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Abstract. This work describes a simulation package for detailed studies of biasing networks for bipolar tran- 
sistors. A sophisticated transistor model is introduced which captures many second-order effects, but which causes 
convergence difficulties for many existing methods used for computing an operating point. Artificial parameter 
numerical continuation techniques are introduced, then, as a robust and efficient means of solving bias networks 
employing our model. Sensitivity studies and natural parameter continuation studies based on the computed operating 
point (or points) are also discussed. 

1. Introduct ion 

Design analysis of high-performance analog integrated 
circuits requires detailed and accurate simulation of the 
dc behavior of the chip. Such analysis, which become 
an even more integral part of the design for advanced 
bipc,lar transistor technologies, include: computation 
of the dc operating point (or points) of the circuit; sen- 
sitivity studies of one or more outputs to one or more 
circuit parameters; design simulations at the extremes, 
dictated by variations in the fabrication process, and 
the electrical and environmental conditions in which 
the circuit will be operating, such as power supply and 
temperature variations; analyses and optimization of 
yiekt or performance in the face of statistical varia- 
tion of process parameters. Of course, such analyses 
are only as good as the underlying device models! 

In this paper we describe an experimental system 
called Sframe which is being incorporated into the 
design for manufacturability initiative at the Reading 
Works of AT&T Bell Laboratories. Our system is able 
to perform detailed and accurate dc analyses of inte- 
grated circuits containing several hundred transistors 
to be fabricated in a relatively complex junction isolated 
complementary technology. 
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tion glrant CTS-8913198, and Air Force Office of Scientific Research 
grant 89--0497, 

Highlights of our system include: 

• Robust computation of the operating point of a circuit 
using an efficient continuation method; moreover, 
the method is able to detect multiple operating points. 

Generally speaking, continuation methods for 
operating point computation have a reputation in the 
simulation community for being too slow to be prac- 
tical for any but the smallest of circuits. One of the 
conclusions of our work is that, when properly im- 
plemented, continuation techniques based on modem 
homotopy algorithms for operating point computa- 
tion exhibit unsurpassed robustness with reasonable 
cost. 

• A state-of-the-art four-terminal bipolar transistor dc 
model which treats various second-order effects not 
considered in simpler models. This model has been 
appropriately modified for use with continuation 
methods. 

• An "incremental" facility which allows the operat- 
ing point of a circuit to be updated quickly after a 
relatively small change to one or more simulation 
parameters. This facility is especially useful for 
exploration of a "design space" during statistical 
optimization. 

• Parameter studies using continuation methods which 
can identify qualitatively different operating modes 
of the circuit. The numerical codes used to perform 
these studies are able to cope with turning points and 
folds in the solution manifold, which indicate more 
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than one solution for parameter values in a certain 
interval. Such analysis provide insight into both the 
quantitative and qualitative behavior of the design. 
A facility for continuation to a target point allows 
a designer to calculate the exact setting for a circuit 
parameter which causes an output variable to equal 
a desired value. This is also useful in statistical 
design. 

• Analytically correct dc sensitivity analyses of a user- 
defined performance function to temperature, any 
device model parameter or any circuit parameter. 
Both direct and adjoint techniques are supported. 
These methods are superior to the perturbation 
technique, often used in simulators to estimate 
senstivities, which are too slow and inaccurate for 
any but the simplest kinds of sensitivity analyses. 

• A novel software architecture in which the user's cir- 
cuit is described by defining appropriate classes in 
C + + .  Sframe is designed in a highly modular 
fashion, and different numerical codes can be in- 
stalled quickly through narrow, well defined inter- 
faces. Moreover, the design of Sframe takes advan- 
tage of so-called "automatic differentiation" tech- 
niques which allow derivatives of model expressions 
to be computed accurately in a fashion which is trans- 
parent to the user. Such derivatives are needed for 
continuation and sensitivity studies. 

Section 2 describes the use of numerical continuation 
methods in our program. A distinction between "artifi- 
cial parameter" and "natural parameter" methods is 
drawn. The use of artificial parameter continuation for 
computation of operating points has been described 
elsewhere [1-3] so is reviewed here only briefly. Sec- 
tion 2.1 describes the various continuation options pro- 
vided. Section 2.2 discusses incremental operating 
point computation, in which the operating point of a 
circuit is to be updated after a relatively small change 
to one or more circuit parameters. 

In Section 3, we motivate the need for a highly ac- 
curate and detailed transistor model, and show how a 
continuation parameter is incorporated into the model 
for robust and efficient operating point computation. 
Section 4 discusses automatic differentiation to device 
model equations, and shows how Sframe takes advan- 
tage of this technique to provide almost any conceivable 
sensitivity information in a convenient fashion. In Sec- 
tion 5, we describe our experience with writing a simu- 
lation program in the C + + language, also using C + + 
as the input or "netlist" language. Finally, in Section 
6, performance data on several designs are presented. 

All of our examples are taken from current industrial 
designs, and some of them are large by analog circuit 
standards (e.g., several hundred transistors). 

2. Continuation Methods in Simulation 

Continuation (homotopy) methods [4-6] provide both 
a theoretical and implementation basis for dc analysis 
of nonlinear networks. Consider the formulation of the 
operating point equations using Kirchhoff's laws. In the 
so-called modified nodal formulation [7], one intro- 
duces a voltage unknown for each node in the circuit, 
and an additional unknown for the current through each 
voltage source, then writes an equation which expresses 
Kirchhoff's current law at each node and Kirchhoff's 
voltage law across each voltage source. This gives n 
equations in n unknown voltages and currents. 

The standard form for such equations is 

F(x, a)  = 0 (1) 

where, for the fixed vector of parameters a, F ( - ,  a) 
is a mapping from R n into R n, the set of real n-vectors, 
and x is a vector partitioned x = (i; v) for current and 
voltage unknowns. The m-vector a represents circuit 
parameters. These equations can be highly nonlinear 
and standard Newton-Raphson iteration [8] typically 
exhibits only local convergence. Therefore, we are moti- 
vated to consider more robust and globally convergent 
procedures for operating point computation. Continua- 
tion theory considers an equation 

H(x, /~, a)  = 0 (2) 

where x and a are as in (1) and the p-vector/z represents 
one or more continuation parameters, so that H ( - ,  a) 
in (2) is a mapping from R n+p into Rn; i.e., there are 
more unknowns than equations. In other words, the sys- 
tem of equations is underdetermined. Thus, a "solution" 
to (2) is no longer a single point, but rather a curve 
or surface in R n+p. In  the remainder of the paper, we 
will restrict ourselves to the case p = 1, and assume 
that the parameter vector a in R m is fixed. In the se- 
quel, unless necessary, a will not be written explicitly. 

In the continuation paradigm, one designs a func- 
tion H such that a solution x0 to the equation H(x, #o) 
= 0 is already known or easily obtained for some fixed 
value /z0; i.e., H(xo, /z0) = 0. If, in addition, H is 
designed so that H(x, tz) = F(x) identically in x when 
/x = tz 1, then a solution to H(x*, /~1) = 0 provides a 
solution to F(x*) = 0. Examples of such a construc- 
tion will be given later. 

4 
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~suming  that such a solution exists, i.e., H(x*, /Zl) 
= 0, supporting theory [9-11] shows that in most 
cases, under reasonable assumptions about the smooth- 
ness of H and the choice of a, the points (x0,/z0) and 
(x*, #1) are connected by a path in (n + 1)- 
dimensional space. With a fixed, we can compute x* 
by "tracking" this path in (n + 1)-dimensional (x, it) 
space. To take a simple example, suppose that /z 
represents the ambient temperature of a circuit. For/z 0 
= 25°C, a solution to H(x, /z0) = 0 represents an 
operating point of the circuit at room temperature, 
where/z has the dimension of degrees Centigrade. As 
/z is varied from 25 °C to an elevated temperature, say 
50°C, the solution to H(x, #) = 0 tracks the state of 
the circuit at each temperature. 

Packaged numerical codes are available to ac- 
complish this "curve tracking," i.e., to generate a set 
of points (x,/x) which satisfy H(x,/z) = 0 for/~ in the 
inteJ:val [/~0, /~l] and a fixed a. The user supplies an 
initial point (x 0, /z 0, a), then the curve tracking 
algorithm takes over. It predicts a local direction vec- 
tor "along the curve" by evaluating the Jacobian matrix 
of H with respect to x and/x. Iterative application of 

a predictor-corrector scheme allows the algorithm to 
track the curve until/~ = #1. Sophisticated packages, 
such as HOMPACK [11-12] or PITCON [13], dynam- 
ically adjust their step length to adapt to changes in the 
curvature of the path. 

hi order to use such packages, the user must supply 
a numerically accurate Jacobian matrix. This matrix 
is of the form 

I oH OH O--~ (3) 

evaluated at a point (x, tz) along the solution path. Our 
computational experience with dc analyses of bipolar 
networks indicates the finite-difference approximations 
to this Jacobian matrix are inefficient and unreliable. 

The notion of "sweeping" a parameter is intuitive, 
but can be misleading. Consider the symmetric flip- 
flop shown in figure 1. Suppose we treat the supply 

RCI=RC.2=IK 

Fig. L Symmetric flip-flop. 

voltage (Vcc) as the continuation parameter, #, and 
"sweep" /z from 0 to 6 V. Figure 2a shows the com- 
plete solution to H(x,/z) = 0 for this example, in which 
x is the dc state vector of the circuit. At a critical value 
of/~ (about 0.7 V) the operating point equations exhibit 
a bifurcation [14]. The three branches to the right of 
the critical point represent the two stable states of the 
flip-flop along with the metastable state. The bifurcation 
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Fig. 2. Bifurcation diagrams for symmetric flip-flop. 

diagram of figure 2a is valid only if the circuit is ex- 
actly balanced; if there is any asymmetry in the cir- 
cuit, then the bifurcation diagram becomes the unfolded 
diagram of figure 2b; the bifurcation is gone, and only 
one solution is accessible from the start state x0. Such 
an unfolding can be accomplished by suitable choice 
of the parameter vector a mentioned above. For exam- 
ple, suppose a encodes the values of the resistors and 
the scales of the transistors in the circuit. Any physical 
realization of the circuit will incur some imbalance in 
these values which can be modeled by appropriate slight 
perturbations in the a vector. 

Another possibility, quite common in analog circuits, 
is a turning point. Consider the circuit of figure 3 taken 
from Ref. 15, in which the value of the input voltage 
is the continuation parameter/z. The output is taken 
as the current through this source, and is shown plot- 
ted against the source voltage. Note that for # in a cer- 
tain interval, the circuit exhibits more than one solu- 
tion. At the end points of this interval, the solution 
manifold turns back on itself. This discussion is meant 
to show that the notion of "sweeping" might be a bit 
more complicated than it first appears. Turning points 
and (less often) bifurcations which are not unfolded do 
come up in practical analog circuit designs! 

2.1. Artificial Parameter Continuation for Operating 
Point Computation 

In the above examples, the continuation parameter has 
a natural circuit interpretation--voltage, temperature, 
etc. The Vcc continuation of figure 2 can be interpreted 
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Fig. 3. Negative resistance circuit. 

as an operating point computation starting from the 
trivial point of zero supply voltage and ending when 
the supply is "fully on." Because of the bifurcation, 
a numerical method used to track the solution manifold 
may falter at the point of the bifurcation, or (more 
likely) continue on through this point to the metastable 
state of the flip-flop. Neither of these situations is 
desirable. Instead, Sframe uses the notion of artificial 
parameter continuation to find an operating point. In 
this technique a parameter which need not have an ob- 
vious circuit interpretation is introduced into one or 
more nonlinear element models. Artificial parameter 
methods [10-11] generate smooth, bifurcation flee 
paths which can be traversed quickly to the desired 
operating point. 

As in the Vcc continuation above, the computation 
of an operating point when the artificial parameter is 
set to zero is trivial; moreover, when the artificial 
parameter reaches a value of one, the circuit has been 
retured to its original state. Consider, for example, the 
standard Ebers-Moll transistor model [36] of figure 4. 
A continuation parameter X has been introduced which 
multiplies the current gains of the transistor. When k 
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Fig. 4. Ebers-Moll model with continuation parameter. 

equals zero, the model degenerates into a pair of back- 
to-back diodes. The transistor model actually used in 
Sframe is much more complicated than figure 4, how- 
ever the continuation parameter is introduced into the 
complex model in much the same way; the detailed con- 
struction is described in Section 3. 

Suppose we wish to find the operating point of a 
bipolar network containing transistors, diodes, resistors, 
and independent sources. Imagine all the transistors 
with the continuation parameter introduced as in figure 
4. Now, consider the circuit when k is set to zero. This 
so-called start system has a unique operating point, and 
it is easy to solve. In fact, it can be shown that the 
operating point equations are a diffeomorphism when 

is zero [2]. Thus, norm-reducing Newton methods 
[8, 16] work quite well, typically solving the circuit 
in a reasonable number of iterations (less than 30 for 
all the examples presented in Section 6). After solving 
the start system, use a continuation procedure to ad- 
vance ~ to 1; at this point, the transistor models are 
back to their original state. Points along the continua- 
tion path, for values of ~, less than one, do not have 
much meaning to a designer, since they represent states 
of a circuit with a modified transistor model. Hence 
the term "artificial" parameter. As a notational con- 
vention, we use k for such an artificial parameter, rather 
than ~z. 

A problem with this construction arises if two trans- 
istors are connected in a "cascode" configuration, with 
the collector of one transistor connected to the collec- 
tor of another. When k is set to zero, the transistors 
become simply a pair of diodes; in the cascode config- 
uration, two diodes are connected anode to anode, 
which results in a node which is effectively discon- 
nected from the rest of the circuit. This problem is 
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fixed by adding a "leakage" circuit from each node to 
ground, which is removed during the continuation 
process. 

The leakage circuit consists of a conductance in 
series with a fixed voltage source. Let the conductance 
have a value (1 - X) Gscale, in which Gscale is a global 
constant. Thus, numerical singularities due to uncon- 
nected nodes are eliminated. Moreover, if the voltage 
source of each leakage connection is given a random 
value, then supporting theory [10] shows that bifurca- 
tions (as in figure 2) are eliminated with probability 
one.. The presence of the random sources introduces 
asymmetry into the system to unfold any bifurcations. 

Notice that we have designed a homotopy specific 
to c,perating point equations, rather than a general con- 
struction which can be applied to any system of non- 
linear equations. One such general construction is the 
following homotopy [11]: 

Hb(X , X) -- (1 - X)(x - b) + XF(x) (4) 

where F is an arbitrary system of nonlinear equations, 
and b is an n-vector which fixes a starting state for the 
construction. This construction will work for operating 
point computations, but is slower by a factor of 10 than 
the "gain" homotopy described above; perhaps the rep- 
utation of continuation methods for being "too slow" 
is due to the use of such general constructions. The 
"gai, ff' homotopy takes advantage of the fast converg- 
ence of a damped-Newton scheme on a reduced prob- 
lem where convergence is assured, then employs homo- 
topy to get the final answer. Fortunately, HOMPACK 
allows a user to design such problem-specific homo- 
topics, as well as providing (4) as a default. 

The examples in the final section show that operating 
points can be obtained with an effort between two to 
five times that required by other, less robust, methods. 
Users seem quite willing to pay this extra computer cost 
in exchange for the robustness and analysis capabilities 
of continuation methods. 

2.2. Finding Multiple Operating Points 

Artificial parameter continuation methods provide an 
elegant aproach to identifying multiple dc operating 
points. Consider a circuit, such as the flip-flop above, 
which has three distinct operating points when X = 1. 
Because of the way in which the continuation param- 
eter has been introduced into the circuit, there is cer- 
tainly a unique solution at X = O. Moreover, the ran- 
dom voltage sources unfold any bifurcations, so the 

picture looks like figure 2b (although the continua- 
tion parameter is no longer the supply voltage). The 
continuation process is tracking one branch of the 
solution set starting from the (unique) solution at 
X = 0, and stops when it gets to X = 1. There is no 
reason to stop here--instead, continue to follow the 
path; in some cases, it will exhibit a turning point and 
connect up with the branch containing the other two 
solutions as indicated in figure 5. In such case, we say 
that the multiple operating points have been "lambda 
threaded." Of course, this will require values of X 
greater than 1. 

XO 

0 ~. 

( 

Fig. 5. Threading multiple solutions with continuation path. 

The idea of letting the continuation path proceed past 
X = 1 has appeared in the literature in various unrelated 
publications [17-19]. In particular, Diener [19] gives 
sufficient conditions on the function being studied to 
insure that all solutions will be traversed, however, 
Diener's condition is quite strong and there seems little 
hope of establishing it for circuit equations even on a 
restricted class of circuits. Some authors have presented 
algorithms guaranteed to find all solutions of a circuit 
[20], but these methods are based on multidimensional 
analogs of bisection, which can be rather slow in higher 
dimensions, or restrict modeling equations to be poly- 
nomials [211, which is undesirable in our application. 
Our program incorporates some specific features which 
"encourage" the continuation path to traverse multiple 
solutions and has successfully found multiple dc solu- 
tions of circuits containing hundreds of unknowns. 

First, the transistor gains are not actually multiplied 
by X, but by a function gain(X) which stays in the range 
[0, 1], even for X > 1. Second, note that the leakage 
circuit described above exhibits negative conductance 
for X > 1. The presence of such negative conductance 
can generate unrealistically large currents in the net- 
work. For X > 1, Sframe introduces a nonlinear 
negative resistance in the leakage circuitry. The I-V 
characteristic of this negative conductance has a satur- 
ating characteristic which keeps the voltages within 
reasonable bounds. 



168 Melville, Moinian, Feldmann and Watson 

Both the gain function and the leakage conductance 
are designed to be periodic in X with period 2. Thus, 
at X = 2, the circuit again has a unique solution equal 
to the solution at X = 0. This provides a convenient 
stopping criterion--if multiple operating points have not 
been detected by the time X reaches 2, then the pro- 
cedure can be stopped, since the behavior of the con- 
tinuation will repeat for X > 2. Figure 6 shows the 
continuation path threading the three operating points 
of a Brokaw reference [22]. The drawings plots the out- 
put voltage against k, and has an expanded horizontal 
scale to emphasize the behavior of X near 1. 

~=0  ~.=1 

Fig. 6. Threading three solutions of Brokaw circuit. 

2.3. Incremental Computations 

Suppose that an operating point has been computed for 
a circuit, but the designer would like the operating point 
of a perturbed circuit--maybe at a different tempera- 
ture, different supply voltage, etc. Call these two cir- 
cuits A and B, with known operating point x A for the 
A circuit. Again, one may draw a distinction between 
a natural parameter approach to this problem, and an 
artificial parameter approach. To be specific, suppose 
the operating point equations are parameterized in 
temperature T and the value of a single independent 
voltage sources, V. 

Let the (known) point ;CA satisfy 

F(XA, To, V0) = 0, (5) 

and suppose an operating point xB is desired which 
satisfies F(xB, 7"1, 1"1) = 0. An obvious continuation 
method to find xB would be to perform two separate 
continuations on Tand V separately. Say, first perform 
a continuation on T to get a point xl such that F(Xl, 
T 1, V0) = 0, then compute a path from xl to x B such 
that F(XB, T1, V1) = 0. This is rather slow. A better 
scheme is to use the single continuation 

F(x, (1 - /x)T 0 + l~T~, (1 - /,)V0 + /,I,'1) = 0 (6) 

and perform continuation on tz in the interval [0, 1]. 
Both schemes assume that F can be evaluated at 

arbitrary values of T and V, and has continuous 
derivatives with respect to these parameters. This might 
not be convenient if, for example, a device model is 
characterized at only a fixed set of temperatures. More- 
over, like all natural parameter continuations, there is 
the possibility of a numerical singularity somewhere 
along the path. The use of an artificial parameter avoids 
both of these obstacles. Consider the homotopy 

nb(x, X) = (1 -- k)F(x; T 0, V0) 

+ XF(x; T~, V1) + cr(X)(x - b) (7) 

in which b is an n-vector as in (4) and a is a smooth 
function defined on the interval [0, 1] and equal to zero 
at the endpoints of this interval (e.g., a(X) = K sin 
(XTr/2) in which K is a scaling factor). According to 
the theory presented in [10], the introduction of the vec- 
tor b practically insures smoothness of the solution to 
(7). Clearly, Hb(XA, 0) = 0 for the starting point 
because a(0) = 0, and the endpoint x A is an operating 
point of the A circuit. This scheme does not require 
derivatives with respect to either circuit parameter V 
or T, and avoids numerical singularities with the ran- 
dom a(X)(x - a)  term. 

There is, however, a disadvantage to the artificial 
parameter scheme. For values of X strictly between zero 
and one, a solution to Hb (x, k) = 0 is the operating 
point of some "mixture" of the A circuit, the B cir- 
cuit, and the randomization. Hence, such intermediate 
points are not the solutions of a real circuit. In con- 
trast, if a natural parameter continuation is used to move 
from the A circuit to the B circuit, then intermediate 
points along the continuation path are simply more 
sample values. These samples can be used to advan- 
tage in a statistical design scenario. 

Continuation methods are implemented in Sframe 
with two public-domain packages: HOMPACK [11] and 
PITCON [13]. In general, an artificial parameter 
homotopy, with HOMPACK to perform the continua- 
tion, is much faster than a natural parameter continua- 
tion performed by PITCON. This is especially true for 
larger differences between the A and B circuits. HOM- 
PACK is designed for speed rather than accuracy, ex- 
cept at the endpoint of the continuation. Thus, it is able 
to move quickly along the path to the solution to the 
B circuit. Timing results for some examples of incre- 
mental computation are presented in the last section. 

In summary, there is no "best" method; the choice 
between an artificial parameter approach or a natural 
parameter approach depends on the context in which 
the results will be used. 
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2.4. Combining Continuation Operations 

The artificial and natural parameter continuation facil- 
ities of Sframe may be usefully combined. As an ex- 
arnple, we consider an all NPN voltage reference of 
novel design documented in [23]. The value of a par- 
ticular resistance, r17, is crucial to the operation of the 
reference. For r17 = 20k, the circuit has a unique 
operating point. For r17 = 3.2k, the circuit has three 
operating points, one of which is the desired state of 
the circuit. The diagram of the corresponding unfolded 
bifurcation is shown in figure 7. 

3.2k r17 20k 

Fig. 7. Bifurcation diagram for voltage reference. 

Appropriate start-up circuitry is included to insure that 
the circuit will settle into the desired state. However, 
if r17 is made too large, then the circuit undergoes a 
qualitative change of behavior, and has only one operat- 
ing point, with or without the start-up mechanism. In 
this regime of operation, the performance of the cir- 
cuit is compromised. Thus, the designer is led to ask 
for the "critical" value of r17, below which the circuit 
will have three states, one of which is the desired state. 
An exact answer to this question can be provided by 
the continuation operations available in Sframe. First, 
fix r17 at 3.2k and use the lambda-threading device 
to identify the three operating points for this value of 
the resistor, then initialize the circuit to the metastable 
state. Note that the turning point of figure 7 is accessible 
from the metastable state. Now, perform a (natural) 
parameter continuation study on the value of r17, try- 
ing to drive the value of the resistor back up to 20k. 
This will not be possible--rather, the continuation proc- 
ess will encounter a turning point at the critical value 
of rl7--exactly the value requested by the designer. The 
PYDZON code provides a facility to compute the exact 
location of such turning points. 

2.5~ Continuation to a Target Point 

Suppose that a particular circuit parameter, say the 
value of an independent voltage source, is treated as 
a continuation parameter /z with initial value/~o. In 

general, all other node voltages and branch currents 
in the circuit will depend on/z, although the relation- 
ship between such a designated output and/z is not 
necessarily a functional one! 

As illustrated by figure 3, for certain values of/z, 
there may be more than one value of the output quan- 
tity corresponding to a particular value of it. A useful 
extenstion of the continuation method is to "work bach 
wards" for such a value. As a classic example, con- 
sider the design of a Widlar current source [24]. This 
circuit uses an emitter degeneration resistor Re to 
source or sink a very low load current with reasonable 
resistor values (thus saving chip area). However, the 
relationship between load current and the value of Re 
is nonlinear and some trial-and-error may be necesasry 
to set Re. The initial value of Re is chosen so that the 
resulting load current is less than the desired value. 
Then, target continuation is performed on the resistor 
value until the load current equals the desired value. 

3. Bipolar Transistor Model 

The bipolar transistor model implemented in Sframe 
is an advanced dc version of the extended Gummel- 
Poon bipolar model [25-26]. It models the electrical 
characteristics of bipolar transistors fabricated using 
AT&T's CBIC (complementary bipolar integrated cir- 
cuits) junction isolated technology [27]. There are dif- 
ferent versions of CBIC technologies supporting both 
vertical npn and pnp transistors, with characteristics 
that range from medium speed ( f r  = 800 MHz) and 
high function breakdown voltages to high-speed ( f r  
12 GHz) small-geometry devices. Thus, a variety of 
effects, including those arising from junction isolation 
parasitics, must be included in the model. For example, 
for the high-voltage devices, due to higher intrinsic 
resistances for base and collector, both the basewidth 
modulation under different bias conditions and the col- 
lector resistance modulation and quasi-saturation have 
to be accounted for. Of course, for small-geometry 
devices, all lateral charge injections become important, 
due to the fact that charge injection from the emitter 
is not localized to the vertical base-emitter junction. 

The circuit level model presented in this section 
characterizes both the primary transistor action and the 
most important parasitic phenomena in the CBIC trans- 
istor structures used in analog bipolar circuit designs. 
It should be mentioned that the model, in some simpler 
form, can be applied to other bipolar technologies as 
well. The complexities of such a highly nonlinear model 
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are a major source of convergence difficulty for cir- 
cuit simulators which offer only conventional Newton- 
type procedures for the calculation of a dc operating 
point. Therefore, the model has been augmented to 
allow the use of robust numerical continuation methods. 

This augmentation has been accomplished in such 
a way that the number of iterations during the artificial 
homotopy parameter study can be optimized. This is 
partially due to the fact that, for the initial value of the 
continuation parameter, the model results in operating 
point equations which are diffeomorphism [2] and 
therefore the more efficient norm reducing Newton 
method can be used with assured success to solve the 
start system. 

3.1. Model Description Summary 

Figure 8 represents a cross-sectional view of a typical 
npn transistor in a complementary bipolar technology. 
Superimposed on that figure are most of the possible 
transistor actions that can take place under different bias 
conditions in such a structure. QV is the primary tran- 
sistor, the performance of which has to be optimized 
relative to the other transistors which act as parasitics. 
In a typical CBIC technology transistor QS2 would have 
both higher emitter and collector efficiency than QS1. 
Moreover, transistor QL which represents a lateral npn 
action from the emitter side-wall laterally to the col- 
lector contact, has a much smaller emitter/collector 

efficiency than QV. It is true that, for high frequency 
applications, QL becomes important due to its base 
width, which is much longer than that of QV, thus intro- 
ducing an excess phase shift in the overall transistor 
ac response [28]. However, for dc applications QL can 
be left out with minimal loss in performance predic- 
tion accuracy. For similar reasons QS1 can also be left 
out. Therefore, the transistor model can be reduced to 
that shown in figure 9. In the reduced model, RC is 
the accumulated ohmic resistance of the collector con- 
tact, deep collector, and buried layer. RBX represents 
the sum of the contact and series external base ohmic 
resistances under the base contact diffusion, while RB 
and RBP signify modulated active base region resis- 
ances for QV and QS2 respectively. 

Transistors QV and QS2 are modeled in a similar 
fashion, each having a full Gummel-Poon circuit-level 
topology. It is very important for SQ2 to have a full 
Gummel-Poon structure. This is due to the fact that in 
CBIC technology, QS2 is a lateral isolation transistsor 
with a relat i vely narrow base, hence, effects such as 
base width modulation (Early effect [29]) have to be 
modeled properly. This transistor will operate in cutoff 
mode when the structure is biased to activate QV in 
its normal mode. However, at higher charge injections, 
the voltage drop across RC can become high enough 
to forward bias QS2 and thus to turn it on. This usual- 
ly happens when QV is in its quasi-saturation of satura- 
tion modes. 
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Fig. 8. Cross section of CBIC transistor. 
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3. 2. Model Considerations for Transistors QV and QS2 

In order to be used in conjunction with artificial 
paarameter continuation methods, the model incor- 
porates an artificial parameter X. As described in Sec- 
tion 2.1, the role of the continuation parameter X is 
to modify the transistor model in a way that leads to 
an "easy" to solve circuit when X = 0 while restoring 
the full model by the time X = 1. In order to include 
the continuation parameter in the core Gummel-Poon 
model, its topology is modified as depicted in figure 
10 for partial implementation of the npn transistor QV. 
The pnp transistor will have similar topology with op- 
posite polarities for the currents and voltages. 

In figure 10,f(X), g(X), and h(X) are suitable func- 
tions of the continuation parameter X which best 
describe model behavior during parameter variation. 
We want X to modulate the current gains of the trans- 
istors. Since, in general the short-circuit current gain 
imposes a linear relationship between base and collec- 
tor currents, we choosef(X), = X. Moreover, we chose 
g(X) = /3F(1 -- X) and h(X) = /3R(1 - X) where/3F, 

B a s e  

A 

VBEI 

; O , ) . I B C I  f I ( X ) . I B C I  

+ 

+ 

(k).IBEI 

I 
(X).IBEI 

VBCI 

C o l l e c t o r  

IBEN 

E m i t t e r  

Fig. 10. Core  o f  Gummel -Poon  transistor  with cont inuat ion parameter .  
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/3 R are the current gains corresponding to the 
Gummel-Poon parameters BF and BR. 

The following equations describe IBEI, the intrin- 
sic base-emitter junction current; IBEN, the nonideal 
base-emitter current due to recombination in space- 
charge region; IBCI, the intrinsic base-collector junc- 
tion current; and IBCN, the nonideal current due to 
base-collector space-charge recombination: 

IBEI = IS (eVBE/NFVr_ 1) (8) 
BF 

IBEN = ISE (e vBE/NE vT - 1) 

IBCI = IS (eVBC/NRV~_ 1) 
BR 

IBCN = ISC (e vBc/Ncv~ - 1) 

where parameters IS, BF, BR, ISE, ISC, NF, NR, NE, 
and NC are the Gummel-Poon model parameters [25]. 

Note that as the continuation parameter X varies 
from 0 to l, the functions g (X) and h (X) move from 
BF and BR to 0 respectively andf(X) from 0 to 1. Thus, 
for X = 1, the model returns to the transitional 
Gummel-Poon topology. Consequently, the effective 
forward and reverse transistor short-circuit current gains 
BF and BR change from 0 to their final values BF and 
BR, as defined by the model parameter values. This 
results clearly from the ICC current source expression 

ICC - IS {eVBE/NF Vr _ eVBC/N R Vr } (9) 
QB 

where QB is the normalized base charge as defined in 
the Gummel-Poon model. When the transistor is biased 
in active mode (VBE > 0, VBC < 0), 

ICC - IS eVBE/N F Vr (10) 

QB 

Assuming 

IC = ICC - f O x )  IBCI - h (X) IBCI - IBCN 

and 

IB = f(X) IBEI + g0Q IBEI + IBEN 

+ f(X) IBCI + h (X) IBCI + IBCN 

then, 

5=  IC [ --~ (IS/QB) e VBE/NF V~ 
X=O 

IS (e VBE/NF vr - l )  "q- ISE (e VBE/NE vr - l) 

In normal active mode QB ~ 1 and hence/3 _. 1. Thus 
for X = 0 such a transistor will have no current 
amplification capability and hence it will act as two 
back-to-back diodes. 

3.3. Resistor REPI 

To model the quasi-saturation effects in the epitaxial 
collector region in both npn and pnp transistors of the 
CBIC technology, the modified version of the model 
proposed by Kull et al. [26] has been utilized. This 
model, which accounts for collector resistance modula- 
tion due to injected minority carrier charge from a for- 
ward biased metalurgical junction into the collector, is 
highly nonlinear. In addition, due to the series connec- 
tion to the collector of QV, which consists of a number 
of current generators, convergence problems may arise 
when the transistor is operating in quasi-saturation or 
high injection modes. For this reason a continuation 
parameter should be included to control the nonlinearity 
of the expression 

REPI = VEPI ~RCO 1 VBCO- VBCW~ 
LVTA [1+ vo j 

In-'-KI(VBCO)] + [VBCO-VBCW 1 KI(VBCO)-K I(VBCW) [ ~ J  L "~T .3 

where 

RCO = zero-bias active epitaxial collector 
resistance 

VT = thermal voltage 

VBCO = external base-collector voltage 

VBCI = internal base-collector voltage 

KI(V) = V1 + 3' exp(V/VT) 

3' = I 2  NEPIni ~ 2  

WEPI vsp 
VO - 

~pEPI 
WEPI = width of epitaxial collector 

vsp = carrier saturation velocity 

#pEru = minority carrier hole mobility 

To reduce the nonlinearity of the expression, the ex- 
ponential terms of type KI(V) modulated by 3" is mul- 
tiplied by a function of the continuation parameter: 
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y(X) = X e v(x-1)/vT (12) 

which dampens the exponential in KI(V) for small 
values of X but has no effect when X = 1. Thus, 

KI(V) = ~/1 + 3' X exp(V(X-1)/VT) exp(V/VT)(13) 

3. 4. Resistors RB and RBP 

The two resistors RB and RBP which are associated 
with transistors QV and QS2 respectively (figure 10) 
are modulated base resistances and follow a relation- 
ship with respect to junction voltages of the core 
Gummel-Poon model as defined in [25]. Although, 
some form of continuation parameter can be defined 
for such base width modulations, since the currents 
through these resistors are not direct functions of ex- 
ponentials, we have not found it necessary in this case. 

4. A u t o m a t i c  D i f f e r e n t i a t i o n  a n d  Sens i t iv i ty  
C o m p u t a t i o n s  

We :have shown in Section 2 that the use of homotopy 
methods for the solution of the nonlinear system of 
equations (1) requires the computation of the Jacobian 
mat~:ix. 

OH _ I a___HO__H I (14) 
O(x, IX) Ox Oix 

Remember H(x,  Ix) = 0 is a system of nonlinear equa- 
tions [hi(x, IX) . . . .  , hn(x, Ix)]~ = 0 and the individual 
equations hi (x, IX) = O, i = 1 . . . .  , n, are the follow- 
ing tbrm. (For simplicity, we ignore the equations cor- 
responding to independent voltage sources.) 

//y(V, #) = 0 (15) 
j~Ni 

where Ni is the set of nodes adjacent to node i, Iij de- 
note currents of circuit branches ij and Vis the n-vector 
of node voltages. 

The currents I U belong typically to nonlinear 
semiconductor devices such as transistors, diodes, etc. 
The computation of the Jacobian matrix aH/a(x, ix) 
therefore requires the differentiation of the device cur- 
rents expressions, with respect to the voltages applied 
to their nodes and with respect to the continuation 
parameters IX. As discussed above, the continuation 
parameter IX can be either a physical model parameter, 
such as the temperature, or an artificial parameter with 
no physical meaning such as X described in the previous 
section. We already mentioned that according to our 

experience finite difference approximations to these 
derivatives are both inefficient and unreliable. Conse- 
quently, the use of homotopy-based methods for the 
solution of nonlinear circuit equations poses an addi- 
tional burden on the device model routines. In addi- 
tion to the values of device current derivatives with 
respect to the voltages applied to them aI/o v required 
by most traditional circuit simulators, the routines must 
also calculate derivatives with respect to the continua- 
tion parameter OI/aix. In order to support both natural 
and artificial parameter continuation, device model 
routines must therefore be able to compute derivatives 
with respect to practically any of the model parameters. 

Dc operating point computation is not the only 
application that needs the evaluation of device model 
expression derivatives. Once the operating point has 
been reached, partial derivatives of model expressions 
with respect to various model parameters are also 
necessary for sensitivity computation. 

4.1. DC Sensitivity Computation 

Efficient methods to compute dc circuit sensitivities are 
well known in theory [30]. Consider the original cir- 
cuit equations F(x,  a) = 0 which contain dependen- 
cies on some circuit parameters a = [al, . . . ,  as] ~. 
Using a continuation method, circuit responses are ob- 
tained as the solution of the system H(x, #1, a) = 0, at 
the final value of the continuation parameters IX = Ix1. 
Obviously the circuit responses x are dependent on 
the circuit parameters a, therefore, the sensitivities 
ax/Oa (assuming they exist) can be obtained by differ- 
entiating the circuit equations with respect to a 

0 H(x(a) ,  a, ~1) - OH ax + OH 0 (16) 

Oa Ox Oa aa 

Assuming that aH/Ox in invertible, the sensitivities 
Ox/Oa are obtained as the solution of the resulting linear 
system of equations 

OH Ox OH 
- - (17) 

Ox Oa aa 

Moreover, the Jacobian matrix OH/Ox is already calcu- 
lated and factored as a result of the preceding operating 
point calculation. Therefore is is possible to obtain 
sensitivities of all circuit responses x with respect to 
the circuit parameters at a cost of only one additional 
forward/backward substitution per parameter. This 
method is known as the direct method for sensitivity 
computation. 
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However, in many applications we are interested in 
the sensitivity of one or more functions of the circuit 
responsesf(x) with respect to a large number of param- 
eters. Using the direct method described above we 
would have to perform a foward/backward substitution 
for each parameter ai, i = 1 . . . . .  s. By using the ad- 

jo in t  sensitivity computation method [30] all sensitiv- 
ity values are produced simultaneously as the result of 
only one forward/backward substitution. The sensitiv- 
ities we are interested in are expressed by 

af _ ~ af axi_ dr Ox (18) 
aa i=0 Oxi aa Oa 

where we use d to denote the n-vector Vxf Using 
(17), 

O f _  _ d r  [ O H I - I O H  - . r O H  (19) 
Oa -~x Oa --Xa O-a 

Here x a is the solution of the adjoint  system 

[ a H l ~  
- ~ x  Xa = d (20) 

The factorization of the transposed Jacobian can be ob- 
tained from the available factorization of the Jacobian 
matrix. Therefore the solution of the adjoint system can 
be obtained at the cost of only one forward/backward 
substitution. Subsequently, each sensitivity value can 
be obtained at a cost of one vector inner product 

_ X a  

Oa aa 

Despite the numerous applications of circuit sensitiv- 
ities and the existence of efficient methods for their 
computation, sensitivities are rarely used outside a few 
embedded applications [31]. An important reason may 
be the fact that the matrix OH/Oa is required for sen- 
sitivity computation. As shown in the previous section, 
this matrix results from the derivatives of device cur- 
rents with respect to the model parameters a. In Sframe 
the computation of the derivatives of device currents 
with respect to arbitrary model parameters is facilitated 
through automatic differentiation [32]. 

4.2. Overview o f  Automatic Differentiation Techniques 

By computing derivatives of model expressions with 
respect to various parameters through automatic differ- 
entiation, the implementation of arbitrary parameter 
continuation and sensitivity computation can be done 
without adding a considerable burden on the device 

modeler. In addition, automatic differentiation permits 
the specification and computation of sensitivities of any 
function of circuit responses to any set of parameters 
in a particularly elegant and efficient way. 

Automatic differentiation is a collection of software 
techniques which allow the computation of the deriva- 
tives of an expression, based on the computer code 
which implements the evaluation of that expression. 
Assume that, given an n-vector of independent 
parameters x, we want to evaluate on a computer an 
expression f ( x ) ,  and its gradient 

OXn 

One could generate a program to compute f (x)  and then 
compute derivatives using the finite difference method. 
This procedure however is inexact, potentially numeric- 
ally dangerous, and often inefficient. 

Alternatively, one can differentiate symbolically the 
expressionf(x) with respect to all components x i, i = 

1,  . . . ,  n, and code the routines to evaluate the expres- 
sionsf(x) and g i ( x )  = a f / a x  i ( x ) ,  i = 1 . . . .  , n. Even 
if a computer algebra system is used to aid in the gener- 
ation of symbolic derivative expressions, some hand 
editing is often needed to deal with condition ("if ' )  
statements and to eliminate common subexpressions. 

In contrast, automatic differentiation techniques 
allow the computation of the derivative values gi(x) 

based on the computer code which evaluates f ( x ) .  

These techniques are efficient and provide numerical 
accuracy at least as good as that available from evaluat- 
ing the symbolic derivative expressions (sometimes bet- 
ter). Moreover, because derivative values are calculated 
in a mechanical way from the given functional expres- 
sions, there is no danger of getting "out of synch" be- 
tween a function and its derivative. 

We provide here a brief summary of automatic dif- 
ferentiation techniques. In order to explain automatic 
differentiation, we assume the following simple model 
for the evaluation of expression f ( x )  by a computer. 
Let Yi, i -- 1, . . . ,  m, be all intermediate results 
necessary for the computation o f f (x ) ,  

Yi = Xi, i = 1, . . . ,  n 

Yi = ~ i ( Y k [ l l  . . . . .  Yk[nil), i = n + 1 . . . .  , m, 

k[ j]  < i , j  = 1 . . . . .  ni 

Ym = f ( x )  

where ~bi(Yk[1], . . . ,  Yk[-i]) are operations typically sup- 
ported on a computer on the previous partial results, 
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such as addition, multiplication, sine, cosine, expon- 
entiation, etc. Assume that we want to compute V x f  

through automatic differentiation. There are two flavors 
of automatic differentiation techniques: the f o r w a r d  

method [33] and the rever se  method [34]. T h e  f o r w a r d  

method is as follows: 

1. Initialize: 

Vx  Yi =" el, i = 1 . . . .  , n 

where e i is the i th standard basis vector. 
2. For each intermediate result Yi, i = 1 . . . .  , N ,  

we compute 
n i 

VxYi = Z 049i VxYk[J] 
j= l  OYk[jl 

For example, 

c = a + b - - *  V x c  = V x a  + V x b  

d = a b ~ V x d  = b V x a  + a V x b  

t = sin(a) ~ V x t  = cos(a) V x a  

3. Finally, V x f  = V x y m .  

Observe that the number of arithmetic operations for 
the computation of the gradient through forward 
automatic differentiation, increases proportionally to 
the number of parameters in x. 

Using the r eve r s e  method we can compute the 
derivatives o f f (x )  with respect to all the components 
of x at a maximum cost theoretically limited [34] to 
at most five times the number of operations necessary 
for the evaluation of f (x)  but significantly smaller in 
practice. The reverse method, however, requires the se- 
quence of operations for the evaluation o f f (x )  to be 
stored and replayed in reverse order for derivative com- 
putation. The algorithm is as follows: 

1. Initialize: 

d y m =  1, d y i = O ,  i = 1 . . . . .  m -  1 
2. Then for each Yi, i = m,  m - 1 . . . . .  n + 1: 

for each YiU], J = 1 . . . . .  ni,  
Oyi 

dyi[j]  = dyi[ j l  + - -  dyi  
OYi [j] 

3. g ' h e n  f i n i s h e d  dyi ,  i = 1 . . . .  , n ,  represent the 
desired partial derivatives d y  i = Of  /Oxi (x ) .  

Note the interesting analogy between forward and 
backward automatic differentation on one side and the 
direct and adjoint sensitivity computation methods on 
the other side. 

4. 3. I m p l e m e n t a t i o n  o f  A u t o m a t i c  D i f f e r e n t i a t i o n  in 

S f r a m e  

Automatic differentiations fits very well in Sframe's 
C+ +-based environment. Both the forward and the 

reverse technique can be implemented using the over- 
loading feature of C+ +. The forward automatic differ- 
entiation method is implemented in the following way. 
A new class g d o u b  I e consisting of a value and a gra- 
dient vector is defined, the usual operators, +, - , . ,  
. . .  and the transcendental functions sin, cos, log, . . .  
are redefined for this class to handle gradient computa- 
tions as described in the example above. All parameters, 
intermediate variables, and final results of the model 
code are declared as gdoubl es,  therefore, the evalua- 
tion of the model will produce the derivatives as well. 
The forward automatic differentiation method is more 
efficient when we are interested in derivatives with 
respect to a few number of parameters, and therefore 
particularly suitable in incremental simulation with 
natural parameter continuation. 

The reverse method is implemented in a similar way. 
A new class node is defined to represent a node in an 
expression directed acyclic graph. The operators and 
the transcendental functions are redefined to insert the 
nodes in the expression graph. The evaluation of the 
model code results in the expression graph of the model 
outputs. Following, this graph can be interpreted as 
above to produce the results for the desired function and 
its gradient. This approach permits the efficient com- 
putation of derivatives with respect to multiple param- 
eters simultaneously, and therefore is particularly suit- 
able for sensitivity computation or continuation studies 
where many parameters are changed simultaneously. 

5. The Architecture of Sframe 

The name Sframe stands for "simulation framework" 
because the code is really a driver framework (in C+ + 
[35]) for different numerical codes, typically written 
in FORTRAN. Sframe itself contains very little numer- 
ical code. 

For any dc analysis, Sframe considers a function 
G(x ;  X, Ix), where G is a mapping from R n+2 into R n. 
The n-vector x combines the current and voltage 
unknowns, X is an artificial parameter used only for 
operating point computation, and/x is a natural con- 
tinuation parameter. A procedure is provided to evaluate 
G given numerical values for these quantities, and 
return the result as an n-vector. In addition to evalu- 
ation of G itself, the various numerical solvers 
employed by Sframe need the Jacobian matrix of G at 
the point of evaluation. This is an n x (n + 2) matrix 
which is quite sparse. A procedure is provided to com- 
pute this matrix, and deposit it into a storage area 
allocated during circuit setup. The matrix is not passed 
into the various solvers, rather the solvers request 
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manipulation of this matrix through calls to the matrix 
package. 

A procedure solve is provided to solve Jx = b, where 
J is the most recently computed Jacobian matrix, and 
b is an arbitrary n-vector (of course, J above must be 
square; typically, a submatrix of the rectangular Jaco- 
bian matrix computed by Sframe is selected, which 
might be augmented with a single row or column border 
provided by a nonlinear numerical solver.) 

After a call to solve, a call to re_solve will solve 
Jx = b for a different value of b. The matrix algebra 
operations like solve are C+ + routines which call a 
FORTRAN sparse matrix package. This arrangement 
allows for easy experimentation with different sparse 
solvers. 

Three nonlinear solvers are supported in the present 
version of the program: a norm-reducing Newton code, 
HOMPACK and PITCON. The norm-reducing Newton 
code is used to solve the start system of the artificial 
parameter method used to get a dc operating point. In 
fact, for easier circuits, it is possible to start with X 
= 1, and get the operating point using the norm- 
reducing code alone. 

The present program uses a direct method for sparse 
matrix factorization, which works nicely for medium 
sized problems (say up to 3000 unknowns). In the 
present implementation, a symbolic factorization is 
computed only once at the beginning of a continuation 
study. A fresh numeric factorization may be computed 

#include "rood. h" 
#include "dev.h" 
class Wilson : public Ci rcu i t  
£ 
publ ic:  

/ /  declare models, nodes, devices 
GpMod npn; Gp4 ql , q2 , q3; 
Node N2 , N3 , NI , N99; 
Res rp , r l ;  Vsrc vcc; 

Wilson() / /  constructor 
C i rcu i t (  "Wilson" ) 
npn(this, "npn", 1.0) 
N2(this, 0, "Node-2") 
N3(this, 0, "Node-3") 
N1(this, 0, "Node-1") 
N99(this, 0, "Node-99") 
vcc( th is ,  0, "vcc", N99, GND, 15.0) 
q1(th is,  0, "q1", NI, N3, GND, GND, npn) 
q2(th is,  0, "q2", N3, N3, GND, GND, npn) 
q3(th is,  0, "q3", N2, NI N3, GND, npn) 
rp ( th is ,  0, " rp" ,  N99, N~, k i lo(10.0))  
r l ( t h i s ,  0, " r l " ,  N99, N2, k i l o (5 .0 ) )  

/ /  assemble c i r cu i t  in memory 
assemble(); 

} 
void dcop() 
{ 

/ /  calculate operating point 
set lambda( 0.0 ); 
dnm--solve() ; 
hom--track() ; 
resTd() 

} 
}; 

at several points in the study depending on the condi- 
tioning of the Jacobian matrices encountered. 

5.1. Example Circuit Description 

Here is an annotated description of the Sframe input 
for a Wilson current source [24]. This example shows 
an "application" circuit derived from the base-class 
Circuit which defines an operation dcop( ) using facil- 
ities provided in the base class. 

6. Timings and Practical Results 

Our first set of benchmark data concerns operating 
point computation. Data for five circuits are presented 
--all of these examples are actual in-house designs 
based on the AT&T CBIC bipolar technology. Note that 
lambda threading was used to identify all the operating 
points of the "vref '  and "hybr" examples. The "#iter- 
ations" column reports the number of times a complete 
Jacobian matrix was computed and factored. This is 
broken down into two pieces--the iteration count for 
the damped-Newton solve of the start system, plus the 
iteration count of the homotopy curve tracking. Times 
are for a SPARCstation 2 running Sun UNIX. Some 
adjustment with numerical parameters is necessary for 
the various FORTRAN packages which are employed 
by Sframe. The results reported in table 1 were obtained 
using relatively "conservative" values which worked 
for every circuit in the suite. 

( vcc 

Q1 

A 

99 
RP 
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Table 1. Timing results for operating point computation. 

Circuit Cormnent No. transistors No. unknowns No. iterations No. time (rain, s) 

si7 Mass storage chip 241 1853 25+375 10m56s 
bgatl Band gap 12 124 19 +64 14.4s 
ups01a Thermal shutdown 7 58 7+34 1.7s 

vref Brokaw reference 9 66 15 + 141 8.1 s 
(three solutions) 

reg Regulator 49 432 27 + 523 2m54s 
hybr npn reference 9 14 10 + 143 1.1 s 

(three solutions) 

The next set of timing concern incremental explora- 
tion of the behavior of a circuit as temperature and 
supply voltages are varied. See table 2. The "reg" ex- 
ample from the previous benchmark suite is a good can- 
didate for such a study. The circuit has two fixed voltage 
sources, which were exercised at the nominal setting, 
then +20% of nominal. Temperature was varied over 
the standard commercial range of 0 °C to 70 °C. Thus, 
there are three quantities to be exercised through "nom- 
inal(N)" "high(H)" and "low(L)" for a total of 27 
combinations. Each point in this space was reached 
from the nominal operating point using the construc- 
tion of equation (7). The "arc-length" column reports 
an estimate of the length of the continuation path con- 
necting the two operating points, which gives some 
measure of how "different" the two operating points 
are. This can be a useful diagnostic, since a large value 
of arc length may indicate that the circuit is not 
operating correctly at one of the extremes of the design 
space. 

The sensitivity computation capability of sframe is 
illustrated through an analysis of a CBIC implementa- 
tion of the "band-gap" reference shown in figure 11 
[24]. The output reference voltage is required to be 
stable under variations in the process and operating con- 
diticns. Table 3 summarizes the values of reference 
voltage absolute sensitivity with respect to temperature 
T, band-gap resistor R4, a bias resistor R3, and the nor- 
malized sensitivity with respect to the reverse satura- 
tion current Is of the band-gap transistors. 

The sensitivity with respect to temperature is large, 
indicating the need for additional compensation cir- 
cuitry. The analysis also reveals that the performance 
of the circuit is extremely sensitive to the value of R4, 
justifying the use of special techniques for its layout. 
At first glance the sensitivity to the saturation current 
is acceptable in view of the known process variations. 
However, the analysis assumed identical transistors in 
the band-gap generator section and did not take device 
mismatch into consideration. Sensitivities to saturation 

Table 2. Incremental exploration of a design space. 

Temperature Supply 1 Supply 2 No. iterations Arc length 

N N N 8 1.00 

N N L 11 1.10 
N N H 11 1.10 

N L N 102 17.67 
N L L 102 17.67 
N L H 102 17.67 
N H N 24 7.24 
N H L 24 7.26 
N H H 24 7.26 

L N N 167 48.49 
L N L 178 51.84 
L N H 158 45.20 
L L N 295 57.40 
L L L 304 60.74 
L L H 291 54.07 
L H N 181 51.92 
L H L 174 55.23 
L H H 162 48.64 
H N N 34 3.64 
H N L 34 3.68 
H N H 34 3.68 

H L N 87 16.52 
H L L 83 16.52 
H L H 83 16.52 
H H N 36 8.63 
H H L 34 8.64 
H H H 34 8.64 

Table 3. 

d Vref/d T -1 .06  mV/K 
d Vref/d R3 4.86e-5 mV/ohm 
d Vref/d R4 -0.325 mV/ohm 
(Is/Vref)d Vref/d Is -0.214 

current mismatches among the various transistors can 
be computed without repeating the operting point com- 
putation. This is done by performing the sensitivity 
analysis using the individual saturation currents of the 
differently sized band-gap section transistors (BW5, 
BQ6_I,  and B Q 6 ~ )  as independent parameters. 
Table 4 shows the results of this analysis. 
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Fig. 11. Band-gap reference. 

Table 4. 7. C o n c l u s i o n s  

(Is/Vref)d Vref/d A Is(BQ5) 
(Is/Vref)d Vref/d A Is03Q6 1) 
(Is/Vref)d Vref/d A Is(BQ6~2) 

-1 .52  
0.88 
0.88 

These data indicate that sensitivities to device 
mismatches are one order of magnitude larger than the 
sensitivity with respect to the global saturation current. 
Again, special layout techniques need to be used to en- 
sure excellent transistor matching. 

The CPU time required for the sensitivity analysis 
is negligible in comparison to the operating point com- 
putation. Through the use of automatic differentiation, 
the computation of sensitivities with respect to any cir- 
cuit or device parameter can be done without additional 
device modeling effort. Specifying complicated per- 
formance measures is also facilitated by automatic 
differentiation. 

First, we observe that a wide variety of behaviors is 
evident in analog circuits. Phenomena such as turning 
points in solution curves or multiple operating points 
are not just academic considerations. Accurate quantita- 
tive results require a detailed model, but the use of such 
models increases the likelihood of convergence diffi- 
culties in a simulator. The continuation methods we 
have described solve the convergence problem with 
reasonable computing cost, as well as providing a 
handle on the issue of multiple solutions. 

On the other hand, careful design and implementa- 
tion of the numerical methods is necessary to achieve 
the desired level of robustness. In particular, derivatives 
must be smooth and numerically accurate. Almost all 
instances of convergence failure during the development 
of Sframe were traced to incorrect derivative computa- 
tion; the adoption of automatic differentiation com- 
pletely eliminated such problems. 
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The interface to device models which we have imple- 
mented allows the use of highly optimized code which 
circumvents the automatic differentiation mechanism 
for situations in which the highest possible speed is 
necessary--for example, if the simulator is in the inner 
loop of an optimization process. 

Implementation of the project in C + + ,  with C + +  
as the circuit description languages provided us with 
sew~ral advantages: we were freed from the task of 
designing an input language and associated parser; auto- 
matic differentiation and specification of performance 
measures for sensitivity calculation is facilitated by the 
operator overloading feature of C++;  finally, the 
designer has the full power of a modern programming 
language available for the description of complex cir- 
cuits, simulation tasks, and postprocessing of simula- 
tion results. 
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