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AN ARITHNETIC PROPERTY OF PROFINITE GROUPS 

Wolfgang Herfort 

We intend to generalize a crucial lemma of [ 4] to prove a 
somewhat surprising arithmetic property of profinite groups; 
namely, that a profinite group G has nontrivial p-Sylow- 
subgroups for only a finite number of primes if and only if 
this is true for its procyclic subgroups. This will yield 
as a corollary that every profinite torsion group has finite 
exponent if and only if this is true for its Sylow-sub- 
groups, a result also contained in [4]. 

Our main result is: 

Theorem. If a profinit e ~ G has nontrivial p-S_~- 

subgroups fo< infinitely ~ primes p, then it has a ~- 

cyclic subgroup with the same property. 

Throughout the paper we adopt the notation of [ 4]. 

Accordingly we say ~E w(~) if G has nontrivial p-Sylow- 

subgroups for infinitely many primes p. For the notion of 

p-Sylow-subgroup see [6]. The proof of our theorem rests on 

[ 4] insofar as we assume G to be prosolvable and to have a 

Sylow-tower. However, the difference in the situation now 

is that the Sylow-subgroups are not torsion groups. This 

makes it impossible to apply Thompson's Fixed-Point-Theorem. 

Unfortunately such powerful results from finite group theory 

as in F. Gross [2], or T. Berger [I] which bound the solva- 

bility length or the Fitting length, respectively, of groups 

under fixed-point-free action do not seem to yield the 
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result immediately. Our proof essentially produces a 

torsion-free abelian subgroup of rank 2 whose representa- 

tions on the Frattini-Factors of Sylow-subgroups in the 

Sylow-tower are studied, yielding an element with a w(~) - 

centralizer in G. This will be enough to prove the whole 

theorem. 

Lemma I. Let G6w(Go). There exists a subgroup G o := 

PIP2P3 "'" of G such that: 

(i) Pi is a pro-Pi-grou p [Pi a prime); 

(ii) P. ~ P P. for i> j; 
i i j ao 

(iii) G o is homeomorphic to H Pi" 
- -  - -  i=I 

Proof. This is Lemma 8 in [ 4]. 

Lemma 2. The following assertions about a profinite, pro- 

solvable ~roup G are equivalent: 

(a) Each closed w( ~)-sub~roup K of G contains an ele- 

ment x ~ e such that CK[x) Ew(~). 

(b) Each closed w( ~)-subgroup of G contains an abelian 

( ~ ) -subgroup A. 

Proof. This is Lemma 9 in [ 4]. 

Because of Lemmata 1,2, in order to prove the Theorem it 

suffices to show: 
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Propositio ~ I. Let G o be as in Lemma I; then there exists 

x E Go\(e} such that C G (x)E~(~). 
o 

Lemma 3. Let G be as in Lemma 1. If there exists an ele- 
' O 

ment xE Go\{e} of finite order then C G (y)E~(eo) for some 
o 

yE %\{e}. 

Proof. W.l.o.g. let o(x) =pl. Then x acts via conjugation 

on G I :=PIPI+IPI+2... for i=2,3, .... If, for fixed I, x 

acts fixed-point-free on GI, then by the profinite version 

of Thompson's Fixed-Point-Theorem [4, Theorem 2, p. 405] it 

follows that G I =kn=iPk is nilpotent, and for t E k=l~ Pk we 

have C G (t)Ew(~). The other possibility is that x does 
o 

not act fixed-point-free on infinitely many of the Gl'S. 

Then there exist x I~ Gl\(e} , such that [X,Xl] = e,l= 2,3, .... 

and therefore CGo(X)~ (x2,x3,...)E w(~). 

It is enough to assume G o to be torsion-free. 

Definition. For a profinite group G, w__ee say that G is of 

rank i, if a minimal topologically generating set X for G 

ha___~s cardinalit7 i. The abelian subgroup rank of G is defined 

to be the maximum of the ranks of the closed abelian sub- 

g r o u p s .  

Lemma 4. Let G be as in Lemma I; assume that the abelian 
o 

subgroup rank is one. Then there exists an element xE Go\{e} 

such that C G (x) ~(oo). 
O 
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Proof. Choose x I E PI" Let j>2; then, since l(x1>l=ao , 

<x I>Pj ~ <x I)~Pj [semidirect product) does not have the 

structure of a profinite Frobenius-group [3, Th. 3.6.], so 
aj 

that there exist elements a I E ~ such that x p has a fixed- 

point in P.. Let b. be minimal with respect to this pro- 
J J b-1 

= , where nj = Pl ~ , induces an auto- perty; then yj xlnJ 

morphism of prime order Pl acting fixed-point-free on Pj; 

by [4, Th. 2] Pj is nilpotent and therefore Z(@(Pj)) is 

procyclic so that a profinite version of [5, III, 7.8,c] 

yields that r is procyclic. Here, @[Pj) denotes the 

Frattini-subgroup of P.. We note that from P torsion-free 
J 

�9 (P ) ~ {e} follows. Let H =@[P2)@[P 3) .; then @{Pi ) 
3 o "" 

@(Pi)@(Pj) for i> j and H ~ is homeomorphic to H @(Pi ). 
i~2 

So H ~ has procyclic Sylow-subgroups and, by Zassenhaus' 

Theorem [5, P. 420], H o=(a,b> ~ (b> _~ Ho', for suitably 

chosen elements a,b in H ~ follows. Clearly if neither <b> 

nor (a) E~(ao) then Ho/(b ) ~w(oo), so that Ho~(oo), a 

contradiction. 

Lemma 5. Let G O be as in Lemma I, torsion-free and having 

abelian subgroup rank larger than one. There exists a non- 

trivial element in G o ha vingaw( oo)-centralizer. 

Proof: W.l.o.g. we may assume that there exists A=<x,y) 

xz , A~PI. We first claim that in every Pj, j~ 2, 2PI 'Pl 
there exist finitely generated A-invariant subgroups S.. 

3 
Fix j~ 2, since (y> does not act elementwise fixed-point- 
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m 
free on Pj by conjugation, there exists r~O, such that y , 

r x 
m=p , has a fixed point zE P ; since z y X=z the group B 

J 
g e n e r a t e d  by a l l  c o n j u g a t e s  o f  z w i t h  e l e m e n t s  i n  <x ,y  m) 

consists of fixed-points for ym only. In B we pick t such 

that for some s> 0 and n=pls,t x=t. Obviously Sj, the sub- 

group g e n e r a t e d  by a l l  A - c o n j u g a t e s  o f  t ,  i s  a f i n i t e l y  

generated A-invariant subgroup of Pj. 

In order to finish the proof it suffices to find a nontri- 

vial element a E A having fixed points in infinitely many of 

the S.'s (j~ 2). Since for each aEA the fixed-points of 
J 

the induced automorphism [ on the (finite) Frattini-factor 

Sj/@(Sj) can be lifted to fixed-points of a in Sj by [4, 

Lemma I] , it suffices to find aE A such that a induces a 

non-fixed-point-free action on infinitely many of the 

Vj_ :=Sj/r which are, respectively, finite vector spaces 

over GF(pj). Note that conjugation by elements of A induces 

a representation pj of A on V.. Put ~ :=V | ( ~GF---~, 
J J J P~ Y ~ j "  

m 

where _ _  ~ denotes the algebraic closure of GF~pj); then 

0j may be viewed in the canonical way as a representation 

of A on ~ . Then, by the foregoing, for an element e ~ aE A 
J 

having a fixed-point in Sj means that either a6 ker 0j or 

that pj(a) has eigenvalue I. Assume, for an infinite subset 

I of N, that aE A ker p is nontrivial; then we are done. 
! J 

We also note for later use that 0j(a) has a fixed-point in 

V. if and only if it has one in ~ . So for every infinite 
J J 

index set I~N one has N ker 0j=~e}. W.l.o.g. we may 
I 
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assume that dj :=o(pj(x))-- > o(~j(y)) for jE N, an infinite 

subset of N. Since 0j splits over ?. one can find uj E 
~.. J 

ouch that 0~(x) = diag(uj !J/i=1,2,...,tj) and pj(y)= 
o 

= diag(uj iJ/i=1,2,...,tj) where tj=dim Vj and where 
d 

aij,~ijE Z/pj 3~. W.l.o.g. one may assume aij=1 for jE L, 

where L is an infinite subset of N. Then for j E L either 

pj(yx --J) has a fixed-point in Vfj or yx is in ker pj~ 

If the latter happens for an infinite subset J~ L then p j(A) 

is cyclic and because of N ker D =(e} we conclude yE (x>, 
jEJ J 

i.e. A is procyclic, a contradiction. Therefore there exists 

an infinite subset K~ L such that for j ~ K and the Pl-adic 
-Y I 

exponents Y1j one has yx J$ ker 0j and where oj(yx -YIj) 

has fixed-points in V . Let b be any cluster-point of the 
3 

set {Yij/JE K}_CZp I; then pj(yx -b)=pj(yx -wlj) has a fixed- 

-b point in Vj, for all jE K; finally, let a :=xy . This 

proves the Theorem. 

As an immediate consequence we state without proof. 

0oroll~r~. Let G b_~e~ profinite torsion ~r0u~. Then it has 

finite exDonent if and only if its Sylow-subgroups have 

finite exponen t . 
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