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Abstract: We study value theory for a class of games called games with n players and r alter- 
natives. In these games, each of the n players must choose one and only one of the r alterna- 
tives. A linear, efficient value is obtained using three characterizations, two of which are axio- 
matic. This value yields an a priori evaluation for each player relative to each alternative. 

1 Introduction 

There are n players and r alternatives. Let N =  {1, 2 . . . . .  n} be the set of  players. 
Each of  the n players must choose one of  the r alternatives. Let C ( j )  be the set of  
players who choose alternative j and let I C(j)L be the cardinali ty of  C(j). The vec- 
tor  (C(1) . . . . .  C(r)) is called an arrangement of  the n players among the r alterna- 
tives. Let F be such an arrangement.  I f  SeF, we call (S, / -)  an embedded coalit ion 
(EEL).  

I f  with each arrangement F there is associated an r-tuple of  real numbers,  then 
we interpret the ith coordinate  as the "worth" of  C(t) with respect to the arrange- 
ment  F and we write v(C(O, (C(1) . . . . .  C(r))) for the worth of  C(0  with respect to 
the arrangement  (C(1) . . . . .  C(r)). The triple (N, r, v) will be called a game on N w i t h  
r alternatives provided v(T, F )  = 0 whenever T =  q~. For  brevity, we also say that  v is 
an (N, r) game. 

Example 1: The United Nations Security Council  has five permanent  members and 
10 nonpermanent  members.  Each of  the five permanent  members individually has 
veto power and any coali t ion of  7 of  the nonpermanent  members has veto power. In 
addit ion,  at least 9 aff irmative votes are needed to pass a motion.  A member  can 
vote "yes", "no" or "abstain".  To decide if a mot ion  passes, one must  know how 
many of  the permanent  members and how many of  the others choose each of  the 
three alternatives. For  instance, if one permanent  member  abstains and all other 
members vote "yes", the mot ion  passes; whereas, if  that  member  votes "no" and all 
others vote "yes", the mot ion  fails. (In November,  1990, a mot ion  passed even 
though a permanent  member ,  China, abstained.)  Let Y, N, A,  be the voters who 
vote "yes", "no",  "abstain",  respectively, and let F =  (Y, N, A).  We set v(Y,/-) = 1 if 
the mot ion  passes and v (Y , / )=0  otherwise. In this example, it might not make 
sense to define v (A, / - ) .  (It should be noted that  the U. N. Security Council  game is 
often erroneously modeled as a 2-alternative, namely "yes" or "no",  game in which 

0020-7276/93/4/319-334 $ 2.50 �9 1993 Physica-Verlag, Heidelberg 



320 E.M. Bolger 

an issue passes if and only if it receives "yes" votes from all five permanent members 
and at least 4 nonpermanent members.) 

Example 2: A Simplified Unemployment Benefit/Welfare System. There are n 
players. If player i is employed, player i can earn (annually) wi dollars. There are 
four categories of players. Category 1 consists of those who are working. Category 2 
consists of those who are currently unemployed but actively seeking employment. If 
player i is in this category, then i receives, as an unemployment benefit, 70~ of his 
or her potential income, namely 0.7w;. Category 3 consists of those who are unem- 
ployed and not seeking employment. If  player i is in Category 3, then i receives, as a 
welfare payment, 30~ of his or her potential income. Category 4 consists of those 
who will leave the system and receive no benefits. The problem is to decide how 
much a working player should contribute to support the members of categories 2 
and 3. We can model this "game" as an (N, r) game by setting 

v(F~, 1-')= ~ w i - 0 . 7  "~, w i - 0 . 3  "~, wi 
i ~ l "  x i ~ F  z i ~ F  3 

Then v(F,, F) can be thought of as the net amount remaining of the employed 
players' wages after those in categories 2 and 3 receive their unemployment or wel- 
fare payments. 

Example 3: N =  {1, 2} and r=3 .  If both players choose alternative j ,  the joint 
payoff is 2j. If  player 1 chooses j while player 2 chooses k, then 1 receives j and 2 
receives [ k - j l .  For example, v({1, 2}, (4, 0{1, 2}))=6, v({2}, ({2}, {1}, ~))= 1, 
v({2}, ({2}, 4, {1 }))= 2, etc. It seems that the players should each choose alterna- 
tive 3 if they can agree on how to share the joint payoff of 6 units. Otherwise, player 
1 should choose alternative 3 and player 2 will most likely choose alternative 1. 

The major goal of this paper will be to extend the Shapley value to games with r 
alternatives. In the case of voting games (such as the U.N. Security Council Game) 
in which each voter has more than two choices, this value can be used to measure a 
voter's a priori voting power. In example 3 above, the value can be used to measure 
the a priori worth of each player. For example 2, the value could be used to suggest 
how much each working player should retain of his or her salary. (See example 7 in 
section 5.) 

2 An Efficient Value for (N, r) Games 

Definition: An (N, r) game v will be called alternative-symmetric if 
v(Ti, (T1, T2 . . . . .  Tr))=v(Ti, (Tj 1, Tj 2, . . . ,  Ti)) for all r! arrangements (Jl,J2 . . . . .  Jr) 
of { 1, 2 . . . . .  r}. Such games are equivalent to partition function games. See Lucas/ 
Thall [1963]. 

There are apparently many ways to extend the Shapley value to games in parti- 
tion function form. (See Myerson [1977], Bolger [1987], McCaulley [1990], Merki 
[1991].) In Bolger [1987], there is presented an infinite family of values for partition 
function games which satisfy efficiency, dummy, linearity, and symmetry axioms. 
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The question then arose as to whether one could get a unique "natural" exten- 
sion of  the Shapley value to games in partition function form by extending to such 
games the notions of  "restricted game", "reduced game", and "consistent value" 
defined by Hart  and Mas-Colell [1989]. Here again, there is apparently no unique 
way to extend these notions to games in partition function form. 

On the other hand, this author believes that there is a "natural" unique exten- 
sion of  the Shapley value to games with r alternatives. This value will be obtained in 
this section and will be characterized axiomatically in the succeeding two sections. 

For an arbitrary (N, r) game, we wish to assign an a priori value, ~ ,  for 
player i relative to alternative j .  We shall use the notation v(N; j) for the worth of  
the grand coalition if it chooses alternative j .  ~ may be thought of  as player i's 
share of  v (N; j). 

Definition: A value, ~ ,  is called a "j-efficient" value if for each (N, r) game v, 

~. ~i(v)=v(N;j)  
i = l  

In this section, we shall assume that the value for player i depends linearly on the 
marginal contribution of  player i to C(j).  

More precisely, we first assume that ~ has the form 

~ ( v ) :  ~. ~. f ( l F j ] ,  n, r ) [ v ( F j - , F ) - v ( F j -  {i}, =iT(r))l (1) 
F T ~ / "  

i~r i T ~ G 

where air(F) is the arrangement of  N obtained from F by moving player i to the set 
T of  F, Fj is the f h  coordinate of  F and the summation is over all arrangements F of  
N among the r alternatives in which i belongs to the jth coordinate. 

Definition: Let n be a permutation of  N. The game nv is defined by 

nv(T, 1-)=v(nT, nl-) 

The following lemma is easy to prove. 

Lemma 1: If  ~ is of  form (1), then 0 J is symmetric, that is O~(nv)=Oi~i(v) for each 
game v. 

Definition: Let F b e  an arrangement and let T~F, Tv~ da. Then v r'r shall denote the 
(N, r) game in which v r ' r ( T , I ) = l  and vr ' r (T* ,F*)=O for all other ECL's  
(T*, F*). 

Lemma 2: The collection {v r'r} of  all such games serves as a basis for the vector 
space of  all (N, r) games. Indeed, if v is any (N, r) game, we may write 

v = ~, v (T ,  r )  v ~'~. 
(T,l~ 
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Theorem 1: I f  ~ is of  form (I), then 0 J is j-efficient if and only if 

(IFjl -1)! (n-IFjl)! 
f ( I F j l ,  n, r) = n! ( r - l )  n - i t / + 1  (2) 

(Actually, as we shall see later, one can get the same result if the function f is al- 
lowed to depend on the sizes of  each component of  F.) 

Proof." Assume first that 0 j is j-efficient. Fix the value of  t and let v be the game in 
which 

v(T~, (T~ . . . . .  T; . . . . .  Tr)) = 1 if ]TiJ >-t 

and v(T, / - )  = 0 otherwise. 

Then, by j-efficiency, ~. ~ ( v ) =  1. Moreover, if n is any permutation of  the 
i = 1  

player set N, then nv = v. Then, from lemma 1, each player has the same 0;-value. It 
follows that ~ ( v ) =  1/n for each i. 

As for the right hand side of  (1), note that if ITjl = t ,  and if i e T  i, then 
v (Tj, (T1, . . . ,  Tj . . . . .  7",))=1 and v ( T j -  {i}, a~r(F)))=0 for T C T  i. It remains to 
count the number of  ECL's  in which E TjI = t and ie  T i. This number equals 

( : 2 : ) "  ( r -  1)~- '  

Thus the right hand side of  (1) equals 

n - 1] . ( r -  1) " - t  "f(t,  r)" ( r -  
\ 

n ,  1). 
t - 1  / 

The result follows immediately. 
Conversely, suppose f is given by (2) above. Let F be an arrangement and let 

TeF ,  T r  49. Let v = v r'r. By lemma 2, it is sufficient to prove that 0 i is j-efficient for 
each v r'c, t f  T = N ,  the efficiency is obvious, so assume T--/:N. 

Case I: T=Fj .  For i e T ,  

( t -  1)! (n - t ) !  
~ ( v )  - n! ( r - l )  n- t  

whereas for k r  T, 

t! (n - 1 - t)! 
O{ (v) = 

n! ( r -  1 ) " - '  
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Then 

t. ~ (v) + (n - t)" 0{ (v) = 0. 

Case2." T r  Then, for all i e N ,  g ( v ) = 0 .  

Corollary: If 0 / is j-efficient and of form (1) then, 

~ (p )=  ~, ( I G I - 1 ) 1  (n-IFj- I ) !  
r n! ( r -  1)'-tr~l v(F i, F)  - ~'r 

i~Fd i~Fj 

(1~.1)! ( n - l - I ~ 1 ) !  
n! ( r -  1) n- Ir/ 

v(G, r). 

Proof." 

2] Z (Irjl-1)! (n-Irjl)! 
1" T~F n ! ( r - 1 )  n - i r ' l+a  

i~G r~G 

Z Z (]Fj] - 1 ) !  ( n - ] F j l ) !  
r Tar n!(r--1)  "-IGI+I 

i~Fj T~Fj 

)~ ~ ( IF j I -1 )1  ( n - I F j I ) !  
r r~r n I ( r - 1 )  "-It~+1 

Z (I5-1-])! (n-ILl)! 
r n I ( r -  1) " - I t / §  

i~rj 

[v (Fj, F)  - v (Fj-- { i}, C~ir(r))] 

v(G, r ) -  

v ( F j -  {i}, c~iv(r)) 

( r -  1) v(Fj, F)  - 

v ( F j -  {i}, c~,r(V)) 
Z ~. (IFjl - 1 ) !  ( n - I F j l ) I  
F Tr n [ ( r - - 1 )  " - I r j l + l  

i~rj T*I'j 

We note that player i does not belong to F j -  {i}. Also, each arrangement/~ 
with i ~ -  can be obtained from an arrangement F in which ieFj. by moving player i. 
(Actually, F =  c~;t~(/~).). Each arrangement/~ with i ~  contributes one term to the 
last double sum above. Further, if i~Fj and if we let ~ . = F j - { i } ,  then 
I Fjl - 1 = I~l  and n -  I Fj I = n -  I~1 - 1. It follows that the last double sum above 
can be written in the form: 

Z,. L.7(r~ B ~--'r7 ~(v,,/3 
i~1~j 

This completes the proof  of  the corollary. 
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Remark: Suppose r = 2 .  Let w be the n-person coalitional game defined by 
w(S) = v(S, (S, N - S ) ) .  Let q~i(w)= 0)(v) where O] (v) is the value in the above corol- 
lary. Then 4~i(w)= 

~, ( I f l l - 1 ) ! ( n - I F l l ) ! v ( f l ,  F ) -  ~. (IFl l)! ( n -  l -  IFl l)[ 

r n! r n! 
i ~ F  1 ie~F a 

( [ S I - 1 ) [  ( n - I S I ) !  (ISl)!  ( n - 1 -  ISI)! 
Z w(s)- Z w(s). 
s n! s n! 

i ~ S  i ~ S  

v(&, r) 

This latter expression is one form of the (Shapley) value for n-person coalitional 
games introduced by Shapley [1953]. 

Example 4: In Example 3 above, it seemed that the players should choose alternative 
3. The value of  Theorem 1 yields 031 (v) = 3.75 and 0~ (v) = 2.25. 

Example 5: In the U. N. Security Council game, a tedious computation shows that 
the value of  a permanent member relative to the "yes" alternative is 0.1632 and the 
value of  a nonpermanent member is 0.0184. Thus, a permanent member has about 9 
times as much voting power as a nonpermanent member. 

3 An Axiomatic Approach 

Definition: Player i is a j -dummy in the (N, r) game v if for each arrangement F with 
ieFj, we have v(F:, F ) = v ( F j - { i } , F * )  whenever F* is an arrangement obtained 
from F by moving i to some other set in F. 

Axiom 1: If  player i is a j -dummy in v, then ~ ( v ) = 0 .  

Axiom 2 (Linearity): I f  v and w are (N, r) games and e is a real number, then 

0J(v + w) = 0/(v) + ~(w)  and OJ(cv) = c0i(v) 

Axiom 3 (Symmetry): ~(~v)  = 0/~i(v). 
It is not hard to show that the j-efficient value in the corollary tO theorem 1 

satisfies axioms 1, 2, and 3. For n = r = 3, another j-efficient value satisfying axioms 
1, 2, and 3 is given by: 

~ 4 ( v )  = AJ(IFll,  ]/"21 . . . . .  IFrl)'V(Fj, F ) -  
f 

i e F j  

IFjl AJ(IFII 11"21, IFrl).v(Fj, F) 3= 1 . . . . .  

i ~ F j  
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where 

1/3 

AJ(tl, tz, t3) = 11/12 

~,(1/24) + (tl 

if  t j = 3  

if t j = 2 .  

t2 t3)/12 if t i = 1 

It can then be seen that  every convex combinat ion  of  0 j and q/J is also a j -eff icient  
value satisfying axioms 1, 2, and 3 (for n = r =  3). Consequently,  there are infinitely 
many  such values. In this section, we introduce an addit ional  axiom to get a unique 
value. I t  is easy to motivate  this axiom in the context of  monotonic  simple games. 

Definition: An (N, r) game v is called simple if  v (S, F) = 0 or 1 for each ECL (S,/-) .  
For  a simple game we say that  S wins with respect to F if v(S, F ) =  1; otherwise S is 
losing. 

Definition: A simple game v is called monotonic  if  whenever S i wins with respect to 
the arrangement  ($1 . . . . .  Sr), then Sj u T wins with respect to the arrangement  

(S 1 -T~  . . . .  S j _ I - T  ~ S j u  T, Sj+1-T, . . . .  S r -T ) .  

Definition: Let (S, F)  be an ECL and let i~S. Let F*  be the arrangement  obtained 
by moving i to some other member  T of  F.  The mapping a i r  f rom F to F*  defined 
by 

air(S) = S -  {i} 
a i r (T)  = T u  {i} 
SiT(X) = X  for all other X in F 

is called a move for player i. If  v is a monotonic  simple game, such a move is called a 
pivot  move for i if S wins with respect to F and S -  {i} loses with respect to F* .  

A simple monotonic  game can be used to model  a voting situation in which a set 
of  n voters is to choose precisely one of  r alternatives according to some election 
rule. 

Axiom 4: Let v and w be (N, r) games. If  for each arrangement  F with i e F i ,  

[v(Fj, F ) -  v ( F j -  {i}, air(F))l 
T e E  

T ~ F  s 

~. [w(Fj, F ) - w ( F j -  {i}, C~iT(F))l, 

T ~ F j  

then ~(v)  = ~ (w) .  
If  v and w are monotonic  simple games, the above axiom states that  player i has 

the same value in both  games if  relative to each arrangement  F with i~Fj ,  player  i 
has the same number  of  pivot  moves in v as in w. 
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Theorem 2." I f  0 j satisfies axioms 1 through 4, then 

O~ (vrJ  ) 
~ ( v ) =  Z Z [v(Fj, r ) - v ( I ' j -  {i}, c~,r(/'))] (3) 

r r~r  r - 1  
ieFj  r r r j  

where the summation is over all arrangements F of N among the r alternatives for 
which i belongs to the jtla coordinate. 

Proof." If  v = v ~J,  then the right hand side of  (3) equals 

1 
- -  ~(vN;J). (r - 1) 
r - 1  

Next, let F be an arrangement and let v = v r~'r. For i~Fj, the right hand side equals 
1 

- -  O~(v) . (r -1) .  Now let i~FkCFj. .  Define the game w by 
r - 1  

r 

w = v  r ~  {~}' ~ 'o(r)+ ~. vrj'~"-~ (r) (4) 
p = l  
P@J 

We shall first show that player i is a j -dummy in this game. To do so, le t /~ be an 
arrangement with i ~  and let F* be an arrangement obtained f r o m / ~  by moving 
player i to some other coordinate set of  F. I f / ~ =  C~r~(F), then w(~ ,  i f )=  1 and 
w ( ~ - { i } , F * ) = l .  On the other hand, if F:~o~o(F) ,  then w(Fj, F ) = 0  and 
w ( ~ -  {i}, F * ) = 0 .  Then, since player i is a j - dummy in w, ~ ( w ) = 0 .  Equation (4) 
yields: 

0 = ~ ( v r ,  ~ ~i~' "~o (~)) + ~ ~ ( v  r,' . ,~ ,(r)) .  
p = l  
p r  

By axiom 4, the above equation can be written 

0 = ~ ( d ' , "  ~a, ~,~ (~)) + ( r -  1) ~ (v~ ,  '~) 

o r  

1 
~ (v~,., -)  = _ _ _  ~ ( v ; , .  ~i~, ~io (r)). 

r - 1  

We have now shown that (3) holds for v = v r~'r. Next, let v = v rp'r where Fp ~ 4> and 
p C j .  Let i e N .  Then, v(Fj, F ) = 0  and v ( F j -  {i}, O~ir(F)) = 0 since F j C F p C F j -  {i}. 
Thus, each player is a j - d u m m y  in v rp'r, and both sides of  (3) are 0. 
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The final step is to observe that the right hand side of  (3) can be used to define a 
linear value ~u on the class of  all (N,  r) games. Since ~u agrees with 0 j on the basis 
games {yr"r) ,  ~u must be identical with 0 +. 

The next result will show that if we further require that 0 j be a j-efficient value, 
we get a unique such value, namely the value in the corollary to Theorem 1. 

T h e o r e m  3: Let 0" be a value for (N,  r) games which is j-efficient and satisfies 
axioms 1 through 4 above. Then, 

( IFj- ] -1)!  ( n - I F j l ) !  
g(v)= Z Z 

r r~r  n ! ( r - 1 ) " - ' r / + '  
i~r+ r~r~ 

[v (Fj, F ) -  v ( F : -  {i}, a+r(F))] (5) 

Proof."  Consider a fixed r-tuple (h ,  tz . . . . .  t,) of nonnegative integers whose sum is 
n. Let 7"i = { 1 ,2  . . . . .  h },  T2 = { h + 1 . . . . .  tl + t2) . . . . .  Tr = { tl + t2 + . . .  t~_ 1 + 1 . . . . .  n } 
where it is understood that Tk=q~ if tk=0.  Let F=(T1  . . . . .  Tr) and define for 
ieTj, 

a A h  . . . . .  t~) - - -  
O { ( v T / )  

r - 1  

Note that for the special case Tj = N, we have tj = n and 

a+ (0, 0, . . . ,  0, n, 0 . . . . .  0) - - -  
( r -  1).n" 

In general, it follows from (3) that for i e  Tp 4: Tj, 

~(v~,'r) = - a A t ~ ,  t2 . . . . . .  t+_,, t+ + 1, tj+~ . . . . .  tp_~,  t p - 1 ,  tp+,  . . . . .  t 3 .  

Using j-efficiency, we get 

( r -  1).t j 'aj(t l  . . . . .  tr) =- 

Z~ t p . a j ( t , ,  t2 . . . . .  t j - 1 ,  t j+  1, t/+~ . . . . .  tp_~, t p -  1, tp+l . . . . .  tr). 
p , s j  

(6) 

Now assume (using backwards induction on tj) that whenever the value of  the jth 
coordinate is greater than tj, 

a A s l  . . . . .  st)  = 
( s : -  1)! (n -s j ) !  
n! ( r -  1) n-*++ 1 

The recursion relation (6) then determines the value of  the function aj when the f h  
coordinate equals tj. It follows that equation (5) holds for the basis elements v r ' r .  By 
linearity, (5) holds for each game v. 
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4 Reslricted Games and Pairwise Consistency 

It seems appropriate to ask if the value, 0 g, in Theorem 3 has a "consistency" prop- 
erty similar to that introduced for coalitional games by Har t  and Mas-Colell [1989]. 
We shall show that 0 i has a "pairwise-consistency" property similar to that  in Har t  
and Mas-Colell [1989] and that  0 j is the only j-efficient, pairwise-consistent value 
satisfying the symmetry,  j -dummy,  and linearity axioms. (Thus, axiom 4 can be re- 
placed by a "pairwise consistency" axiom.) 

Suppose 0 j is a j-efficient value for (N, r) games which satisfies the symmetry,  
j -dummy,  and linearity axioms. Let F =  (Tt . . . . .  T,.) be a fixed arrangement of  N and 
for l<_q<_r, let Va=V To'F. Let kETq and set A{(h  . . . . .  tr):O~(vq). Not let 
ieTpr Tq and set 

B2q(tl . . . . .  tr)= -O~(vq) 

It will be convenient to write Aj(n;j)  for A}(O . . . . .  O, n, 0 . . . . .  O) where the n is in 
the f h  position. 

Lemma 3: Aj(n;j)= 1/n. 

Proof," By symmetry and j-efficiency, ~(vN;0 = 1/n for each i. 

Lernma 4: If  q 4 j ,  then A~(ti . . . . .  tr)=B+p.q(h, . . . ,  tr)=O. 

Proof." If  k r  then every player is a j -dummy in v r~'r. 
Since the notion of  pairwise-consistency depends on the notion of the "re- 

stricted" game, our next goal is to define the restriction of  a (N, r) game to the re- 
duced player set N -  {i}. 

Definition: Let F be an arrangement of  N. For ir 

( N -  {i}, vrJ'r)(Fj, F -  {i})= 1/ (r -  1) 

whereas 

( N -  {i}, vr+'P)(T *, F * ) : 0  

for all other ECL 's  T*, F*.  (Here, F* is an arrangement of  N -  {i}.). Further, for 
i~Fy, ( N - { i } ,  vG'F)=--O. 

Lemma 5: Suppose i~tFj.. For k~F+., 0 ~ ( N -  {i}, VG'F) = 

AJ(IFt - {i} I, I F 2 -  {i} I . . . . .  I F r -  {i} I ) / ( r -  1) 

whereas, for k e Fp C F+., O{ ( N -  {i}, vr +'r) = 

-B~.i(IF~ - {i}l, I F 2 -  {i} i . . . . .  IF~ -  {i} [ ) / ( r -  1) 



A Value for Games with n Players and r Alternatives 329 

So far, we have only defined the restricted game for the basis games. 

Defini t ion:  Let v be any (N, r) game and write v=  ~. v(T,  F) v r 'r .  
(T,13 

We define ( N -  {i}, v) = ~. v(T,  I )  ( i V -  {i}, vr ' r ) .  
( T,I) 

When r =  2, this notion of  the restricted game is equivalent to the coalitional 
game restricted to subsets of  N -  {i}. 

Defini t ion:  A linear j-efficient value 0 j is called pairwise consistent if for each i and 
k and each game v, 

O~(v)-Oi(v)=O~(g- {i}, v)-Oi(N- {k}, v) 

When r =  2, this agrees with the notion of  pairwise consistency for n-person 
coalitional games in Hart/Mas-Colell  [1989] and is related to the notion of  "bal- 
anced-contribution" in Myerson [1980]. 

Theorem 4: A j-efficient value 0 j which satisfies the symmetry, j -dummy,  and lin- 
earity axioms is pairwise consistent if and only if 

A}(t~ . . . . .  tr) = ( t j -  1)! ( n - t j ) !  (7) 
nt ( r -  1 ) ' - ' ,  

and 

BJp.j(tl . . . . .  tr) = (t j /(n -- tj)) A~(t l  . . . . .  tr) (8) 

Proof." Suppose first that (7) and (8) are true. Let 0 / be the j-efficient value which 
satisfies the symmetry, j -dummy,  and linearity axioms and satisfies (7) and (8). Then 
a direct computation verifies that this 6 u is pairwise consistent. 

Conversely, suppose that 0 J is a pairwise consistent, j-efficient value satisfying 
the symmetry, j -dummy,  and linearity axioms. Let v =  v Tj'I" where F =  {7"1 . . . . .  Tr}. 
Let k e  Tj and i e  T p r  Tj. Then, from pairwise consistency, 

A J ( h  . . . . .  tr) + B~, j (h  . . . . .  t~) = 
A}( t l ,  tz . . . . .  t p - 1  . . . . .  tr) 

r - 1  
(9) 

Let m = )-]. tq. We proceed by induction on m. For m = 1, we have tp = 1 and (9) 
qCJ 

becomes 

A}(O . . . . .  O, n - l ,  0 . . . . .  O, 1,O . . . . .  0)+ 
BJ, j (0 . . . . .  O, n - 1, 0 . . . . .  O, 1, 0 . . . . .  O) 
=AJ(O . . . . .  O, n -  1 ,0 . . . . .  O ) / ( r - 1 ) .  
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By j-efficiency and symmetry, 

( n -  1)Aj(O . . . . .  O, n - l ,  0 . . . . .  O, 1, 0 . . . . .  0)= 
BSp, j(O . . . . .  O, n - l ,  0 . . . . .  O, 1, 0 . . . . .  O) 

It follows immediately that 

1 
Aj J.(0 . . . . .  0, n - 1, 0 . . . . .  0, 1, 0, . . . ,  0) - 

n ( n - 1 ) ( r - 1 ) "  

Assume the result is true for ~ tq < m and consider 
q@J 

A j ( q  . . . . .  tr) for ~ t q = m .  From (9), we get 
q~J  

( t j -1 ) !  ( n - l - O !  
AJj:(fi . . . . .  tr) + BJp, y(tl  . . . . .  tr) = 

(n - 1)! ( r -  1) n-tj " 

Note that BJ,.j is therefore independent of  p.  It then follows from symmetry and 
j-efficiency that 

t jA{ ( t l  . . . . .  tr) = (n - 0 BJp, J(tl  . . . . .  t~) 

Solving for B~. i and substituting in the previous equation yields the desired result. 

R e m a r k :  The reader may easily show that the j-efficient value of  Theorem 4 is iden- 
tical to the j-efficient value of  Theorem 3. We thus have three characterizations of  
this j-efficient value. 

5 Final Arrangements and the Induced Subgames 

If  0 ~ is a j-efficient value, then 0{/ (v) is player i's share of  v(N;  j )  provided the grand 
coalition forms and chooses alternativej. Suppose the grand coalition does not form 
but instead the "final" arrangement is (F1, 1"2 . . . . .  Fr)? How much should each of  
the players in Fj get of  the total available to F i, namely v(Fj,  1")? 

In the case of  coalitional games (i.e. cooperative games in characteristic func- 
tion form), a final coalition S induces a subgame, (S,v),  with player set S in which 
(S, v ) ( T )  is defined to be v ( T )  for each Tc_S .  One may then use player i's value in 
this subgame as player i's share of  v(S). 

We wish to define, for games with r alternatives, the notion of  a game induced 
by a final arrangement F. For ease of  notation we shall assume in the remainder of  
this section that j = 1. 
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Definition: Let F =  (F1,/'2 . . . . .  Fr) be an arrangement of the player set N. Let v be 
an (N, r) game. Let F* be an arrangement of FI. We define a new game (F, v) (rela- 
tive to alternative 1) with player set F1 by: 

(r, v)(~, r*)=v(~,  ?) 

where/~= (fj;,/~2 u F2 . . . . .  /~  w fr). The game (U, v) is called the subgame of v in- 
duced by F. 

Example 6: Let N =  { 1, 2, 3 } and let r = 3. Let v be the game defined by: v ({ 1, 2, 3 }, 
({1,2, 3}, 0, 40)=v({1,2},  ({1,2},$ ,  {3}))=v({1}, ({1}, {2}, {3}))= 1 ;v (T , / - )=0  
for all other ECL's. Let F be the final arrangement F=({1 ,  2}, ~b, {3})). The in- 
duced subgame (F, v) is the game with player set {1, 2} in which (F, v)({1, 2}, 
({1,2}, 4~, $ ) )=(F ,v)  ({1}, ({1}, {2}, $))=1 whereas (F,v)(T*,F*)=O for all 
ECL's (T*,/-*) where F* is an arrangement of { 1, 2}. 

We cannow use, for i~F1, O~ (F, v) as the value of player i in the induced game 
(f,  v), that is, 0~ (F, v) is player i's share of v(F1, D,  assuming the final arrangement 
is F. 

The induced subgame can also be used in situations where some of the players 
are forced to "choose" specific alternatives. These players would be placed in the 
appropriate alternative sets at the outset of the game and would remain there until 
the final arrangement is determined. 

Example 7: In example 2, section 1, suppose that there are four potential wage earn- 
ers who can earn $10000, $20000, $30000, and $42000, respectively. Suppose fur- 
ther that the final arrangement is ({3, 4}, {2}, {1}, 40, so that players 3 and 4 are 
employed, player 2 is seeking employment and player 1 is content to receive welfare. 
Players 1 and 2 are to receive $3000 and $14000, respectively, from players 3 and 4. 
We shall use the value 01(F, v) to suggest how much of the remaining $55000 
should go to player 3. By direct computation, we find that O~(F, v)=$19500 and 
O~4(F, v) = $35 500. It is interesting to note that the higher wage earner paysqess "tax" 
than the lower wage earner. This may be attributed to the fact that the higher wage 
earner is the most valuable member of category 1 in the sense that player 4 would be 
the most costly if she were in category 2 or 3. 

6 Dummy Independence 

In this final section, we show that the addition (or removal) of a dummy player, d, 
has no effect on the values of the other players. Throughout this section, tT refers to 
the value in Theorem 3. 

Definition: Let F=(T1,  T2 . . . . .  Tr) be an arrangement of N. Let, for fixed p, 
v=v r~'r. The dummy extension, v d, of v to N w  {d} is defined by 
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va(Tp u {d}, (T1 . . . . .  Tp ~ {d} . . . . .  Tr)) = 1 
v~(Tp, (T~ . . . . .  T q u  {d}, . . . ,  Tr))= 1 for l <_q<_r, q C p .  
vd(T *, 1-'*)=O for all other (T*,/-*) 

Lemma 6: Let v= v T~'r. For each ieN,  O~(v ~) = O~(v). 

Proof." If  p C j ,  then ~ (v ~) = ~ (v) = 0. So, suppose p = j  and let i �9 T]. Then ~ (v d) 

= ~ A~(fi, tz . . . . .  tq+ 1 . . . . .  tr) and using (7), this reduces to A j ( q ,  t2 . . . . .  tr). A 
q=l  

similar result follows from (8) if ir  Tj. 

Now let v be any (N, r) game and write 

v= ~ v(T, 13"v ~'r. 
(7.1) 

We then define 

v ~= Z v(T, r).(v~,~) d. 
(7.13 

(Note that the sum is over ECL's  for N whereas the domains of  (vT'r) d and v d are 
the ECL's  for N u  {d}.) 

Using the lemma, the following result is immediate. 

Theorem 5. Let v be any (N, r) game. For each i eN ,  

(v) = ~ (d).  

7 C o n c l u s i o n  

In this paper, we have shown that, although there are, for r-alternative games, infin- 
itely many j-efficient values satisfying symmetry, dummy, and linearity axioms, 
there is a unique "natural" extension of  the Shapley value to games with r alterna- 
tives. Moreover, this value satisfies a "pairwise consistency" property similar to that 
in Hart  and Mas-Colelt [1989]. 
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Example 3: N= {1, 2} and r=3 .  If both players choose alternative j,  the joint 
payoff is 2 j .  If player 1 chooses j while player 2 chooses k, then 1 receives j and 2 
receives I k - j l .  For example, v({1, 2}, (G 4, {1, 2})=6, v({2}, ({2}, {1}, 4))= 1, 
v({2}, ({2}, 4~, {1}))=2, etc. In order to compute 03(v), we need the arrangements 
F for which leF3. These arrangements are (G G {1, 2}), ({2}, q~, {1}), and (4, 
{2}, {1}). Then, 

- 

(2 -1) t  0~ 
2! 21 [v({1, 2}, (4~, qS, {1, 2}))-v({2},  ({1}, 4, {2})) 

+v({1, 2}, (G q~, {1, 2}))-v({2},  (q~, {l}, {2}))] 

0! 1! 
+ 2! 22 [v({1}, ({2}, 4~, {1}))-v(ck, ({1, 2}, q~, 4,)) 

+v({l} ,  ({2}, 4, { l} ) ) -v (~ ,  ({2}, {t}, 4))1 

0! 1! 
+ 2! 22 [v({l}, (q~, {2}, {1}))-v(q~, ({1}, {2}, 4)) 

+v({1}, (4,, {2}, {1}) ) -v(G (4, {1, 2}, 4))1 

6 - 2 + 6 - 1  3 + 3 + 3 + 3  
- + - 3.75. 

4 8 

Example 5: The United Nations Security Council has five permanent members and 
10 nonpermanent members. Each of the five permanent members individually has 
veto power and any coalition of 7 of the nonpermanent members has veto power. In 
addition, at least 9 affirmative votes are needed to pass a motion. A member can 
vote "yes", "no" or "abstain". To decide if a motion passes, one must know how 
many of the permanent members and how many of the others choose each of the 
three alternatives. Suppose player # 6 is the first nonpermanent member. We shall 
compute 0 y (v). We need consider only those arrangements F which yield pivot 
moves for player 6. (See page 10 for the definition of "pivot move".) Player 6 can 
pivot by changing her vote to ~'no" or "abstain" in those arrangements for which: 

(a) player 6 votes "yes" 

and 

(b) for j =  0, 1 . . . . .  5, exactly j of  the permanent members vote "yes"; the other 
5-j permanent members vote "abstain"; and, exactly 8-j of the nonperma- 
nent members (other than player 6) vote "yes". 
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To count the number of  such arrangements,  we note that, for fixed j ,  the j perma- 

( 5 )  ways; the 8-j nonpermanent  nent members to vote "yes" can be chosen in J 

( 9 ) ways; and, the members to vote "yes" (along with player 6) can be chosen in 8-j 

remaining j +  1 nonpermanent  members can then vote either "no" or "abstain".  
Consequently, for fixed j ,  the number  of  arrangements satisfying (a) and (b) equals 

( ~ ) .  ( 9 ) . 2 j + l .  Then, 0~(v)= ~, ( ~ ) . ( 9 ) . 2 j + 1  " 8!6!  
8-j j=0 8-j 15!27 "2=0"0184" By y- 

efficiency, the value of  a permanent  member  with respect to the "yes" alternative is 
0.1632. 
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