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Abstract: An n-person game is considered where each player has a preference order over a 
finite set A of possible alternatives and a rule for social choice is given in the form of an 
effectivity function E. The effectivity function is called stable if for any combination of indi- 
vidual preference orders there exists a subset of A called a core such that any alternative in the 
core cannot be 'dominated' by such individual preferences. It has been shown by Keiding 
(1985) that the effectivity function E is stable if and only if E does not generate any 'Cycle'. 
This paper is concerned with the computational complexity of the problem (CYCLE) for de- 
termining whether or not a given effectivity function has a Cycle. We show that a familiar 
NPC problem SATISFIABILITY can be transformed into CYCLE through a polynomial time 
procedure. This, combined with the fact that CYCLE is an NP problem, implies NP-complete- 
hess of CYCLE, and therefore that of verifying the unstability of the effectivity function, 
thereby formally proving a previously unanswered conjecture. 

1 Introduction 

We consider a society consisting of  n members denoted by N -  {1, 2 . . . . .  n}. The 
i-th member  has a preference order R i over a set of  m possible alternatives, 
A = {al, a2 . . . . .  am}. A preference profi le  is defined by R N = ( R  1, R 2 . . . . .  Rn). It is 
assumed that  a rule is given for aggregating individual  preferences (e.g. the major i ty  
voting rule, the Borda  voting rule, etc.), through which a social choice is con- 
structed. Some members  may  form a coalit ion, defined as a subset of  N, in order to 
reflect their preferences on social choice. For  example,  under the major i ty  voting 
rule, a coali t ion containing more  than one half  of  the members can total ly control  
the result of  social choice. 

In general, a coali t ion cannot  yield the total  dominance over a social choice. It 
may well be, however, that  a coali t ion S can affect a social choice in such a way that  
the final result will belong to a subset B of  A specified by the group. In this case, we 
say that  a coali t ion S is effective for B. It should be noted that  the smaller B is, the 
greater the potent ial  power of  S is. Even when S i s  effective for B, the group may 
not  necessarily agree upon exercising the coali t ion power to actually realize B. 

Depending on the way individuals negotiate within the group, a coalit ion S may 
have multiple effective sets. A rule for social choice may then be expressed by a 
function mapping a set of  subsets of  N into a set of  subsets of  a collection of  subsets 
of  A .  This function is called an 'effectivity funct ion ' .  
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Given a preference profile, if a coalition S is effective for B and every member 
of S prefers any yEB to x~B, then x is blocked by S and will never be selected as a 
social choice. If  there is a member of 'S who prefers xr to some y~B, then x is not 
blocked by S since this member may not join S for blocking x in order to avoid one's 
personal loss. Given a preference profile, a set of alternatives which cannot be 
blocked by any coalition is called the 'core' .  If  the core is nonempty for every pre- 
ference profile, then the effectivity function is said to be stable. 

Existence of the core in the context of ordinary n-person games has been stud- 
ied by Scarf (1967) and many others. For the case of games with effectivity functions 
described above, however, showing the existence of a core for a given preference 
profile is not sufficient. If  there exists a preference profile under which the core is 
empty, the corresponding rule for aggregation of individual preference is considered 
to be incomplete. Accordingly, it is important to show the existence of the core for 
every preference profile, i.e., the stability of the effectivity function. For this prob- 
lem, several approaches have been attempted in the literature. The pioneering work 
by Moulin and Peleg (1982) proved that an 'additive' effectivity function is always 
stable. Peleg (1983) showed that a 'convex' effectivity function is also stable. An 
interesting result due to Demange (1987) states that any core of a 'strictly stable' 
effectivity function, including 'convexity', is nonmanipulable in an optimistic sense. 
This implies that if the final social choice belongs to a core given a preference pro- 
file, then all members are convinced to accept it without complaint. A powerful 
necessary and sufficient condition for the stability of the effectivity function was 
first given by Keiding (1985) in terms of 'acyclicity'. Following this work, Lee, Ni- 
shino and Mizutani (1989) demonstrated that, for the stability, Scarf balancedness is 
sufficient in general, and is necessary and sufficient for a certain class of effectivity 
functions. 

The number of all possible preference profiles increases exponentially as a func- 
tion of the number of members and that of alternatives. Accordingly, in order to 
determine the stability, the use of any core finding algorithm is not encouraging 
since it involves complete enumeration of all possible preference profiles. In con- 
trast, more promising may be the necessary and sufficient condition of Keiding 
(1985) that an effectivity function is stable if and only if the function has no Cycles, 
since the condition is independent of individual preferences of members. Although 
the number of Cycle candidates also increases exponentially as a function of number 
of members and that of alternatives, complete enumeration may be avoided by uti- 
lizing some structural properties. 

This paper is concerned with the computational complexity of the problem CY- 
CLE to determine whether or not a given effectivity function has a Cycle. In the 
theory of computation and algorithm, a set of problems having a nondeterministic 
solution algorithm which can be run in polynomial time is called A/~9. A subset of 
A/'~.~ consisting of 'the most intractable problems' is said to be A/ '~  ~.. It is shown 
that a familiar NPC problem SATISFIABILITY can be transformed into CYCLE 
through a polynomial time procedure. We also show that CYCLE is an NP problem, 
thereby demonstrating the NP-completeness of CYCLE and formally proving a pre- 
viously unanswered conjecture. 

In section 2, notations, some definitions and concepts are given where an effec- 
tivity function is formally introduced. A succinct summary of the necessary and suf- 
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ficient condition of Keiding (1985) for the stability is given in section 3 and an illus- 
trating example is provided. Section 4 describes basic concepts and results in theory 
of computation and algorithms. Using Such results, we prove the main result of this 
paper in section 5. Some remarks are given in section 6, including the discussion of 
computational complexity for finding the core. 

2 Notation and Definitions 

Let N be a nonempty finite set of players with I NI = n, where [XI denotes the car- 
dinality of X. A nonempty subset S of N is called a coalition. 

Let A be a finite set of alternatives with IA[ =m____2. R i denotes a preference 
relation of the player i e N  which is a complete and transitive binary relation on A. 
We write x P i y  if x R i y  and not y R i x  for x, y e A .  A preference profile is a combina- 
tion of individual preference relations, written by R u = (R 1, R2 . . . . .  R n). 

We also use the notation P(D) for the set of all subsets of a set D, and let 
PZ(D) =-P(P(D)). Finally, 2D--P(D) \{0}. 

An effectivity function is defined formally as below. 

Definition 2.1: An  effectivity function is a mapping E:P(N)--*P 2 (A) such that 

(1) Or for  every SeP(N) ,  
(2) Br for  every B e P ( A ) ,  
(3) for  every Se2  N, A eE(S),  
(4) for  every B e 2  A, BEE(N).  

The statement (1) and (3) indicate that any coalition will yield some result, whereas 
empty-coalition will not affect the social choice as specified in (2). Every coalition is 
allowed to be not influencing the social choice as specified in (3) and the statement 
(4) means that the coalition of the entire members can determine any social 
choice. 

Some key concepts concerning effectivity functions are introduced next. 

Definition 2.2: Let E: P (N) ~pZ  (A) be an effectivity function, and let a preference 
profile R u be given. Furthermore, let BE2 A and x e A  \B. Then we say that B domi- 
nates x via a coalition Se2 N, written by B Dom(R N, S)x, i f  

BeE(S)  and b p i x  for  every b e B  and every ieS.  

We also say that B dominates x, denoted by B Dom(RU)x, if there exists a Se2  N 
such that B Dom(R N, S)x. 

Definition 2.3: The Core o f  A with respect to E and R u denoted by C(A, E, RN), is 
the set o f  all undominated alternatives in A.  Namely, 

C(A, E, R n) = {aeA  Ithere exists no BE2 A such that B Dom(RX)a}.  
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Stability of  an effectivity function is defined below. 

Definition 2.4: An  effectivity function E is stable i f  

for  every preference profile R u C(A, E, R N) ~ O. 

M. Mizutani et al. 

3 Condition for the Stability of the Effectivity Function 

In this section, we discuss Keiding's result (1985) on the stability of  the effectivity 
function. The concepts of  a 'Strong Cycle' and a 'Cycle '  are first introduced which 
will play an important  role throughout  this paper.  

Definition 3.1: A Strong Cycle in E is a family (S~, Sa . . . . .  S~; B1, Bz . . . . .  Bic), where 
SiE2 N, BiE2 A, Bi~E(Si), i= 1, 2 . . . . .  k, such that 

(1) BifqBJ=O for  every i , j=  1, 2 . . . . .  k, i # j ,  
(2) N,~=~ S,-=~. 

Definition 3.2:`4 cycle in E is a family (S1, $2 . . . . .  Sic; B2 . . . . .  Bic) with associated 
sets C1, C2 . . . . .  Cic, where Si~2 N, Bi~2 A, Bi6E(Si), CiE2 A, i= 1, 2 . . . . .  k, such 
that 

(1) Q N C j = O  for  every i , j = l , 2  . . . . .  k, i C j  and [.J~=l Ci=A, 
(2) Ci f] Bi = 0 for  every i = 1, 2 . . . . .  k, 
(3) for  every il, i2 . . . . .  i,~ { 1, 2 . . . . .  k},  

i f  C~/]B~+l vLO, j =  l, 2 . . . . .  r - l ,  then [~=1 & j = 0  or Cfrf]B~ =O. 

The following theorem holds concerning a relation between a Strong Cycle and 
a Cycle in E. 

Theorem 3.1: Let E : P ( N ) ~ P  2 (.4) be an effectivity function. Any  Strong Cycle in E 
is a Cycle with some associated sets Ci's. Therefore, i f  E has a Strong Cycle then E 
has a Cycle. 

The following theorem characterizes stability of  an effectivity function by 'acy- 
clicity'. 

Theorem 3.2: Let E: P(N) ~ p 2  (.4) ben an effectivity function. E is stable i f  and only 
i f  there is no Cycle in E. 

The following example illustrates the concept of  Core and Cycle. 

Example 1: Let a society N and alternative set A be defined by N =  { 1, 2, 3, 4} and 
A = {al, a2, a3, a4} respectively. An  effectivity function is given by: 
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E({1, 3})= {a4} +, E({1, 4})= {a3} - ,  E({1, 2, 4})= {a,} + U {a2} +, 
E({1, 3, 4})= {al} +, E({2, 3, 4})= {az} + [-) {a3} + [,.J {a4} +, E(N) = 2 A 
and, otherwise, E(S)= {A}, 

where B + =- {/~I/~P(A),/~DB}. 
We can see that the above E has a Cycle (S~ . . . . .  $4; B~ . . . . .  B4)=({2, 3, 4}, 

{1,4}, {1,3}, {1,2, 4}; {a3}, {a3}, {a4}, {a~})with the associated partition 

C1= {al}, C2 = {a2}, C3 = {a3}, C4 = {a4}. 
I f  the preference profile is 

al p l  a4p1 a3 p1 a2; 
a2 P2 al p2 a4 P2 a3; 
a4 p3 a3 p3 a2 p3 al; 
a3 p4 a2 p4 al p4 a4, 

then the set {a2} ({a3}, {an}, {al}) dominates the alternative al(a2, a3, a4) via the 
coalition {2, 3, 4} ({1, 4}, {1, 3}, {1, 2, 4}) and the Core is empty. 

4 Computational Complexity 

This section summarizes some known results on computational complexity. 

4.1 ~ and ~ / ~  

A class of problems having the same solution structure is denoted by H. An instance 
of problem in H can be specified by selecting a particular set of admissible values of 
parameters. The total number of bits necessary for describing the problem instance 
is called the size of the instance. We denote an instance of size h by Ih. 

In the study of computational complexity, underlying decision problems are 
supposed to have only two possible answers: 'yes' or 'no'. Such a decision problem 
can be described by specifying the following two parts; 

1. INSTANCE: to determine a generic instance of the problem, 
2. QUESTION: to state a yes-no question asked for the generic instance. 

We abbreviate INSTANCE as I and QUESTION as Q. 
If an algorithm ~ for solving the problem H is given, the number of elementary 

calculations such as addition, substraction, comparison, etc., required to solve the 
problem instance Ih is denoted by f~( Ih) .  Let ~ be the set of all possible instances 
of size h, and define F ~ z ( h ) - - m a x ~ f ~ ( I h ) .  Then the problem/7 will be solved 
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within F~z(h) times calculations for any instances in 6 .  An algorithm q~ is called a 
polynomial time algorithm if there exists a polynomial p in h such that 

for all h, F~(h) <=p(h). 

Now, we define the class ~.~ of the decision problems. 

Definition 4.1." 
~@---=- {171 there exists a polynomial time algorithm solving 17}. 

Following Garey and Johnson (1979), we introduce the second important class 
of decision problems, the class d/'~@. We define d / ~  in terms of a nondeterministic 
algorithm. A nondeterministic algorithm is composed of two separate stages, the 
first is called a guessing stage and the second a checking stage. The first stage merely 
guesses some structure R on a given problem instance I without care of how much 
time it takes to find R. Given I and R as input, the checking stage proceeds to com- 
pute and will either eventually halt with answer 'yes' or 'no' ,  or compute forever 
without halting. We say an instance I satisfies the condition of the problem 17 if the 
problem instance specified by I has the answer 'yes'. A nondeterministic algorithm is 
said to solve 17 in polynomial time if there exists a polynomial p such that, for every 
instance Ih satisfying the condition of 17, there is some structure R which leads the 
checking stage to respond 'yes' within time p(h). Now, we define the class d#~@ of 
the decision problems. 

Definition 4.2: 
~4#~.@--- {HI there exists a nondeterministic algorithm solving 17 within polynomial 
time}. 

Since a polynomial time algorithm is a polynomial time nondeterministic algo- 
rithm having polynomially solved R without regard of the answer for problem in- 
stances, ~ is included in ~ / ~ .  

4.2 JU~_@ 

In order to prove that a problem H belongs to ~ ,  it is enough to construct a poly- 
nomial time algorithm solving it. On the other hand, even if we can not find a poly- 
nomial time algorithm for the problem yet, we can not say that such an algorithm 
will never be discovered. Instead of showing that the problem considered does not 
belong to g ,  Cook (1971) proposed an idea of defining a subclass J / ' ~  ~ o f / / / ' ~ ,  
with problems regarded as the most reasonable candidates not to belong to ~ .  Be- 
fore discussing details, we define the notion of polynomial transformability. 

Definition 4.3: Let DL1 (DL2) be the set of  all possible instances of  a problem L1 (Z2), 
and let YLI (Yr )  be the set of  all instances satisfying the condition of  the question of  
L1 (L2) (YL 1CDL1, YL2 CDL2). We say the problem L1 is polynomially transformable 
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into the problem L2, which we denote by L1 ocL2, if  there is a polynomial time algo- 
rithm f :DL ~DL2 such that 

for  every IeDL~, I e  YL1 r f (1)e YL2. 

In other words, L1 o:Lz implies that there is a procedure f to transform each Ih to 
f(Ih) such that its computational complexity is polynomial of  h and further, 

L1 (Ih) is 'yes 'c* L2(f(Ih)) is 'yes' .  

Since f(Vl)CD2, if any problem belonging to A / ~  can be polynomially trans- 
formed to H,  then we can conclude that H has the same computational complexity 
with the most intractable problems in ~ 4 / ~ .  J//~.~ ~ is the family of  such prob- 
lems: 

Definition 4.4: 
J U ~ -  { H e J K ~ l  for  any L e J I / ~ ,  LocH}. 

Taking account of  the fact that the polynomial transformability relation is tran- 
sitive, we directly have the following statement; 

L1 e ~ / ' ~  ~,, L 2 e J U ~ a n d  L1 ocL2 = L 2 e J ] / ' ~  ~. 

Thus, to prove that the problem H belongs to J / / ' ~  ~, it is enough to show that 

1. H e A l S ,  and 
2. some known problem H* e~/F~@ ~ i s  polynomially transformed into H.  

Now, we refer to the familiar SATISFIABILITY problem (SAT, for short). The 
terms we shall use in describing SAT are defined as follows: Let xl, x2 . . . . .  Xm be 
Boolean variables and ~1, x2, . . . ,  ffm be their negations, that is, xi is true if and only 
if N is false. By a clause T, we mean a disjunction of  the variables and their nega- 
tions, and we say T is satisfied if there is an assignment of  truth-values to 
Xl, x2 . . . .  , Xm such that T is true. In the SAT problem, the conjunction of  these 
clauses T1, T2 . . . .  , Tn is checked to be satisfiable. Formally, SAT is specified as fol- 
lows; 

Problem 1 (SAT): 

I: A set of  Boolean variables Xa, x2 . . . . .  Xm, and 
a collection o f  clauses TI, T2 . . . . .  Tn over them. 

Q: Is there a satisfying truth assignment for the collection? 

Example 2: Consider the following input o f  S A T  with m = 4, n = 4. 

r l  = x2 V.,v3 V x4 

Tz =.~ V x3 V x4 
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T3 =x1V.~2 V x3 

T4=x 4 

For example, i f  we set Xl =false, x2 =false, x3 =false and x4 = true, this assignment 
on x / s  satisfies the above SAT. 

We shall start from the following result on SAT shown by Cook (1971). 

Theorem 4.1: SA T e J U ~  ~.. 

In the succeeding sections, we use SAT as the known problem H* in ~/ 'J~ ~.. 

5 Computational Complexity of the CYCLE Problem 

In this section we consider the problem (CYCLE) of verifying whether or not the 
effectivity function has a Cycle. First, we formulate the problem (SC) to verify 
whether or not the effectivity function has a Strong Cycle. Beginning with proving 
that SAT can be transformed into SC, we eventually show that CYCLE is in 

Since an effectivity function E is a mapping from P(N) to Pa(A), we formally 
have I (E)=  2 n X2 m, where I(E) denotes the size of E. But the Strong Cycle and the 
Cycle can involve neither the coalition 0 nor the alternative set A by their definition. 
Moreover, if the family ($1, $2 . . . . .  Sk; 91, B2 . . . . .  Bk), BieE(S~), i= 1, 2 . . . . .  k is a 
Strong Cycle (Cycle), then the family ($I, $2 . . . . .  Sk; B], B~ . . . . .  B~), B~eE(Si), 
B~CBi, i= 1, 2 . . . . .  k is also the Strong Cycle (Cycle). These imply that, in order to 
describe the decision problems of checking the existence of a Strong Cycle (Cycle), it 
is enough to provide the following restricted subfunction E* of E; 

E* :D-~PZ(A) such that 
D--- {Sr exists B C A  such that B C A  and BeE(S)}  

E(S)~B, B C A  and 
E* (S) w B e, 

there exists no B'eE(S)  such that B' C B and B ' r  B. 

Problem 2 (SC): 

I: N, A,  E* :DoPZ(A)  
Q: Is there a family 

($1, Sz . . . . .  Sk; BI, B2 . . . . .  Bk), where SLED, Bie2 A, B~eE*(Si), 
i = 1 , 2  . . . . .  k 
such that 
(1) BenBj=O for  every i , j =  1, 2 . . . . .  .k, i ~ j  
(2) NL~ s/=0? 
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Problem 3 (CYCLE): 

L" 
Q: 

N, A, E* :D~p2(A)  
Is there a family 
(S1, S 2 . . . . .  Sk'~ Ba, B2 . . . . .  Bk) with associated sets C1, C2 . . . . .  Ck, 
where SeeD, Bie2 A, BeeE* (Si), C~e2 A, i= 1, 2 . . . . .  k 
such that 
(1) C~f3Cj=O for  every i , j=  1, 2 . . . . .  k, iC j  and [.J~_~ Ce=A 
(2) Ci fq Be = 0 for  every i = 1, 2 . . . . .  k 
(3) for every il, i2 . . . . .  ire { 1, 2 . . . . .  k} 

if  Cj'lB~+l r j=  1, 2 . . . . .  r - l ,  then ~=~ S~ =0 or Ce NBe~=O? 

Theorem 5.1: S C e J t # ~  ~. 

(Proof): 

1. 

2. 

SC eA/'~@ 
If  a guessed family ($I,$2 . . . . .  Sk; B1, B2 . . . . .  Bk) such that  SieD, 
BjeE* (SO, i =  1, 2 . . . . .  k is given, it is easy to check whether or not this sa- 
tisfies the condit ion of  SC. Indeed, to check the condit ion (1) in the SC 
(SC(1), for short) we need no more than k2•  m times order calculations and 
SC (2) no more than k x n. Hence SC e A / ~ .  
SAT cc SC 
First ,  we present a rule f to t ransform SAT into SC. Adding to the original 
nota t ion xe, )~, we shall also use the notat ion Yi such that  

I 'xe if i =  1, 2 . . . . .  m 

Ye-  .)~-m if i = m + l ,  m + 2  . . . . .  2m. 

Without  loss of  generality, we may assume there exists no Yi contained in 
every clauses, because SAT obviously remains ~ 4 / ~  c~ under this assump- 

tion. 
Let N be {1, 2 . . . . .  n} and A be {al, a2 . . . . .  am}. E* is defined as follows: 
Let I be { ie  { 1, 2 . . . . .  2m} I there exists Ti~ye }. And  for every i e I, set R i to 
{ jeNlYir  Note that  RiskO, for every ie l .  Further ,  for each 
S e  {gel ieI}  ( = D \  {N}), set E* (S) to { {a~, } I S= Ri, ie I} ,  where i # denotes 
i if  i<=m, and i - m  otherwise. And,  set E*(N) to {{ae} I i=  1, 2 . . . . .  m}. 
The above rule f i s to define INSTANCE of  SC from that  of  SAT. This f 
requires at most  4m2•  n times calculations, which implies f is a polynomial  
t ime algori thm. 
Next, we show that  a SAT problem has the answer 'yes '  if and only if  the 
corresponding SC problem has the answer 'yes ' .  
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SAT is 'yes '  = SC is 'yes' .  
Suppose that we have an assignment of  y / s  by which the SAT is satis- 
fied. Define I t -  {i[y~=true} (=  {il, & . . . . .  i,}). Now, we show that 
(R~,, R,-, . . . .  R~.; {aq ,} ,  {a~,}  . . . . .  {ag=#N) is a Strong Cycle. 
Since the assignment satisfies the SAT, 

for every i, j e l t ,  i* C j * ,  

namely, the family of  the one point set {ai, }, ieI~ satisfies SC(1). 
If  this family does not satisfy SC (2), there must exist a clause which 
does not contain any true variable, i.e., which is not satisfied by any 

Yi. 
Thus, if a SAT problem is 'yes' ,  then the SC problem transformed 
from it is 'yes' ,  

SC is 'yes'  = SAT is 'yes' .  
Let (S+,,Si 2, . . . .  S+~; {%},  {as2 } . . . . .  {ajk}), { a j z } + E * ( S i ) ,  
l=  1,2 . . . . .  k be a family that satisfies SC(1),(2). 
Without loss of  generality, we can assume that S+,r 1= 1, 2 . . . .  , k. 
Otherwise, after removing all sets Si,, {%} such that S i = N  from the 
Strong Cycle, we still have a Strong Cycle. From the transformation 
rule f ,  

for every l= 1, 2 . . . . .  k, S~=Ri,  o r  Rjz+m , 

and let Si, = Rjh where j~ =Jl or Jl + m, l = 1, 2 . . . . .  k. So, we get f rom 
SC(2), 

k R I-IS,s,,= r-l,=, +;=o, 

namely, 

for every j ~ N ,  there exists yj~ e Tj. 

Since indices l<_jt<=m, l = 1 , 2  . . . . .  k satisfy jhCj l2  for every 
ll, 12(ll r f rom SC(I),  

for every ll,/2 = 1, 2 . . . . .  k, (jT,) # r (J72) #, 

and therefore we can set the value of  Yi;, l=  1, 2, . . . ,  k to true without 
contradiction. Such assignment on yi's satisfies all clauses Ti, 
i=  1, 2 , . . . ,  n. Thus, if the SC which is transformed from a SAT is 
'yes' ,  then the SAT is also 'yes' .  Q.E.D. 

Example  3: Recall the SA Tproblem with m =4,  n = 4  in.Example2. From the above 
rule f in the p r o o f  o f  Theorem 5.1 we directly have the fol lowing input o f  SC. 
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N =  {1,2, 3, 4} 
A = {a l ,  a2, a3, a4} 
I = { 1 , 2  . . . . .  8} 
Ra= {1,2, 4} Rs= {1, 3,4} 
R2 = {2, 3, 4} R6 = {1, 2, 4} 
R3= {l, 4} R7= {2, 3, 4} 
R4= {1, 3} R8= {2, 3, 4} 
D = { { I , 3 } ,  {1,4}, {1,2,4}, {1,3,4}, {2, 3,4}, N} 
e*({1, 3})= {{a,}} 
E* ({1, 4}) = { {a3 } } 
E*({1, 2, 4})= {{al}, {de}} 
E*({1, 3, 4})= {{al}} 
E*({2, 3, 4})= {{a2}, {a3}, {a4}} 
E*(N)= {{a~}, {a2}, {a3}, {a,}} 

A s  there is a satisfying truth assignment Xa =false, x2 =false, x3 =false and x4 = true, 
the S A T  has the answer 'yes'. Since the corresponding fami l y  (Sa . . . . .  $4; 
B1 . . . . .  B4)=(Rs, R6, RT, R4; {as#}, {a6#}, {a7#}, {a4~})=({1, 3, 4}, {1,2,4}, 
{2, 3, 4}, {1, 3}; {al}, {a2}, {a3}, {a4}) satisfies all conditions o f  a Strong Cylce, 
we can see that the problem SC also has the answer "yes'. 

On the other hand, the above E* has another Strong Cycle (R7, Rs, R4; {a7#}, 
{as#}, {a4#})=({2, 3, 4}, {1, 2, 4}, {1, 3}; {a3}, {all, {a4}). This leads to an as- 
s ignment satisfying the SA T: x~ = true, xa = true or false, x3 =false and x4 = true. 

In order to prove our main result which states C Y C L E e M / ~  ~,, we need two 
lemmas described below. 

L e m m a  5.2: Le t  E*:D- - ,p2 (A)  be a mapping. I f  the fami l y  (& ,S2  . . . . .  Sk; 
B1, B2 . . . . .  Bk) is a Cycle in E* with associated partit ion C1, C2 . . . . .  Ck o f  A ,  then 
there is a sequence o f  indices il, i2 . . . . .  ire { 1, 2 . . . . .  k} such that, 

(1) CJ3B~j+I r O(j = 1, 2 . . . . .  r -  1) and C J ) B i ,  r 0 
(2) N~=I &j = 0 
(3) f o r  every j ,  j ' =  1, 2 . . . . .  r, j C j ' ,  Bs  C B @ 

(Proof): 
We can get a sequence of indices that satisfies the above condition (1) as follows; 

step 1] Choose an arbitrary index j l e  {1, 2 . . . . .  k}, and set l -  = 1, J-= {Jl}. 
step 2] Find a Cj,+I among C~, i = 1, 2 . . . . .  k which intersects with Bj .  
step 3] I f j~+l~J then set J---~Jt.J {jr+l}, l--,l+ 1, and go to step 21, 

otherwise finish the procedure. 

Since Ci, i = 1, 2 . . . . .  k provide a partition of A., we can always find Cj-.1 in step 2]. 
Since k__< m, this procedure must terminate. When the procedure has finished, there 
exists an index jt, e J  such that j~+l=je which implies Bjf ' ICj , ,r  If we set ip to 
J~-p+ 1, P = 1, 2 . . . . .  l - l '  + 1 (---r) then we have C J ' I B  h r 0, and from the mecha- 
nism of this procedure we further have CipNBip+l r 0 (19= 1, 2 . . . . .  r -  1). Therefore 
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these i~, iz, . . . ,  ir satisfy the condition (1). Moreover, the indices also satisfy the con- 
dition (2), because (S~, $2 . . . . .  Sx; B1, B2 . . . . .  Be) satisfies CYCLE(3) with the parti- 
tion C1, C2 . . . . .  Ce. Now, we show there exists a sequence of  indices that satisfies 
the condition (3) adding to (1) and (2). Assume that any sequence of  indices satisfy- 
ing (1), (2) does not satisfy (3), and let il, i2 . . . . .  i~ be a minimum sequence with 
respect to the number of  indices that satisfies (1) and (2). From the assumption, 
there are indices l, l' such that 1 <=l, l'<=r(l<l'), Bg=Bi, .  Since CJqBg=O, we have 
C~fqB~=O, and consequently l<=l'-2. If  we take a subsequence it, b+a . . . . .  it-1 of  
i~, i2 . . . . .  ir, we have, from the condition (1), C~jfqB~+ ~ r 0 (j = l, l+  1 . . . . .  l' - 2) and 
Ci,,_ OBi,,= Ci/_1 fqB~,r O. Since the sequence it, il+ ~ . . . . .  it-1 satisfies CYCLE(3), 

N j= ~ S~= 0. Thus i~, tt+ ~ . . . . .  i t-a is a sequence of  indices sa- C~,,_INBi,r implies t,-1 
tisfying (1), (2). Since I{b, it+~ . . . . .  b,-~} < r ,  we have a contradiction with the as- 
sumption of  the minimality of  r. Q.E.D. 

Lemma 5.3: Let  E* : D-*P 2 (A ) be a mapping such that B ~E* (S) = [ B I = 1. Then E* 
has a Strong Cycle i f  and only i f  E* has a Cycle. 

(ProoaO: 
E* has a Strong Cycle = E* has a Cycle. 

The proof  of  Theorem 3.1 by Keiding (1985) includes the proof  of  this claim. 

E* has a Cycle = E* has a Strong Cycle. 

Suppose the family (S~, Sz . . . . .  Sk; B1, B2 . . . . .  Be) is a Cycle in E* with asso- 
ciated partition C1, C2 . . . . .  Cx. From Lemma 5.2, there is a sequence of  indices 
il, i2 . . . . .  i r~{1,2  . . . . .  k} such that [ ' ]}=~Si=0 (the condition (2) of  the 
Strong Cycle), and for every j , j ' =  1, 2 . . . . .  r, j C j ' ,  B~jCBt~,. Since IB~jr = 1, 
j =  1, 2 . . . . .  r, the latter inequalities imply that for every j, j '=  1, 2 . . . . .  r, j C j ' ,  
BjjOBi~=O (the condition (1) of  the Strong Cycle). Hence the family 
(Sq, S~ 2, . . . .  Sir; Bq, B~ . . . . . .  B~) is a Strong Cycle in E* Q.E.D. 

Theorem 5.4: C Y C L E e J U ~  

(ProojO: 

CYCLE ~ J / / ' ~  
If  a guessed family ($1, $2 . . . . .  Se; B1, B2 . . . . .  Be) with associated sets 
C1, C2 . . . . .  Ce such that SieD, BieE*(Si),  CiE2 A, i= 1, 2 . . . . .  k is given, it 
is obvious to check whether or not this satisfies the condition of  CY- 
CLE(I) , (2)  within polynomial time. Now, we need a method to verify 
whether or not the given family satisfies CYCLE (3). 
Define I p -  {ie{1,  2 . . . . .  k} IpeSi} for every p =  1, 2 . . . . .  n. Consider a di- 
rected bipartite graph Gp= (Vp, Wp, Ep) for each p =  1, 2 . . . . .  n. Where each 
the vertex set Vp, Wp represents the family of  sets Bi, C~(ieIp), namely, 
Vp-  {b~l ieIp},  W p -  {c~l ieIp}.  EpC Vp x WpO Wp x Vp is the set of  directed 
edges satisfying one of  the following conditions: 
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(1) (b~, c])eEp~i=j, 
(2) (c,, bj)eEo~qn~O. 

2. 

It is easy to see that there exists a Gp which has a cycle for some p if and only 
if the corresponding sets guessed in the first stage of a nondeterministic algo- 
rithm violate the condition CYCLE (3) with respect to some nonempty subset 
of Ip. Since Tarjan (1972) constructed a polynomial algorithm for finding 
cycles in a given directed graph G = (V, E), the computational complexity of 
checking the condition CYCLE(3) is also performed within polynomial 
time. 
Hence CYCLE e / U ~ .  
SAT or CYCLE 
The proof of Theorem 5.1 has provided a polynomial time deterministic al- 
gorithm f which transforms SAT into SC with an E* such that 
BeE* (S)= I BI = 1. Besides, Lemma 5.3 states that the existence of a Strong 
Cycle in such an E* is equivalent to the existence of a Cycle in the E*. This 
implies that f transforms SAT into CYCLE in E*. 

Example 4: Recall the E* in Example 3. The former Strong Cycle in Example 3 is 
also a Cycle, i f  we set C1 = {a2}, Cz = {a3}, C3 = {a4} and C4 = {al}, and we have 
that both the SATproblem and the CYCLE have the answer "yes'. 

On the other hand, the E* has another Cycle (S{ . . . . .  S~; B{ . . . . .  B~)= 
({2, 3, 4}, {1, 4}, {1, 3}, {1, 2, 4}; {a3}, {a3}, {a4}, {a~}) with the associated par- 
tition C~= {a~}, C~= {a2}, C~= {a3}, C,~= {a4}. I f w e s e t  i1= 1 , /2=4 and i3=3, we 
can see that the sequence i~, i2, i3 satisfies the conditions, described in Lemma 5.2, 

, , , , ~ 3 S '  C~ NB~r  C~JhB~r C~ N B q r  and [ [ j = l  / j :0 .  AS has been shown in 
Lemma 5.3, we get the latter Strong cycle in Example 3 (S~, S~, S~; B~, B~, B~) = 
({2, 3, 4}, {1, 2, 4}, {1, 3}; {a3}, {a~}, {a4}). 

6 Concluding Remarks 

We have shown that the problem of checking whether or not an effectivity function 
has a Cycle belongs to J U ~  ~. 

If, it an effectivity function E, there are BleE(S1) and B2eE(S2) such that 
BIOB2=O and SINS2=O, then the corresponding game is inconsistent, and E is 
called 'nonproper ' .  Since the family ($1, $2; Ba, B2) is a Strong Cycle in E, any non- 
proper E has a Strong Cycle with k = 2, and vice versa. Accordingly, the properness 
of given E can be tested by showing whether or not a Strong Cycle exists with k = 2, 
which is an easy task. Since E may neither have a Strong Cycle nor a Cycle, it is 
necessary to test the conditions of combinatorial number for every k>=3. 

The class of mappings E*'s transformed from the SAT by the rule fg iven  in the 
proof of Theorem 5.1 merely provides a particular and less complex class of effec- 
tivity functions. Indeed, each E* has only singletons of A in its range and involves at 
most 2n + 1 coalitions. It should be noted that E* may be nonproper. Even for such 
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a primitive class of  effectivity functions E* including nonproper  ones, the problem 
SC (or CYCLE) has the same difficulty as that  of  SAT. This suggests the hardness 
of  the problem to find a Strong Cycle or Cycle in an arbi t rary  given proper  effectiv- 
ity function E. 

On the other hand,  the problem of  verifying the existence of  the Core for any 
given preference profile is very easy to solve, and indeed belongs to ~,, as we prove 
next. 

Problem 4 (CORE): 

I: A, E* :D---~p2(A), R N 
Q: Is there a Core, i.e., is C(A, E, R N) nonempty? 

Theorem 6.1: C O R E e ~  

(Proof): 
From Definition 2.3 the following fact is obvious: for each a~A, a is not  in 
C(A, E, R N) if  and only if  there exists S and B such that  

(1) SeD, 
(2) BeE* (S) and 
(3) for every beB, ieS, bPia. 

Each condit ion can be easily checked in polynomial  t ime with respect to I(E*) 
and I(RN). Therefore the problem CORE can be solved in polynomial  time with 
respect to IAI ,  I ( f*)  and I(RN). Q.E.D.  

Since the size of  R N is polynomial  with respect to n and m, there is relatively 
little difference between the size of  instance of  the problem CORE and that  of  CY- 
CLE. Nevertheless, the problem CORE belongs to ~ and CYCLE belongs to 
• 9  ~.  These facts suggest that  the problem CYCLE is much more intractable than 
CORE to solve. And  we can conclude that  the stability problem is hopeless to be 
solved by a polynomial  t ime algori thm. 
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