if ieMp,  u  t j=e(q)  if j eNq ,  Y jeN .  (5.8) 

Consider the payoff (u ' ,  v ' ) =  (a, _v)+/3. (s, t) for some t ieR.  The satisfaction of 
coalition (i, j ) e ( m ,  N )  at the new payoff is ~j(u ' ,  v')=j~j(a, v_)+fl'(s~+tj). 
If (i, j ) eA  then p = q ,  so s i+t j= - e ( p ) + e ( p ) = 0 ,  thus fl does not alter the satis- 
faction. If (i, j ) eE=( :~0)  then p:/:q and there is a (p, q) arc in G, implying 

(p) + 1 _ f (q), hence s; + tj = - g (p) + f (q) _> 1. For/3 > 0 the satisfaction increases 
by at least /3. Note that there is always an active coalition whose satisfaction 
increases by exactly/3, because there is always an arc involved in a longest path. If 
(i, j )~E> then )~j(a, _v)>a, so for a small enough fl>O even fq (u ' ,  v ' )>_a+f i  
holds. Therefore, it is possible to choose /3> 0 small enough such that Min fij 
(u ', v' ) = a +/3 > a, implying (u ', v ' )  ~X  and a r+ 1 > a. (~d) ~ 

Secondly, let G be improper. In case of a (p, 0) arc, there is i eMp and j e N o  
such that a~ + _v~- aq = a. Since (0, j) ~ (Mo, No) C A, foj (u, v) = vj =Coi for all (u, v) 
eX. Hence v_j=Coj. On the other hand, a~>_u~, implying )~j(u, v)_fq(a ,  _v)=a for 
all (u, v ) e X .  This shows that d+l_< a. In case of a cycle (p,  q), (q, k), ( k , p )  (for 
simplicity of length 3 only), there are rows and columns in the related classes such 
that fipjq (a, v) = a, fiqj~ (~, v) = a and )~]~ (a, _v) = a. While summing them we can 
replace the sum of the variables with a constant, because the same variables ap- 
pear in fi#~ (a, v)+f~j~ (a, _v) +fi~i~ (a, v)=0.  (The cycle guarantees that for every 
node involved there is exactly one row and one column.) Actually, this can be 
done for any (u, v)eX. Thus, the sum of the satisfactions along the cycle is inde- 
pendent of the payoff. By summing the inequalities fi#~ (u, v) _> a, etc. along the 
cycle, we get 3. a = E )~j (a, _v) = Z fq (u, v )_  3. a, implying j~pj~ (u, v) = a, etc. 

cycle cycle 

for any (u, v ) e X .  Therefore, d+l<_a.  �9 

5.9. Corollary. Let G(r, a) be proper and direction (s, t) be given by (5.8). If 
0 _< /3 ~ /3 (r, a):=Max{y: Min j~j((a, _v)+y'(s, t ) ) = a + y }  then (u ' ,  v ' ) = ( a ,  _v) 

( i , j )  ~ Y. 

+/3" (s, t) is the u-best corner of X '  = X(r ,  a + fi). 

Proo f  First of all, fi (r, a ) >  0 is finite, because the uniform increase - g  ( p ) +  f (q) 
in the satisfactions of the tied coalitions in block (Mp, Nq) requires the uniform 
decrease - ~ (q) + e (p) in block (Mq, Np). Obviously (u ', v ' )  e X ' .  

Let (u, v ) e X '  be chosen arbitrarily. We claim for all j e N  that 
vj >--v/=vj + ~ (q)./3 if j ~ Nq. For simplicity, assume ~(q)=  2 and that (p, k), (k, q) 
is a longest path to node q. There are ipeMp, ]keNk, ikeMk, jqeNq such that 
aip+ vj ,-ai#k = a and ~ik-.b U_jq--aikjq = a. Subtract these equations from 
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u~p + vj~- a~pj~ >_ a + ~ and u~ + vj~- ai~i ~ >_ a + ~, respectively. Then we have 
(ui~ - a~) + (vj~- _vj~) ___/3 and (u~ - &~) + (vj~ - _vj~) _/3. By adding these two and 
using ui~ + vj~ = a~ + vj~ we get vj, >_ _vj~ + 2./3 + (&, - Uip ) ~ ~jq 7[- 2./3 = v/. The last 
inequality holds because (a, v) is the u-best corner of X D X '  ~(u, v). Hence the 
claim. Similarly, we can show u~_< u / f o r  all i e M. Therefore, (u ' ,  v ' )  is the u-best 
corner of X ' .  �9 

5.10. Corollary. Let G(r, a) be improper. If arc (p, q) is contained in a cycle or 
q = 0  then (Mp, Nq)u(Mq, Np) CEr+I. 

Proof. Let (p, q) be one of the arcs that make the graph improper. There are 
ieMp and jeNq such that j~j(a, _v)=a, where (a, v)=(~(r ,  a), _v(r, o0). In the 
proof of Theorem 5.7 we actually showed that f~j(u, v ) = ~  for all (u, v )eX= 
X(r, ar+ l )=Xr+l .  By Theorem 4.4(ii), j~j-fke-constant  on X for any (k, f)  
e(Mp, Nq), so fke-constant  on X, implying (k, f )eEr+l .  Therefore, (Mp, Nq) 
C~r+l. The inclusion (Mq, Np)C~r+l comes from Theorem 4.4(i). �9 

6 The Algorithm 

In this section we present an algorithm that is a realization of Definition 3.1. The 
idea is to construct a finite sequence of payoff vectors such that each payoff is the 
u-best corner of the current feasible set, and the last one is the nucleolus. The 
problem of finding the next payoff is translated to finding the longest paths in the 
graph which summarizes the basic relations among the unsettled coalitions. This 
reformulation has the advantage that it immediately reveals the subset of relations 
which prevents the further improvement in the guaranteed satisfaction level, if 
such case happens. 

The algorithm consists of iterations, the iterations in turn consist of steps. The 
iterations are the same as in the definition, so a new iteration starts whenever the 
settled-unsettled partition (the node set in the graph) has to be changed. In a step 
the guaranteed satisfaction level is increased by moving along a direction deter- 
mined by the currently worst-off unsettled coalitions. As soon as a previously pas- 
sive coalition becomes active (a new arc is added to the graph), the direction has to 
be changed, and a new step begins. When no improving direction can be found, 
then the coalitions involved in the deadlock are removed from further considera- 
tion and the iteration ends. 

First, we present the algorithm in general terms, then we discuss it part by part 
in more detail. 

6.1. Algorithm. Given: or, an optimal (M, N)-matching on A = (aq)(M,N)>0. 
Initially, let r=0 ,  A=o-, E = ( M ,  N)\o-, ui=ai~(i) vi~M, vj=0 vjeN,  f~j= 

u i+vj -a  u v( i , j )~(M, N), a =  Min )~j. 
( i , j )  ~ 
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(1) While E:~0 do (2)-(12) (iteration r) 
(2) Build the graph G := G (r, c~) 
(3) While G is proper do (4)-(9) (step (r, cO) 
(4) Find direction (s, t) 
(5) Find step size/3:=/3(r, o 0 
(6) Update arcs in graph, G:=G(r, o~+/3) 
(7) Update payoff, (u, v) := (u, v) +/3. (s, t) 
(8) Update satisfaetions, fq:=fq+/3.(si+tj) v(i, j )~E 
(9) Update guaranteed satisfaction level, a := a +/3 

(10) Find to-be-settled coalitions ~, := Er+ 
(11) Update partition, E : = E \ ~ ,  A:=Au~,  
(12) Set r : = r + l .  

(6.1.1) Is ~S~0? The answer to this question is equivalent to the answer for "Is 
d > 0 in the decomposition A = (M0, No) u . . .  u (Md, Nd) ?". 

(6.1.2) Build the graph G:=G(r, c O. Given: (A, E), d, c~, j~j v(i, j)e(M, N). 
The set of nodes is D={0 . . . . .  d}. The set of arcs is E={(p ,  q):O<_p-~q<_d, 
(Mp, Nq)n E = r 0}, where E = = {(i, j ) e E  :fq = oz}. In order to guarantee that there is 
at least one arc in G, set a:=max(o4 rain J~j) if necessary. 

( i , j )  e 

(6.1.3) Is G proper? Given: the directed graph G = (D, E),  let us initialize ~, :=0. 
(A) Check if there is an incoming arc to node 0. If yes, then melt the tail-node 

of that arc into node 0 but preserve all other arcs. That is, if (p, 0)e  E then drop 
arc (p, 0) from E; in case of (p, q)eE add arc (0, q) and drop (p, q); in case of 
(q, p)~E add (q, 0) and drop (q, p). Delete node p. Set $,:=~u(Mp, N0)u 
(Mo, Np). Repeat (A) until the answer is no. Proceed with (B). 

(B) Check if there is a cycle. If yes, then shrink the cycle into one node which 
inherits all incoming and outgoing arcs, to and from the cycle. That is, if C= 
{(Pl, P2), (P2, P3) . . . . .  (pk, Pk+l =p~)}C E, then add a new node p to D; remove all 
arcs in C from E; for all i = 1, . . . ,  k in case of (Pi, q) e E  add (p, q) and drop (Pi, q); 
for all i=1 . . . . .  k in case of (q, pi)eE add (q, p) and drop (q, pJ .  Delete all the 

k 

nodes in C from D. Set $ , :=5 u U ((Mpi, Npi+l)u(Mp .... Npi)). Repeat (B) 
i = I  until the answer is no. 

If after completing (A) and (B) the set ~ is still empty, then G is proper, 
otherwise G is improper and as the proof of Corollary 4.5 and Corollary 5.10 show, 

is exactly the set of to-be-settled coalitions Er+l. 

(6.1.4) Find direction (s, t). Given: a proper graph G=(D, E). An easy-to-de- 
scribe algorithm to find the length of the longest paths is the following. Set k:=0,  
H:=G. 

(C) Set ~ (p) := k for all nodes p in H with no incoming arc. Remove from H 
all such nodes together with all the arcs going out from them. Increase k : = k +  1. 
Repeat (C) until no nodes are left. 
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After  completing (C) set (s, t) according to (5.8). 

(6.1.5) Find the step size/3 :=/3 (r, a). Given: G = (D, E )  with g (p),  p e D, direction 
(s, t), f~j, (i, j) e s  and a. Determine those blocks of tied coalitions whose satisfac- 
tion does not increase along direction (s, t), i.e. E - : = { ( p ,  q):O<_p:/:q<_d, 
- e (p )+f (q )___0} .  Clearly E-nE=O.  Calculate /3:=Min{/3u;/3u=(f~j-a)/ 
( 1 - s i - t j )  v(i ,  j)e(Mp, Nq) such that (p, q)~E-}. We call any such coalition 
where the above minimum is attained a threshold coalition. 

Claim. /3=/3(r, o~) as defined in Corollary 5.9. For a threshold coalition 
(i, j ) e  s we have si + tj_< 0 and j}j > a. Further,  3'=/3u is the threshold value where 
f~j+3"(si+tj)=a+% Namely, the nonincreasing satisfaction of the coalition 
reaches the increasing level of satisfaction guaranteed for all unsettled coalitions. 
Since for (i, j ) e s  with &+tj>_l such restriction does not apply, so really 
/3=Max{3': Min j~j((u, v) + 3'. (s, t)) = a +  3'}. Recall from the proof  of Theorem 5.7 

(i,j) e ~, 
that there is always an active coalition whose satisfaction increases by exactly 3' 
along the direction found in (6.1.4). 

(6.1.6) Update arcs in graph, G:=G(r, a+fi). Given: the proper  graph G =  
G(r, a) = (D ,  E )  with e(p),peD, and E -  as defined in (6.1.5). The node set does 
not change. Keep arc (p, q)eE if - e ( p ) + e ( q ) = l ;  drop arc (p, q)eE if 
-e(p)+e(q)>_2; add arc (p, q )eE-  if flu=fi(r, a) for some (i, j)e(Mp, Nq), i.e. 
flu is a minimal threshold, i.e. (i, j) ~ s  is a passive coalition that first became active. 
Since we eliminate the redundant  arcs (the ones not involved in any longest path), 
the updated G is G(r, a+fi). 

(6.1.10) Find to-be-settled coalitions ~. :=E,+> Done  in (6.1.3). 

The other parts of the algorithm are self-explanatory. 
Next we show that the algorithm is a realization of Definition 3.1. 

6.2. Theorem. In Algorithm 6.1 at the beginning of iteration r, A = A  ~, s  r, 
a=d ,  (u, v ) = ( a  ~, v ~) (the u-best corner of Xr),fij=fi](a r, u_ r) V(i,j)e(M, N). 

Proof. We use induction on r while E r O. 
For r = 0 the claim is trivially true. 
Let  us assume that the claim is true up to some r _  0 and s r O. We show that 

at the end of iteration r (i.e. at the beginning of iteration r +  1 if s is still nonemp- 
ty) A----A r+l, E----s r+l, Ol=a r+l, (hi, U)=(l~ r+l, _ur+l), fij.-~-fij(a r+l, _V r+l) V(i, ]) 

(M, N).  
To this end, we argue that the algorithm generates a sequence (r, a t ) ,  . . . ,  

(r, a), (r, a + f i ( r ,  a)) . . . .  of intermediate steps such that (i) the sequence is finite; 
(ii) the last one is (r, d + l ) ;  (iii) at the beginning of each one (u, v ) = ( ~ ( r ,  a), 
v (r, a)) (the u-best corner of X(r, a)) and f~j =fi] (a (r, a), v (r, a)) u (i, j ) e  (M, N).  
Finiteness comes from the fact that at the end of a step a new arc, which is related to 
a block with nonincreasing satisfactions, must be added to the graph, but  once the 
satisfactions in a block become increasing they remain increasing in subsequent 
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steps. Theorem 5.7 shows that when the sequence ends (r, a r+~) is reached. Since 
(iii) is true at the first step (r, d )  (by the inductive hypothesis), so the repeated 
quote of Corollary 5.9 and fq(u, v) + y. (si+ tj) =)~j((u, v) + y. (s, 0) proves (iii). 
Now, when (r, a r+l) is reached, the set "2 is found in (6.1.3), which is exactly the set 
of to-be-settled coalitions Er+~. Hence after (6.1.11), A = A r U E r + I = A  r+~, 
E = E r \ E r + l = E r + a .  Obviously, X(r, ar+~)=Xr+a,  so at the end of iteration r, 
(u, u)= (a (r, o/r+ 1), _v(r, ogr + 1))=(a  r+l, _Vr+ 1). Thus j~j =fq (a r+l, V ~+1) u 
as we claimed. �9 

6.3. Corollary. Algorithm 6.1 stops after iteration r=p. The final (u, v) is the nu- 
cleolus and )~j = cq V (i, j) e (M, N). 

Proof. The theorem implies that at the beginning of iteration r=p, E =]s and 
in that iteration `2 =Eo+l is removed from ~. Since EP=]~p+I, at the end of itera- 
tion r = p we have E = 0. Hence the algorithm stops. From the above proof it also 
follows that the final (u, v) is the u-best corner of X ~ which is, by Theorems 3.8 
and 3.10, a singleton containing only the nucleolus. Therefore the final payoff is 
the nucleolus and j~j = cq v (i, j) e (M, N). �9 

Although the finiteness of the algorithm is already implied by the previous 
arguments, next we give upper bounds for the number of iterations and steps. 

6.4. Theorem. In Algorithm 6.1 the number of 

(i) iterations is at most m; 
(ii) steps is at most 1/2.m(m+3); 

where m =  IMI = m i n ( ] M [ ,  [NI). 

Proof. (i) From (6.1.3) it follows that each iteration decreases the number of 
nodes in the graph by at least one. Initially there are m + 1 nodes, and the algo- 
rithm stops when only the settled node 0 is left. 

To prove (ii), at the beginning of each step let us color every unsettled block 
(Mp, Nq), p --/: q, and every coalition (i, j) ~ (Me, Nq) by blue if there is a path from p 
to q in the current graph; by red if q = 0 or (Mq, Np) is blue; by green otherwise. If 
(i, j) is blue then si + tj = - ~  ( p ) +  e (q )_  1, so at the end of the step the passive 
coalitions (may be only one) which become active are red or green. If only green 
coalitions become active, let us call the step a green step. In such a step the graph 
remains proper, and the threshold coalitions, together with all the tied ones in 
their block(s), turn blue in the next step. Hence after a green step the number of 
blue coalitions is strictly increased. If at least one red coalition becomes active, 
then we call the step a red step. In this case the graph becomes improper and the 
settled-unsettled partition has to be updated. Since this is done by joining smaller 
blocks into larger ones, it might happen that a smaller green block turns blue or 
red, but no blue or red coalition can turn green. Hence after a red step the number 
of blue coalitions is not decreasing. Since there are always at least as many red 
coalitions as blue ones, the number of green steps is at most 1~2.re(m+1). The 
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number of red steps is at most m, because each one completes an iteration. There- 
fore, the number of steps in the algorithm is at most 1/2 .m(m+l)+m= 
1~2.re(m+3). �9 

The key factor in a practical implementation of the algorithm is a routine 
which, for a directed graph, either determines the length of the longest path to 
each node if the graph is acyclic, or ~ exhibits the arcs that form the cycle(s) other- 
wise. For one such routine which requires at most O (d 2) elementary operations 
for a directed graph with d nodes, see Noltemeier (1975). Since generating si+ tj, 
calculating fii], updating )~j for all (i, j) e 1~ can be done in O (m. n) elementary op- 
erations and d___ rn ___ n, so each step can be carried out in at most O (m. n) elemen- 
tary operations. 

To compute the so called fair outcome (the midpoint of the long axis of the 
core suggested by Thompson (1981)) we need both the u-best and the v-best cor- 
ner of the core. The u-best corner can be found in the first iteration of the algo- 
rithm as presented above, by computing the payoffs at o~ = 0. The v-best corner can 
be determined by simply changing the roles of the rows and columns, i.e. by find- 
ing the u-best corner of the core of the game on the transposed profit matrix. The 
modifications in the algorithm necessary to accomodate the case I M]_> IN[ are 
obvious. 

Finally, we note that the algorithm (which requires an optimal assignment) 
can be modified to find an optimal assignment itself. We can start with any full 
assignment pretending it is optimal and we are looking for the nucleolus. The dif- 
ference comes only when an iteration ends. Then we can improve the assignment 
along the cycle or the path to the settled node. The current assignment is optimal 
when o~ becomes nonnegative. In this way a primal, non-simplex algorithm can be 
obtained, which generates primal feasible (but not necessarily basic) solutions and 
maintains complementary slackness while trying to reach dual feasibility. The 
method of Balinski and Gomory (1964) has similar features. 

7 An Illustrative Example 

Let us consider the (4, 5)-person assignment game with augmented profit- 
matrix 

AIi I[]~ ~ ~ ~ 1 

! . ,  

6 [ ]  4 5 9 
4 3 [ ]  s 3 =(~'J)=_o, . . . ,4 .  
0 1 3 [ ]  4 - -0 , . . . , 5  

2 2 5 7 [ ]  
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The (unique) optimal (M, N)-matching or={(0, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5)} 
is denoted by the boxes around the entries. Initially they are the only settled coali- 
tions, h = o-. Throughout the algorithm these optimally matched players share the 
exact profit they make (see Corollary 2.6). Initially everything is given to the row 
players and nothing to the columns, i.e. we start with payoffs ua = 7, u2 = 7, u3 = 6, 
u4=8, and vj=0, j = l ,  ..., 5. Remember that always u0=v0=0. Since here 
(0, 1)eo-, vl remains 0. The satisfaction matrix f i j ~ - ( u i - l - u j - - a i ] ) i = o  . . . . .  4 ; j = o  . . . . .  5 is 
used and updated. Recall that u~ =f~o and vj =foj, i.e. the current payoffs are in the 
0-th row and column. 

Iteration r =  0 begins. The satisfaction matrix is the following: 

p: 0 1 2 3 4 si: 
1 2 3 4 5 

/ :  

0 0 

1 1 

2 2 

3 3 

4 4 

tj : 

o 
3 o 

. . . .  

70] 
I 

701 
I 

60[ 
I 

8-111 

[] O0 O0 O0 0-}-1 

Io [~  30 20 2* - -  + 1  

30 40 [ ] - l o  4+, 

60 50 30 [ ]  2+1 

6_1 6_1 3-1 1-1 [ ]  

0 0 0 0 +1 

o 

o 

o 

o 

-I 

/~=I 

The index p of the node a player belongs to is indicated on the left or top margin 
of the satisfaction matrix next to the index i or j of the player himself. The initial 
guaranteed satisfaction level is ~ = a 0 = - 2 .  It is attained at coalition (1, 5)e  
(M,, N4). We build the graph 

p: [ ]  

~(p): o o o o +1 

with nodes related to the equivalence classes of tied players (each one is a single- 
ton here except for the settled node), and with arcs related to active coalitions 
marked by a star (*) in the matrix (here E= ={(1, 5)}, so (M1, N4)c~E= r  hence 
the only arc (1, 4 )eE) .  The graph is clearly proper, so we start 

Step r = 0, a = - 2 .  We determine the length e (p) of a longest path to each node p, 
and direction (s, t) according to (5.8). The values si and tj appear on the right and 
bottom margins. For every currently unsettled coalition (i, j ) e 2  we calculate the 
change index si + tj (the numbers at the lower right corner of such entries), the rate 
of change in the satisfaction if the payoff is changed in the direction (s, t). For 
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every unsettled coalition with nonpositive change index we find the threshold fiij as 
in (6.1.5). For example, for coalition (4, 4) we have f44=1 and s4+t4= - 1 ,  so 
/344~-3/2" The step size/3 is the minimum of these numbers. H e re /3 =  1 and/324 is 
the only minimal threshold. Thus, coalition (2, 4) (marked by a diamond (@) in 
the matrix) is the only threshold coalition, i.e. a passive coalition that first becomes 
active. Hence we add arc (2, 3) to the graph, since (2, 4)e  (M2, N3). Updating the 
satisfactions and the guaranteed satisfaction level (here a =  - 2  + 1 = - 1 )  ends the 
step. 

Step  r = 0, oz = - 1 .  The updated satisfaction matrix is 

p:  1 2 3 4 s i :  
3 2 3 4 5 

i :  
0 0 

1 1 

2 2 

3 3 

4 4 

tj : 0 

0 0 
0 1 

F I I [ ]  00 00 0+1 1,1 

701110 ~-] 30 2+1 --1~-1 

70130 40 [ ]  -1,+1 5+1 
I 

6-1', 6-1 5-1 a-1 [ ]  30 
I 

7-1L 5-1 5-1 2-1 O0 <> [ ]  -,, I 

0 0 0 +1 +1 

0 

0 

0 

-1 

-1 

~ = 1  

The obviously proper updated graph with the current lengths is 

P: [] 

e(p): 0 

1 2- )-3 4 

0 0 +1 +1 

The step size/3 = 1 is attained at coalitions (0, 2)e  (Mo, N1), (0, 3)e (Mo, N2), and 
(4, 4)ff (Me, X3), so the arcs (0, 1), (0, 2), and (4, 3) have to be added. 

Step  r=0 ,  a=0 .  The nonnegative guaranteed satisfaction level indicates that the 
core is reached. In fact, the current payoff vector is the row-best corner of the 
core. 
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p:  

0 

1 1 

2 2 

3 3 

4 4 

t j  : 

j :  
i :  
0 

0 0 1 2 3 4 
0 1 2 3 4 5 

[] 

7-1 

-7-1 

5-3 

6-2 

0 

[]  0;1 0;1 1+3 2+2 

1~ [] --1 

3-1 4o 

5-3 4-2 

4-2 4-1 

0 +1 

30 3+2 O* +1 

[] o;~ 6+~ 

2-2 [ ]  3-1 

i_% o;i [ ]  

+1 +3 +2 

Si : 

0 

- i  

- i  

-3  

- 2  

# = 1/2 

The related graph is still proper.  

g(p): 0 +1 +1 +3 +2 

The step size fi = 1/2 =f i l l  =/~43 is at tained in blocks (M,, No) and (M4, N2), so the 
new arcs (1, 0) and (4, 2) must  be added. On the other  hand, arc (2, 3) must be 
dropped,  since the change index in the active block (M2, N3) (containing only the 
active coalition (2, 4)) exceeds 1, hence the satisfaction there will increase faster 
than the guaranteed min imum level. 

I t e r a t i o n  r =  0 ends .  We realize that  adding arc (1, O) makes  the graph improper .  

We melt  node 1 into the settled node 0 such that  all arcs are inherited (except 
possible multiple arcs). All the coalitions in blocks (0, 1) and (1, 0) becomes set- 
tled, hence are left out f rom any further calculation. The new graph (see the next 
one below) is proper ,  so 

I t e r a t i o n  r = 1 s tarts .  

S t e p  r = 1, ~ = 1/2 = c~ 1. The  updated  satisfaction matrix is 
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p: 
J 

i:  
0 0 

0 1 

2 2 

3 3 

4 4 

0 0 
0 1 

I 

0 Ii. 0 
v 

13/2, 1/2 
I 

13/2_2 I 5/2_2 
I 

7/2,2 7/2_2 

5-1 3-1 

0 2 3 4 
2 3 4 5 

1/2 [ 1/2;2 5/2+2 3+1 

] 0 3+2 4+2 1/2~1 

4_2 [ ]  1~ 13/2_ 

3-- 2 1~ [-~ 5/2-- 1 

7/2--1 1/2;1 1/2;1 [ ]  

tj : 0 0 0 +2 

The related graph is now proper. 

+2 +1 

.si: 

0 

0 

-2 

-2  

-1 

= 1/2 

p :  

g(p) : 0 +2 -I-2 +1 

The step size/3= 1/2 =/324 =~33 is attained in blocks (M2, N3) and (M3, N2). Arcs 
(2, 3) and (3, 2) must be added. Since arc (0, 2) is not part of any longest path, the 
change index exceeds 1, thus it must be dropped. 

Iteration r =  1 ends. The two new arcs form a cycle {(2, 3), (3, 2)}. 

p: [ ]  4 

Node 3 is melted into node 2 keeping all arcs (except the parallel ones). The coal- 
itions in blocks (M2, N3) and (M3, g2) become settled. After eliminating the above 
cycle the graph is proper again (see the one below). 

Iteration r = 2 starts. 

Step r=2 ,  a =  1 = a 2. The updated satisfaction matrix is 
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p: 

0 

0 

2 2 

2 3 

4 4 

tj : 

0 
j :  0 

,, 

11/2_2 

5/2_~ 

9/2-1 

0 0 2 2 4 
I 2 3 4 5 

0 I~213/2+2 7/2+2 7/2+1 

1/2 4+2 5+2 1" +1 

5/2-2 2-2 , 2-i 

5/2__ 1 3_ 1 1;1 1"+1 [ ~  

0 0 +2 +2 +1 

Si : 

0 

0 

-2 

-2 

-1 

= i / 6  

The new graph is proper. 

p: [ ] @ 4  
e(p): 0 +2 +1 

The step s ize /3= 1/6=/321 is attained in block (M2, No), so we add this arc. No arc 
has to be dropped here. 

Iteration r = 2 ends. The new arc makes the graph improper. 

Node 2 is melted into node 0. The graph now is 

still improper,  so node 4 is melted into node 0. Only the settled node is left, so 
the 

Algori thm stops with r = 3 ,  a = 7 / 6  = c~ 3. The final matrix containing the satisfac- 
tions at the nucleolus is 
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0 

13/2 
al/6 
la/6 
la/a 

o 1/2 11/6 23/6 11/3[ 
1 

1/2 0 13/3 16/3 7/6 / 
7/6 8/a 0 1 a5/61 

7/3 17/6 7/6 7/6 O ]  

The nucleolus itself is the final payoff  vector, located in the 0-th row and column, 
i.e. u= (13/2, 31/6, 13/6, 13/3; 0, 1/2, 11/6, 23/6, 11/3). 

From Step (r = 0, o~= 0) we know that the u-best corner of the core is (a, _v) 
= (7, 7, 5, 6; 0, 0, 0, 1, 2). With the obvious modifications in the algorithm we 
computed the v-best corner of the core in three steps and found (u__, 9) = (6, 4, 0, 2; 
0, 1, 3, 6, 6). Thus, the so called fair outcome is the payoff  vector (13/2, 11/2, 5/2, 4; 
0, 1/2, 3/2, 7/2, 4). 
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