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Abstract: This paper studies the constraints in coalition formation that result from a hierarchical 
organization structure on the class of players in a cooperative game with transferable utilities. If one 
assumes that the superiors of a certain individual have to give permission to the actions undertaken 
by the individual, then one arrives at a limited collection of formable or autonomous coalitions. This 
resulting collection is a lattice of subsets on the player set. 

We show that if the collection of formable coalitions is limited to a lattice, the core allows for 
(infinite) exploitation of subordinates. For discerning lattices we are able to generalize the results 
of Weber (1988), namely the core is a subset of the convex hull of the collection of all attainable 
marginal contribution vectors plus a fixed cone. This relation is an equality if and only if the game 
is convex. This extends the results of Shapley (1971) and Ichiishi (1981). 

1 I n t r o d u c t i o n  

In  social  sc iences  and  g a m e  theory  one  regula r ly  addresses  the  p r o b l e m  of  coopera -  
t ive  b e h a v i o r  a s s u m i n g  tha t  eve ry  dec i s ion  m a k e r  is an  a u t o n o m o u s  ac t ing  ind iv idua l .  
U n d e r  this  hypo thes i s  one  t rad i t iona l ly  ar r ives  at a m o d e l  in  which ,  in  pr inc ip le ,  eve ry  
g roup  of  ind iv idua l s  has  to  be  r ega rded  as a f o r m a b l e  or  a u t o n o m o u s  coal i t ion.  Th i s  is 
the  v i e w p o i n t  as re f lec ted  in the  t rad i t iona l  def in i t ion  o f  the  core,  the  Shap ley  value,  
and  the  b a r g a i n i n g  set  in  a coope ra t ive  g a m e  wi th  t r ans fe rab le  util i t ies.  

I f  one  d iscards  the  a s s u m p t i o n  tha t  ind iv idua l s  are comple t e ly  f ree  in f o r m i n g  
coal i t ions ,  one  ar r ives  at  r e f inemen t s  w h i c h  incorpora te  ce r ta in  constraints in coalition 
format ion.  A u m a n n  and  Dreze  (1974)  desc r ibe  a s i tua t ion  in w h i c h  ce r ta in  e x o g e n o u s  
cond i t ions  resu l t  in  a par t i t ion  o f  ind iv idua l s  in to  a finite n u m b e r  o f  ju r i sd ic t ions .  

T h e s e  coalition structures lead  to wel l  speci f ied  cons t ra in t s  on  coa l i t ion  fo rmat ion ,  
n a m e l y  g roups  wi th in  a j u r i sd i c t i on  can  be  f o r m e d  freely,  bu t  ind iv idua l s  c a n n o t  over-  
s tep the  b o u n d a r i e s  as set  b y  the  par t i t ion  of  the  ind iv idua l s  in to  ju r i sd ic t ions .  

A n o t h e r  app roach  is to der ive  cons t ra in t s  in  coa l i t ion  f o r m a t i o n  f r o m  cer ta in  so- 
c ia l  defects  o f  the  ind iv idua l s  such  as l imi ted  abi l i t ies  to c o m m u n i c a t e  w i th  o ther  
indiv iduals .  Th i s  is the  s tar t ing po in t  o f  M y e r s o n  (1977) ,  w h o  in t roduces  an  undi -  
rec ted  g r a p h  as a desc r ip t ion  o f  the  l imi ted  c o m m u n i c a t i o n  poss ib i l i t i es  open  to the  
ind iv idua ls .  N o w  a coa l i t ion  can  on ly  f o r m  i f  it does  not  d e p e n d  o n  outs ide  ind iv idua l s  
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with respect to its communication, i.e., a coalition can only form if it constitutes a 
connected subgraph. For an analysis of  cooperative behavior in the context of  graph 
theoretic models of  limited communication we also refer to Owen (1986). 

In this paper we focus on another type of  constraints in coalition formation, 
namely those resulting from situations in which certain individuals can veto coop- 
eration of  certain other individuals. In Gilles, Owen and van den Brink (1992) it is 
remarked that in many decision situations there is an asymmetry between the de- 
cision makers in the sense that there exist dominance relations between them. The 
organization structure in which certain individuals dominate others, in the sense that 
they have veto power over the cooperative abilities of  those other individuals, is 
called a permission structure. (For a study of  similar configurations we also refer 
to Kalai, Postlewaite and Roberts (1978), Radner (1992), and Winter (1989). For an 
economic discussion related to these configurations we refer to Grossman and Hart 
(1986).) 

Let N = {1 . . . . .  n} be a finite set of players. A permission structure is formally 
described by an irreflexive mapping S : N ~ 2 N, i.e., for every player i E N : i ~ S(i). 
The collection of  all permission structures on the player set N is denoted by bo(N). Ob- 
viously S E bo(N) describes a hierarchical structure on N, where j E S(i) is interpreted 
as that player i dominates player j. The players in S(i) are denoted as the (direct) 
subordinates of player i in S E bo(N). On the other hand the player in 

S-l( i)  := {j E N [ i E S(j)} 

are called the superiors of  player i in the permission structure S. 
Special attention has to be given to strict hierarchies in which the domination is 

"top-down". Such a hierarchy is described by an acyclic permission structure on N. 
Formally, S E bo(N) is acyclic if for every player i E N there is no sequence il . . . . .  iK 
in N such that il = iK = i and for every 1 =< k = K - 1 we have that ik+ 1 E S(ik). The 
collection of  acyclic permission structures on N is indicated by b~ C bo(N). 

In the analysis of  cooperative behavior in the presence of  a permission structure 
one has to take account of  the veto power that certain individuals have with respect 
to the actions or decisions taken by certain other individuals in the organization. In 
Gilles, Owen and van den Brink (1992) it is assumed that every superior has veto 
power over all actions undertaken by his subordinates in the permission structure. 
Thus, every individual decision maker has to get permission for his actions from all 
his superiors. This approach is referred to as the conjunctive approach to cooperative 
behavior in permission structures. In Gilles and Owen (1994) it is asumed that an 
individual only has to get permission from at least one of his superiors. Thus, within 
this disjunctive approach only the set of  all superiors as a collective have veto power 
over their subordinates. 

In this paper we restrict ourselves to the conjunctive approach. In this case a 
coalition is formable if and only if it contains all the superiors of  every member of  
that coalition, i.e., there is no outside individual, who is able to veto an action of  
any member of  the coalition. Formally, the collection of  (conjunctively) autonomous 
coalitions in the permission structure S E bo(N) is now given by 
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f2s := {ECN[Ef'IS(N\E) = O}, 

where for every F C N we define S(F) = UieFS(i). 
In this paper we conclude that the adoption of the strong veto power associated 

with the conjunctive approach leads to the possibility of an infinite exploitation of 
subordinates by their superiors. We thus arrive at the conclusion that the relationship 
between superior and subordinate as described by the conjunctive approach to hier- 
archies incorporates a strong from of veto power. However, we also remark that the 
form of relationship as developed in the conjunctive approach reflects properties that 
form the foundations to the theories of, e.g., Coase (1937) and Marx (1876-1894). 
Both the theory of the firm as developed by Coase (1937) and the theory of a capitalist 
society as developed by Marx (1876-1894) essentially have their foundation on the 
hypothesis that subordinates in hierarchical production organizations do not have an 
alternative to avoid exploitation by their superiors. As  shown in our results this leads 
to the possibility of infinite exploitation contrary to limited exploitation in case that 
subordinates can "quit". This is the subject of the final section in which a comparison 
of both possibilities is analyzed. 

The setup of the paper is as follows. In Section 2 we develop the notion of 
a lattice of autonomous coalitions on a given set of individuals. We show that any 
lattice can be supported as the collection of conjunctively autonomous coalitions in 
some well chosen permission structure. Furthermore, we give a characterization of 
the core of a cooperative game with side payments - or, simply, a TU-game - on a 
permission structure. 

In Section 3 we analyze strict hierarchies as represented by acyclic permission 
structures. We show that the collection of autonomous coalitions in an acyclic per- 
mission structure forms a discerning lattice. For such discerning lattices we are able 
to generalize the result of Weber (1988) that the core of a TU-game is a subset of the 
convex hull of the attainable marginal contribution vectors. 

Section 4 is devoted to convex TU-games on strict hierarchies. Here we gener- 
alize the results of Shapley (1971) and Ichiishi (1981), and show that the core of a 
convex game on a strict hierarchy is equal to the algebraic sum of the convex hull of 
the attainable marginal contribution vectors and a fixed cone. 

The final section discusses the core of TU-game with a permission structure 
in which players have the option to "leave" the game. We conclude that in such a 
situation superiors have limited opportunities to exploit their subordinates. 

2 Hierarchies and Lattices 

In the sequel we denote by $2 C 2 N an arbitrary collection of coalitions in the player 
set N. In this section we investigate under which conditions on an arbitrary collection 
12 there exists a permission structure S E ~~ with Os = $-2. Using the properties 
on J'2 we then are able to analyze the core of an arbitrary cooperative game with 
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transferable utilities given that there are constraints on coalition formation as imposed 
by a conjunctive permission structure. 2 

Definition 2.1: A collection o f  coalitions f2 C 2 N is a lattice if 

(i) 0, N E  f2 and 
(ii) for  every E, F E f2 : E A F, E U F E f2. 

Since the lattice is closed for taking finite intersections and N is a finite set it is 
evident that a lattice is simply a topology on N. For reasons of interpretation we will 
refer to these structures as lattices rather than topologies. Now for every player i E N 
we may define 

D ~  := n { E ~ S 2 1 i ~ E } ~ S 2 .  

Thus, the mapping D s? : N --+ g2 assigns to every player i the smallest allowable 
coalition D~  in g? of  which i is a member. Observe that for all i, j E N D~ C D/s? 

whenever j E D~ .  We remark that if f2 is a lattice the collection 

D(g2 )=  {D/~  i E N }  

is a basis for g2, i.e., every coalition in S? can be written as a union of elements in 
D(f2). In particular we mention that the collection D((2) is the smallest basis of the 
lattice g2. That is, 79(D) is the unique minimal basis of f2. 

Proposition 2.2: Let g2 C 2 N be any collection o f  autonomous coalitions in N. Then 
the following statements are equivalent: 

(i) f2 is a lattice. 
(ii) There exists a permission structure S E S~ on N such that g2s = g2. 

Proof." In Gilles, Owen and van den Brink (1992) it already has been shown that (ii) 
implies (i). Therefore, we are left to show that (i) implies (ii). 
Let f2 C 2 N be a lattice. Define S : N ~ 2 u by 

S(i) := {j  e N I i E D ~ } \ { i } .  

Evidently S is a permission structure on N. We are left to show that ~2s = ~2. 
We already mentioned that D(~2) = {D~ ] i E N} is the unique minimal basis of f2. 
We now show that D(f2) also is a basis of  f2s, thereby showing the desired assertion. 
Let i E N. Now for any j ~ D~  it holds that D ~  O S(j) = 0, since otherwise for 
h E D/~ N S(j) it holds that j E Dff C D/~. 

2 For the mathematical theory of abstract lattices we refer to, e.g., Birkhoff (1948) and Donnellan 
(1968). 
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Now take E E g?s. Clearly for every j E E and i E D~  with i r j we have that 

j E S(i). Thus, E f-1 S(i) ~ O. By definition, therefore, i E E. This implies that for every 

j E E : D~  C E and hence 

E=UDfi 
j o e  

This shows that D(g2) indeed is a basis of Ds. [] 

We introduce some notation. A payoff vector on the player set N is represented by 
x E NN. For any E C N we write x(E) : =  ~-~dEEXi. Furthermore, for every i E N we 
denote by e i E IR~ the i-th unit vector. 

If  players are organized within a certain permission structure, obviously some 
players have a better position than other players in the sense that they can achieve 
higher payoffs than those others. This is subject to analysis in Gilles et al. (1992) 
and Gilles and Owen (1994). Here we investigate the side payment vectors that are 
attainable in such a situation. In particular we call a side payment vector stable if 
there is no autonomous coalition that makes a loss under these side payments. 

Formally, let X2 C 2 N be any collection of  autonomous coalitions. Then the set 
of  stable side payments with respect to S2 is defined by 

C~2 := {x E ]RN for x(N) = O and } 
e v e r y E E ~ : x ( E ) = > 0  " 

Players in N can exploit their positions as described by ~ if Cs? r {0}. The standard 
case is obviously when f2 = 2 N. In that case Cs? = {0}, which reflects that there is 
no justified exploitation in the case of  free coalition formation) A precise description 
of  Co for the case in which X2 is a lattice is given in the next theorem. It shows that 
in many cases exploitation of  subordinates by superiors is possible. This exploitation 
has an unlimited character. 

Theorem 2.3: If g2 C 2 N is a lattice, then the set of stable side payments with respect 
to g2 is given by 

C s ? = C o n e { e i - e  i i E N a n d j E D ~ } .  

Proof." Let f2 be a lattice on N. 
It is obvious that for every i E N and j E D o the payoff vector e / - e i is in Co. 

Furthermore it is evident that Co is a cone in ~u .  
This leaves us to show that 

C~2 C Cone{e d - e i i E N and j E Di ~ }. 

3 For a detailed study of the collection of stable side payments with respect to classes of formable 
coalitions we refer to Derks and Reijnierse (1992). There, in particular, certain conditions are 
given under which the only stable side payment is the null vector. 
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Let x E Cs~ with x ~ 0 and let j E N be such that x] > 0. In the sequel we construct a 

player i E N with xi < O, j E Di ~, and there is an e > 0 with 

x' = x -  e ( e / -  e/) E Co. 

Notice that x~(E) = x(E) - e for every E E J2 with i r E and j E E. Thus, whenever 
x(E) = 0 the situation is not i ~ E and j E E allowed to occur. 
This implies that player i has to be chosen in 

F : =  n { E E  ~2 IjEE and x(E) = 0} E J'2. 

Since N E g2 and x(N) = 0, F is well  defined and non-empty. Furthermore, x(F) = 0 
since for any G, H E /2  with x(G) = x(H) = 0 we have that G n H, G U H E g2. Thus, 
x(G M H) => 0 as well as x(G U H) _-> 0. Together with 

x(G fq H) + x(G U H) = x(G) + x(H) = 0 

this implies that x(GUH) = x (GnH)  = 0. Actually we have shown that the collection 
{G E Y2 I x(G) = 0} is a lattice as well. 
Since j E F, xj > 0, and x(F) = 0, there is a member i E F with xi < 0. Suppose that 

for any i E F with xi < 0 : j fZ Di ~  Then 

F := U { D ?  l i E F  andxi < 0} E J2. 

Note that U C F. Further, x(U) >= 0 and therefore 

0 < xj <= x ( F \ Y )  = -x(F')  <= O. 

This is however impossible. Therefore we conclude that there exists i E F with xi < 0 

and j E D/~. 
Consider the payoff  vector given by :( = x - e(e j - g )  with 

= rain [{xi, -x l }  U {x(E) I E E Y2 with j E E and i !~ E}].  

By the definition of  F the choice of i in F it is clear that x(E) > 0 for all E E f2 with 
j E E and i ~ E. Therefore, e > 0. 

Next we show that x' E Co.  First observe that x'(N) = 0. For any E E ~2 we now 
distinguish the following cases: 

1. i E E and j E E: Then x'(E) = x(E) => 0. 
2. i E E and j ~ E: This case cannot occur since j E D/a. 
3. i ~ E, j E E, and x(E) = 0: This case cannot occur either since i E F. 
4. i r E, j E E, and x(E) > 0: Then x'(E) = X(E) - e => 0 by the choice of  ~. 
5. i ~ E a n d j  ~ E: Then x'(E) = x(E) -> 0. 

We may also conclude that for all E E S2 : x'(E) _-< x(E), since the case that i C E and 
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j ~ E does not occur. Thus 

#{E c I x'(E) = o} => #{E E I x(e) = o}. 

Moreover, 

(1) 

# { h E N l ~ h = 0 } = > # { h E N l x h  = 0 } .  (2) 

The choice of  e is such that one of  the inequalities (1) and (2) has to be strict. 
So, we may repeat the procedure as followed above a finitely many times. The 

outcome is a sequence of  payoff vector x ~ = x, x I . . . . .  x m with for every 0 =< k =< 
m - 1  

x k+l = x * -  ek(d k - e~) 

with jk E D. ~ The procedure is terminated when x m = 0. Thus, 
I k " 

m -1  

x = ~ _ e k ( e i k - e i k )  E C o n e { e i - e  i i E N a n d j E D i ~  
k=0 

Using Proposition 2.2 and Theorem 2.3 we may derive our first conclusion concerning 
the exploitation of  subordinates by superiors in a hierarchy as described by the con- 
junctive approach to a permission structure S E S~ For that purpose we introduce 
a cooperative game with transferable utilities, usually referred to as a TU-game, on 
a permission structure S as a mapping v : f2s ~ R with v(0) = 0. The collection of  
all TU-games on S E 9~ is denoted by ~N(S). We now introduce the core of  a TU- 
game on some permission structure as those payoff vectors to which no autonomous 
coalition has an objection. 

Definition 2.4: Let S E ~f(N) and v E GN(S). The core of  v is defined as 

C s ( V ) : = { x E ~ N  x(N) = v(N) and } 
for every E E f2s : x(E) => v(E) " 

We mention that Faigle (1989) studied conditions that imply the nonemptiness of  the 
core with restricted coalition formation. The next consequence of  proposition 2.2 and 
Theorem 2.3 shows that superiors indeed may exploit subordinates in core payoff 
vectors. 

Corollary 2.5: Let S E fT(N) and v E GlV(s). Then 

Cs(V) = Cs(V) + Cone{e / - e i i E N and j E s - l ( / )} .  
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3 Strict Hierarchies and Discerning Lattices 

In this section we turn to the analysis of  strict hierarchies as represented by acyclic 
permission structures. These are also the objects of analysis in Gilles and Owen 
(1994). There it is remarked that strict hierarchies are the appropriate tools to describe 
a hierarchical organization structure as encountered in the theory of the firm. 

Our first objective is to strengthen the assertion as stated in Proposition 2.2. For 
that purpose we introduce discerning collections of  autonomous coalitions. 

Definition 3.1: Let f2 C 2 N be some collection of  autonomous coalitions, f2 is dis- 
cerning if for  all i , j  E N there exists a coalition E E ~2 with either i E E and j ~ E or 
i f~ E and j E E. 

We remark that the requirement, that a collection of coalitions is discerning, is similar 
to the T0-separation property on topological spaces. As a consequence we mention 
that any discerning lattice therefore is a topology satisfying the T0-separation property. 
In our game theoretic setting it however represents the situation that any two players 
can be distinguished socially in the coalitional structure as describing by g2. 

Of  particular interest in our analysis of  strict hierarchies is the possibility to 
order the player set such that one describes a growing sequence of autonomous coali- 
tions. This implies that one can compute the marginal contribution of players in that 
particular order. 

Definition 3.2: Let $2 C 2 N be some collection o f  autonomous coalitions in N. A 
Weber string in f2 is a permutation w : N ~ N such that for  every k E N  = 
{1 . . . . .  n} 

{w(1) . . . . .  w(k)} E C2. 

Another notation for a Weber string in Y2 is given by a collection of autonomous 
coalitions (Wi)iEN, where there exists a permutation w : N E N with for every i E N: 
Wi := {w(1) . . . . .  w(j)} E g2, w h e r e j E N  is such that w(j) = i. Thus, in a Weber string 
(Wi)ieu the coalition W. E f2 is such that it is the only coalition in the string for which 
i E Wi and Wi \ {i} is also in the string. This implies that the participation of player 
i in the autonomous coalitions Wi \ {i} E ~2 is feasible. The marginal contribution of 
player i to the coalition Wi \ {i} is therefore attainable. Thus, to every Weber string 
there corresponds a vector of  attainable marginal contributions. 

Proposition 3.3: Let g2 C 2 u be a lattice o f  autonomous coalitions in N. Then the 
following statements are equivalent: 

(i) I2 is discerning. 

(ii) For all i , j  E N : Di ~ ~ Df  ~. 

(iii) For every non-empty coalition E E Y2 there exists i E E with E \  {i} E ~2. 
(iv) There exists a Weber string in g2. 
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(v) For every player i E N" D o \ {i} E f2. 
(vi) Co does not contain a non-trivial linear subspace as a subset. 
(vii) There exists an acyclic permission structure S E SO~(N) such that f2s = f2. 

Proof." 

(i) implies (ii) 
Let i ,j  E N. Without loss of  generality we may assume that there is an E E F2 with 
i E E and j r E. Then D o C E and D~ r E. Thus DO ~ D~. 
(ii) implies (iii) 
Suppose by contradiction that there exists E E ~ with for every i E E : E \ {i} ~ f2. 
The union Uj~E, j e i D ~  is by definition an element of F2 containing E \  {i} and is 

contained in E. So, E = Ujce,~4=iD~. Thus for every i E E  there exists a j E E \ { i }  with 

i E D ~ .  

Since E is finite there exists a sequence il . . . . .  ir in E with ik+l E D ~ ,  1 _-< k _-< K -  1, 

and ir E DilS?. By definition therefore D(  ~ll = D0~2 = "'" = D0,K. This is a contradiction 

of (ii). 

(iii) implies (iv) 
Let E1 = N E  X2. Then by (iii) there is an il EEl  with E2 := E1\{i l}  E J2. Let Ek E f2, 
then by (iii) there is i~+1 E Ek such that E~+I := Ek \ {ik+l} E F2. Thus we derive an 
ordering il . . . . .  i, of N, which corresponds to the desired Weber string. 

(iv) implies (i) 
This immediately follows from the definition. 
We now have established equivalence of (i) - (iv). Next we show that (v) - (vii) are 
equivalent to (ii). 

(ii) implies (v) 
j E D O \ { i  } implies that D~  C D 0.  Now i ~ D~ ,  since otherwise D o C D ~  implying 
equality, and, hence, contradicting (ii). Therefore, 

D/~ \{ i}  = U DTEJ '2"  
jED~ 
j~i 

(v) implies (vi) 
Suppose there exists a y E ~N with {y, - y }  C Cs?. Then y(N) = -y (N)  = 0 and for 

every E E g2 : y(E) _>- 0 as well as - y ( E )  >= 0. Thus for any i E N : y(DO) = 0 and by 
(v): y(D O \ {i)) = 0. Therefore for any i E N : Yi = O. 

(vi) implies (ii) 
I f  D o = Dff, then by Theorem 2.3 both e i - d and e j - e i are in Cs?. This contradicts 
(vi). 

(ii) is equivalent to (vii) 
By Proposition 2.2 there exists a permission structure S c S~ such that f2s = S2. 
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Gilles and Owen (1994) show that S is acyclic if and only if Di ns 4: D~ s for any 
i r j. This implies the equivalence. [] 

I f  X C R N is some set of payoff vectors, then by co X we denote its convex hull, 
i.e., the smallest convex subset in ~N that contains X. For any permission structure 
and any TU-game on that permission structure we now may define the Weber set as 
the convex hull of  all attainable marginal contribution vectors corresponding to the 
Weber strings in the discerning lattice of  autonomous coalitions. 

Definition 3.4: Let S E ~a(N) be an acyclic permission structure and let v E GN(S) be 
a TU-game on S. The Weber set of  v is given by the set 

Ws(V) := co{x ~ E IR N [ w is a Weber string in [2s}, 

where for  any Weber string w in Os we define x ~ by 

x• := v(Wi) - v(Wi \ {i}) 

with Wi := {w(1) . . . . .  w(j)} E Y2s, where j E N is such that w(j)  = i. 

The Weber set tums out to have some appealing properties. Let S E ~~ ) be an 
acyclic permission structure. For every autonomous coalition E E J2s we define the 
S-unanimity game belonging to E by u s E GN(S): 

uS(F) = { 1 E C F ,  FEF2s  
0 E ~ . F ,  FEF2s"  

It can easily be deduced that the Weber set of  u s is given by 

kVs(u s) = co{e i i E Os(E)} where Os(E) = {i E E [ S(i) fq e = 0}. 

Hence, in the Weber set of  a unanimity game the payoff is distributed completely 
over the players at the lowest level in the hierarchical structure restricted to the coali- 
tion E. 

Let v E GN(S) be a TU-game on S. Following the analysis of  Gilles, Owen and 
van den Bring (1992) and Derks and Peters (1993) the game v can be expressed in 
the S-unanimity basis of GN(s) by 

" = AS(e " u s,E 
Ec ~S 

where recursively the 
eES s\{0} 

hierarchical dividends are given by As(0) = 0 and for every 

Z AS(F  
FCE, F ~ E  

From this and the additivity of  the marginal contribution vectors we deduce 
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that 

Ws(~) c ~ A~(~. Ws(@. 
E e ~  s 

Hence, we conclude that the allocations in the Weber set of  v as much as possible 
allocate payoffs to the subordinates in the hierarchy. 

The next result generalizes the inclusion result of  Weber (1988) that the core of  
a TU-game is a subse tof  the convex hull of  marginal contribution vectors. The proof 
of  this result follows the line as developed in Derks (1992). 

Theorem 3.5: Le t  S E 5fa(N) be an acyclic permiss ion structure. Then f o r  any TU-game  

v E gN(S) on J'2 s 

Cs(V) c Ws(V) + Cos. 

Proof" Let J'2 := J2s. Then by Proposition 3.3 J'2 is a discerning lattice and contains 
at least one Weber string. Furthermore, let v : ~2 ~ ~ be a TU-game o n  S. 
Suppose that there exists a core allocation x E Cs(V) such that x ~ W s ( V )  + Ct~. By 
Theorem 2.3 the set kVs(V) + Co is polyhedral and by Proposition 3.3 (vi) it does not 
contain a nontrivial linear subspace. Thus x is an extreme element of  

co[{x} u + cA)] 

The normals of  supporting hyperplanes in an extreme element of  a polyhedral set are 
well known to form a full dimensional cone. Therefore, there exists a normal, say 
p E ~N, with non-equal coefficients such that for each y E kVs(v)  and y' E Co  

p . x < p . (y + y'). 

Now by Theorem 2.3 for each i E N, j E D~,  and M >= 0 it holds that for every 
y E kVs(V): 

p . x < p . y + M p  . (e i - e i) 

= p .  y + M ( p :  - p~) 
(3) 

Thus, we conclude that for every i E N and j E D/~ " 

Pj = Pi. (4) 

Label the players in N = {1 . . . . .  n} such that Pa > P2 > ..-Pn. Next consider for 
every k E N the coalition Wk := {1 . . . . .  k}. If  i E Wk, then Pl >= Pk. Using (4) we have 

that pj _-> Pk for all j E D~.  Hence, D~  C Wk for all i E Wk. This implies that 

icW k 



158 J.J.M. Derks and R.P. Gilles 

Hence, we conclude that the collection (Wk)keN represents a Weber string in 12. The 
corresponding marginal contribution vector y E ~/v belonging to v is therefore an 
element of  Ws(V). Thus, 

p . x < p . y  

= ~ [ v ( W i ) -  v(Wi_l)]p i 
i=l 

n-1 
= V(N)pn + E v(Wi)(Pi --Pi+I). 

i=1 

(5) 

Since x E Cs(V) and Wi E J2, i E N, we have x(N) = v(N) and x(Wi) >= v(Wi), i E N \  {n}. 
Also, for any i E N \ { n }  : Pi-Pi+l  >= O. Therefore, (5) may be transformed to 

n n - 1  i 

p "X < E X j P n  + E E x j ( p i -  P i + I )  
j = l  i=1 j = l  

i n i - 1  

: E XJ pi -- E E XJ pi 
i=l j=l i=2 j=l 

n 
= XlPl + Y~pixi  = p �9 x. 

I 

i=2 

This is impossible. Thus we conclude that x E )4;s(V) + Co. [] 

As a corollary to Theorem 3.5 we immediately have the original result by Weber 
(1988). To state this corollary we introduce the trivial permission structure as So E 
b~ given by So(i) = (~, i E N. Obviously, ~2s0 = 2 N. Hence, Cs~so = {0} and any 

permutation w of  N is a Weber string in l'2s 0. From this we conclude that ~N(S0) is 

the collection of  all TU-games v : 2/v ~ IR and for any TU-game v we have that 
Cso(V) is the traditional core and Wso(V) is the traditional Weber set. 

Corollary 3.6: For any TU-game v : 2 N --~ IR with v(O) = 0 the core is a subset of  
the Weber set, i.e., CSo(V) C WSo(V). 

4 Convex Games 

Shapley (1971) introduced the collection of  convex TU-games as a class of  games 
of  which the core has certain appealing geometric properties. Here we generalize this 
definition to convexity within the collection of  all TU-games with respect to some 
permission structure. 
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Definition 4.1: Let S E G~ be some permission structure on the player set N. A 
TU-game v E GN(S) is convex on Ds if for every E, F E $2s: 

v(E) + v(F) <= v(E U F) + v(E M F). 

In the sequel we denote by Gc/V(S) the collection of all convex TU-games on some 
permission structure S E GO(N). The definition of convexity as given above is clearly 
a generalization of the definition as given in Shapley (1971). Namely, Shapley in- 
troduced convexity essentially within the context of the trivial permission structure 
So e ~7~a(N). 

The next theorem generalizes the results of Shapley (1971) and Ichiishi (1981). 

Theorem 4.2: Let SE GOa(N) be an acyclic permission structure on N. A game v E GN(S) 
is convex on ~s if and only if  

Cs(V) = ~ s ( v )  + r 

The proof of Theorem 4.2 is developed through a sequence of intermediate results, 
stated in the following lemmas. These lemmas involve a further study of discerning 
lattices. The outline of the proof closely follows the proof of the original result by 
Shapley (1971). 

Lemma 4.3: Let [2 C 2 ~ be a discerning lattice on the player set N and let EE [2\{0}. 
Then [2(E) := ~ f3 2 e, respectively $2' := { N \ F  [ F E ~},  are discerning lattices on 
the player set E, respectively the player set N. 

Proof" Both [2(E) and g2' are obviously lattices with respect to E and N respectively. 
Using Theorem 3.5 (iv) it is straightforward to see that g2(E) possess a Weber string, 
implying that 12(E) is a discerning lattice on E. 

Furthermore, for every i,j E N we may without loss of generality assume that 
there exists a coalition E E [2 with i E E and j 9~ E. Hence, i 9~ N \ E and j E N \ E. 
Thus, [2' is discerning as well. [] 

Lemma 4.4: Let [2 be a discerning lattice on the player set N. For each coalition 
E E [2 there is a Weber string in [2 of which E is one of its members. 

Proof" Let E C g2 where ~2 is a discerning lattice. Then there exist Weber strings in 
[2(E) and I2'(N\E),  say (W~)i~e and (W~')j~u\e respectively. Then (Wi)i~N is Weber 
string in g2, where 

W~ iEE 
Wi= {i}U(N\W~') i~E" 

Clearly, if i E E then W/E g2; furthermore, i E W~ = Wi and for player i such that 
W/ = W~ :/: {i} there is a player j E E with Wi \ {i} = W~ \ {i} = W~ = W/. Now if 
i 9~ E then either W/ = {i} U N \  W~' = N \  (W~' \ {i}) = N \  Wj' for a player j 9~ E, or 
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Wi equals N \ O  = N, and sine (~ ' ) '  equals k~ for each lattice ~ we must have Wi E f2 
here. Furthermore, i E Wi and 

�9 ifW~' = N \ E  then Wi\{ i }  = N \ W ~ '  = E =  W~= W/for  s o m e j  E E; 

�9 i f W ' i ' : ~ N \ E t h e n t h e r e i s a p l a y e r k ~ E w i t h W ~ ' = W ' k ' \ { k } ; h e n c e ,  W i \ { i } =  
N \  W~' = N\(W~'\ {k})= {k} U N \  W~ = Wk. 

We conclude that for all players i E N we have Wi E ~ and if Wi r {i} there is a 
player j such that Wi \ {i} = Wj. [] 

Using Lemma  4.3 and Lemma 4.4 we immediately derive the following conclusion. 

Lemma 4.5: Let E1 . . . . .  EK be elements in some discerning lattice f2 on the player set 
N such that E~ C . . .  C Ek. Then there exists a Weber string in ~ of  which E1 . . . . .  Ek 
are members. 

We are now in the position to proof the main result of  this section. 

Proof of  Theorem 4.2: 

Only if: 
Suppose that v E Gff(S). By Theorems 2.3 and 3.5 we only have to show that every 
Weber allocation x E 14;s(V) belongs to Cs(V). 
So, let XEWs(V) correspond to some Weber string (Wi)i~N with for every iEN 

xi = v(Wi) - v(Wi \ {i}). 

Since v is convex on l )  = / 2 s  for every E E 12 and i E E we have that 

v(Wi) + v(E Iq (Wi \ {i})) - v(E CI Wi) + v(Wi \ {i}). 

Thus, for each i E E: 

xi >= v(E CI Wi) - v(E f'l Wi \ {i})). 

Without loss of  generality we may assume that N is labeled such that players in E 
are labeled first and { 1 . . . . .  k} C Wk for each k E E. Then 

IEI IEI 
F_xi = ~x~ _-_ ~ . ( ~ n  W k ) -  v(~n (w~\ {k})) 
i cE  k=l  k = l  

IEI IEI- 1 
= ~--~v({1 . . . . .  k } ) -  ~ v({1 . . . . .  k}) 

k = l  k = l  

= v ( { 1  . . . . .  IEI} )  = v ( E ) .  

Since E E f2 is chosen arbitrarily we may conclude that x E Cs(V). 
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/f.- 
Suppose that Cs(V) = Ws(v)+Cs~, where g2 = Os. Take E, FEI2. Since g2 is discerning 
by application of Lemma 4.5 there exists a Weber string in g2, say (Wi)ieu, such that 
it contains the coalitions E U F and E M F. Let x E Ws(V) be the corresponding Weber 
allocation - or marginal contribution vector. It is evident that x(E f3 F) = v(E f3 F) as 
well as x(E U F) = v(E U F). By hypothesis x E Cs(V), which implies that 

v ( E )  + v ( F )  --- xi + x; 
iEE iEF 

-'~ Z Xi -[- Z xi = v(E M F) + v(E U F)" 
iEENF iEEUF 

This proves the convexity of  v. [] 

5 Cores with Limited Exploitation 

In this section we take a certain permission structure S E 5?(N). The lattice of  con- 
junctively autonomous coalitions is indicated by f2 := f2s. Finally, by v E ~N(S) we 
indicate a TU-game on g2. 

In the previous sections of  this paper we implicitly assumed that the subordinates 
in the hierarchy S cannot "leave" the game v, i.e., there is no reservation value for 
each player. This hypothesis forms the foundation of the definition of the core Cs(V) 
of the game v, since in that definition it is assumed implicitly that a non-formable 
coalition E ~ g2 has been assigned the value - c o .  That is, a non-formable coalition 
E ~ f2 cannot be assigned any value. 

In Gilles et al. (1992) it is however assumed that non-formable coalitions are 
assigned the value 0. Thus, it is assumed implicitly that every player i E N is able to 
leave the game without any loss or gain. Application of the assumption that players 
may "leave" the permission structure S and the game v leads to a different core-like 
solution concept. In order to analyze this core-like concept we introduce for every 
coalition E C N its sovereign part by 

a(E) := U { F E  J2 I F C E }  E J2 

as the largest autonomous subcoalition of E with respect to the permission structure 
S. Clearly, E is autonomous if and only if or(E) = E. 

Now we are in the position to formulate the hypothesis that players i E N may 
leave the game v C ~N(S) by assigning to any arbitrary coalition E C N the worth of  
its sovereign part. Formally, the TU game w : 2 N --~ ~ is the conjunctive extension 
of v E GN(S) if for every E C N : 0v(E) = v(cr(E)). The conjunctive extension treats 
a non-formable coalition as if it can form partially. Since 0 E F2 it is clear that each 
player i E N, who is subordinate to some other player in S, has a reservation value of 
w({i}) = v(0) = 0. This prevents the infinite exploitation of  i by his superiors. This 
is reflected in the following definition. 
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Definition 5.1: Let S E SO(N) and v E ~tV(S). The core with limited exploitation - or 
L-core - of  v is given by 

for x(N) = v(N) and } 
Ces(V) := x E ~ every E C N : x(E) >- v(c~(E)) " 

It may be obvious that the L-core of  a TU-game v on some permission structure S is the 
traditional core of its conjunctive extension. Hence, if co is the conjunctive extension 
of v, then Ces(V) = Cso(co). The next proposition gives a complete characterization of 
the L-core. 

Proposition 5.2: S E S~ and v E GN(s). The L-core of  v on the permission structure 
S is given by 

Ces(V) Cs(v) n + = (IRN\~s x IR~s), 

where Bs = {i E N I S-1(i) = 0}. 

The proof of Proposition 5.2 is a direct consequence of the fact that the inequalities in 
the definition of Ces(V) are precisely given by the inequalities as given in the definition 
of Cs(V) and the requirements that for every i E N \ B s  : x({i}) => v(0) = 0. 

For certain TU-games we may raise some doubts concerning the usefulness of  the 
L-core as a useful solution concept. For that purpose consider N := {1, 2, 3, 4} and 
S E SOa(N) given by S(1) = {2, 3}, S(2) = S(3) = {4}, and S(4) = 0. From this it 
immediately follows that the collection of autonomous coalitions is given by 

(2s = (N, (1, 2, 3), {1, 2), {1, 3), {1), 0). 

Next consider the following game v E gN(s) on Os given by v(0) = v(1) = 0 and 
v(12) = v(13) = v(123) = v(N) = 1. Note that v is not convex. 
We conclude that the following properties hold: 

(i) 1/Vs(V) = {(0, A, 1 - A, 0) [ 0_<-- A =< 1} 
(ii) COs = Cone{(1, - 1 ,  0, 0), (1, 0, - 1 ,  0), (0, 1, 0, -1 ) ,  (0, 0, 1, - 1 ) }  
(iii) Cs(V) = Co{(1, 0, 0, 0), (0, 1, 1 , - 1 ) }  + COs 

(iv) c~(v) = {(1, o, o, o)} 
(v) Cs(V) n Ws(v)  = 0 

These properties show that in this case the L-core does not allow that the productive 
players 2 and 3 obtain any payoff. The discrepancy between the Weber set, which 
proposes allocations of  the total output between players 2 and 3 only, and the L- 
core is therefore significant. The core of  this game, however, describes a compromise 
between both the L-core and the Weber set. This shows that observing the L-core 
only is not sufficient for a proper insight in the coalitional possibilities in the game 
"U. 



Hierarchical Organization Structures and Constraints on Coalition Formation 163 

References 

Aumann RJ, Dreze JH (1974) Cooperative games with coalition structures. International Journal of 
Game Theory 3 : 217-237 

Birkhoff G (1948) Lattice theory, American mathematical society colloquium publications, Vol 25 
Providence RI 

Coase R (1937) The nature of the firm. Economica 4 : 386--405 
Derks JJM (1992) A short proof of the inclusion of the core in the weber set. International Journal 

of Game Theory 21 : 149-150 
Derks JJM, Peters H (1993) A shapley value for games with restricted coalitions. International Journal 

of Game Theory 21 : 351-360 
Derks JJM, Reijnierse JH (1992) On the core of a collection of coalitions. Mimeo, Department of 

Mathematics, University of Limburg Maastricht 
Donnellan T (1968) Lattice theory. Pergamon Press New York 
Faigle U (1989) Cores of games with restricted cooperation. Zeitsctu'ift fiir Operations Research 

33 : 405-422 
Gilles RP, Owen G (1994) Games with permission structures: The disjunctive approach. Working 

Paper, Department of Economics, VPI&SU Blacksburg 
Gilles RP, Owen G, Brink R van den (1992) Games with permission structures: The conjunctive 

approach. International Journal of Game Theory 20: 277-293 
Grossman S, Hart O (1986) The costs and benefits of ownership: A theory of vertical and lateral 

integration. Journal of Political Economy 94 : 691-719 
Ichiishi T (1981) Super-modularity: Applications to convex games and to the greedy algorithm for 

LP. Journal of Economic Theory 25 : 283-286 
Kalai E, Postlewaite A, Roberts J (1978) Barriers to trade and disadvantageous middlemen: Non- 

monotonicity of the core. Journal of Economic Theory 19 : 200--209 
Marx K (1876-1894) Capital. 3 volumnes, translated by Moore S, Aveling E. Lawrence & Wishart 

London 
Myerson RB (1977) Graphs and cooperation in games. Mathematics of Operations Research 2 : 225- 

229 
Owen G (1986) Values of graph-restricted games. SIAM Journal of Algebraic and Discrete Methods 

7 : 210-220 
Radner R (1992) Hierarchy: The economics of managing. Journal of Economic Literature 30: 1382- 

1415 
Shapley LS (1971) Cores of convex games. International Journal of Game Theory 1 : 11-26 
Weber RJ (1988) Probabilistic values for games. In: Roth AE (Ed) The Shapley Value, Cambridge 

University Press Cambridge 
Winter E (1989) A value for cooperative games with level structure of cooperation. International 

Journal of Game Theory 18 : 227-240 

Received July 1993 
Revised version March 1994 


