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Abstract. In the local potential approximation, renormalization group equa- 
tions reduce to a semilinear parabolic partial differential equation. We derive 
this equation and show the relation with the hierarchical model. We construct 
a family of non-trivial fixed points u*,, n = 2, 3, 4,..., which have the form of 
n-well potentials and exist in the ranges of dimensions 2 < d < d, = 2 + 2/(n - 1). 
As dTd,, u*, tends to zero. For the Wilson fixed point u~, we give bounds on 
critical exponents. In the case of dipole gas in this approximation we show that 
no non-trivial fixed points exist. 

1. Introduction 

Non-trivial fixed points of the renormalization group (RG) play a crucial role in 
the understanding of statistical mechanics systems in the vicinity of the critical 
point [-1]. In the case of a symmetric scalar field (a classical statistical mechanics 
system with one-component order parameter) the non-trivial fixed points are 
expected to appear as bifurcating from the trivial massless fixed point as one varies 
continuously the dimension d of space [2]. These bifurcations occur at the 
thresholds d, = 2 + 2/ (n-  1), n = 2, 3, 4 .... , where the linearized RG acquires a zero 
mode (see Fig. 1. The dotted lines represent branches which are believed to be 
unphysical). The fixed point relevant for three dimensional physics is given by 
extrapolating to d = 3 the branch bifurcating at 4 = d2 dimensions. 

This pattern is not well understood from a rigorous point of view, but some 
pieces of it were established in toy models like Dyson's hierarchical one [3]: Bleher 
and Sinai [4] proved for this model the existence of a non-trivial fixed point if 
d = d , - e ,  where e>0  is small enough. Their result was refined by Collet and 
Eckmann who proved that the e-expansion is asymptotic [5]. Gawedzki and 
Kupiainen considered the case of an N-component spin system in the hierarchical 
approximation and constructed a fixed point in three dimensions for N large 
enough [6]. Recently Witter and Koch [-7] succeeded in constructing a fixed point 
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Fig. 1. Fixed points in the space of hamiltonians as functions of the dimension d. G is the Gaussian, 
W the Wilson fixed point 

in three dimensions and N = 1 for Gallavotti's [8] version of the hierarchical model 
with the help of a computer. 

In this paper, we study a continuous scale version of the hierarchical model. It 
is given by the partial differential equation 

d - 2  1 2 u,=~uxx ~ x u x + d u - ~ u x ,  (1.1) 

describing the flow of the effective potential u(t, x) on momentum scale e-t as a 
function of the field xelR. A similar equation was studied numerically by 
Hasenfratz and Hasenfratz [9] who found a non-trivial fixed point in three 
dimensions. Brydges and Kennedy [i0] also studied similar equations in 
connection with the Mayer expansion. 

Equation (1.1) can be derived in two ways: either as a limit of infinitesimal step 
of the recursion relation of the hierarchical model, or as the local potential 
approximation (LPA) to Wilson's "exact" renormalization group equations 
[11, 12]. These derivations are given in Sect. 2. 

The spectrum of the linearization at u=0  of (1.1) is 

{ 2 , = d - n ( d - 2 ) / 2 ,  n= 0, 2, ...} 
in 

/ _a-2~ ,~ 
Go.re dx), 

and thus the bifurcation picture discussed at the beginning of this section should 
hold. Unfortunately conventional bifurcation analysis does not work here due to 
the nasty non-linearity, and we have to use other methods. 

It turns out that RG fixed points must be identified with global stationary 
solutions of (1.1). Besides the trivial fixed points u=0  and u = x 2 - 1 / d  (high 
temperature fixed point), Eq. (l. 1) has non-trivial global stationary solutions u*,(x) 
with the form of n-well potentials in the ranges 2 < d < d, = 2 + 2/(n - 1), n = 2, 3 . . . . .  
These solutions converge pointwise to zero as dTd,. Their large x behaviour is 
dictated by (1.1), u~,(x)~ x 2 as x ~  4- c% as one easily sees, making the ansatz u(x) 

Ax  p for x ~ oe. These results as well as some remarks on dynamics are contained 
in Sect. 3. Another equation which could be simpler to analyse as far as the 
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dynamics is concerned is the LPA of the dipole gas. In the sine-Gordon 
d - 2  

representation the field x of canonical dimension - - ~ -  is replaced by a 
d 

d-dimensional vector x i (the gradient of the field) with canonical dimension ~. The 
equation becomes 

1 d u t =-~Au-- ~x. Vu + du-~(Vu) 2 . (1.2) 

(here d has to be taken integer). In this case the methods of Giga and Kohn [13] can 
be used to show that no non-trivial fixed points exist (Theorem 3.3). 

The paper is organized as follows: in Sect. 2 we derive (1.1) from the LPA of 
Wilson's equation and from the hierarchical model as the scale factor L--,I. In 
Sect. 3, we discuss the equation and state the results. The q~4 fixed point u~ is 
constructed in Sect. 4, and the general construction of u*, is in Sect. 5. 

A short version of these results appeared in [14]. 

2. Derivation of the Partial Differential Equation 

The P.D.E. we study in this paper can be understood in two ways: it is the local 
potential approximation to Wilson's continuous parameter renormalization 
group equation, and it is also the L ~ I  limit of the recursion relation of the 
hierarchical model, where L is the scale parameter (the size of the block). 

(a) The Local Potential Approximation. Renormalization group equations de- 
scribe the change of the effective hamiltonian as the scale is varied. The effective 
hamiltonian can be written as a sum of the Gaussian fixed point and a potential, 
which is, in general, non-local. The local potential approximation (LPA) consists 
in projecting at each renormalization step the potential onto its local part. We 
describe this approximation in detail for Wilson's "exact renormalization group" 
equations [11] 

-~  =! h(q ) ~H 6H 
6(p~_q 6q~q6q)_q+(Pq~ + ~q~,+qVqq~q ~q ,  (2.1) 

h(q 2) = 1-½q + 2q 2 , 

but the same result can be obtained from other RG schemes with continuous scale 
parameter, such as Polchinski's [15] (with a suitable cut-off function). The 
notation in (2.1) is the following: H = H(t, { cpq}) is the effective hamiltonian on scale 
e -t expressed as function of the Fourier components q)q of the field variable. The 
2re-conventions are: 

daq 6(p~, = 6~ l _ q2" (2.2) !=f (~)a ,  !6q-qof(q)=f(qo), 6q~ 2 

We neglect systematically q~ independent quantities on the fight-hand side of (2.1), 
which only affect the zero point energy and are thus irrelevant to the computation 
of expectations. We set furthermore r/= 0 for consistency, since wave function 
renormalization is not present in this approximation. 
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The perturbative treatment of (2.1) was developed by Wilson and Kogut [-11] 
and Wegner [I 2]. We recall here some of their calculations: the Gaussian critical 
fixed point of (2.1) is, for r/=0, 

H *  - 1 f q 2  o - 3  j V~'(q)%q~_,, V~'(q) = q2 + e- 2,~" (2.3) 

The linearization of the generator of (2.1) at H~, 

L=!h(q2) 3q~q6~o_~ + ! h(q2)(1-2V*(q))+qVqq~q 6q)q, 

has the translation invariant eigenfunctions 

(9,~= f Pr(ql .... ,q,-1): f l  (f(q~)rpa):6 ~ q~, (2.5) 
ql  .,-qn i = 1 i= I 

to the eigenvalues 

d - 2  
2,r = T n + l r l -d ,  (2.6) 

where r labels the homogeneous polynomials Pr, and [r[ is the degree of Pr- The 
function 

e - 4 2  

f(q2) = q2 + e - 2~2 

plays the role of the cut-off function in this approach. Wick-ordering is defined 
with respect to the covariance V*(q)- 1: 

iISqq~-q ~ISqq~-q+½fSqV2(q)- lS-q  
: e ,  : = e ,  , (2.7) 

The LPA is given by a projection of Eq. (2.1) onto the space spanned by the local 
operators (9,0. Acting on field monomials the projection operator is defined by 
taking the kernel at zero momentum: 

P I V(ql, . . . ,q.- 1) FI q)qj(q2)`sxq,= V(O,...,O) I f l  ~oq,f(qZ)b~q,. (2.8) 
ql. . .qn i= 1 i= 1 

The equation for the potential V= H - H *  is 

c~t q~q rp_q a 2+h(l-2V2*) q~a+qVqrPa 3q~q 

6V ,57 (2.9) 

To compute the LPA we assume that V is in the range of P and act with P on the 
right-hand side of (2.9). The practical way of doing this is to expand V into (9.'s: 

V=Z#.(9,,  (9,=I ~ (qhf(q~))6z,, (2.10) 
i = 1  
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and compute the various terms explicitly: 

z 62(9, 

2 6(9. P ! g(q )qoq ~ = g(O)n(9., (2.11 b) 

pd 

2 6(9. ~$0., 
PSh(q ) ~  6p_q =n(gn--lm(gra-l' (2.lid) 

where (2.11 c) was computed by scaling variables in the integral over q in (2.10) and 
by using the fact that f - ~ V J =  0 at q = 0. We then identify V({q~}) = ~ #,C,(cp) with 

n 

the function in one variable V(q~)=~ # , ¢  (the "density" of the local potential) 
n 

0~- Otp 2 2 cp~  +dV-  \Oq~/i A=!h(q2)f(q2) 2. (2.1,2) 

Equation (1.1) is obtained from (2.12) by the transformation 

v ( t ,  = A - ' u ( t ,  (At2) 1%). 
(b) The L ~  1 Limit of the Hierarchical Model. The hierarchical model [3] in the 
version introduced by Gallavotti [8] reduces to the recursion relation which maps 
the effective potential on scale # to the effective potential on scale L- ' #  given by 

RL : U(#, . )-+u(L- 1#,. ), 
(2.13) 

dz 
u(L- '#, x) = - In i exp [ - Lau(#, L 1 -el2x + z) - z2/2(L - 1)3 - -  

i/ L-1) 
Here x e ]R is the field (classical spin) variable. This recursion relation defines 
effective potentials on the discrete set of scales L-kA, k = 0, 1 ,2 , . . . ,  where A is some 
cut-off. In the limit L ~ I  this recursion relation becomes a differential equation 

c3u ,. u(L-I#'x)-u(#'x)  d~.d~L= 1 # fffi = L-~lum r--~ ~ _ .  = (RLU) (#, X). (2.14) 

The factors ( L - 1 )  in (2.13), (which are irrelevant as long as L is a fixed number 
larger than one) were chosen so that the limit L-> 1 of the right-hand side of(2.13) is 
u(#, x). Taking the derivative of the right-hand side of (2.13) with respect to L at 
L--1 is straightforward. The result is (1.1) in the variable # =  e-t: 

c?u ~2u d -  2 ~u . 1 ['t?u ~ 2 
#-~# -½~x ~ -  2 X~x +Ctu-~t~xx ) " (2.15) 
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The reader may be confused by the fact that we did not impose a normalization 
condition on the zero point energy. This could be done by adding a Lagrange 
multiplier 

u,=~u~ d -  2 1 2 
- T xu~ + du  - 5ux + O(t) (1.1') 

to enforce, e.g., the condition u(t, 0) = 0. But solutions of (1.1') are in a trivial one-to- 
one correspondence with solutions of (1.1) obeying u(0,0)=C, for any fixed 
constant C. Indeed if u is a solution of (1.1) with this property, 

~(t, x) = u(t, x ) -  u(t, 0), O(t) = - u~(t, O) + du(t, O) (2.16) 

is a solution of (1.1'). The inverse map is 

t 

u(t, x) = ~(t, x) + edtC-- ~ e d(t- ~)O(s)ds. (2.17) 
0 

3. Discussion of the Equation, Results 

We begin this section by discussing some elementary properties of the partial 
differential equation derived in the previous section. The conclusion will be that 
non-trivial fixed points must be identified with the global stationary solutions of 
(1.1). We then state our main result (Theorem 3.2) and conclude with some remarks 
and further results. 

At first sight, the fixed point equation 

u"(x) - (d - 2)xu'(x) + 2du(x) - u'(x) 2 = 0 (3.1) 

has a lot of solutions, parametrized by the initial condition u(0) [-u'(0)= 0 if u is 
even]. Note however that (3.1) admits solutions that blow up (like - I n  lx-xol)  at 
finite value x0 of the field variable x. A solution of (3.1) going to infinity at xo 
corresponds to a Gibbs factor p = e x p ( - u )  which vanishes at Xo. The following 
theorem states that all fixed points which are limits for t ~ o e  of effective Gibbs 
factors 0(x, t) = e x p ( -  u(x, t)) with e(x, 0) > 0 are positive. Thus the relevant fixed 
points are global solutions of (3.1). 

Theorem 3.1. (i) Let T > 0 ,  d>2 ,  and let Q(t,x) be a bounded classical solution on 
[O, T] x lR of 

~,=½Qxx d22xox+doln[~l  (3.2) 

with positive initial data ~(0, x). Then ~(t, x) is positive. 
(ii) Let ~* be a bounded non-negative stationary C"(N) solution of (3.2). Then 

either Q* vanishes identically or o~*(x)> 0 for all x ~ ]R. 

Proof. (i) Let ~ = e(d-2)~2/4g; then g obeys the equation 

1 / d - 2 \ 2  2 _dlnl~l" (3.3) gt=½gx~--q(x)g, q(x)=5~--2-- ) x d-24 
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Since ~ is bounded, g is L 2 and the "potential" q is bounded below. The claim 
follows using the Feynman-Kac formula. 

(ii) Suppose the claim is false. Then there exists an xo ~IR and a 6 > 0 such that 
Q*(Xo)=0, and 0*(x)>0 for Xo-6<X<Xo [or for Xo<X<Xo+6 but the latter 
case can be reduced to the former by noting that ifo*(x) is a solution, so is ~*( -  x)]. 
Since Q* is, by assumption, nonnegative, ~*' must vanish at Xo. Let r2(x)= O*(x) 2 
+ O*'(x) 2. By continuity r(x)--*O as X~Xo. We show that this is not possible: r obeys 

rr'=(d-2)x(~*')2+Q*Q*'(2dln~ + 1 ) .  (3.4) 

For ~ > 0 small enough ~ ln(1/~) is positive and increasing in ~. Estimate the right- 
hand side of (3.4) by using ~* <r, IQ*'I--< r, and, if 8' is small enough, Q* ln(1/~*) 
<rln(i/r), for Xo-6'  <X <Xo, 

r ' > - ( d - 2 ) l X o - f ' , r - r ( 2 d l n  ~ + 1 ) = - r 2 d l n  D D > I  
r 

We get thus the estimate on r(Xo) in terms of r(Xo-6'), 

r(xo) >= D exp ( e2d~' ln r(X°-D 6') ) 

Thus r(xo)>0 which is a contradiction. [] 

We are now ready to state our results. The proofs are contained in the next two 
sections. 

2 
Theorem 3.2. Let 2 < d < d, = 2 + n -~ '  n = 2, 3, 4 .. . . .  Then there exists an even 

fixed point u'n, the -(~2n fixed point", (i.e. an even global solution of (3.1)). The 
function u~,(x) has 2 n -  1 critical points and grows to infinity as x ~ + 0o, 

This picture of "n-well potentials" is in agreement with (the lowest order) 
e-expansion which predicts the existence of fixed points 

u~,(x) = c,eHz,((d/2-- 1)1/2x) + O(e 2) for d = d,--e,  

where H2, is the 2n th Hermite polynomial. 
We cannot establish that the e-expansion is asymptotic, but we can show that, 

as e-+O +, u*,(x)~0 pointwise in x. We defer the proof of this fact (for 2n = 4) to the 
end of Sect. 4. Of course, no stronger convergence to zero is expected since the 
large x asymptotics of u*. is x 2 as dictated by (3.1). 

A numerical study around d = 4 shows that the e-expansion is accurate [in the 
sense that the initial condition u~(0) predicted by the e-expansion does correspond 
to a global solution] for e > 0. No fixed points corresponding to e < 0 seem to exist. 

Critical exponents are given in terms of eigenvalues of the linearized flow 
equation at the non-trivial fixed point. The information contained in Theorem 3.2 
is sufficient to give some (rough) bound on these eigenvalues: consider the 
renormalization group equation linearized around the Wilson fixed point u,~ in 
2 < d < 4 dimensions: 

Afi=LAu, L - ±  d2 [ d - 2  ,,'~ d 
-2~ZxZ-~- - - f - x+u  4 )~xx +d;  (3.5) 
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L is selfadjoint in L2(N,e  d22z~2-z"~(X)dx). The obvious eigenfunctions I to the 

eigenvalue 20 = d (corresponding to a trivial rescaling of the zero point energy) and 
u*' to the eigenvalue 2 3 = (d-2) /2  have, respectively, no zero and three zeros. 
Therefore there exists an odd eigenfunction with one zero and eigenvalue 2 1 and an 
even eigenfunction with two zeros and eigenvalue 2z such that 

d - 2  
d = 2 ° > 2 1 > 2 2 > 2 3 =  2 

[The oscillation theorem holds since L can be represented as minus a Schr6dinger 
operator on Lz(N, dx).] The critical exponents of the correlation length, suscepti- 
bility and magnetization 

~ ( T -  T~) -~ , )~,-~(T- T~) -~ , M(T~),.~h ~/~ 

are given by (t/= 0 in our approximation) 

1 2)~ 
v= --"2~ 7=2v '  c~- d - 2 '  

and obey the bounds 

1 2 2d 
- d < V < d _  ~ ,  l < ~ < d _ - -  ~ .  

Unfortunately, our control on the P.D.E. is not sufficient to say something 
about the flow in the vicinity of the fixed points beyond the linear approximation, 
or to construct the basin of attraction of the fixed point. A simple argument, 
though, gives a necessary condition for a potential to be in the basin of attraction 
of a fixed point u*,. In fact, for "generic" solutions u(t, x) of (1.1), the number of 
critical points 

n(t) = {xtux(t, x) = O} 

is a non-increasing function of t. To see this consider the set 

c - - { ( t , x ) ~ F . +  × ~ l u A t ,  x ) = O } ,  

and let v(t, x) = ux(t, x). We make the "genericity" assumption that (vt, v~) 4: (0, 0) on 
C. Then C is a collection of curves, locally represented by functions x(t) or t(x). If, at 
time to, n(t) jumps,  there exists a point xo such that to=t(Xo) and t'(xo) 
= -vx(to, Xo)/V,(to, xo)= 0 and ff n(t) increases, t"(xo)> O. The derivative of (1.1) 

d - 2  d + 2  
vt=½v~ 2 xv~+--2- -v -vv~  (3.6) 

gives that 

t"(Xo) --  - v x A t o ,  xo)/v,(  to, Xo) = - 2 < O . 

Thus n(t) cannot increase. 
Actually, we cannot expect the condition (vt, vx) 4:0 on C to hold for generic 

even solutions since at x = 0 by symmetry v--vt = 0 for all t. We can weaken this 
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condition by requiring (v jx ,  (v/x)x) 4 = (0, O) on C* = {(t, x)lv(t, x) /x  - 0}. For  x q= 0 
this is equivalent to the previous condition. If a new pair of zeros appears at x = 0, 
C* can be locally described by a function t(x) with t'(O) and t"(O)>>_ O. But 

t"(O) = lim (v/x)x lvxxx(O) 
~ o  v d x  v,AO) ' 

and taking the partial derivative with respect to x of (3.6) yields t"(0) = - 2/3 < 0, a 
contradiction. We conclude that, generically, a necessary condition for a function 
u(0, x) to be in the basin of attraction of u*, is that it has at least 2 n - 1  critical 
points. 

We conclude by stating a result on the dipole gas case (1.2) about non-existence 
of fixed point. We use a method introduced by Giga and Kohn [13] to study self- 
similar blowing up solutions of a non linear heat equation. 

Theorem 3.3. Let u be a C" global stationary solution of  (1.2) which is bounded below. 
Then u vanishes identically. 

Proo f  Let ~ = exp [ - u((2/d)l/2x)]. Ifu is a solution of(1.2) with ut replaced by 0, Q is 
a positive solution of 

where 

V(aV~) + 2aq lnQ = 0, (3.7) 

~(x )  = e -  x2/2 . 

The key step is to use the identities 

d 5 (Vo) zgdx - 2d 5 Q2 in oc~dx = O, 

( d  - -  x z ) Q z o ~ d x  - ~ x2(VQ)20;dx + 25 x2o 2 In oc~dx = O, 

5(d+ xZ)(Vo)%~dx) - 5 (d-xZ)~Z~dx  + 2 5(d-xZ)QZlnQo~dx=O, (3.8) 

which are obtained by multiplying (3.7) by Q, x20, and x- VO, respectively, and 
integrating over ~n. Summing up the three identities we get 

~(v~)~dx=0. 
Thus 0 is constant and by (3.7) equal to one. [] 

This "miraculous cancellation" is peculiar to the borderline case of Eq. (1.2): it 
depends crucially on the ratio between the coefficient of u and the coefficient of 
x .  Vu being - 2 .  A similar property is shared by the Giga-Kohn equation. 

4. The Non-Trivial ~p4 Fixed Point 

This section is devoted to the construction of the non-trivial fixed point u~ (the q~4 
fixed point) in 2 < d < 4 dimensions. As pointed out in Sect. 3, a fixed point is a 
global solution of the ordinary differential equation 

u"(x) - (d - 2)xu'(x) + 2du(x) - u'(x) z = 0. (4.1) 
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It is convenient to take the derivative of this equation and study the equation for 
v(x) = u'(x): 

v" - (d-  2)xv' + (d + 2)v - 2vv' = 0. (4.2) 

After the rescaling v ~ l d / d ~ v ( ] / ' ~ .  ), the equation is reduced to 

,, x , , d + 2  (4.3) v --va +v-2vv=O, a = d _ ~ ,  

which we view as a dynamical system on the phase plane (x is "time"): 

w'= X-w-v+ 2vw. (4.4) 
6 

It is an easy exercise to solve this equation in closed form in the limit a--. co (d~2)  1, 
but if d >  2 the system is non-autonomous, and more difficult to handle. It is 
sufficient to construct a global solution (v(x), w(x)) for x > 0, since the continuation 
for negative x is given by 

(v( -  x), w ( -  x)) = ( -  v(x), w(x)), 

provided the initial condition is such that v(0) = 0, (we restrict ourselves with even 
potentials). Divide the plane into six regions I, II . . . .  , VI (Fig. 2) 

I={(v,w)lw>½,v<O}, II={(v,w)lw>½,v>O}, 

III={(v,w)lO<w<½,v<O}, IV={(v,w)lO<w<½,v>O}, (4.5) 

v={(~,w)lw<0,v__<0}, v={(~,w)lw=<0,~>0}. 

The arrows in Fig. 2 show the direction of the vector field (for x > 0), on the 
boundaries of these regions: one sees that these boundaries can be crossed in only 
one way by solutions of (4.4). We show more: the solutions leave all regions except 
IV within finite time. 

I ~/// II 
! / I / 

Ill IV 
i ~ v  

V VI 

WI 

Fig. 2. The partition of the phase plane in six regions 

1 2 1 The ~ = oe trajectories are given by the equation (w-5)exp(2(w-v ))= J, J > -½. They are 
closed for - ½ < J < 0  and blow up at finite x for J>0. The trivial fixed points correspond to 
J=  -½,0 
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Proposition 4.1. Let 1 < a < o% x o > O, and (v o, Wo) E A = I, II, III, V or VI. Then there 
exists a time x 1 > x o (depending continuously on a, Xo, Vo, W o) such that if (v(x), w(x)) 
is the solution of (4.4) with V(Xo)=Vo and W(Xo)=Wo, (v(xO, w(xO is in a region 
BE {I, ...,VI} such that there is an arrow from A to B in the following diagram: 

I ~ II ~oo 

T J  
III , IV (4.6) 

T 
V , VI 

The arrow from II to oo indicates that all solutions going through II, and only these, 
blow up in finite time. 

Proof We prove all statements represented by (4.6) separately calling V(Xo)= vo, 
W(Xo) = Wo. 

(a) I ~ I I .  In region I we have v' > ½, w' N x w. Thus, as long as (v, w) e I, v(x) > v o 

+ ~ x -  Xo), w < Wo exp [(x 2 - XZo)/a], implying that the solution does not blow up in 
I and that after a time at most -2Vo, (v, w) enters II. 

(b) I I ~  ~ .  In II, v' >½, thus v > ~ ( x -  x0) and, ifx is larger than Xo + 1 ~ ,  xv > a. 

Let us set, for later purposes, X'o=max(xo+]/2a, l/~a). Now either (i) w(x'o) 
>v(X'o) 2 or (ii) w(x'o)<V(X'o) 2. In case (i), w(x)>v(x) z for all x>x'o since, if 
w(x) >= v(x) 2, 

Hence v'(x)> v2(x) for x > x; with escape to infinity in finite time. In the second 
case, (ii), either at some x;, w(x;) > v2(x;) and we are back to case (i), or w(x) < v2(x) 
for all x>x'o. Then using (4.4) and the fact that w>½ in II, we get 

w'>=X-w+(2w-1)~/-w>([/~2a-1)V'-w+2w3/Z>2w3/2cr (4.8) 

• X 

since, by assumption, ~ >__ 1 ; the solution blows up again. 

(c) I I I ~ I ,  I I I~ I I ,  I I I~ IV.  In III, v '> 0 and solutions cannot blow up in this 
x 

region. The bound w' > - w implies that, if Wo > 0, w(x) ~ wo exp (x 2 - x~)/2, and the 
o- 

solution leaves III in finite time. If Wo = 0, the bound w' > - v > 0 implies that for 
X'o > xo, w(x'o)> 0 and the previous argument can be used. 

(d) V~I I I .  We only prove the statement for Xo=0, which is all we need to 
construct the q~4 fixed point. The general case will be proven in Sect. 5. Let 

sx= w)lI(x, w)__> 0}n v, 
X W  

I(x, v, w) = 1 - 2w v. (4.9) 
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We claim: 
(i) For x = 0, S x = V. 

(ii) If (v(x), w(x)) e V for x e [xi, x2] and (V(Xl), w(x,)) ~ S~1 then (v(x), w(x)) e Sx 
for all x s Ix1, x2]. 

(iii) All solutions (v(x), w(x))e S~ enter III after a finite time. 
These properties immediately imply V ~ III, if Xo = 0. Proof of (i), (ii), (iii): (i) is 

obvious, (iii) follows from the fact that, in Sx, 

w' = a -  ~(1-2w)I(x,v,w)-( l  - -  or-  1) ( 1 - 2 w ) v > ( 1  - - a - i ) v .  (4.10) 

xlw(xl)  <0, and, if (v(x),w(x))is a If (V(Xl), w(x,)) e S~1 for some xl > 0, v(xl) < 1 - 2w(xl) 

solution in S~, v(x) < V(Xl), since v' = w < 0, and from (4.10), w' > (1 - o-- l) [v(xi)[ and 
w becomes positive within finite time. No escape to infinity is possible in this region 
since by (4.10) w' > 0, so that w, and thus v', are bounded below by Wo. To prove (ii), 
we show that I(x, v(x), w(x)) is non-decreasing in x as long as (v(x), w(x))eSx: 

d 2w 2 xw' 
dx I(x, v(x), w(x)) = 1 - 2-----w + (1 - 2w) ~ > O, (4.11) 

by (4.10). 
(e) VI-~V. In VI, v>0,  w<0.  Thus, by (4.4), v '<0, and w '<0  for X>Xo, and 

(v, w) a solution in VI, 

v(x) < Vo, w(x) < w o . (4.12) 

These bounds can be inserted again in (4.4) to yieId 

v'(x) <= Wo, w'(x) ~ x__ w ( x ) -  Vo(1 - 2w(x)). (4.13) 
o" 

The second (linear) bound implies that no solution can blow up in VI, and the first 
that v(x) becomes negative within finite time, provided w0 < 0. If Wo = 0, we can use 
the bound w' < - v, to show that for X'o > Xo, w(x'o) < 0, and the argument applies. 

The next step is to construct two solutions, one of which blows up without 
crossing the positive v axis and one going once around the origin and crossing the 
positive v axis. These two solutions are drawn on Fig. 2. 

Proposition 4.2 (Construction of wi). Let (v(x), w(x)) x > 0 be a solution of (4.4) with 
initial condition (0, W o) at x = x o > O. There exists a constant w i = wi(~r ) < 0 such that 
if Wo < wl, (v(x), w(x)) enters region II (and thus blows up) in a finite time Xl going 
successively through regions V, III, I. 

Proof Note first that J(v ,w)=(w-½)exp(2(w-v2) )  is an increasing Liapunov 
function. Indeed, 

d j(v(x),w(x))= 2XwzeZ(W-v~)>O, x>O,  
G 

(4.14) 

as can be checked by explicit calculation. Its level sets are the trajectories of the 
limiting equation o-~ ~ .  The solution (v, w) with initial condition (0, wo) enters III 
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after finite time. Thus there exists an xl > 0 such that w(xO = 0 and v(xO < 0. Since J 
is non-decreasing, 

J(v(xl),O)>=J(O, wo), v(xOZ>lWot-½1n(1 + 21Wol). (4.15) 

Thus v(xO can be made as negative as desired by choosing lwo} large enough. In 
region III, v' = w N ½, hence, for x > x 1, v(x) < v(x 1) + ~ ( x -  x 1). We consider times x 
such that 

X--X1 5~ IV(X1)I • (4.16) 

For  these times 
X 

w'~ - w - v l ( ½ - w  ), v l - v ( x  O. (4.17) 
ff 

As long as w<¼, we use the second term on the right-hand side of (4.17): 

w'~¼1v(xx)l, w(x)~ lvd~(x- xO, (4.18) 

1 
so that after a time at most Ivl~' w(x)>¼. For 

1 
½>=w(x)>=¼ and x > ~ + x l - - x  2, 

we use the first term in (4.1"7): 

w>¼+ l ( x 2 - x ~ ) ,  (4.19) 
X 

W'~> ~ - ,  = 

< -- ] and w(x)>½ for some x = x 3 = x 1 + ~  + l /a ,  and the solution enters I, provided 

the condition (4.16) is fulfilled for x = x 3, which is the case if v(xO is chosen large 
enough. [] 

Proposition 4.3 (Construction of w2). Let 3 < a < ~ (i.e. 2 < d < 4) and let 
(v(x), w(x)), x >= 0 be a solution of (4.4) with initial conditions (0, Wo) at x = O. There 
exist a constant w 2 = w2(a)<O, such that i[ O>wo=>W2, (v, w) enters region VI in a 
finite time £2, going successively through regions V, III, IV. 

Proof Consider first the linear approximation to (4.4): 

v " -  X-v '+v=0.  (4.20) 
O- 

We prove in the appendix that the odd solution of this equation has, for a > 3 and 
x > 0 ,  at least one zero and at least two critical points. Let xl be the smallest 
positive zero and yl, Y2 be the smallest positive critical points, then 0 < Yl < x~ < Y2. 
If the initial condition Wo = v'(0) is negative, the solution of (4.20) enters VI in time 
Y2 + 6 going through the path described in the proposition. Choose then [w2[ so 
small that the solution of the non-linear equation is so close to the solution of the 
linear equation (4.20) up to time Y2 + 6 that it also has the property of entering VI 
after visiting V, III, IV. [] 
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The next step is the actual construction of the fixed point (v*, w*). It is a 
solution with initial condition lying between w 2 and w~, which goes (for x > 0) 
through regions V, III to region IV, and stays there forever. In IV v' = w___< 1, thus no 
blow up in this region is possible and the solution is global. The function v*(x), 
x ~N,  has three zeros so that the corresponding solution of (4.1), 

x 
u*(x) = ~ ~ v * (  d ~ y ) d y -  w*(0) 

0 

has three critical points. The construction of (v*, w*) relies on the so-called Bleher- 
Sinai [4] argument: to formulate it in a clear way we first modify (4.4) in the regions 
II and VI. Since the goalis to construct a solution that does not enter these regions, 
it will not matter how the equation looks like there. The modified equation is 

w, if (v, w) •VI, 
v=  0, if (v,w)~VI, 

(4.21) 

[ X w - v + 2 v w ,  if (v,w)q~II, 
w = / ;  

[~-w,  if (v, w)E II. 

Note that the vector field (4.21) is continuous except for the negative w axis. This is 
not a problem since no solutions of (4.21) cross this axis. Equation (4.21) has the 
two following properties: 

(i) All solutions (v(x), w(x)) of (4.21) exist for all x >0. 
(ii) For all w~ < w2 < 0 there exists an 23 > 0 such that all solutions (v(x), w(x)) of 

(4.21) with v(0)=0, Wl < w(0)< w2, have the property that v(x)> 0 for x > 23. 
Property (i) follows from the fact (Proposition 4.1) that only solutions going 

through II can escape to infinity in finite time. In this region (4.21) is linear and no 
escape is possible. Again by Proposition 4.1, the solutions considered in (ii) enter 
after a finite time x~ region II or region IV. The vector field was modified in such a 
way that VI is invariant and no return to v < 0 is possible and (ii) holds. Any other 
modification of (4.4) in VI and II with (i), (ii) can be used for the following 
argument. The construction of (v*, w*) is contained in 

Proposition4.4. Let 3 < a < o e  (i.e. 2 < d < 4 ) .  There exist a wo<O and times 
O<x 1 < x  2 such that the solution (v(x),w(x)), x >=O of (4.21) with initial conditions 
v(0)=0, w(0)=Wo, obeys 

(v,w)~V, O<x<x~, 

(v, w)~III ,  x l < x < x  2 , (4.22) 

(v,w)~IV, x>x2 ,  

and is thus a solution of (4.4) as well. 

Proof We consider the interval of initial conditions Io = [w~, wa], where w~, w2 are 
the constants introduced in Propositions 4.2, 4.3. Let, for x > 0, ~bx, xo denote the 
flow generated by (4.21). Choose x > max(~l, )72, x3), where 22, 22, 23 are defined in 
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Proposition 4.2, 4.3 and (ii), respectively. From (ii) we know that ~bx, o(0 x Io) is a 
continuous curve lying in {v > 0}. Moreover, by Proposition 4.2, ~bx, o(0, w0 e II 
and, by Proposition 4.3, ~bx, o(0, w2)e VI. Thus there exists a piece P Q  of the curve 
~b~, o(0 x Io) lying in IV such that P ~ {(v, w)lv > 0, w = ½} and Q E {(v, w)[v > 0, w = 0} 
(see Fig. 2). Correspondingly there exists a closed interval 11 = [w~ 1), w~ 1)] C Io, such 
that ¢b~,o(0 x I O = P  Q. Consider now q~+ 1,o(0 x 11): 

since, if w=½, w'>0.  Similarly, qSx+ 1,o(0,wt21))eVI, since, if w=0 ,  w '<0.  Thus a 
piece P 1 Q t  of q5~+1,o(0 x 11) lies in IV and 

P l ~ { ( v , w ) l v > O ,  w=½}, Q l ~ { ( v , w ) l v > O ,  w = 0 } .  

This argument can be repeated, the result being that there exist closed intervals 
I o D I  1 D I  2 D . . . .  such that q~+,,0(0 x I,+ 1) lies in IV. The set 

n = 0  

contains (at least) an initial condition with the desired properties. []  

The proof of Theorem 3.2 is finished. In the rest of this section we prove 
that, as dSd , ,  the fixed point u~, goes to zero pointwise in x. We write the 
proof explicitly only for the case n = 2. It is sufficient to show that for d = 4 -  e there 
exists a 6(e)> 0 such that 3(e)~0 as e+0 and that the solution of (4.4) with v(0)= 0 
and %0) = - 6(e) blows up in finite time going successively through regions V, III, 
IV, II. This refinement of Proposition 4.2 can then be used with Proposition 4.3 to 
give (by the same Bleher-Sinai argument of Proposition 4.4) a global solution of 
(4.4) with 

- w(0)  < v(0) = 0 ,  

where wz(e) is the constant appearing in Proposition 4.3. 
The idea to prove the existence of the function 6@) is a perturbative argument 

to control the solution until it enters region IV together with a monotonicity 
argument to compare solutions of the non-linear equation to solutions of the 
linearized equation. Consider first the case d = 4 (o- = 3). We show that all solutions 
with initial conditions (0, - 6) and 6 sufficiently small blow up in finite time going 
through V, III, IV, II. To set up perturbation theory we rescale (4.4), v ~  6v, w ~ 6 w :  

x 
v' = w ,  w' = - w -  v + 62vw.  (4.23) 

Let d~ (~) denote the flow of (4.23). For  6 =0,  .~(o) is linear and given by tPx2, Xl "f 2~2, x I 

~2,~ - v'x=, ovt%, o, , ~-x, o - \ U',(x) ~/;(x)) '  (4.24) 

where 

g~r(X)  m_ V ~ r ( ( 7 - 1 / 2 X )  ' g~r(X) ~_~ 0 -1/2 E (  O- - 1 / 2 X )  ' 
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and U~, V~ are given in the appendix. First order perturbation theory gives 

(0) ( 0 )  
= 1 + r d,(o) ay + o (a  

e - y/2 ~( _ 2 P,(y)2 V~(y))dy 
_ ,~(o) o + 0(62). (4.25) 
-.e~,o - 1 + O ( 6 )  

If a = 3, V3(y) = - Y3/9 + Y and 

- 26 ~ e-r2/6 ~(y)2 V'(y)dy = 12]/6--~u > 0. (4.26) 
o 

Choose xl >0  so large that - ~ ' 3 ( x 0 > 0  and 

Xl 

a(xl) = --2 ~ e-y2/6VZ~/'dy>O. (4.27) 
o 

Assume also xl > 6 for later purposes. Let furthermore 

~(o) o ~(.) { z(x)= q~'.)o ( 7 1 ) -  (4.28) z(°)(x)=,zx, xl , e~1 ,o \71) ,  x ~ x ~ ,  

The preceding argument implies that 

z(°)(x) = (--1 + 0(6)) (~])+(a(xO5+O(62))(~3,  ']\Uaj. (4.29) 

But, by the results in the appendix, P3, V~--+ - oo and 03, ~' U3+  + o0, as x--+ oo andif  
6 is small enough (depending on x,) 

( A v ) .  We claim that Let now Az=z-z ( ° )=  Aw 

Av>O, Aw>O, for all x ~ x l .  (4.30) 

An immediate consequence of (4.30) is that z(x) blows up since it must enter the 
(rescaled) region II = {(v, w)lv > O, w > 1/2@ The claim is proven by noting that the 
set 

S= {(Av, Aw)tAw > Av >0} 

contains 0 = (Av(xO, A w(xO) and is invariant if x > xv  Indeed, in S 

d xl d 
~ x ( A w - A v ) ~  ~ - A w - A v - A w > = A w - A v ,  ~xAV>-Aw>=O, 

where we used Xl > 6 and the negativity of the non-linearity -2vw. 
For  each 5 > 0 sufficiently small we can thus choose a time x2(6) such that z(xz) 

is in the interior of region II. If e = 4 -  d > 0 is small depending on ~ the solution of 
(4.4) with initial condition (0, - 6) still has the property of being in region II after 
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x2. This defines a function e(6)--.0 as 6--,0 which is the inverse of the desired 
function 6(e). 

5. The Non-Trivial tO 2" Fixed Points 

In this section, we prove the existence of all ~o 2" fixed points (Theorem 3.2). In the 
preceding section we have proven only the part of Proposition 4.1 which is 
relevant to the construction of the ~0 4 fixed point. We first complete the proof of 
Proposition 4.1, and then construct a solution which winds around the origin n -  1 
times if 2 < d < d,, a generalization of Proposition 4.3. We eventually construct the 
fixed point, replacing the Bleher-Sinai argument by a slightly more abstract one. 

Proof of Proposition 4.1 (continued). What is left to prove is V ~ I I I  in the case 
where Xo > 0. It is convenient to change variables: define s = v/x; (4.4) becomes 

x s ' = w - s ,  w ' = x ( l w - s + 2 s w ) .  (5.1) 

Region V is then further partitioned in three parts V1, V2, V3 [-note that 
(v, w)eV ~ (s,w)~V]: 

V~ = {(s, w) e Vlw_-> s}, 

2as 
V2 = {(s,w)eV[s>w> 1 + 2 a s J '  

{ V3= (s,w)~Vlw< 1+2as  J" 

We prove that 

V3 --).V2--)-V 1 ~ I I I ,  (5.2) 

in the notation of Proposition 4.1. Note first that on the boundary V~ 2 = {S = W} t") V~ 
s '=  0, and w'> 0, so that the vector field points into region V~ and this boundary 
can only be crossed in one direction. Similarly, on V23 = {w = 2as(1 + 2as)-1} ~ V, 
w'=0,  s' <0,  so that also V23 has this property. The arguments to prove (5.2) are 
very similar to the ones used in Sect. 4 to prove Proposition 4.1. Therefore we will 
be rather sketchy. We always assume Xo > 0. 

(a) V1--*III: In Vl ,  W~_O implies that 

S'  ~ S <" X 0 
- - - -  ~ S..-~-Sc,--.v 

X X 

Using this and w> s we conclude that in V1, 

w' __> - (1 - a- 1)xs > - (1 - a-  1)XoSo, 

since a > 0. Thus w becomes positive within finite time. 
(b) Vz--*VI: In V2, w - s  is negative but increasing 

d (w--s) 
dx (w-s)>= x 
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It follows that after a time xl=x~(wo, So, Yo, e), w-s>e..  For x>xl ,  

W W ~X(~--S) ~'XI[(~7-1--1)So--~/ff], 

which is bounded below by a positive constant if e is small enough. This bound 
together with s'> 0 implies the claim. 

(c) V3~V2:  w'NO ~ w<=Wo. We then use the bound defining V3: 

, 1 . /  as ) 
s =< x m l n ~ l  ~as s ' w ° - - s J  <= -1-min((a-1)S, 

implying that after finite time, (s, w) enters V z. 
As in Sect. 4, we modify the equation, this time only in region II, to avoid 

solutions which blow up: 

[ X w - v + 2 v w  (v,w)~II 

w ' = / ~  (5.3) 

[Tw 
Again this modification does not affect solutions which do not enter II. We 
consider now solutions with initial conditions (at x = 0) on the w-axis and define a 
winding number as the number of times the solution winds around the origin until 
it crosses a coordinate axis for the last time. In formula, let (v, w)~ (0, 0) be a 

w 
solution of (5.3) with v(0)= 0, and tgq)=--.  The winding number, 

I) 

_ do dx 2 

do 
is well defined since ~-x = (v2 + w2)- l(wv' - vw') is continuous and finite. Since, by 

Proposition 4.1, all solutions with finite winding number eventually stay in II uIV,  
we see that N e N  if w(0)>0 and N s N + ½  if w(0)<0. The ~0 4 fixed point 
constructed in Sect. 4 has N=½. Theorem 3.2 can be restated as follows: if 2 n - 1  
< a < o% n = 2, 3,..., there exists a solution (v2,, w2, ) of (5.3), with v*,(0)= 0, not 
entering region II, with winding number 

n - - ]  
N(v*,, w*,)= 2 

Assume for definiteness that n is odd. The even case can be dealt with the same way. 
We want to construct a solution of (5.3) with integer winding number and initial 
condition (0,Wo>0) at x = 0 .  View N( . )  as a map from the set R +  = {WolWo>0}, 
with the induced topology, to the integers. This map has the following properties: 

2 Here, [ ] means integer part 
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Proposition 5,1. Let ~bx, r be the flow of  (5.3). 
(i) {WoEIR+]N(wo)=N and ~bx, o(O, wo)EII for some x} is open for N ~ N .  

(ii) {WoElR+tN(wo)<_N} is closed for all N ~ N .  
(iii) I f  '~'(")'~'(") ,vl , ,,2 are two sequences converging to Wo, then 

lim N(w(~ ")) - lim N(w(2 ")) < 1. 
n ~ o o  n - - +  co  

Proof. (i) II is invariant, and the vector field on its boundary does not vanish and 
points to the interior of II. Thus if ¢x, o(0, Wo)• II for some x, then for any xl > x, 
Cx,,o(O, Wo) is in the interior of II. By continuity of ~, if [8[ is small enough, also 
Cx,,o(0, Wo + 6) e II. 

(ii) Let w0 ~ R +  be an accumulation point of WN= {w0 ~IR+IN(v~o~<N}. Let 
us suppose that N(wo)> N + 1 and derive a contradiction. The solution q~x, 0(0, Wo) 
winds around the origin N times ending up in region I I u I V  and then crosses the 
v-axis to begin the next wind. At some time xl the solution is in the interior of 
region VI after N turns. But by continuity, initial conditions in a whole 
neighborhood of Wo give solutions which share this property at x = xl, which is a 
contradiction, since all these solutions have winding number > N. 

(iii) Let N~= lim N(w~")), i=  1,2. We can assume that NI <N2  and, by (ii), 
n - ~  Ct) 

N(wo) = N1. First note that, if (v(x), w(x)) = ~b~, o(0, wo), lira v(x) = 0% since the only 
X - - +  oo 

possibility for v to stay bounded in IIwIV is that w(x)= v'(x)-~O as x ~  m, i.e. that 
(v, w) converge to a fixed point on the positive v axis, which does not exist. Let A be 
a large positive number to be chosen later. Let Xl be so large that (v(x), w(x)) winds 
around the origin Nt  times for O < x < x l  and v(xO>A. If no is large enough and 
n > n 0, also (v(")(x), w(")(x)) = 4~, o(0, w(z ")) winds N1 times up to time xl and v(")(xO 
> A/2. Since (for n large) N(w(2 ")) = N2 there exists an xz > x l (depending on n) such 
that w(")(x2)=0 and w(")(x)>0 for Xl<X<X2.  In I IuIV,  v'=w>O, so that 

A 
v(")(x2) > ~.  The argument in the proof of Proposition 4.2 can be used: choose A so 

that J(A/2,0)=J(O, wa) , where Wl=Wl(a) is the constant defined in Proposi- 
tion 4.2. Since J is increasing (v ~"), w (")) will cross the negative w axis below wl(o-), 
and will enter the invariant region II doing N1 + 1 turns around the origin. []  

The proof of Theorem 3.2 is now simple: fix a e ] 2 n -  1, oo [ for n odd > 2. The 
function N:  IR+ ~ N  takes the value zero [if Wo > 1/2, N(wo) = 0] and a value 
> ( n +  1)/2 [if w o is small enough so that the linear analysis in the appendix is 
applicable, one constructs as in Proposition 4.2 a solution with N(wo)> ( n -  I)/2]. 
By (iii) in Proposition 5.1, N(. ) has discontinuities of at most one and thus takes all 
integer values between 0 and (n+1)/2. Hence there are (at least) ( n - l ) / 2  
discontinuity points w~ ..... w(,_ 1)/2 t~]R+ such that 

li_m_m N(w)= lim N(w) -1  =m.  
W ~+ W m  W - ~  W m  

By the lower semicontinuity property (ii), N(wm) = m. But by (i), ~b~. 0(0, w~) ~ II, for 
all x ~ 0, and thus ~ ,  o(0, w~) is also a global solution of the unmodified equation 
(4.4) with winding number m, and the proof of Theorem 3.2 when m is odd is 
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complete. Ifn is even, note that N:  IR_ ~ N  +½ takes the value ½ by Proposition 4.2 
and a value >= (n + 1)/2 by linear analysis. Then proceed exactly as in the odd case. 

Appendix 

In this appendix we count the zeros of the solutions of the linearization of (4.3). 

After changing variable x ~ x l / - a  the equation becomes: 

u " - z u '  + o u = O .  (A1) 

Let U~(z) and V,(z) be the solutions of (A1) with data 

U.(0) = 1, U'(0) = 0, V.(0) = 0, V~(0) = 1. (A2) 

These functions can be represented by the integrals 

U , ( z ) -  F(-a/~2) ! c ° s h z t e - t 2 / z t - ' - l d t '  Reef<0,  

(A3) 
2(1 + a ) / 2  co 

! sinhzt e-t=/et -~ -  ~dt, Reo- < 1, V,(z) = F( -- (~ -- 1)/2) 

and can also be expressed in terms of parabolic cylinder functions. To compute 
U~, V~ outside the range of validity of (A3) one can use the recursions, 

U'(z) = - crV~_ l(z), V'(z) = U~_ l(z), (A4) 

whose proof is based on the fact that ifu is a solution of(Al) then u' is a solution of 
(A1) with a replaced by a - 1 .  

Proposition. Let U~, V~ be the solutions of (AI) with data (A2). Then U~ has no zero 
if a < O, and exactly 2n zeros if 2 n -  2 < a ~ 2n, n > 1 ; V~ has exactly one zero if a < 1 
and exactly 2 n -  1 zeros if 2 n -  3 < a < 2 n -  1, n >= 1. 

Proof The facts that U~ is positive if a < 0 and that V,(z) > 0 for z > 0 if a < 1 follow 
from the integral representation (A3). From (A4) we deduce that U0(z)= 1, 
Vl(z)=z. Next we prove inductively: 

(i) If 2 n - 2 < a < 2 n ,  n>0 ,  then U,(z) has exactly n positive zeros 
0 < zl < . . .  < z,; sign U'~(zi)= ( -  1) i and, as z ~  ~ ,  U ~ ( z ) - , ( -  1)"~, except for a = 0. 

(ii) If 2 n - 3  < a < 2 n - 1 ,  n>0 ,  then V~(z) has exactly n nonnegative zeros 
0 = z l  < ... <z , ;  sign V~(z~)=(- 1) i and, as z ~ ,  V~(z)~(- l ) " - i ~ .  

These properties are readily checked for n = 0. We first prove (ii) for n = N + 1 
assuming (i) for n = N. Let 2(N + 1 ) -  3 < a ~ 2(N + 1 ) -  1 and let 0 < zl < . . .  < zN be 
the positive zeros of U,_ 1. For 0 < z < zi, V~ > 0, and, since V'(0) = 1, V(z) > 0. From 
V'(z~) = U~_ l(zi) = 0 and sign V"(zO = sign U'_ i(zi) = ( - t) i, it follows, using (A1), 
that sign V~(z~)=(-1) ~+ ~. Thus between two consecutive zeros z,, z~+ ~ of U~_ 
there is a zero zi+~ of V,. This zero is unique and V~(~i+l)+0, since V~,(z) has a 
definite sign in ]zi, z,+l[. Similarly, (--1)NU,_l(z)>0 for z>zN, and U,_i(z) 
~ ( - 1 ) N ~  (Z~ ~ )  imply V~(z)~(--1)N~ monotonically for z N < z ~  oo. But since 
sign V~(z~)=(-i) N+ ~, there must be exactly one zero of V~ in the interval ]zN, ~ [  
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making  a total  o f N  + 1 zeros. In  the same way  one proves tha t  (ii) for n = N implies 
(i) for n = N + 1, and the p roo f  is complete.  
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