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Abstract. Explicit representations of super-Kac-Moody algebra are construc- 
ted in terms of 2d-free fermions which form a non-linear representation of 
supersymmetry with the fermions grouped with the generators of the algebra 
into superfields. It is shown how the most general construction of this type 
corresponds to homogeneous spaces G/H and how supersymmetry alone is 
responsible for that structure. 

It is well known that representations of Kac-Moody algebra [-1] can be 
constructed using two-dimensional free fermions [2]. This construction was 
crucial in the proof by Witten [-3] of the equivalence between non-linear sigma 
models with a Wess-Zumino term [4] and free fermion systems. This equivalence 
was later developed in a beautiful paper by Knizhnik and Zamolodchikov [53 
using the techniques of conformal field theory [6]. It was then noticed that the 
supersymmetric extension of the sigma model [-7] also had a rich algebraic 
structure and that it gave a representation of a supersymmetric extension of the 
Kac-Moody algebra [8]. In the case of SO(N) for example the content of the 
model in terms of free fermions is the following: there are two types of decoupled 
fields, one transforming under the adjoint representation of the group while the 
other (corresponding to the fermionization of the bosonic field of the original 
model) is in the fundamental representation. These two fields form a nonlinear 
representation of supersymmetry [8]. A similar property was also observed in 
Goddard and Olive in [-9]. The purpose of this note is to show that a large class of 
representations of super-Kac-Moody algebra can be constructed in terms of free 
fermions which realize a non-linear representation of the two dimensional super- 
conformal (Neveu et al. [10]) algebra (for another point of view on this latter 
construction and related considerations about superstrings see [,-11]). As we will 
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show, supersymmetry alone determines the precise structure of the super-Kac- 
Moody algebra and the required group theoretical content of the theory (in 
particular the only allowed representations of the fermion fields), More precisely 
the requirement of supersymmetry will be equivalent to the existence of an 
invariant connection on an homogeneous space G/H and the two sets of fields can 
be regarded respectively as vertical and horizontal vector fields on the principal 
bundle G(H, G/H). This remarkable fact points at a deeper connection between 
supersymmetry and the geometry of Lie groups. 

We will consider free Weyt-Majorana 2d-fermion fields which are functions of 
the coordinates z = x + iy and ~= x - i y .  For later use we also introduce at this 
point the Grassmannian coordinate 0 associated with z. The superconformal 
transformations defined by an infinitesimal displacement vector field V(z, O) 
=Vo(z)+Ovl(z) which is any analytic function of z and the Grassmannian 
coordinate 0 (note that v~ is anti-commuting) will be given explicitly by: 

6Z=Vo(Z)+½Ovl(z ) and 60=½(vl(z)+OO~vo(z)). (1) 

The model is described by the Lagrangian 

1 i i 1 a a L=~tp @p +~Z 3~Z , (2) 

where the ~pi(z, ~) transform under an as yet unspecified real representation r of 
dimension d(r) of a compact Lie group H and the Xa(z, if) are in the adjoint 
representation of H whose dimension we denote by D. By the equations of motion 
~pi and / "  are functions of z only, and we have 

tfi(z)ty(w)~ z - w  (3) 

and similarly for the Z" field. One can define two currents: 

and 

J ;  -~ _ l ~ i T a ~ J  2~ ~ij~ (4) 

j a  1,"  b c z=~JabcZ Z , (5) 

where f.bc are the structure constants of the group H and the generators T~ in the 
representation R satisfy 

IT", Tb]ij =f~bcTi~. (6) 

J"z(z) and J~(z) will satisfy 

and 

(7) 

a 8 f l ~ - 0  (8) 

which reflects the fact that the transformations of H which leave the Lagrangian (2) 
invariant can be any analytic functions of z. We have then the well known Kac- 
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Moody algebra in operator product form: 

k6 ab fabfl;(W) 
J;(z)J~(w)~ 2(z_w) 2 + z - w - - '  (9) 

where k = c(r)d(r), the central extension, is equal to the Dynkin number k(r) and 
D 

c(r)c~ij = (T"T")ij. As usual we should interpret this equation in the following way 
[5, 6]. Define the generator J~ of an H-transformation parametrized by analytic 
functions co°(z) by: 

s o  = } dz° a(z)S;(z) " (10) 

The variation of the field ~pi will be 

' 2@/} 5~p~(w) = [Jr,, P (w)] = dzo~"(z)J~,(z)¢(w) = -&(w)T~ty(w),  (11) 

and in particular the transformation of the generators themselves will be 

(~°J~(w) = 2@z ~ dz°ob(z)J~(z)J~'(w) =f"b~OY(W)J~(w) + k(r)z Owco"(w), (12) 

where the contour circles around w. From these remarks follows 

o b k ( r )  ° b [Jm, J.] =f.bfl~+. + m ~ -  6 '  bm+n,o, (13) 

where J~(z)=Y~.z-n-IJ.. We have similar relations for J"x(z) with 
k =  - Lb Lbc - 

The only non-vanishing component of the energy momentum tensor, given by 

is an analytic function of z and the generator of the conformal transformations (1). 
The Virasoro algebra [12] is given by 

c 25(w) ~?wTB(w) 
T.(z)T.(w)..~ 2(z_w) ¢ + (z_w)2 + ( z -w)  ' (15) 

d(r)  + D 
where c -  is the central charge for free fermions. The operator product 

2 
expansion (O.P.E.) of T n with the fermionic field ¢ is 

1 ¢ ( w )  i ~ p  (w) (16) 
TB(Z)¢(w)~ 2 (z--w) ~ + (z--w) " 

This equation expresses the fact that the fermionic fields have a conformal weight ½ 
under a conformal transformation. One checks similarly that the conformal weight 
of the currents is one. 

If one wants to have a nontrivial realization of supersymmetry linking these 
two sets of fields, one first has to construct a candidate for the generator of super- 
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conformal transformations Te(z) which will be the partner of TB(z), and satisfy the 
Neveu-Schwarz-Ramond algebra [10]: 

½ TB(w) 
Tr(z)TF(w) "~ 4 ( z -  w) 3 + ( z -  w~' (17) 

3 TF(w) ~3wTr(w) 
TB(Z)T,e(w) ~ 2 ( z -  w) 2 + ( z -  w~" (18) 

The first of these equations is the expression of supersymmetry, while the last one 
simply shows that the conformal weight of TF is -~. As in (15) all the coefficients are 
determined unambiguously by the fact that T~ and Tv must be the generators of 
superconformal transformations (1) except for the central charge which to be 
consistent with (15) must be ~ = 2/3e (for more details about  super conformal field 
theory see [13]). The most general operator of weight 3/2 that can be built out of 
the ~p and Z fields is 

Tv( z ) = l io~ f abczazb z c -I- l i flth jk lpilpJlp k -I-iTz"J" ~ . (19) 

It is understood that the product of several operators at the same point is normal 
ordered with respect to the modes of these operators. Here ~, fi, 7 are unknown 
constants. Notice the presence of a term tri-linear in ~p~. Since TF must be a scalar 
under a transformation of H, and since the ~p~ anti-commute thj~ must be a totally 
antisymmetric tensor satisfying 

and 

Y~;~jk~ + Tgrhi~ + Tj~t/k,~ = 0 (20) 

T~fli~k = 0 .  (21) 

We want to show now that it is possible to fix the constants e, fl, and 7 in such a way 
that T B and TF satisfy (15) and (17) and that the central charge is exactly the one 
corresponding to free fermions. In taking the O.P.E. of TF with itself one sees that 
there are two types of dimension two operators which can appear: either the usual 
current-current terms J~,J~ or J~J~ which come in the Sugawara construction of 
the energy-momentum tensor given any Kac-Moody algebra (this was extensively 
studied by Goddard and Olive in [-9], see also Zamolodchikov and Knizhnik [5]), 
or terms in four fermions like thjktlrsk~pipi~prp ~ and T~ Tk~Ip~pJpk~p z. Since these terms 
are not present in (14) they must appear either in combinations such that they 
cancel each other or be simply absent. One sees immediately that two cases are 
possible depending on whether the tensor ~ijk exists or not in the particular 
representation r we are considering. However, we will see that it is not necessary to 
make an exhaustive study of the representations which do admit such a tensor for 
different groups since the possible solutions will have a simple geometrical 
interpretation. 

a) In the case where ~/~jk is absent, the above condition imposes the following 
constraints on the generator T~: 

T~Tk~ + Tk~.~{ + Tj]T~ = 0. (22) 
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Then from (17) and (14) one finds 

1 
5 2 = 7  2 =  (23) 

2(c~ + k(r))" 

Note finally that in this case the energy momentum tensor is 

TR(z) = 1 (j~zj, z + y~y~), (24) 

and that the normalization can be easily checked using the null vector condition of 
[5] by applying the two sides of this equation on some highest weight vector of the 
Virasoro and Kac-Moody algebra. Let's stress that this equality is a purely 
quantum mechanical effect. Also from the equality ~ = j c  = ½(d(r) + D) we have the 
constraint 

2c(r) _ 1, (25) 
G + k(r) 

which severely restrict the possible representations the ~pi can be in; but we will 
return to this later on. The very same constraint (25) comes in the study of 
Goddard  and Olive [9] through the requirement that the Virasoro algebra 
associated with the ordinary Kac-Moody algebra (9) be precisely (24). 

b) In the second case the constraint (22) is two restrictive. We define: 

and 

from which follows 

and 

t~ijkl~ijr = - -  c(r)~)kr , (26) 
- -  a t l  a a a a Tijk~- T.T~z + GTj, + TjkT., (27) 

Nidk l  = ~hjrrlklr q- ~kdr~ dtr "4- rOkrrhlr , 

½ N . T = - c ( r ) d ( r ) ~ ( r ) ,  

(28) 

(29) 

½TT = c(r)d(r) [k(r) + G -  2c(r)]. (30) 

We will then replace the constraint (22) by 

N i j k l  = - -  ) , T  i jkl  , (31) 

and one finds 2 =  g(r) Again we determine the constants from (17) 
k(r) + G - 2c(r) " 

C(2 = 2fl2 = ~,,2 ; 0~2 1 g(r) (32) 
2(G + k(r)) ; 2 = G + k ( r ) -  2c(r)" 

So we see that when the constraint (22) or (31) are satisfied, the Lagrangian (2) is 
invariant under the superconformal transformation (1) whose generator is given 
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by (19)• The transformations of the fermionic fields are 

6,S(w)  = ~ ~ dzvl (z) Tv(z))~"(w) = - i2e[ J"z(w) + J~(w)] 

and 

(33)  

1 
~v1~#(W) = ~ i  ~ dzv l (z) W~(z)~Pi (w) 

1 j k . = -i2o~[ Ti~za(w)lpJ(w) + ~ rhjktp (w)tp (w) l (34) 

We define the two superfields 

I • i 
S"(z, O) = ~ Z"(Z) + O[J~(z) + Ji(z)] - ~ Z"(z) + OJa(z), (35) 

1 ~ k 

i - ~ ~pi(z) + O~b~(z). (36) 

We are now in the position to see the full structure of the super-Kac-Moody 
algebra by simply taking the operator product of these superfields: 

Sa(zl, Oa)Sb(z2, 02)= k/2 6,b + 012 f ,  bcSC(z2, 02), (37) 
Z12 Z12 

S"(zl, O 0~"(z~, 0~) = 01~ E_ T~(z~,  0~)3, (38) 
Z12 

~g'(zl, 01)~PJ(z2, 02)= k/26U+zl~ zl~ L ~  ~'~(z:, 0~)- r~S"(z~, 0~) , (39) 

1 
with k = ~ z  = c~ + k(r), and where we have used the notation z~ 2 = Z l - z z -  0102 

and 012 = 0 1 -  02. The first of these equations is nothing but the supersymmetric 
extension of the Kac-Moody algebra (9), the central charge k being as it should be 
the sum of the one corresponding to J~, and J~ since they commute with each other. 
The second expresses the transformations properties of the ~/'~ field under H. More 
surprising is the structure of the last equation. Notice that it exhibits the same 
central charge k and that the 7/i play a role very similar to the supercurrents S". All 
this is best understood by looking at the bosonic part of the equations above. If we 
define J"(z)= W~. z-"-l-l~, and ~bi(z)= Z,z-"-l~bi,, we have for the modes zero 
denoted by j" and ~o ~, respectively: 

Ey, jb] =Lbcj~, (40) 

1 
T"  ~° " (41) [ J ,  ~o j ]  = _ i , / j  + ~ rh,/kq~ , 

V z  



Super-Kac-Moody Algebras 517 

and  

[ ja  q)i] = __ Ti j(pj  (42) 

Since for all possible  combina t ions  of  g0 i and  ja the Jacobi  identi ty easily obtains,  
this is the Lie a lgebra  9 = h + m of  a g roup  G 3 H with ad (H)m = m; f l  and  (p~ span  h 
and  m respectively and  G/H is an h o m o g e n e o u s  space. This  is welt k n o w n  to 
cor respond  to the decompos i t ion  of the tangent  fields of  the principle bundle  
G(H, G/H) at the identi ty into its vertical and  hor izonta l  componen ts ,  and  given 

1 
the cor responding  invar iant  connec t ion  we recognize - ~ -  rh~ k as the tors ion and  

v 
- T~Tk~ as the R iemann  tensor  [-14]. The  cons t ra in t  (31) is the Bianchi identity. 
These identifications prov ide  the geometr ical  in terpre ta t ion  we were looking  for. 
Specializing to  the case were the tensor  ~hjk is absent  is then equivalent  to impos ing  
tha t  G/H is a symmet r ic  space I15]. One  also recovers  the result  of  [9] tha t  free 
fermions in the adjoint  represen ta t ion  of  a c o m p a c t  Lie g roup  are supersymmet r i c  
by themselves.  As a last r emark  we would like to stress once m o r e  tha t  all this rich 
s t ructure  is the result of  impos ing  supersymmetry .  
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