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Abstract: This paper considers a subclass of minimum cost spanning tree games, called infor- 
mat ion graph games. It is proved that  the core of these games can be described by a set of at 
most 2n - 1 linear constraints, where n is the number  of players. Furthermore,  it is proved that  
each information graph game has an associated concave information graph game, which has 
the same core as the original game. Consequently, the set of extreme core allocations of an 
information graph game is characterized as the set of marginal allocation vectors of its asso- 
ciated concave game. Finally, it is proved that  all extreme core allocations of an information 
graph game are marginal allocation vectors of the game itself, though not all marginal alloca- 
t ion vectors need to be core allocations. 

1 Introduction 

G i v e n  is a set o f  c u s t o m e r s  N w h o  are  all  i n t e re s t ed  in a p a r t i c u l a r  piece o f  i n fo r -  
m a t i o n ,  e.g.  a c o m p u t e r  p r o g r a m .  A subse t  Z o f  N ,  cal led the  i n f o r m e d  set, a l r eady  
possesses  th i s  i n f o r m a t i o n .  O t h e r  c u s t o m e r s  m a y  p u r c h a s e  t he  i n f o r m a t i o n  f r o m  a 
cen t ra l  suppl ie r  for  a f ixed pr ice ,  say 1, or  they  m a y  sha re  the  i n f o r m a t i o n  wi th  a 
f r i end ly  c u s t o m e r ,  w h o  a l r eady  ha s  the  i n f o r m a t i o n .  These  f r i end ly  r e l a t ions  be-  
tween  c u s t o m e r s  a re  s to red  in an  u n d i r e c t e d  g r a p h  G = (N, E) ,  cal led the  i n f o r m a t i o n  
g r a p h .  P layers  i a n d  j c an  send  i n f o r m a t i o n  to each  o t h e r  i f  a n d  on ly  i f  {i, j }  e E .  

S u p p o s e  a subse t  o f  c u s t o m e r s  Sc_N decides  to  f o r m  a coa l i t ion .  A s s u m e  t h a t  
the  c u s t o m e r s  in  S all need  to get i n f o r m e d  a n d  t h a t  they  do  no t  seek the  c o o p e r a t i o n  
o f  c u s t o m e r s  ou t s ide  S in  o r d e r  to  ach ieve  th is  goal .  C o n s i d e r  t he  g r a p h  Grs  t h a t  
resul t s  f r o m  G by  de le t ing  all ver t ices  ( cus tomer s )  ou t s ide  S a n d  all  edges w i th  a t  
leas t  one  e n d p o i n t  ou t s ide  S. C u s t o m e r s  w i th in  one  c o m p o n e n t  o f  G~s can  freely 
share  t he i r  i n f o r m a t i o n .  So,  i f  th i s  c o m p o n e n t  c o n t a i n s  a c u s t o m e r  in the  i n f o r m e d  
set, t h e n  t he  cost  to  get all c u s t o m e r s  o f  th i s  c o m p o n e n t  i n f o r m e d  equa l s  0. O t h e r -  
wise, one  o f  the  c u s t o m e r s  in  th is  c o m p o n e n t  will h a v e  to  p u r c h a s e  the  i n f o r m a t i o n  
f r o m  the  cen t r a l  supp l ie r  a t  cos t  1 a n d  t h e n  sha re  i t  w i th  the  o t h e r  c u s t o m e r s  in  the  
c o m p o n e n t .  T h u s ,  the  cost  to  get  all p layers  o f  S i n f o r m e d  is equa l  to  the  n u m b e r  o f  
c o m p o n e n t s  o f  G~s t h a t  h a v e  n o  c u s t o m e r  in  the  i n f o r m e d  set. W e  d e n o t e  th i s  cos t  
by c (S). T h e  c o o p e r a t i v e  cost  a l l o c a t i o n  g a m e  wi th  p layer  set N a n d  cha rac t e r i s t i c  
f u n c t i o n  c is cal led a n  i n f o r m a t i o n  g r a p h  game .  

O n e  m a y  also view i n f o r m a t i o n  g r a p h  games  as m i n i m u m  cost  s p a n n i n g  t ree  
games ,  fo r  w h i c h  the  cost  to  c o n n e c t  two  c u s t o m e r s  or  to  c o n n e c t  a c u s t o m e r  to  the  
cen t r a l  supp l ie r  is e i the r  0 or  1. 
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It was proved by Granot  and Huberman [2] that  the core of  a minimum cost 
spanning tree game is never empty and that  a core allocation can be easily read f rom 
the minimum spanning tree for the grand coalition. However,  this core allocation is 
often considered unfair.  E.g.,  a player who is connected directly to the central sup- 
plier has to pay his individual  cost c({i}) in this solution. Thus, he will not  loose any 
money if he leaves the grand coalition. On the other hand,  the other players will 
loose if he does. It is plausible that  this player will use this threat  to convince the 
other players that  they should transfer some money to him. It is therefore desirable 
to have other options for the cost al location o f  a minimum cost spanning tree game. 
This problem was also addressed by Granot  and Huberman in [3]. They provided 
efficient procedures (polynomial  in the number  of  players) to generate other vectors 
in the core. However,  repeated applicat ion of  these procedures does not  exhaust all 
extreme elements of the core. As far as we know, no such procedure  is known at this 
moment .  For  the subclass of  informat ion graph games the situation is better.  In this 
paper  we shall give a description of  the core by means of  at most  2n - 1 linear con- 
straints and we give a characterization of  the extreme elements of  the core. 

2 Concave Information Graph Games 

Let (N; c) be a cooperative cost al location game. In analogy with the definit ion of  a 
convex savings game we shall call the game (N; c) concave if  

c(S) + c(T) > c (Sn  T) + c (Su  T) 

for all S, TC_N. 
In this section we give necessary and sufficient condit ions on the informat ion 

graph and the informed set, such that  the associated informat ion graph game is con- 
cave. First  we need some prel iminary definitions. 

Let G- - (V,  E) be an undirected graph. Two vertices v, we  V are called adjacent 
if {v, w} eE .  A sequence of  vertices (vl . . . . .  vk) is called apath from vl to vk if  vi and 
vi§ 1 are adjacent  for i =  1 . . . . .  k - 1 .  v~ is called the initial vertex and vk is called the 
final vertex of  the path.  An  elementary path is a path  for which no two vertices 
coincide. A circuit is a path whose initial and final vertex coincide, but  for which no 
other vertices coincide. A circuit that  meets only two different vertices is called a 
trivial circuit. Two paths f rom v to w are called vertex-disjoint if v and w are the 
only vertices that  these paths have in common.  

G is called a forest if  it contains only trivial circuits. It is called a tree if  it is a 
connected forest. G is called complete if v and w are adjacent  for  all v, w e  V (v r w). 
G is called bipartite if all circuits contain an even number of  vertices. G is called 
2-connected if  it is connected and if removing one vertex, no matter  which one, 
leaves the remainder of  the graph connected. 

For  convenience we shall say that  a set Uc_ V is connected, 2-connected, com- 
plete, etc.,  if the graph G~ u, which results f rom G by deleting all vertices outside U, 
has this property .  
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The maximal  2-connected subsets of  a set Uc_ V are called the blocks of  G. 
The following result can be found in many text books  on graph theory and is 

therefore stated without p roof  (see e.g. Berge [1]). 

L e m m a  1 (Menger, 1926). A necessary and sufficient condition f o r  a graph to be 
2-connected is that each pair o f  distinct vertices can be jo ined by two vertex-disjoint 
paths. 

Using this lemma one easily proves the following lemma. 

L e m m a  2. Let  S be a 2-connected subset o f  N and i , j ,  k~S .  Then there exists an 
elementary path f r o m  i to j that contains k. 

Proof: According to lemma 1, there exist two vertex-disjoint paths from i to k. At  
least one of  these paths does not  contain j .  Thus, there exists a path  from i to k not 
containing j .  Fur thermore ,  there exist two vertex-disjoint paths f rom k to j .  It is 
clear that  all of  these paths may be taken elementary. Follow the path  from i to k 
until it hits one of  the paths f r o m j  to k. F rom here, follow this path  until the vertex 
k is reached. Then finally, follow the second path from j to k backwards.  This 
way, we have constructed an elementary path  from i to j ,  which contains the ver- 
tex k. []  

L e m m a  3. Let  G = (V, E) be an undirected graph with the property that each 2-con- 
nected subset o f  V is complete. Then we have: i f  S, To_ V are connected, then also 
S n  T is connected. 

Proof: Suppose v, w~Sc~ T. Let (So . . . . .  sn) be a path  f rom v to w which uses only 
vertices in S and let (to . . . . .  tin) be a path from v to w which uses only vertices in T 
(so So = to = v and sn =tm = w). Suppose si = t; for i = 1 . . . . .  h. I f  h = n or h = m then 
clearly we have a path  f rom v to w which uses only vertices in Sc~ T. Therefore,  
suppose h < m i n ( n ,  m). Let k be the smallest index greater than h, for which one of  
the t/'s equals sk, say te =sk. Such indices exist since sn = tm'= w. Then (sh . . . . .  s#) and 
(th . . . . .  te) are two vertex-disjoint paths f rom sh = th to Sk = te. It is clear that  the set 
of  vertices that  lie on these two paths form a 2-connected set. Thus, this set is com- 
plete, and therefore {Sh, Sk} is an edge of  G. Now, remove all vertices between Sh 
and sk f rom the pa th  (sl . . . . .  sn) and remove all vertices between th and te f rom the 
path  (tl, . . . ,  tm). Then both sequences remain paths f rom v to w. After  renumbering 
the remaining vertices in both paths we have s i=  ti for i =  1 , . . . ,  h +  1. Repeat this 
process until both  paths are identical.  The process ends with a path  f rom v to w, 
which uses only vertices in Sc~ T. Since v and w were chosen arbitrari ly,  it follows 
that  S n  T is connected. [] 

L e m m a  4. Let  G = (I,7, E) be an undirected graph with the property that each 2-con- 
nected subset o f  V is complete. Furthermore, let S, T c  V with components respec- 
tively $1 . . . . .  Sk and TI . . . . .  Te. Let  ~ be the bipartite graph with node set 
7 / =  {$1 . . . . .  Sk} c){T1 . . . . .  Te} and edge set ~ =  { {Si, Tj} ISiw Tj is connected}. 
Then ~ is a forest. 
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Proof: Suppose that ~ is not a forest, i.e. it contains a non-trivial circuit, say 
(U1 . . . . .  Un, U0 (with n _ 3). Choose uis U~ for i = 1 . . . . .  n. U~ w U2 is connected, so 
there exists a path from ul to u2 in the graph G. Also, there are paths f rom u~ to ui+l 
for i = 2  . . . . .  n - 1  and finally there is a path from un to u~. Thus, after concatena- 
tion of  these paths we obtain a path visiting a vertex in all sets U~, . . . ,  Un and which 
has ul as its initial and final vertex. This path need not be a circuit in the graph G, 
but a circuit can be constructed from it as follows. If  the path is not a circuit then it 
contains a circuit which has less vertices than the path itself. I f  this circuit visits at 
least three of  the sets U1 . . . .  , Un then stop. Otherwise, construct a new path by re- 
placing the circuit in this path by its initial (and final) vertex. The resulting path still 
visits all sets U~ . . . . .  Un. This is trivial if the circuit visits only one of  the Ui's. Thus 
suppose the circuit visits precisely two of  the U~'s. Obviously, these sets must be 
consecutive. Without loss of  generality assume that the circuit visits U~ and U2 and 
that its initial and final vertex lies in/_I1. After removal of  the circuit f rom the path, 
and replacing it by its initial vertex, the resulting path trivially still visits U1. It also 
visits U2, since otherwise the path would jump from a vertex in U1 to a vertex in U3, 
which contradicts the fact that g '  is bipartite. Repeat the process until a circuit is 
found that visits at least three of  the sets U~ or until the path itself has become a 
circuit that visits all sets U;. The vertices that lie on this circuit form a 2-connected 
set. According to the property of  G, this set is complete and therefore any set Uiu Uj 
is connected if both Ui and Uj are visited by the circuit. The circuit is constructed 
such that it visits at least three of  the sets U1, . . . ,  Un. Thus, the graph ~ contains a 
circuit on three of  its nodes. This contradicts the fact that ~ '  is bipartite. We con- 
clude that the graph ~ can only contain trivial circuits. In other words, ~ is a 
forest. [] 

The following theorem gives necessary and sufficient conditions on the in- 
formed set and the information graph, such that the corresponding information 
graph game is concave. 

Theorem 1. Let  (N; c) be an information graph game with information graph 
G = (N, E) and informed set Z. Then c is concave i f  and only i f  G and Z satisfy the 
following properties. 

i) Each elementary path with both endpoints in Z is contained in Z. 
ii) Each 2-connected coalition Sc_N, whose intersection with Z contains at 

most  one element, is complete. 

Proof: To prove the 'only if '-part suppose that c is concave. Let (vl . . . . .  v~) be an 
elementary path with vl, vkeZ.  Let i be such that 1 < i < k .  Define S=  {vl, . . . ,  vi} 
and T =  {vi . . . . .  re}. Then S, T and S u  T are connected and contain at least one 
element of  Z. Therefore c (S )=  c ( T ) =  c ( S u  T ) =  0. From the concavity of  c it fol- 
lows that c ( S n  T ) =  c({vi})= 0 and thus r i tZ .  This proves that Z satisfies property 
i). Let UC_N be a 2-connected coalition whose intersection with Z contains at most 
one element. Choose i, j e U .  According to lemma 1 there exist two vertex-disjoint 
paths in U from i to j ,  say (i, Vl . . . . .  vk, j )  and (i, Wl, . . . ,  we, j ) .  Define 
S = {i, Vl . . . . .  vk, j }  and T =  {i, wl . . . . .  w~, j } .  Consider three possibilities, a) Neith- 
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er S nor T contains an element of  Z. b) Precisely one of  the coalitions S and T 
contains an element of  Z. c) Both S and Tconta in  the unique element of  Z n  U. One 
easily verifies that in all three cases we have c (S n T )+  c (Su  T ) >  c (S)+ c (T), unless 
{i, j} eE.  From the concavity of  c it follows that {i, j} ~E. This proves that G and Z 
satisfy property ii). 

To prove the ' i f ' -part  suppose that G and Z satisfy properties i) and ii). Suppose 
that S is a 2-connected coalition, which is not complete. Then it must contain at least 
2 vertices in Z, say zl and z2. Let i t S .  According to lemma 2, there exists an elemen- 
tary path from Zl to z2 that contains i. And thus, i~Z. It follows that Sc_Z. Now it 
is clear that the characteristic function c does not change if an edge is added between 
two vertices in S. Therefore we may assume that all 2-connected subsets are com- 
plete. Let S, Tc_N. Denote the components of  S by SI . . . . .  Sk and the components 
of  T by T1 . . . . .  Te. Construct the graph f f = ( ~ / ,  ~ )  as in lemma 4, i.e. 
7/'= {$1 . . . . .  Sk} u { TI . . . . .  Te} and ~ '=  { {Si, Tj} [Siu Tj is connected}. According 
to lemma 4 this graph is a forest. Therefore, the number of  edges equals the number 
of  vertices minus the number of  components, i.e., 

[~ l  = k(S) + k ( T ) - k ( S u  T), 

where k(S), k(T)  and k(Sw T) denote the number of  components of  S, T and S u  T 
respectively. 

Let ffz = (~z ,  ~z) be the graph that results from ~ when all vertices Si and Tj 
are removed that have empty intersection with Z. Clearly, this graph is also a forest 
and its number of  edges therefore equals the number of  vertices minus the number 
of  components.  The number of  vertices of  ~z is reduced with the amount 
c(S) + c(T), compared to the graph ft.. It follows from property i) that within each 
component of  ~ '  the vertices that have a non-empty intersection with Z form a con- 
nected set in ft.. Thus, the number of  components in ffz is reduced with the amount  
c(Sw T) compared to the g raph  ~. It follows that 

I ~ l -  I~zl = c ( S ) + c ( T ) - c ( S u T ) .  

Furthermore, if S~c~ TiC 0 is connected and if S~c~ T j ~ Z =  0 then it follows from 
property i) that S inZ=O or T J ~ Z = 0 .  Using these results the concavity of  c now 
follows from 

c(Sr~ T) = c(U ~=, s in  U~=1 Tj) = 
= c(U u(s~n TA) <-X~,;c(S,n Tj) = 
= I{(i , j)  lS, c~Tjr and Sf~ T / ~ Z = 0 }  I = 
= I { ( i , j ) l S inT j r  and (Sic~Z=O or Tj-nZ=0)} I ___ 
_ I {(i, j ) l S i u  Tj is connected and (S~nZ= 0 or T / ~ Z =  0)} I = 
= I {(i, j ) lS iw  rj is connected} I - 

- I {(i, j )  lSiu Tj is connected and ( S / n Z =  0 and T j n Z r  0)} I = 
= [ g ' l -  I~21 = c ( S ) + c ( T ) - c ( S u r ) .  [] 



344 J. Kuipers 

It is not obvious that the conditions in the above theorem can be verified effi- 
ciently. However, it is not difficult to prove that the conditions in theorem 1 are 
equivalent to the conditions in the following corollary of  the theorem. 

Corollary 2. Let  (N; c) be an information graph game with information graph G and 
informed set Z. Then c is concave i f  and only i f  G and Z satisfy the following prop- 
erties. 

i) For each component  K o f  the information graph G we have that K n Z  is 
connected. 

ii) Each block o f  G is contained in Z or it has at most  one element in common 
with Z. 

iii) Each block, whose intersection with Z contains at most one element, is 
complete. 

There exist algorithms to determine all blocks of  a graph, which are linear in the 
number of  edges of  the graph (see Tarjan [4]). Therefore, it is also possible to verify 
the conditions in corollary 2 efficiently. 

3 A Description of the Core by Means of Linear Constraints 

Let (N; c) be a cooperative cost game. A vector x~ IR N is called a core allocation if it 
satisfies the following linear restrictions. 

I Zi~uxi=c(N)  
~,~sX~<_c(S) for all S c N .  

The set of  all core allocations is called the core. It is denoted by Core(c). In the 
following we shall use the notation x (S )  to denote ~.i~s xi. 

Let (N; c) be an information graph game with information graph G = (N, E )  
and informed set Z. Assume for the moment that the graph G is connected. Let G~ 
denote the graph that results from G if vertex i and all edges with i as an endpoint 
are deleted. Furthermore, let Kil, . . . ,  K~.e, denote the vertices of  the components of  
G;. Of course, Core(c) is contained in the set C(c) described by the following linear 
constraints. 

I x(N) = c(N) 
x(Kii)<-c(Ki~) for all i: 1 <-i<-n and for all j :  1 <-j<-ki. 

In fact we have the following theorem. 

Theorem 3. The set C(c) equals Core(c). Furthermore, the number o f  constraints in 
the description o f  C(c) is at most  2n - 1. 
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Let us first prove that  the number  of  constraints that  describe C(c) is bounded 
by 2n - 1. Suppose that  we remove an edge from the graph G, such that  the resulting 
graph remains connected. Clearly, this can only increase the number  of  components  
of  the graphs Ge. Thus, we get the maximum number of  restrictions when no edge of  
G can be deleted without disturbing its connectedness, i.e. when G is a tree. There- 
fore, in deriving an upper bound for the number  of  restrictions, we may assume that  
G is a tree. Consequently, the graphs Gi are all forests. Let us denote the number of  
edges in G~ by e;. k,- denotes the number of  components  of  G~ and the number  of  
vertices of  G; is n - 1. Thus we have 

k~= n - l -e~. 

Suppose that  {il, i2} is an edge of  the graph G. It is clear that  this edge is an edge in 
all graphs Gi, except in Gq and in Gg 2. Thus, 

~e~= (n-2)(n- 1), 
i = 1  

since each edge of  G is counted n - 2  times and there are n -  1 edges in G. So it 
follows that  

~. k i = n ( n - 1 ) -  ~ e i=2(n-1) .  
i = 1  i = 1  

I.e. the number  of  inequalities in the description of  C(c) is precisely 2(n - 1) when G 
is a tree. We have one extra equality x ( N ) =  c(N), which makes a total  of  2 n - 1  
constraints.  

Now we have to prove that  Core(c) = C(c), i.e. we have to prove that  each con- 
straint of  the form x(S)___ c(S) is implied by the constraints of  C(c). 

Let S c N .  First  suppose that  S is connected. Let us say that a vertex v~S sepa- 
rates the vertex u :~ v f rom S, if all paths with one endpoint  in S and the other end- 
point  equal to u contain the vertex v. Equivalently, the vertex u and the set S lie in 
different  components  of  the graph Gv. Define 

U: = {ueNXSI no vertex in N \ S  can separate u from S}. 

We then have the following lemma. 

Lemma 5. For each vertex v e N k ( U u  S) there is precisely one vertex ue U that sepa- 
rates v from S. 

Proof." Suppose v e N \ ( U w S ) .  We first prove that  at least one vertex u~ U separates 
v f rom S. By definit ion there exists a vertex uoeN\S  that  separates v from S. If  
u0~ U then the existence part  of  the p roof  is finished. I f  not, choose UleNkS that  
separates Uo from S. Obviously,  ul also separates v f rom S. Continu this process 
until finally a vertex uke U is found, which separates v (and Uo . . . . .  uk_l) f rom S. 
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We shall prove now that at most one vertex u ~ U separates v from S. Suppose that 
u, w ~ N \ S  (u ~ w) both separate v from S. Then each path from v to S contains both 
u and w. On such a path the vertices u and w are always visited in a fixed order, 
since otherwise it would be possible to construct a path from v to S with only one of 
the vertices u or w. Assume that w is always visited before u. Then u separates w 
from S and therefore w cannot be an element of U. It follows that U contains at 
most one element that separates v from S. The existence of such an element was 
already proved, which shows that there is precisely one element in U that separates v 
from S. [] 

For each u~ U let Ku denote the component  of Gu that contains S and let 
x~IR u. Using lemma 5, we obtain the following equality. 

F x(Ku)=(IUI-1)x(N)+x(S). 
u E U  

This is explained as follows. Let i be a player in S. Then by definition i~Ku for all 
u ~ U. Thus, the variable xi is counted I U[ times on the left hand side of the equa- 
tion. Trivially, x/ is  also counted I UI times on the right hand side. 

Now suppose that i t  U. Trivially, i is not an element of Ki and since i cannot be 
separated from S it is an element of Ku for all u :~ i. Thus the variable xe is counted 
I UI - 1 times on the left hand side and also I UI - 1 times on the right hand side of 
the equation. 

Finally, suppose i~UwS. According to lemma 5, i~Ku for all u~ U except one. 
Thus the variable xe is counted I UI - 1 times on the left hand side and also F UI - 1 
times on the right hand side. We conclude that the equation is correct. 

The constraints x(K~)<-c(Ku) are all constraints which are used in the descrip- 
t ion of C(c). Together with the constraint x (N)=  c(N), they imply 

x ( S ) =  ~, x(Ku)-(IUI-1)x(N)<_ ~, c(K~)-(IUI-1)c(N). 
u ~ U  u ~ U  

It remains to prove that 

~, c(K~)-(I UI -1 )  c(N)_c(S) .  
u ~ U  

We distinguish three cases. 
i) The informed set Z is empty. 
ii) S contains an element of Z. 
iii) The remaining case, i.e. Z r  and ZnS=O.  

Let us first consider case i). If the informed set is empty, then all connected sets have 
a cost equal to 1. Thus, 

~, c(K~) - (I UI - 1) c(N) = I UI - (I UI - 1) = 1 = c(S). 
u E U  
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Case ii): In this case all connected sets containing an element of  Z have a cost equal 
to 0. Thus, 

~. c(Ku) - ( I  UI - 1) c(N) = 0 = c ( S ) .  
u ~ U  

Case iii): Let z~Z .  Since z~S,  it follows f rom lemma 5 that  z is an element of  pre- 
cisely I UI - 1 of  the sets K,. These I UI - 1 components  therefore have a cost equal 
to 0. The remaining component  can have a cost of  at most  1. Thus, 

~, c(K.)-(IUI-11)c(N)<~I=c(S). 
u E U  

We have proved that  the constraints of  C(c) imply all constraints of  the form 
x(S) <__c(S) for connected coalitions S. Let us suppose therefore that  S is not con- 
nected. Let $1, $2 . . . . .  Sk denote the components  of  S. We have just  proved that  the 
constraints x(Si)<_ c(Si) are all implied by the constraints of  C(c). And  thus, 

x ( s ) :  Z x (si) <- Z c (si) = c (s)  

is also implied by these constraints.  
We conclude that  Core (e )=  C(c). Up to this moment  it was assumed that  the 

informat ion graph G was connected. I f  this is not the case then one can deal with 
each component  of  G separately,  because the core of  the game associated with G is 
the Cartesian product  of  the cores associated with the components  of  G. 

4 The Extreme Elements of  the Core 

In this section we shall use the results of  the previous two sections to prove that  each 
informat ion graph game has an associated concave informat ion graph game, which 
has the same core as the original game. This result is implied by two theorems, that  
tell us how to adjust  the informat ion graph and the informed set of  an informat ion  
graph game without  changing its core. After  a finite number  of  adjustments  we end 
up with a concave informat ion game which has the same core as the original game. 
This gives us a nice characterization of  the extreme elements of  the core of  an infor- 
mat ion  graph game, since these are precisely the marginal  al location vectors of  the 
associated concave game. Also,  every extreme core al location is a marginal  alloca- 
t ion vector in the original game, though not  all marginal  al location vectors need to 
be core allocations. 

Theorem 4. Let (N; c) be an information graph game with information graph 
G= (N, E) and informed set Z. Suppose there is a player i ~ N \ Z  and an elementary 
path f rom one vertex in Z to another vertex in Z that contains player i. Let ~ be the 
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information graph game with the same information graph G and informed set 
Z = Z u  {i}. Then Core(c)= Core(e). 

Proof." Suppose K is a component of  the graph Gj ( j~N) .  If  i r  then trivially 
c(K) = 0(K). Thus suppose ieK.  There exists an elementary path with both endpoints 
in Z containing player i. It is obvious that at least one of  these endpoints also lies in 
K, so c ( K ) = 0 ( K ) = 0 .  We also have c(N) =O(N), so, using theorem 3, it follows di- 
rectly that 

Core(e) = C(0) = C(c) = Core(c). [] 

Also, the information graph of  an information graph game can be adjusted 
without changing the core. This is expressed in the following theorem. 

Theorem 5. Let (N; e) be an information graph game with information graph 
G= (N, E) and informed set Z. Suppose i, j s N  are non-adjacent players contained 
in a 2-connected subset o f  N. Let O be the information graph game with information 
graph G = (N, E w { {i, j} }) and informed set Z. Then Core(e) = Core(c). 

Proof: Let u eN.  We shall first prove that the components of  G,  and G, are the 
same. To this end we show that v and w lie in one component of  G, if and only if 
they lie in one component of  G,. To prove the ' i f ' -part  suppose that v and w lie in 
one component of  G,. Then apparently there exists a path from v to w in the graph 
G that does not use the vertex u. This path also exists in G, since the edge set of  
contains the edge set of  G as a subset. Therefore, v and w lie in one component of  
the graph G,. 

To prove the 'only if '-part suppose that v and w lie in one component of  G,. 
Then there exists a path from v to w in G that does not use the vertex u. Suppose this 
path uses the extra edge {i, j} .  Since the vertices i a n d j  lie in a 2-connected set of  G 
there exist two vertex-disjoint paths f rom i to j in the graph G. At least one of  these 
paths does not use the vertex u. Use this path to get from i to j instead of  the edge 
{i, j} .  Thus, we have constructed a path from v to w that does not use vertex u in the 
graph G. Therefore, v and w lie in one component of  G,. It follows that the compo- 
nents of  Gu and G, are the same. 

Obviously, also the costs of  these components is in both cases the same. Using 
theorem 3 it follows immediately that 

Core(e) = C(0) = C(c) = Core(c). [] 

From theorem 1, 4 and 5 we get 

Corollary 6. Let (N; e) be an information graph game with information graph 
G = (N, E) and informed set Z. Let 2 be the set o f  all vertices that lie on an elemen- 
tary path wHh both endpoints in Z and let E be the set o f  all pairs {i, j } ,  such that 
there is a 2-connected set Sc_N with { i, j }  ~S.  Let O be the information graph game 
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with information graph G= (N, E) and informed set Z. Then ~ is concave and 
Core (~) = Core (c). 

The extreme elements of  the core of  an informat ion graph game can now be 
characterized as being precisely the marginal  al location vectors of  its associated con- 
cave informat ion graph game. It follows that  the extreme core allocations of  an in- 
format ion  graph game are integer, since the marginal  al locat ion vectors are integer. 
This observat ion is helpful in the p roo f  of  

Theorem 7. Let (N; c) be an information game with information graph G = (N, E) 
and informed set Z. Then the set o f  marginal allocation vectors o f  c contains the set 
o f  extreme core allocations of  e as a subset. 

Proof: Without  loss of  generality we assume that  G is a connected graph.  Let x 
be an extreme core allocation. We shall show that there exist coalitions 
$1 - $2 c . . .  c_ Sn with the proper ty  x(Sk) = c (Sk) and ] Sk I = k for k = 1, 2 . . . . .  n. We 
shall provide a p roof  using an inductive argument.  

First  we show that  there exists a player  i e N  with xi = c({i}).  Clearly, xi_< 1 for 
all ieN.  If  x i=  1 for some ieN,  then apparent ly  i r  and x ;=  1 =c ({ i} ) .  Therefore,  
suppose x~< 1 for all ieN. From the integrali ty of  x it follows that  x;_<0 for  all i e N  
and thus x(N) _ 0. This can only be the case if Z r 0 and x~ = 0 for all ieN.  Thus, for 
an arbi t rary  player i e Z  we have xi = 0 = c({i}).  

Let S r N be a coali t ion such that  x ( S ) =  c(S). We shall prove that  there exists a 
player i e N \ S  such that  x ( S o  {i})= c (Su  {i}). Define for all i eNkS  the number q~ 
as the number  of  components  of  S that  contain a player adjacent  to player i and that  
contain no player in Z. Fur thermore ,  define d ;=  0 if i e Z  or if there exists a compo- 
nent of  S that  contains both a player in Z and a player adjacent  to i. Otherwise 
d ~ = l .  

It is not hard to see that  c (Su  { i})=c(S)+di-q~.  Clearly, xi<_d~-qi for all 
i e N \ S .  Suppose that  x~<d~-q~ for all i e N \ S .  It then follows f rom the integrali ty 
of  x that  x~<_di-q,-I  for all i e N \ S .  And  thus, x(N)<_c(S)+d(N\S)  
- q ( N \ S ) -  IN\SI .  

If  S r  then each component  of  S has at least one adjacent  player in N \ S .  
(Here we use the fact that  G is connected.) Thus, q(N\S)>_c(S). Furthermore ,  
notice that  d ( N \ S ) =  [N\SI if Z = 0  and that  d ( N \ S ) <  ]NXSI if Z r  

It follows that  x ( N ) < _ c ( S ) + d ( N \ S ) - q ( N \ S ) - I N \ S ]  <_0 if Z = 0  and that  
x ( N ) < _ c ( S ) + d ( N \ S ) - q ( N \ S ) - I N \ S I < O  if  Z r  In both cases we have 
x ( N ) < c ( N ) ,  a contradict ion.  We conclude that  there is a player i e N \ S  satisfying 
xi = d i -q i ,  and consequently x ( S u  {i})= c (Su  {i}). [] 
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