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Abstract: In a game with incomplete information, a player may have beliefs about nature, 
about the other players' beliefs about nature, and so on, in an infinite hierarchy. We general- 
ize a construction of Mertens & Zamir and show, that if nature is any Hausdorff space, and 
beliefs are regular Borel probability measures, then the space of all such infinite hierarchies of 
the players is a product of nature and the types of every player, where a type of a player is a 
belief about nature and the other players' types. 

1 Introduction 

In a game with incomplete information,  describing the space of  possible states is a 
complicated task: first of  all, one has to describe the state of  nature - the possible 
values of  the various parameters of  the game itself, such as the payoffs and the 
players' utility functions. Then, one has to describe the players' beliefs on the states 
of  nature, which are, say, probability measures on the space of  nature states. After- 
wards, one has to describe the belief of  every player on the beliefs of  the other 
players on the states of  nature, and so on. It turns out that in order to describe "the 
state of  the world" in the game, one has to deal with an infinite hierarchy of  beliefs 
for every one of  the players. To simplify this state of  affairs, Harsanyi [9] suggested 
describing the states of  the world as a "types space" with the following properties: 
1) A state of  the world consists of  the state of  nature and the type of  every 

player; 
2) A type of  a player is a joint  probability measure on the states of  nature and the 

types of  the other players. 
Thus, in every state of  the world it is possible to compute the belief of  every player 
on the states of  nature, his belief on the other players' beliefs on the states of  nature, 
and so on, as required. 

Armbruster  & Boge [2], Boge & Eisele [6] and more recently Mertens & Zamir 
[12] introduced a concrete way of  constructing Harsanyi 's  types space. Assuming the 
nature states space is compact, they formally defined the hierarchies of  beliefs, and 
showed that the space of  all such hierarchies (which turns out to be compact) has the 
above desired properties. Brandenburger & Dekel [7] considered a different version 
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of  the same construction, and showed that it could also be carried out assuming the 
underlying nature states space is Polish (metric, separable and topologically com- 
plete). 

What happens in more general cases? Suppose, for instance, there is only one 
parameter in the description of  the game upon which the players have uncertainties, 
and this parameter may have values in the [0,1] interval. Suppose further that before 
the game begins, the players witness together a random signal, which specifies for 
them a Borel subset S of  [0,1] in which this parameter lies. Generally, S might be 
neither compact nor Polish, but still this set is the object of  beliefs of  the players in 
this case. 

This is a motivation to consider the construction of  the types space in more 
general settings. We shall show hereby that such a generalization is possible, assum- 
ing only that the nature states space is Hausdorff, and the players" beliefs are regular 
Borel probability measures. 

The construction of  the types space has also motivated further research. Lip- 
man [11], Vassilakis [16] and Heifetz [10] have treated other hierarchic constructions 
in similar spirit. 

In section 2 we shall present and develop the notions and properties of  measures 
spaces we will be using. In section 3 we shall present the construction itself. We shall 
use a construction scheme which is close to the one in [13] and [15]. In section 4 we 
shall bring the proofs to the theorems and propositions of  sections 2 and 3. 

2 Topologies for Measures Spaces 

1. Definition. A regular Borel probability measure on a topological space X is a 
measure p s.t.: 
a) /~ is defined on the Borel field of  X. 
b) p (X) = 1, p is a-additive. 
c) for every Borel set B c X  and every e > 0  there is a compact COB,  s.t. 

p ( B \ C ) < e .  

2. Definition. For a topological space X, A (X) is the space of  regular Borel prob- 
ability measures on X, with the topology whose sub-base are the sets of  the form 

~Y(ao, v, e)= {u~A(x):a(v)>ao(V)-e}, 

where / togA(X) ,  Vc_X open and e > 0 .  An  open neighborhood of  ~0 may be any 
union of  finite intersections of  such sets. 

This topology was first introduced by Blau [4], and it is also mentioned in Bil- 
lingsley [3, appendix III]. 

The following theorem is the main mathematical contribution of  this paper. 

3. Theorem. I f  X is Hausdorff  then A(X) is also Hausdorff. 
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Clearly, if X is Hausdorf f  and non-empty, then A (X) is also non-empty, since it 
contains all the measures concentrated in a finite or countable number of  points. For 
every x e X  denote by Ox the probability measure concentrated in x. 

Define now another topology on A (X): 

4. Definition. Let X be a topological space and Uo~A(X). A weak sub-basic neigh- 
borhood of/2o is a set of  the form 

Yf(a,f, e)= {/2cA(X): I I x f d / 2 -  Ixfd/2o <e} ,  

where f is a continuous bounded real-valued function on X and a > O. A weak neigh- 
borhood of/20 may be any union of  finite intersections of  such sets. 

This topology is called the weak topology of  A (X). Generally, it might be 
weaker than the topology in definition 2 above. However, we have the following 
theorem: 

5. Theorem. I f  X & a compact Hausdorff space or a Pol&h space, then A(X) / s  the 
space o f  Borel probability measures on X with the weak topology. 

From this theorem it will follow that the construction presented hereby is a 
generalization of  the construction in the compact and the Polish cases. 

3 Construction of the Universal Beliefs Space f~ 

Let S - the space of  nature states - be a non-empty Hausdorff  space and I the set of  
players. For every i e I  define inductively two sequences of  spaces, (f2~)ff=l and 

i e o  (Tk)k= 1. f2~ will be i's domain of  uncertainty o f  level k. T~ will consist of  k-tuples 
of  coherent beliefs on f~  . . . . .  f ~ :  

o~ =s Ti =a(s) 

and for all k___ 1 

the marginal of/2~+ 1 on ~ is/2~} 

The motivation for these definitions is the following: 
i's domain of  uncertainty of  level k + 1 is nature and the other players' beliefs up to 
level k (player i knows his own beliefs). A belief/2}~+ 1 of  level k +  1 is a probability 
measure on this domain of  uncertainty. In T~+t/2~:+1 appears along with the 
lower-level beliefs which are coherent with it. 

Vg> k denote by ~ k  the projection from r to ~ .  Clearly, if (u~ . . . . .  /2~ . . . . .  
/2~)e T~ then the marginal of/2~ on ~ is/2~, and formally - 

i i i - - 1  
/2k =ge(q/ek) 
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The following theorem is not a must for establishing the construction. It was 
proved by Mertens & Zamir [12] using a non-constructive argument (the Hahn- 
Banach theorem), and avoided by Brandenburger & Dekel [7]. However, it has an 
appealing aesthetic taste. It says that at al ls tages every lower-level belief can be 
extended to some higher-order belief (actually, many such extensions are possible). 

6. Theorem. vk_> 1 and V i i i  the project ion o f  T'e+I on T'~ is onto. 
Now, let 

T i= lim T~ 

be the projective limit of  the spaces (T~)k=i ~ ~. This is the space of  all the towers of  
eo 

beliefs (,u~ . . . . .  p~ . . . .  ) e  IrI A(f2~), for which the beginning k-tuple (p[ . . . . .  p~) be- 
k = l  

longs to T~ vk>_ 1. Call T i the set of  types of  player i. 
Define also 

~ / = S x  1-[ TJ. 
j@i 

Clearly, f]i is the space of  all those (s, fp{, . . . , p~ ,  . . .)jr such that (s,(p~ . . . . .  
P{)je~)sf]~+l = S x  ~I T{, V k -  1, and therefore ~-~i= lim f2~. 

j ~ i  

u  1 denote by O~,k: T~--'A (f2~) the coordinate projections, and by ~ . e  the 
projection from f~e to ~ .  

Theorem 6 implies that T ~ is not empty. However, many simple examples of  
types in T ~ could be provided: for instance, the type who believes that a game with 
complete information takes place with So as the prevailing nature state: 
(~o, 6~o• ---)- This type is sure that the other players' beliefs are exact ana- 
logues of  his beliefs, and that it is common knowledge that So is the true state of  
nature. 

Every tower of  beliefs in T i is an example of  a mathematical object which we 
now define: 

7. Definition. ((Ak);'=l, (vk);'=l, (Pek)e>k) is a projective sequence of  regular Borel 
probability measures if v k >  1 Ak is a Hausdorff  space, vk is a regular Borel prob- 
ability measure on Ak, and r e > k ,  pek:Ae-~Ak is a continuous projection, s.t. 
r e >  m > k Pek =- PmkPem and vk = vep~ 1. 

It is clear f rom the construction that for every tower of  beliefs (Pk)k=~i = E T i 
((f~)~= 1, ~k)e=~, ( q / e x ) e > e ) i  ~ i is a projective sequence o f  regular Borel probability 
measures. 

The following theorem is a generalization of  the Kolmogoroff  consistency the- 
orem. It was proved even in a more general setup by M6tivier [14, Theorem III.3.2.], 
who improved a result of  Bochner [5, pp. 118-120]. 
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A ar~ oo 
8. Theorem. Let  (( ~)~=1, (vk)g=l, (Pek)e>k) be a project ive sequence o f  regular 

A Borel probabil i ty measures, A = lira Ag the project ive limit o f  { k} k= 1 subject  to 

the project ions {Pek}e>k and p = . k : A ~ A k  the project ion on the coordinate Ak.  
Then there exists a unique regular Borel probabili ty measure v on A s.t. vk>_ 1, 

--1 
V k  = V p o o , k .  

It follows from the theorem that to every tower of  beliefs ,- co (Pk)k= 1 ~ T i there 
corresponds a unique belief p ;~A (f~ ~) such that vk___ 1 the marginal of  p~ on f ~  is 

i i i --1 
12k=l 2 (g/~,k) . 

This is how O r = S x ~I TJ becomes the terminal domain of  uncertainty for player i. 

The reverse mapping assigns to each belief pEA(f~ i) the tower of  beliefs 
~(~u%,k)- l)ff=l~T i. That is, there is a one to one and onto mapping between T i 

and A (S • 1-I Ti) �9 Moreover, this mapping is also a homeomorphism: 

9. Theorem. T ~ is homeomorphic  to A (S • H T~) �9 
j ~ i  

Define now 

f ~ = S X  H Ti 
i E l  

to be the space of  the states of  the world. It turns out that: 
1) A state o f  the world consists of  the nature state and the type of  every player. 
2) A type of  a player is a regular probability measure on the states of  nature and the 

types of  the other players. 
- as required. 

10. Remark .  A counterexample of  Andersen & Jessen [1] (see also [8, p. 214]) shows 
that theorem 8 might be wrong if the measures vk are not regular. Furthermore, 
Bochner and M6tivier's proofs rely on the claim that the projective limit of  a non- 
trivial projective sequence of  compact sets is compact and non-empty. This claim is 
true under the assumption that the sets in the sequence are Hausdorff  (for a proof  
see, for instance, [17, p. 257]). Therefore, it does not seem possible to generalize the 
construction to T1 spaces, and certainly not to non-regular measures. It is quite sur- 
prising that theorem 8, which seems to be of  measure theoretic nature, relies essen- 
tially on topological properties. 
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4 Proofs of the Theorems and Propositions 

A. Heifetz 

Proof of Theorem 3. Let pl:#/I2EA(X). Then there exists an open Oc_X s.t. 
pa (O)r otherwise Pl and P2 would be identical on the open sets, and hence on 
all the Borel field, since for every Borel Bc_X and every peA(X)  

p(B) =inf  {p(O):BE O, O c compact} 

by regularity�9 With no loss of generality assume then that p2(O)-p~ (0)= e> O. 
C C 

Let Kc_X be compact s.t. p ~ ( K ) > l - ~ ,  p 2 ( K ) > l - g  and /~2(O\K)<~.  

Then KnOt-CO, because otherwise we would have Kc_O, ~ ( O ) > 1 - ~ ,  

P2 (O)> 1 - ~  and hence lp2(O)-/h (0) 1 < ~ ,  contradicting the supposition. 

Denote O* = K A  O. Then 

/~2 (0") -#~ (O*) >_ #2 (O) -/~2 (0  \K) - / h  (O) > e . . . .  
C 

2 2 

C 
Let Cc_O* be compact s.t. P2(O* \C) < ~�9 

K is a compact subspace of a Hausdorff space, and hence normal. C and K\O* 
are closed in K, so by Urysohn's lemma there exists a continuous real-valued func- 
tion f on K s.t. K\O* <f~<C (O<_f<_ 1, f i s  0 on K\O* and 1 on C). 

Now, there is a ts[0,1) s.t. pl({xeK:f(x)=t})=O. (There are at most count- 
ably many t-s in [0,1) for which it is not so.) 

e There- Denote A = {xeK:f(x) > t}. Then Cc_A c_ 0", hence /12(O* \A)  < ~. 
fore, 

C E 
~2 (A) - ~  (A)___~z(O*) -P2 (O* ' , A ) - p ,  (O*) > . . . . .  . 

2 4 4 

n m 

A is open in K s.t. lq(A)=pl(A). Let Vc_X be open s.t. A = V n K  and W=(V) c. 
Then p~ (K) =p~ (VnK)  +Pl (WnK).  Define 

G~=IPeA(X):p(W)>p~(W)-~61 

G2= IP~A(X): / ; / (V)>fl2(V)-~61 

Then G1 and G2 are disjoint open neighborhoods of/~1 and p2, respectively, because 
had there been p ~ G1 n G2 we would have 
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1 =p(X)>-p(V)+p(W)>IJz(V) - +lug(W) 16 

~:~//./2(V (-)K) -~./.ll ( W  (-.IK) - - - -  -- 
8 

=[u2(VmK)-p l (VmK)I+~I(VnK)+al (W~K)]  - - >  + a l ( K ) - -  
8 

1- - g = l ,  

> 
8 

a contradict ion,  �9 

Proof of  Theorem 5. If  X is a compact  Hausdor f f  space or a Polish space then X is 
a normal  space and every Borel probabi l i ty  measure on X is regular.  Thus Theorem 
5 follows from the following theorem, which was proved in [4]: 

Theorem 5*. Let X be a topological space and poeA(X). Then 
a) every weak sub-basic neighborhood of go contains an open neighborhood of go; 
b) if X is normal, then every sub-basic neighborhood of po contains a weak neigh- 

borhood of po. 
Particularly, if  X is normal the 2 topologies coincide. �9 

For  proving Proposi t ion  6 we shall need the following lemma: 

Lemma 6*. I f  g : A ~ B  is continuous then h:A(A)-~A(B) defined by h(p)=pg -1 is 
well defined and continuous. 

Proof." To prove that  h is well defined we have to show that u  pg-~ is a 
regular measure on B. And  indeed, if Fc_B is measurable (i.e. a Borel set) then 
E=g-~(F) is measurable in A .  So Y e > 0  there exists a compact  Cc_E such that  
p(E\C)<e. K=g(C) is compact  since g is continuous,  Cc_g-~(K) and hence 

llg-l(F\IQ=l~(g-'(F)\g-~(K))<_p(E\C)<e, 

as required. Now, to prove that  h is continuous it suffices to show that  the inverse 
image of  every sub-basic open set in A(B) is open in A(A).  And  indeed, if  

G= {veA (B) : v(V) > vo(V)-e} , 

voeA(B),  VC_B open and e > 0 ,  then 

h-~(O)= {~EA(A):u(g-1(V))> vo(V)-~}, 

which is open: if g - l ( V )  is empty,  then h -1  (~Y) is either A (A) or empty, according 
to whether v o ( V ) - e < 0  or not; and if g-~(V)r then we can write 
vo(V)-e=fia(g- l (V))-e  ', where a~g-l(V)  and e ' =  1 -vo(V)+e>O, so that  

h - l ( • )  = {p~A(A):l~(g-l(V))>fia(g-l(V))-e '} 
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- a (sub-basic) open set in A (A). 

Proof o f  Theorem 6. For every (p~ . . . . .  ~ )  e T~ we have to find a/2~+ 1 e A  ( ~ ' ~ +  1) 

such that ~ ,  i i . . . .  ak, ak+ 1)eTa+ 1- We shall actually prove the existence of  a con- 
tinuous 

such that ~ ,  i i i i . . . .  /~k, fk(ztk))~ Tk+ ~ (or, in other words, the marginal o f f ~ )  on 
f2~ is /~) .  

This will be accomplished by showing the existence of  a continuous 

i . i _..). i Fk .  f~k g)~+l 

such that g ~ " q/e+ 1,,Fk : f ~  --' f2~ is the identity on f ~ .  
Start by choosing an arbitrary soeS and define F ]  : f~] --, f2~ by 

F~ (s) = (s, (O~o)j~ i) 

vs~S. F] is clearly continuous, because each of  its components is continuous (the 
identity or a constant function), and i q/2,1 (F1 (s)) =s v s e S .  

Suppose now, by induction, that we have already defined a continuous 
i . i ~ i i i " " " Fk.f2k f2k+~ such that ~Uk+l ,kFk : f2~ - -~  is the identity on f ~ .  Define 

f ~ :  A (f2~) ~ A ( f~+ 1) by 

i i i i --1 fk(ak)  =/~k(Fk) 

( f ~ )  will be a distribution on f2~+ 1 according to which i thinks that all the others 
think that all the others think . . .  (k times) that So occurred.) By Lemma 6* f ~  is 
well defined and continuous. Since gt~+ 1.kF~ is the identity on f22, 

i i i --1 --1 i --1 i --1 = a t  fk(~lk)(lllk+l,k) = ~//~ ( F ~ )  ( ~ / k +  1 ,k )  =~lik(~llik+l,kFk) 

o f f k ~ k )  on f2k is p~. which means that the marginal ~ ~ i 
To finish the inductive definition, define F~+ 1 " ~ +  1 ~ ~ ' ~ k + 2  by 

F~+ 1 (s, (//~, �9 /AJ)jr i) = (s, (r �9 �9 J J J . . . . .  z ~ , f k q ~ ) ) j ~ ) .  

F~,+ 1 is continuous since the f~-s are continuous, and clearly i ~k+Z,k+lFk+1 i s  the 
identity on f2~+ 1. �9 

Proof  o f  Theorem 9. The topology o n  T i is its relative topology as a subset of  the 

product 1-[ A(f2~). The topology on A ( S •  ]-I T0=A(f2 i )  is the topology of  a 
k = l  j~i 

space of  regular probability measures of  definition 2. We shall show that the two 
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i ~x~ T i topologies coincide: let r i) correspond to ~k)e= l  ~ by theorem 8. A sub- 
basic neighborhood of  ~ = ( ~ , ~ )  (~) ,  (~lk)k= 1 is a set of  the form ~ -1 

4 =  {a~e A (f~L) :a~(v~) > a i ( v ~ ) -  e}, 

�9 i --1 ~ t  Vkc_f2~ open and e > 0 .  The corresponding set to ((o~,~) ( ~ )  in A(f2/) is 

{~u~A f~i .  i 1 ( ) .~((~,oo.~)- l (v~))>#((~/L,~)  - (vk))-~},  

which is a (sub-basic) open neighborhood of/~t  in A(f2'), s i n c e  ((lJi,k)-l(Vk) is 
open in rE. 

Conversely, a sub-basic neighborhood of  po~A (s ~) is a set of  the form 

G= {bt e A  (~'):/2 (G) > / l o ( G ) - t } ,  

G ~ f 2  i open and t > 0 .  G may be any union of  finite intersections of  open 
cylinders G~=(~u / ,k ) - l (Gk) ,  whose base Gkc_O~ is open. Since ve>k 
G* = (~ ' / ,e ) -1  ((~u~k)-l(Gk)), G~ is also a cylinder with an open base (~'~k)- l(Gk) in 
f~.  Hence a finite intersection of open cylinders is an open cylinder (just intersect 
the open bases in ~ with e large enough). So let G = (J G~, where the G~ are open 

cylinders. Define 

Vk = LJ {~, / ,k(G~): the  base of  G~ is in ~ , } ,  

and V* i = ( ~ o ~ k ) - l ( v e ) .  Then Vk-----f~ is open 

and {Vk}k=l is an increasing sequence s.t. 

Izo(G\V~) < _t. The set 
2 

as a union of open bases, 
eo 

G =  LJ v~.  Hence 3k s.t. 
k = 0  

Wk = ll~EA(~i):/u(V*)>lzo(V~)-21 

corresponds to 

(~Oi,k)-X ( l~lke m (~"~ik) : Mk( Vk) > (].lO(~lli,k)- l) (Vk) -- 21)  , 

which is an open neighborhood of the tower of marginal beliefs (~0(~/]r  - - l ) k = l ~  in 
the topology of T t, and Wk is contained in ~, since v/2 ~ Wk 

#o(O) - a ( G )  = [Zo (O)-#o(V$)] + [m (V$) -~  (V$)] + [Z (V$) - #  (G)] < 
C 

< - - + - - + 0 = ~ .  
2 2 
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