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Abstract. We consider the trajectory QM(t) of a Brownian particle of mass M in 
an ideal gas of identical particles of mass 1 and of density 1 in equilibrium at 
inverse temperature I (the dynamics is uniform motion plus elastic collisions 
with the Brownian particle): Our theory, in dimension one, describes a variety of 
limiting processes - containing the Wiener process and the Ornstein-Uhlenbeck 
process-for  A-1/2 QM~A)(At) depending on the asymptotic behaviour of M(A). 
Part of the theory is hypothetical while another part relies upon known results. 
We also prove that, ifA÷+"~M(A)~A, then A -1/2 QM(a~(At) converges to a 
Wiener process whose variance is known from papers of Sinai-Soloveichik and 
of the present authors. 

1. Introduction 

Ed Nelson's classical notes about Brownian motion, N (1967), also containing an 
exciting historical account, stressed the necessity to derive Brownian motion from 
Hamiltonian principles. "The problem, or one formulation of it, is to deduce each of 
the following theories from the one below it: 

Einstein- Smotuchowski 
Ornstein-Uhlenbeck 
Maxwell-Boltzmann 
Hamilton-Jacabi." 

His notes, in fact, show that "the Einstein-Smoluchowski theory is in a rigorous 
and strong sense the limiting theory of the Ornstein-Uhlenbeck theory." (Note that 
the mathematical model of the first theory is the Wiener process:) 

The aim of the present paper is to realize the program for a Brownian particle 
interacting with an ideal gas of point particles. A rough outline of our theory is the 
following: if we start from a Gibbs equilibrium state, then the model contains a 
functional parameter describing the interdependence between the mass ratio of the 
Brownian particle and of the gas particles on one side and the space-time scaling of 
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the trajectory of the Brownian particle on the other side. (In the understanding of 
modern statistical physics, the infinite Gibbs state corresponds to the Maxwell- 
Boltzmann theory and it is known to describe the time-invariant state of a dynamics 
governed by the Hamilton-Jacobi formalism.) For  simplicity suppose that this 
functional parameter, whose precise definition will be given in the next section, is of 
the fo rmf (A)  --, cA ~ as A ~ oo (c > 0). (Here larger values of  ~ correspond to heavier 
Brownian particles.) Now our theory shows that by varying the functional 
parameter - or in this simple case ~, - one can obtain both the Einstein- 
Smoluchowski and the Ornstein-Uhlenbeck theories. Indeed, if ½ < ~ < 1 then - 
and this is the main technical result of the p a p e r -  we get the Einstein-Smoluchowski 
theory, if 7 = 1, then the Ornstein-Uhlenbeck theory [in fact, this is an earlier result 
of Holley, H (1971) for d = l ,  and of  Dfirr-Goldstein-Lebowitz, 
D-G-L (1981 ) for d > 2]. For  7 > 1 the theory is trivial, while for 0 < 7 < ½ and 7 < 0 we 
expect the Einstein-Smoluchowski theory to hold, but so far we could not prove it. 
We also expect that in the case 7 = 0 the theory definitely depends on the spatial 
dimension of the system and on the value of c. (E.g. in dimension 1 computer results 
show a delicate picture, cf. Sect. 2c:) Besides its meaning for the general theory 
outlined above our result for ½ < 7 < 1 is hoped to open the way towards treating the 
very interesting case M =  const. 

Section 2 describes the model, the theory and finally the result. The framework 
of its proof  is given in Sect. 3. Sections 4 and 5 are technical, exposing the two main 
components of the proof:  the analysis of the Markovized process and the 
construction of the coupling. 

2. The Theory and the Results 

a) The Mathematical Model 

Since the results we prove are formulated in the one-dimensional case, for 
simplicity, we define the model for this case only. 

A one-dimensional system of point particles consists of a tagged particle of mass 
M (the Brownian particle) interacting with an infinite ideal gas of particles of mass 1 
(light particles). The dynamics of the system is governed by the laws of classical 
mechanics assuming uniform motion plus elastic collisions between the Brownian 
particle and the light ones and no interaction among the light particles. (As far as the 
behavior of the Brownian particle is observed only, assuming elastic collisions 
among the light particles, too, would not change the picture:) 

The collision rules are the following: 

M - 1  2 2 M  M - 1  
V + - V- v- v + - V- - - -  v-  (2.1) 

M + I  + ~  ' M + I  M + I  
o r  

2 2 M  
A V = V + - V  - -  - - ( V - - v - )  ; A v = v + - v - =  ( V - - v - ) ,  

M + I  M + I  

where V +, v + are the post- (pre-) collision velocties of the colliding Brownian 
respectively light particle. The most convenient is to describe our system as seen 
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from the Brownian particle [the so-called "Mfinchhausen picture" cf. B (1788)]. In 
this picture the phase space is 

3E=IR x Q={a~=(V, co): V~IR, co=(qi,v0i~xef2} , 

where I is a countably infinite index set, ~ the set of locally finite countable point 
systems in IR x IR: (V is the velocity of the Brownian particle, (qi, v~)~z are the 
coordinates - relative to the position of the Brownian particle - and the velocities of 
the light particles:) We say that co is the environment seen by the Brownian particle. 
f2 is a polish space endowed with the natural a-algebra ~0 generated by counting 
functions on compact sets: The a-algebra on 3E is ~ = ~ x ~o,  ~ being the Borel- 
algebra on IR. The system is distributed according to the Gibbs measure 

#M (d( V, co)) = dFM ( V) • v(dco) 

with v being the Poisson measure on (f2, ~o) with intensity dxdFl(v) and 

dF~t(V)= /2~exp ( )~VZ)dV (M>0)  . 

More prosaically: the positions of the light particles follow a Poissonian point 
process of density 0 = 1, while the velocities of the particles are distributed according 
to independent, zero-mean Gaussians of variance equal to (mass) -1, i.e: 
Maxwetlian velocity distributions at inverse temperature fl = 1. 

Remark: The only essential parameter of the system is M, while Q and fl enter 
trivially into the theory: 

Denote by S~  the dynamics of the system. The following two facts are assumed 
to be known: 

a) for each Mthere exists a set ~M ~ ~ of/~M.measure 1 on which the maps St M are 
well defined for any te  IR, and S~+=S~ o S~: (The equilibrium dynamics exists 
with probability 1.) 

b) the group of transformations S~ : ~ M ~  preserves the measure #M: (The 
evolution of the system, as seen from the Brownian particle, is stationary.) 
Warning: for different M's  we have different dynamical systems (3E M, co M, Sfl): 
The random variables to be introduced below are defined on different probability 
spaces, depending on M. But, as we are interested in asymptotic laws, this fact is not 
at all disturbing. 

We shall use the notations 

V(x )=V and co(~)=co iff 

v ; ~ ' ( ~ )  = v ( s ~ ' + )  , ~ ~ x M , 

t 

Q~(+)=I v ~ ( ~ ) a s ,  ~ e ~  ~' 
0 

~=(V,~o)eY , 

b) An Intermezzo: Simple Facts About the Ornstein-Uhlenbeek Process 

Throughout this paper W} ~) will denote a Wiener process of variance o a with 
Wot+>=0 and for berevity let IV+= Wt "). 
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The diffusion process t/t satisfying the stochastic differential equation 

drh = - yrhdt + ] /D dW, 

is called an Ornstein-Uhlenbeck (velocity) process. If q0 is distributed according to 
the Gaussian law with mean 0 and variance (2y)- lD,  then qt is a stationary Gauss- 
Markov process and its generator is 

d 1 d 2 
L =  - 7 x  ~ x + D  ~ dx 2 • 

The integral process 
t 

¢=J" 
0 

is called the Ornstein-Uhlenbeck position process. We shall use these processes with 
the following choice of parameters 

4? 
7 '  m 

and we will use the notations t/} ") and {["~ for them (m is a positive constant). It is 
worth mentioning that if 7 -+ 0% D-+ m in such a way that DT- 2 __+ o2 e IR +, then the 
Ornstein-Uhlenbeck position process it converges in distribution to a Wiener 
process W (~) [see N (1967)]. Thus 

{}m)~ VV[e) , as m--+0 (2.2) 

with 2=/ . 
c) The Scaling and the Theory 

Our final aim is to give a complete asymptotic description of the random processes 

as A ~ o o .  

-1 
A 

I: M(A) -'- 0 

2: M(A)_= M 

3:1 << M(A] <<A 

5 l., 5: M (A)>>A 
2 

M q 
Fig. 1 



Brownian Particle in Ideal Gas 45 

Observe that the space-time scaling is the usual diffusion one which is used, for 
example, to obtain a Wiener limiting process for random walks: M(A) expresses 
the dependence of the mass ratio of the Brownian particle versus the light ones on 
the parameter A figuring in the space-time scaling: The important types of depen- 
dence to be considered are illustrated on Fig: 1. 

Throughout this paper f(A)<o(A) will have the precise meaning 
f(A)=o(o(A)) as A--*oe. 

Several cases have already been clarified but the picture is still far from 
complete. Here we list the most important existing results following a logical order 
rather than the chronological one. 

(A) For M(A) -= 1, that is: the Brownian particle is identical with the light ones, 
Harris (1965) and Spitzer (1969) proved that 

Qi. ...(~) ? 

(Throughout this paper ~ stands for weak convergence on C[0, oo), the space of 
continuous functions or on D [0, oo), that of right continuous functions without a 
second order discontinuity on [0, oc).) 

(B) For arbitrary fixed mass M(A)=-M Sinai and Sotoveichik (1986) and the 
present authors [Sz-T (1986)] showed that 

t=a2t<-a~lim IE i ~ )  <--~zt= 7 t "  (2.3) 

Computer results [by D-O-R (1985) and by Sinai's group S (1986)] suggest the 
following picture: for every M 

2 I lim IE (Q(aMt)] 2 

exists and by (2.3), of course, g < aM < ~, Moreover, the dependence of am on M is 
illustrated on Fig. 2. 

(C) From the proofs of Sz-T (1986) it is easy to see that, in (2.3), the upper bound 
holds for an arbitrary scaling functional M(A) while the lower bound holds 
whenever M(A) = o(A). 

2 
o' M 

~2z 0.7979 

~ ~2= 0.6267 

Fig. 2 
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(D) For M ( A ) = m  "A, m~(O, ~ )  Holley (1971) proved that 

/ A  v(am.A)=c'rl (m) ; Q ~ A ) = ~  (m) . 

Important Remark. The results (B) and (D) can be linked by observing that [cf. (2.2)] 

~ ( " ) ~ W  (~) as m ~ 0  . 

On the basis of the aforementioned results we expect the following complete 
asymptotic picture [the dimension is still 1; the multidimensional case requires 
further elaboration since the model has an additional parameter: the size of the 
Brownian particle, cf. D-G-L (1981)]. 

1. Case M(A)~O. 

2. Case M(A)=M.  

Q~.(a) ~ w (~) . 

Q~'=~ T M a_<=aM<~ , 

where T M, M > 0  are random processes with stationary increments and with 
asymptotic variance O-ZM. 

It is an extremely intriguing question whether, in general, T M is a Wiener process 
or not. Computer results by Sinai's group (S (1986)) suggest that, for a general M, it 
is not. 

We know that T 1 = W ~, while simulations support that aM--*O" as M ~ o o  and 
aM~(Y as M ~ 0  [the result for M -  1 was proved in H (1965) and S (t969) while the 
bounds on the variances were given in S-S (1986) and Sz-T (1986)]: 

3. Case I ~ M ( A ) ~ A .  

4. Case MA)=mA.  

QAM.(a) =~ W(~) . 

QA M'(A) =:. ~(m) , 

where ~(") is introduced in Sect. 2b. This convergence was proved in H (1971) (d= 1) 
and in D-G-L (1981) (d>l ) :  For m ~ 0 ,  (2.2) holds. For m~oo ,  ~(m)=~0. 

5. Case M ( A ) ~ A .  

QM(A) 
o 0  (trivial) . 
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(Of course, the problem is not trivial if we allow spatial rescalings different from 
A 1/2; its determination is a question of independent interest.) 

In the present note we make one further step in completing the picture sketched 
above, by proving the following 

Th eor e m 2.1. IfA~+~M(A)~A (e>0), then 

• ~ W(~) 

3. The  Fr ame wor k  o f  the P r o o f  

The first - and in a sense principal - difficulty in the dynamics of the Brownian 
particle is the non-Markovity of its motion. Indeed, light particles between their 
first and last collisions with the Brownian one carry information on past collisions 
in a complicated way. Nonetheless it is a natural idea to consider a Markov process 
whose evolution mimics the physical process; this Markov process, of course, 
disregards recotlisions that could spoil its Markovity. This Markov version can help 
both on an intuitive level to give a feeling of what the mechanical process is like and 
on a technical level, too, if we can construct a good coupling between the mechanical 
and the Markov processes. In our knowledge, this idea was first used in a rigorous 
argument by Holley (1971) [cf. case (D), Sect. 2c] and our proof is also a realization 
of this strategy [other variants of this idea can be found in D-G-L (1981) and G-G 
(1986)1. 

Let us first construct a family of Markov processes ~M, M >  0 closely related to 
the mechanical velocity processes VtM. In words, ~M's are defined as follows: we 
imagine that the environment is recreated, after each collision, corresponding to the 
time-invariant distribution v. Thus the Markovian velocity process ~ is a pure 
jump process on IR with jump rates 

!72 
( V +  M -  1 2 1 

Rate \ M + I  V + ~ - ~  = ~ e - ~ l g - v [ d v  . 

In the actual coordinates the jump rates are 

M 1 exp [ _ ~  ( M ~  1 ,_ M-_~I R (x,y)dy=~(M2--~l)2 Y 2 x f l lx-y[dy '  

leading to the formal generator 

2 2 

(Gu~)(x)=~Jdye-z- ly-xl{~(M@l x + ~ 2  y)-~;b(x)} 

_ 1 ( M + I " ]  2 I{M+i M-I ~2 ]//~-£~ ~\-~---j ~ d y e - 2 ~ , ~ Y - T  x) [y-xl{~(y)-(o(x)} . (3.1) 
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It is easily seen that, for 4) and ~ belonging to a sufficiently large class of functions, 

dVM(x) ~b (x) (GM gt) (x) = ~ dF M(x) (GM~) (x) ~h (x) . 

Thus, the Markov processes ~M conditioned to the initial distributions dFM(x) 
are stationary and reversible: (We shall see soon that they are ergodic, too.) 

Now the program consists of two parts: 
(i) a study of the induced position processes, 

t 

0 

(ii) construction of  a good coupling for Q~  and Q~, i.e. a realization of Q~  
and ~M on the same probability space, that satisfies 

1--~(Q~(A)--OM(A))~O as A - + c o .  (3.2) 

Part (i) is executed in Sect. 4. Here the main result is 

Theorem 3.1. (i) (fixed masses). For any fixed M~ (0, co), 

~ M  
QA. W(~M) 

with 

and 

52> = ~/1 + 1  M -  ~ 

lira a~z=f. 
M--+ c~ 

(ii) (sublinearly increasing masses). I f  1 ~ M (A ) ~ A, then 

In fact, our methods give the following complete asymptotic characterization of 
the induced position processes Q~  (the reader is encouraged to compare it with the 
analogous picture formulated for Q ~  in the preceding section). 

0 ~ . .  (A) 
1. Case M(A)~O, - -  is not tight: 

~)M (A) 

2. Case M(A) = M, ~A-- ~ W(aM) , VA 
with 5 ~ M  -1/2 for M-+O and 52-+_a 2 as M-+co. 

3. Case I ~ M ( A ) ~ A ,  Q~(A)=~W(-~) VA 
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O ~ " ) ~ m  . 4. Case M(A)=mA, ]//_~ 

~ M  (A) 

" :::::~ 0 . 5. Case M(A)~>A, 7 
V A 

Cases 1-3 follow from Theorem 3:1 ; Case 4 is proved in H (1981); Case 5 is 
trivial. 

As to part (ii), so far we could only do the coupling under the assumption 
M(A)~>A ~+~. The slower M(A)  increases the stronger the influence of the 
recollisions for the mechanical process is and the estimates required for the coupling 
become harder and harder: 

Remarks. We expect that further progress can be achieved soon in this circle of 
ideas. 

a) For 1 ~ M ( A ) ~ A  ~+~', we hope that some sophisticated refinement of the 
coupling argument may work. 

b) For M(A)  = M e  (0, ~v), naturally, a "good coupling" cannot be realized, but 
our estimates for 5M may be of some use in estimating ~M for large M. 

4. Study of the Markovized Process 

As a preparation for the proof of Theorem 3:1 we give a detailed analysis 
of the Lz-properties of the generators GM. We consider the Hilbert spaces 

~FM=L2 JR, e ~ - - d x ) ; ~ = J g l w i t h t h e s c a l a r p r o d u c t s d e n o t e d b y ( , ) M  

and (,) respectively. The generators G~ have to be considered as (unbounded) 
operators on the Hilbert spaces ~tgM but 'it is more convenient to transform all 
operators into one standard Hilbert space, ~ ,  by the unitary isomorphisms 

u M.~M~J¢ (UM4~)(x)= 

The images of the generators under these isomorphisms are 

UMOM(U~) -1 = GM ~°f , 

y2 

(cM 4~) (x) = ~ ~ dy e- ~ ~ (x, y) { 4' (y) - c~ (x)} 

_ 1 ~ dye--~ ~rM(X,y)~(y ) --y c~(x)=(KM-FM)c~(x) , (4.1) 
~/27~ 
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where 

3ffu(x,y)=\2l/M} exp-~ [_\2 l/M/ - 2  - - - -  21,/M 2 V M  
- - x y  

\2  ~/-M,] 
(4.2) 

7 ( x ) = ~ d y e - T I x - - y F  and ~ = ~ d y e - ~ - d F M ( x , y ) .  (4.3) 

Here Ku denotes the integral operator on ~ having dFM as kernel function and FM 
denotes the multiplication operator by the function ? ( ~ M ) .  7(x) can be computed 

explicitly. Essential facts are that: 1) it is continuous; 2) it has a global minimum 

? with value ~- at x = 0 and 3) it grows linearly for large values of x. It is easy to see 

that KM is a self adjoint Hilbert-Schmidt operator, with Hilbert-Schmidt norm 

II s lIKe, . -  -8-M  

(In fact, it is of trace class Ip for p > ~.) Consequently the generators Gu are self- 
adjoint on a common domain 

D={qb~WIx 'q6~W} . 

The following identity is easy to check: 

J~ x 2 + y  2 
(q~,GMqS)= - ~ n n ' ~  dxdye- 2 jgM(x,y){dp(y)_4)(x)} z . (4.4) 

Gu being the generator of a self-adjoint strongly continuous contraction semi- 
group, the fact that it is non-positive is not surprising: From the preceding formula 
one can also see that 0 is a nondegenerate eigenvalue of GM, thus the stationary 
Markov process ~M is also ergodic [see N (1964)]. 

It is worth mentioning (although it is of no use for our purposes) that 

MGu st. res L as M ~  oo , 

where st. re~ ; stands for convergence in the strong resolvent sense and L is the 
generator of the standard Ornstein-Uhlenbeck velocity process @) (cf. Sect. 2b) 
This fact was crucial in the proofs of H (1971) and D-G-L (1981). Knowing the 

? spectrum of L (nondegenerate eigenvalues at the points - 4 "  ~-n, neN) one 

cons t .  
can guess that the operators GM have gaps of order ~ m their spectrum at 
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left to the eigenvalue 0, but, unfortunately, strong-resolvent convergence does not 
imply convergence of the spectrum: We shall prove in another way the following: 

Lemma 4.1 (Gap-Lemma): I f  1 < M < 0% 

E 

(In the present lemma o- and O'es s denote spectrum and essential spectrum, 
respectively.) 

Proof  GM being a compact perturbation of - F u ,  by Theorem XIII:14 of R-S 
(1978) we have 

/ ?] O e = = ( a . , ) = { - ~ ( x ) ' x ~ } = - o o , -  ~ ; 

consequently it is enough to show that there are no eigenvalues in the interval 

t M + I  n 0 =IM. Soon we shall prove 

Lemma 4.2. If • ae== and 

GM4) = 24) , (4:5) 

then 4) is differentiable with 4)' ~ ~ and 

- -  ~ 7 +2 4)'2(x)dx . (4)', 6.,4) )+ i  (4)' aM4))=~ ~/5-; I e-~- 
(4:6) 

This lemma plus the non-positivity of GM provide the desired result: 

m 

2 (4:5) is equivalent to Proof of  Lemma 4:2: For 2 > - ~ ,  

1 y 2  

- - " I  dy e-  2- ,~g'u(x, y) 4) (y) 

4)(x)- 1/~ 

Differentiating the right-hand side with respect to x after some tedious calculations, 
using Schwartz's inequality one finds bounds on 4)'(x), showing that, indeed, 
4)' e A¢ ~. The details are standard and we omit them: More illuminating is the proof 
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of the identity (4.6). To do this we have to introduce - besides )tim - t w o  auxiliary 
kernels 

~ 1  / M +  1"~ 2 1 M(x,Y)=t2~) e x p - ~  Lt,~)r{'M-'"l~ xZ-2 (M-I)(M+(2~ 2 1) xy 

+ ( M - - l ~ 2 y 2 ]  "sign (x t , ,~ /# -Y) 

Mt 'Y)=t2~) exP-2 L \ 2 ~ /  -2 
( M -  1) (M+ 1) 

(2/ 0 2 
xy 

M - I  2 

The following identities hold: 

[ r~ ] ~ - ~  
__a e-~- ~((M(x, y) = 
8x M +  1 

t3 [e-L~ ~£~(x,y)] 
Oy 

2 y2 
+~--~e-TJY-~}(x,y) (4.7) 

and 

a F x2+y2 ] 
~xLe- ~ .Y{'~(x,y) 

x2+r2 [ M + I  
= e---Z-- - - -  ~{ju(x, y) - - -  

4 
M + I  
4M 

• (x + y) o ~  (x, y) + Jf~ (x, y)]  . 

(4:8) 

Now differentiating both sides of (4:5) with respect to x and using (4.7), after a 
partial integration we find 

M - 1  1 y~ 
" _~- " I d y e - T  3f'u(x,y) (o'(y)-~b'(x)} 

M + I  Vz,~ 
2 

M + I  

I y2 

V ~  ~ dye-2- 9g~(x,y) {~b(y) -q~(x)} 

(x)+) 
= ~ ~ ,~ 4,'(x). 

We take now scalar product of both sides of this identity, with ~b'. After a new 
integration by parts in the second term/of the left-hand side, the equation takes the 
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form 

M - - I  --1 x2+r2 
m + l  4x "~I dxdye-  2 jy'~_~(x,y){qS'(y)-¢'(x)} z 

1 1 c3 / : + :  \ 
M + I  2r~ " II dxdY ~x . - -  ~e- - -T- - j :~(x ,y ) ){dp(y) - -¢(x)}  z 

= V ~  I dxe--::- ~ 7 +2  q~'2(x) . 

One can easily show that 
2 MaM¢-,--j  ¢ 

and, using (4.9) and (4:10) 

(MGM)- t if) ~ _ 2 (o 

4 ~ e ~ ,  ~ ( x ) = x  . 

as M ~ o o  (4:10) 

as 

Relations (4:9), (4:10), and (4:11) will be the 
calculational details of the forthcoming proof. 

Proof of  Theorem 3:1. The proof goes through a martingale approximation. The 
circle of ideas has been developed in G-L (1978), K-V (1986), D-G (t986). Our 
case (ii), however, is not covered by the results obtained there because we have a 
double array: In fact, the gap condition (4:9) will ensure the necessary momentum 
estimates uniformly in M. 

Let 1 
C M e ~  ~ ; ¢ ~ ( x ) = x  , u ~ ¢ ~ = ~ ¢  . 

VM 

(4:9) 

M ~ o o  . (4:••) 

basic ingredients used in the 

In the sequel let 

m 

II(MGM)I~oll ~c= 

Using (4.8), (4:4) and observing that 
x 2 + y  2 

S~ dxdye z (x+y)~d~(x,y){¢(y)--q~(x)} z 
X 2 + y  2 

=IS &aye 2 ~g(x,y){¢(y)-¢(x)} 2 = 0  , 

we obtain exactly (4:6): Thus Lemma 4:2, and hence Lemma 4:1 are proved. 
In the rest of this section we will be concerned with the subspace (of codimen- 

sion 1) 

orthogonal to the constant functions. As a consequence of the previous lemma the 
generators GM are invertible on this subspace and 
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Our position process is 
t t 

- - M  

0 0 

Case (i): 0Y  is an additive functional of an ergodic Markov process whose 
generator is invertible on the subspace orthogonal to the constant functions, thus 
the Theorem of G-L (1978) works. The limiting variance is 

ff~t = - 2 (d~M, ~ 1  ~)M)M = - -  2 (¢, (MGM) -x c~) . 

The lower estimate for 5M follows from straightforward calculations, while the 
asymptotics for M ~  follows from (4.11). 

Case (ii): Let 
O-2 

~M ~ g ~  , ¢ .  = -- ~ -  M ~ M C M  • 

We write the position process in the form 

Q y =  N y  + X y  + Y y  + Z y  , 
where 

t 

N y  = ~ CM(Py)ds _ ~ I S M ( ~ M )  + ( ~ l S M ( p g )  , 
0 

t 

0 

Z y  = ~ ; ~  ( 0 ,  - ~ , )  (~ , - )  - ~ '  ( ¢ ~  - ~,~) (~'o ~)  . 

We shall prove that if 1 ~ M ( A ) ~  A, then 

I. N~(A) =~ W (~-) 

by Theorem 5.1 of H (1982); 

X~t (A) 
II: - - ~ 0  

by Doob's inequality; 

y~t (A) 
IIL --~0 

as an indirect consequence of Lemma 1.12 K-V (1986); and finally 

Z~ (A) 
IV. ~ 0  

as a direct consequence of the same lemma: In what follows we give the basic ideas of 
the proof  of steps I and III trying, however, to avoid calculational details. The proof  
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of  points II and IV is a straightforward calculation - here we give no details. We 
emphasize that, in the calculations, only L 2 manipulations and estimates are 
involved, relations (4:9), (4:10), and (4,11) being at any moment at hand. 

I. The conditional variance process associated to the martingale N M [cf. H 
(1982)] is 

t 

< N U > t = j  " ~u(pM)ds , 
0 

where 

Using the fact that uM(f" g)= UUf • UUg, we have 

U M ~M = " ((MGM) (dp2) _ 2 q~" (MGM) (a) ~ i F ,  

and after some calculations one finds 

(UM~M) (X) = - ( M +  1) 2 

Hence 
(~, ~u)u~_~ and 

Having these, it is an easy task to prove 

1 r2 Y x z 
e - -  

]l~utl~<const. 

E ( ( NM (A)~t -At-°'z )2~O . 

Thus the conditional variance converges in probability to _a 2" t. For  applying 
f ,rM(A) Helland's theorem we have to estimate the largest jump o lvjit , too, But this is an 

easy task because 

1 a 2 M ( A )  
sup IANff(A)I= 2 - - V -  X sup IA~u(A)! , . F 7  

vA , = .  '--<" 

and by standard arguments 

P r o b ( M - s u p  IA~M[>c)<Be -=" 
k, O < t < l  

with some positive constants B, ~, ~, (see the collision rules). Hence 

1 
sup IANM(a)]-->0 

] / / - a  t < A 

in any reasonable sense. 
For  obtaining I II, first observe that, applying Lemma 1,12 of  K-V (1986) to the 

function 

g u e ~ u  ; gM(x)=exp V~]X] , 
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we find 

Prob (suP V ~ l ~ U l > c ) <  B 'e  -~ 
\t<M 

with some positive constant B, independently of  M. Since 

O-2 
Y5 = - = -  M ( E  

2 

Prob ( s u p ,  YtU(A)l ~ q ]//A) 
\t6A 

Csup < 2  M ~  • Prob M]/-M-~ l ~M(A)I > r/, A 
\t<M(a) 

< 2 B  M - - ~  "exp - q  -~0 . 

(In the second inequality the stationarity of the process ~M was used:) Modulo some 
calculational details, Theorem 3.1 is proved: 

5. The Coupling Lemma 

The present section consists of two subsections: In the first one we give the standard 
coupling of the mechanical and Markovian velocity processes Vt M respectively ~u.  
In the second one we show that the two normalized position processes, A -*/2 Q ~  (a) 
and A - */2 O~(A) realized in this way are sufficiently close to each other to produce 
the same asymptotic law, provided M(A) >> A -~ ÷ ~. This result, combined with point 
(ii) of Theorem 3:1 proves Theorem 2:1. 

5a. The coupling is, in principle, similar to that used in D-G-L (1981) (for their 
exposition, the reader should read Sect. 5 of that paper, too), but its realization here 
slightly deviates from theirs: We consider illuminating to give an intuitive 
phenomenological description rather than a very formalized one: 

In the mechanical model, the process Vt u is driven by two mechanisms: 
a) Markovian part: collisions with fresh light particles never seen in the past; and 
b) non-Markovian part: recollisions. More exactly: let 

w ~ - =  inf Q ~ _ Q ~ I  ," w~ + =  sup Q~±- Q~ 
-®<s<=t  t - s  - ~ < s < = t  t - s  

By Lemma 1 of Sz-T (1986), wff -+ are finite #M-a.s. and 

#M({lw~t-+ I > c}) < const exp ( - ~ ( ] / ~ c )  t~) 

for some positive constants ~ and fl: The variables w~ + and Vt u are measurable with 
respect to the o.-algebra ~-t- generated by the past history of the Brownian particle 
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{V~: - o o  < s < t }  and satisfy 

wy- < vY_-<w, 

The Markovian part of the driving mechanism consists of fresh light particles 
having velocities v ¢ [w~-, w~ +] which hit the Brownian particle following a 
Poissonian law with instantaneous rate 

1 _ v 2 
QM°°h(Vy, wy-,  + IV, M-vt  

After the collision - governed by the rules (2:1) - each  light particle remains in the 
system waiting for possible recollisions: 

The non-Markovian part consists of recollisions with old light particles which 
have velocities v ~ [w~-, w~ + ]. 

The description - in the same terms - of the driving mechanism of the Markov 
processes ~M was actually given in Sect: 3: fresh light particles collide with the 
Brownian particle following a Poissonian law with instantaneous rate 

; = e - ~ - l ~ M _ v l  , 
i ,  

and recollisions are excluded. 
For the coupling we should realize the two driving mechanisms jointly in such a 

way that the two processes suffer collisions with as many common light particles as 
possible. 

For this reason let us define four instantaneous rates of incoming light particles. 
All of them depend on the variables (V, m, Vt M, wff-, wff + ;v). Whenever possible, 
the notation of this dependence will be ignored: 

Q~ =min  ( 0 M e c h ( v t  M, W M -  , W M +  ;~)), QMark (~M ; / ) )  . ,~ [ WM-, wt~+]c(U)) , 

Q2 = ~ M e c h - - ~ l  , 

Qa = QM~k ~ [~,~-, w~÷lo(V ) --Q1 , 

~4 = QMark ~ [w~-, w~+](U) " 

The joint driving mechanism is described below: 
1. Common Collisions. Fresh light particles of velocity v ¢ [ w ~ - , w ~  + ] hit 

simultaneously both Brownian particles in a Poissonian way with instantaneous 
rate Q~. 

2. Compensations: Fresh light particles - having v 6 [wt u - ,  w~ + ], too - come to 
the mechanical (respectively Markovian) Brownian particle following a Poissonian 
law with instantaneous rate Qz (respectively ~3). 

3: "Slow" Incoming Particles: a) Old light particles with v ~ [w~-, w~ + ] come to 
recollide with the mechanical Brownian particle. 

b) Fresh light particles with v ~ [ w ~ - , w ~  +] hit the Markovian Brownian 
particle following a Poissonian law with instantaneous rate ~4- 

We hope that after some meditation the reader will be convinced of the fact 
that the processes Vt u and ~ u  having initial values V~ = ~'~ distributed accord- 
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ing to dF g and driven by the mechanism described above are exactly those which 
we need. 

Without giving further formal details, we shall denote the probability space 
on which the coupled processes (Vt M, ~M) are realized by (~¢M, pM). (One can 
think of (~M, pM) as Y4M=JEMX3 M with 3 M being some measurable space 
and pM(Bx 3M)=#M(fl).) . . . . . . . . .  

5. Closeness of the Paths: We shall prove the following 

Lemma 5.1 (Coupling Lemma): If M(A)~> A ~+~, then for any r />0 and t > 0  

P~(A)({A-i/2 i' dsIVM(A)-- v,(A)I>q})-*O . (5:1) 

Remark. The following inequalities are evident 

({ }) <p~(A) 1-1/2 f dslV~(A)--v~(A)I>~ 
0 

To have a "good coupling" i: e: to have (3:2), it is necessary and sufficient to show 
that the smallest probability of this chain converges to zero: Unfortunately, with 
our present method, we are able to handle only the second expression: As one can 
find after understanding the dynamics of the proof, Lemma 5:1 is sharp in this 

context; that is : if M(A) = O (V~),  then the assertion of the lemma does not hold: 
(But the coupling may still be "good"  - and we expect, actually it is "good"  for 

3+ 
M(A)~>I !) On the other hand, for M(A)>>A ~ ~, we are able to prove that the 
largest probability above still converges to zero (this fact may be useful if one also 
wants to bound the decay of the velocity autocorrelation function): 

Proof of the Coupling Lemma. We shall consider t = 1 and M(A) a fixed function 
satisfying the condition of the Lemma: The proof  will go as follows: we shall 
consider two large sets ~A, cgA c ~¢M(A) with probabilities tending to one and a 
random process 6~ (A), s s [0, A ] satisfying 

6M(A)>[vM(A)--VM(a)[ on ~ a ~ d ~ .  (5:2) 

Finally we shall prove 

I i ds6~ (a) Prob.) 0 . (5:3) 

Let 
e (A)=  [M(A)]-I/ZA"; d(A)=  [M(A)] - i "  A ~/z 

and 

sup I  A,I<c(A)  /sup 
[O<-s<A ) [O<-s<-A 
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cg A = {largest absolute jump of V M(A) or /~(A) in the interval 

sE[0,A] is less than d(A)}. 

By standard arguments we have PU(A) (NA) ~ 1, and pM(a) (cgA) ~ 1. [In the proof, 
which we omit, of these assertions, the following facts are used: pff(A), v~(A), and 
wff (a)+ are stationary processes of typical order --~ M(A) -*/z, and the jumps of 
pff(A) and V~ (A) are of typical order ~ M ( A )  -1, cf. the collision rules (2:1):] 

For the further work we need a more detailed analysis of the driving mechanism: 
t: Common collisions: From the collision rules (2:1), one finds that the effect on 

V -  ~" of a collision with a common light particle is 

2 + 1) (A)- vS(A)) VS(A)--~ZsM+ (A)'~'( 1 M(A) 

A very important fact is that, on the set ~A, the total instantaneous rate of common 
collisions satisfies for all t s [0, A ], 

~1%f ~ dvQl>=e >0 (5:4) 

with e being a universal constant: One can check this relation by simple calculation 
using that, on NA, IwY (A)±[ < C (A) for all t e [0, A ]: Thus, this part of the mechanism 
has a contractive effect on IV-VI,  with constant rate. 

2. Compensations. From the collision rules and the compensation rates we find 
that 

sign A ( Vff (A) - pff (a))= --sign ( V~ (A) - ~M (A)) 

for each jump caused by this part of the driving mechanism: (Here and in the sequel 
Af~ means the instantaneous jump of the function f at the moment s.) Thus, 
collisions with compensational light particles either draw the two velocity processes 
closer to each other or change the sign of the difference process: Only the second 
effect can be harmful from our point of view: But on ~fa the largest sign-changing 
jump of this kind is less than A-  (1 +e)/2 

3: For collisions of the third kind, from the collision rules we have on NA, 

<4c(A)  
iAVff(a)[ < .  2 . ,  (lVfl(A)l + Iv-l)=M(A) 

M tA) 
(and the same for IA Pff(A)D: 

Now we construct the majorizing process 6 A promised above: Let the process 8 a 
be constructed in the following way: 8 a is pure jump starting from zero fig = 0, and 
driven by the following rules: 

1: Whenever a jump of V or ~" caused by the third driving mechanism occurs 
M M +  (collisions with atoms coming with velocity v s [wt - ,  wt ], 8A suffers an upwards 

jump 
A5 a =4c(A)  

M(A) " 

Z Whenever a common collision occurs, 6A suffers a downwards jump 

2 a@= 
M(A)+I 
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Let 
6 7  = A - a + =)/~ + 8~  

It is an easy task to check that (5:2) is preserved after each collision. 
Assertion (5.3) remains to be proved. In fact we shall prove 

1 i ds8 A Prob. 0 (5.5) 

1 1 ~  ° 
if M(A)~> A y+~. 

The germ of the forthcoming proof is the following picture valid on ~)A : assume, 
for simplicity, that M(A) = A ~; 87 is composed of two effects: additions of order 

3~ 
A =-2- with "average" rate below O(A 2=-'e) and contractive multiplications by 
M(A) - i  

1 - with rate uniformly above a > 0 (see (5.4)): The evolutions of the 
M(A)+I 
additive terms can, of course, be separated and, as a consequence of the fact that 
contractions occur sufficiently uniformly, they decay exponentially resulting that 
their sum is o(A 1/2) only, provided ?>½+e:  

Let z~ be the moments of upwards jumps of the process 67 in the time interval 
se[0, A], 

# {%}=NA + N2 A , 
where 

N A = number of recollisions in [0, A ], 

NA =number  of collisions of the third type of the Markovian process in [0, A ]: 

Further let 

We have 

Thus 

N~[s, t] =number  of common collisions in [s, t] . 

57=4c(A)"  ( M ( A ) + I )  " M(A) ~:~, 1 2 N~[,,,s] 

!aso; = M ( A )  • ~, M ( A ) + I  

sup F = M ( A )  o=<t__<A , M ( A ) +  1 ' 

On the set NA, 
NA<_N~ , i=1 ,2  , 

where N~ (~'~) is the number of collisions of the mechanical (Markovian) Brownian 
particles with incoming light particles having velocity less than c(A), and 

= - c(A)A 1~° const = 
PM(a)(Ar°-°-c(A)Nia>tll/-A)< rl]/~ ENd= 17 "Ar°Tc(A)a]/~" 
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Thus 

+ ) >,j--.o. 
1 

provided M(A)>>A . On  the other  hand, by (5A), on  ~a ,  

N3 a It, s] ~ N3 [t, s] , 

where N3 [t, s] is a Poissonian process with constant  rate ~, and hence 

2 
N¢[t'S]ds< ds 1 M ( A ) + I  

t 1 M ( A ) + I  

< l as 1 M ( A ) + I  ae___f ytM(a) . 
, / 

(5.6) 

Yt M(A) is a s tat ionary r a n d o m  process depending in a relatively simple way  on the 
Poisson process f l  3 . By some s tandard arguments  concerning Poisson processes it 
is not  hard to show that  

1 sup ( ~  YtM(A)~ Pr°b') 0 (5.7) 
g 

AlOe0 - O < t < a  Vvl t/t ) / 

We omit  the details o f  this step: N o w  by combining (5.6) and (5:7), (5:5) is obtained, 
and hence the p r o o f  o f  the lemma: 
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Notes added inproof. 

1. In the corresponding multidimensional model the Brownian particle is spherical having 
radius R. Here the cases when M(A)~ov are treatable in an analogous way as for d =  I, with 
some additional geometrical considerations involved, In the results R enters trivially as a rescal- 
ing factor R a-I of the time parameter of the limiting process. [However, this is no more true for 
M(A) = 0(1),] Case 5 (in the diffusion scaling) is trivial, too. Case 4 was treated in D-G-L (1981). 
Finally, a complete analogue of Theorem 2.1 can be proved with the limiting variance being 

1 - d  

~=R d. x/8-. 
2. Concerning the super-heavy Brownian particle (Case 5: M(A ) ~> A, d = 1), by an application 

of a theorem of Kurtz, [essentially the same method as that used in H(1971)], we find the correct 
asymptotics 

V~<a)=I ~ / ~  ~ V~t~A))+ (~  ~a , 

where ~ Vd ~<a> has a standard Gaussian distribution and ¢~ converges in distribution to a 

Wiener process of variance 4 , / z  If d>  1, a similar statement holds with a limiting variance 

depending on the dimension. 


