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Abstract. We present a methodology for automated sizing of analog cells using statistical optimization in a simula- 
tion based approach. This methodology enables us to design complex analog cells from scratch within reasonable 
CPU time. Three different specification types are covered: strong constraints on the electrical performance of the 
cells, weak constraints on this performance, and design objectives. A mathematical cost function is proposed and a 
bunch of heuristics is given to increase accuracy and reduce CPU time to minimize tile cost function. A technique 
is also presented to yield designs with reduced variability in the performance parameters, under random variations 
of the transistor technological parameters. Several CMOS analog cells with complexity levels up to 48 transistors 
are designed for illustration. Measurements from fabricated prototypes demonstrate the suitability of the proposed 
methodology. 

1. Introduction 

The design of analog VLSI building blocks, and in 
gene.ral the design of any integrated circuit, comprises 
three major steps. First, a suitable schematic must be 
selected. Then this schematic must be sized to com- 
ply with required performance specifications on gain, 
bandwidth, slew-rate, etc., as well as to meet design 
objectives regarding area, power consumption, etc. Fi- 
nalb, a layout must be generated for the sized schemat- 
ics. Of these three major steps, this paper focuses on 
the problem of analog sizing. 

Analog sizing is a very complicated, time-con- 
suming task whose automation has drawn strong atten- 
tion in recent years, where several tools and method- 
ologies have evolved [1-8]. Two basic reasons lie be- 
hind these developments: a) market pressure to reduce 
the design cost of the analog components of modern 
analog-digital ASICs and b) the need for custom ana- 
log design to be available to ASIC system designers. 

Most previously reported approaches for automated 
analog cell design are closed systems covering only 
a limited number (though not necessarily small, see 
for instance [1]) of schematics. Some tools work on 
a fiat schematic library where topologies are defined 
at the', device-level [1, 6, 8, 9]. In others [3, 5, 7, 10] 
architectures are defined at the conceptual level as a 

connection of sub-blocks (differential pairs, current 
mirrors, etc.), each of which can be expanded hier- 
archically down to the device-level. Tools also dif- 
fer among themselves depending on the sizing strategy 
used. In some approaches, the sizing process is re- 
duced to a constrained optimization problem [6, 8]; in 
others, sizing is performed by following specific de- 
sign plans for each topology, previously developed by 
expert designers and stored in the tool database [1, 3, 
5, 7, 10]. 

Closed sizing systems are all equation based; that 
is, the knowledge about the available topologies is pro- 
vided as analytical design equations. The associated 
design equations for new topologies must be generated 
- a task for only real analog design experts to tackle. 
Another drawback relating to closed systems is that 
they do not allow the exploration of topology enhance- 
ments as conceived by designers with some expertise. 

Some of the drawbacks of closed systems are over- 
come by the approaches in [9, 11], which are also equa- 
tion based. The distinctive feature is that some of the 
design equations for new topologies are automatically 
generated via auxiliary symbolic analysis tools [9, 12]. 
Expert concourse is not further required to that end. 
Unfortunately, symbolic analysis tools provide equa- 
tions for neither DC nor large signal transient charac- 
teristics, whose associated design equations must still 
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be manually provided. Hence, the methodology is only 
partially open. Furthermore, the level of complexity for 
AC automatic modeling is limited by the capabilities 
of symbolic analysis tools (currently, about 15 MOS 
transistors using high-frequency MOST models and 
workstation standard configurations). Consequently, 
this approach is not the most suitable for the auto- 
mated sizing of complex analog building blocks (for 
instance, fully-differential opamps), or for applications 
where large signal specifications play a major role, for 
instance, oversampled modulators for high resolution 
A/D converters [13]. 

Whether closed or open, equation-based systems 
have a common drawback in that sizing is carried out 
using simplified analytical descriptions of the blocks. 
Hence, manual fine-tuning using an electrical sim- 
ulator and detailed MOS transistor models may be 
necessary once rough automated sizing is completed. 
This drawback is overcome in the so-called simulation- 
based systems [14], which also reduce sizing to a con- 
strained optimization problem, and aim to solve it by 
following an iterative procedure built around an elec- 
trical simulator. No design equations are required in 
these approaches; the design parameters are updated 
at each iteration based on the results provided by sim- 
ulations with detailed transistor models. Thus, they 
are intrinsically open. A representative example of 
this methodology is DELIGHT.SPICE [14] where DE- 
LIGHT (a general algorithmic optimization tool) and 
SPICE are combined. Also, advanced electrical simu- 
lators, like HSPICE [ 15], incorporate optimization rou- 
tines. However, the optimization routines in both tools 
search for a local solution, and consequently are typ- 
ically used to redesign cells whose performance spec- 
ifications are close to the design goals (for instance, 
technology updating of a cell library), but are inappro- 
priate to size analog cells from scratch. This is a real 
challenge in analog design automation and requires the 
development of other techniques. 

This paper presents a simulation-based approach for 
global sizing of arbitrary topology analog cells us- 
ing statistical optimization. We demonstrate that by 
combining proper cost function formulation and in- 
novative optimization heuristics complex cells are de- 
signed starting from arbitrary initial points, within rea- 
sonable CPU times and with no designer interaction 
required - a very appealing feature for ASIC appli- 
cations. We present results obtained for two fully- 
differential CMOS opamps, a comparator and an 

analog output buffer, which were sized using the pro- 
posed methodology, fabricated in different CMOS 
technologies, and whose performance was corrobo- 
rated from actual silicon prototypes. The proposed 
technique is also extended to design for low variability 
incorporating mismatching information in the design 
procedure. This is illustrated in the design of a CMOS 
folded-cascode operational amplifier. 

2. Some Generalities on Optimization-Based 
Sizing 

Analog sizing is a constructive procedure to map cell 
specifications into design parameter values. Design 
specifications are given a broad meaning here which 
includes constraints on the electrical performance pa- 
rameters of the cell as well as design objectives. Let us 
consider for illustration purposes the output buffer of 
figure 1, one of the examples covered in this paper. A 
possible specification set for this circuit could include 
constraints on its DC gain (Ao > target), input capaci- 
tance (Cin < target), 3-dB frequency (fadB > target), 
and output voltage range (target < OS < target), in 
addition to the design objective of minimum possible 
power consumption. With regards to the design param- 
eters, these include transistor dimensions and passive 
component values. 

In a generic circuit, the design parameters can 
be viewed as components of a vector x r = 
{Xl, X 2 , . . .  , X N }  defining a multidimensional de- 
sign space. Thus, performance parameters and the 
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Fig. 1. A CMOS output buffer. 
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features involved in design objectives are given as 
functions of x; referring again to the example 
of figure 1: Ao(x),Ci,~(x),f3aB(X),OS(x), and 
Power(x). Then the problem of sizing is formulated as 
a constrained optimization problem; in particular, for 
the case of the buffer of figure 1, 

minimize Power (x) 
Ao(x) > target 

subjected to Cin(x) < target (1) 
fadB(X) > target 

target < OS(x)  < target 

U~fortunately, even for elementary analog cells like 
that shown in figure 1, the analytical solution to the 
sizing problem is not possible due, among other fac- 
tors, to the following: 
• Design equations, i.e., functional relationships 

among performance parameters and design objec- 
tives on one hand, and design parameters on the 
other, are very difficult to obtain accurately. 

• These relationships are typically highly nonlinear 
and, consequently, unsolvable analytically. A fur- 
ther complication arises due to the large dimensions 
of the design and the specification spaces. 

• The need to minimize some functions forces the cal- 
culation of first and second derivatives and hence 
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F i g .  2 .  Iterative analog cell sizing: (a) general concept; (b) manual 
and automated design updating management. 

introduces additional complications to the analyti- 
cal solution process. 
Due to these difficulties, analog circuits are most 

conveniently sized by using an iterative, dynamic pro- 
cess. This concept is illustrated in figure 2: starting 
from an initial design parameter estimate, Xo, a dis- 
crete sequence of movements (represented generically 
as Axn) is performed through the design parameter 
space until an equilibrium solution point x* is found. 

A key component of this iterative loop is process 
management: the calculation of the direction and mag- 
nitude of the movement Axn to be made at each itera- 
tion. In manual design, Ax~ is chosen by the designer 
based on his/her knowledge of the circuit structure be- 
ing sized - a difficult and time-consuming task even 
for experienced analog designers. In automated de- 
sign, the selection of Axn must be performed by the 
computer based on the evaluation of some critical cir- 
cuit performance indicators. A convenient approach to 
do this is to recast the problem formulation as a cost 
function • (x) which quantifies the degree of achieve- 
ment of the design goals and their relation to the design 
parameters. Thus, the parameter updating to be done 
for the subsequent iteration Axn is selected at each 
iteration using functional analysis data of ~(x) .  This 
approach also provides simple and accurate criteria to 
finish the sizing process at points where the cost func- 
tion is either maximized or minimized. 

In the simplest case, Axn is calculated by using 
pieces of information calculated only at x,~. However, 
as demonstrated in this paper, the use of additional in- 
formation from previous points, at time instances n -  1, 
n - 2, etc., may produce more robust solutions of the 
sizing problem, in the sense of yielding cells whose 
specifications have lower variability when statistical 
variations of the technological parameters are taken 
into account. In this more general case, the updating 
process is described as a high-order nonlinear discrete- 
time system, 

Axn = S [ ~ 5 ( x ) , x n , x n - l , x n - 2 , . . .  ,Xn-M] (2) 

As stated in the introduction, we will assume that 
performance evaluations in figure 2 (equivalently, the 
calculation of performance specification values and the 
values of the features involved in the design equations 
as functions of x) are made using electrical simulation 
and detailed transistor models to guarantee accuracy 
of the sizing process. Many different alternative im- 
plementations of figure 2 are possible depending on: 
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a) formulation of the cost function itself, b) the updating 
procedure. Two major alternatives can be roughly iden- 
tiffed, depending of the functional structure of S[*] 
in (2): 
* Deterministic, incremental techniques where Axn 

calculation uses information about the derivatives 
of the cost function. This is an important draw- 
back since analytical expressions for the cost func- 
tion and its derivatives as functions of the design 
parameters are not commonly available, so that the 
derivatives must be calculated by numerical interpo- 
lation. Another major drawback is that only Axn 
values which lower the cost function are considered. 
Hence, the optimization process is easily trapped in 
local minima, rendering it very suitable only for fine 
adjustment of the design. 

* Statistical techniques, where Axn is calculated at 
random and hence requires no information about the 
cost function derivatives. 
Parameter updating in deterministic techniques is 

done only in the direction which lowers the cost func- 
tion. This makes them very sensitive to the starting 
point and hence inadequate for global circuit sizing. 
This is overcome using statistical optimization tech- 
niques where movements in the design space are done 
heuristically, following statistical optimization princi- 
ples [t6]. The price to pay for an independent initial 
point is a larger number of iterations and hence longer 
CPU times. However, as shown here, proper formu- 
lation of the cost function, the movement generator, 
and the cooling schedule, adapted to the nature of ana- 
log synthesis, palliates the high computational cost and 
thus provides a convenient methodology for global de- 
sign of analog cells. 

allowed. Hence, if any setting of the design parame- 
ters (equivalently, any point of the design parameter 
space) does not satisfy one strong restriction, it must 
be rejected immediately. 
Weak restrictions: These are the typical perfor- 
mance specifications required of analog building 
blocks, i.e., Ao > 80dB. Unlike strong restrictions, 
weak restrictions allow some relaxation of the tar- 
get parameters, making such circuit sizings which 
do not meet such specifications acceptable. 
Design objectives: Stated as the minimization 
(maximization reduces to this case by either chang- 
ing the sign or using the inverse of the function to 
maximize) of some performance features, 

minimize y%(x) l < i < P  (3) 

for instance, minimize -GB of an opamp (equiva- 
lently, maximize GB), where GB denotes the gain- 
bandwidth product; or minimize the occupied area 
of the circuit. 
Mathematically, the fulfillment of these specifi- 

cations can be formulated as a multi-objective con- 
strained optimization problem, 

minimize yv~(x), 1 < i < P 

{ ysj(x) > Y~j or y~j(x) < Y~j, 

I < j < Q  
subjected to 

ywk(x) > Y~ok or ywk(x) < Ywk, 

l < k < R  

(4) 

3. Cost Function Formulation 

A first step towards devising a tool for automated sizing 
of analog cells using statistical optimization is to for- 
malize the setting of performance specifications. In a 
more general case, three different specification classes 
must be considered: 
* Strong restrictions: These are specifications 

whose fulfillment is considered essential by the 
designer; for instance, the phase margin of an 
opamp must be larger than 0 (PM > 0) for sta- 
bility [17]. No relaxation of the specified value is 

where y ~  denotes the value of the i-th design objec- 
tive; ffsj and Ywk denote values of the circuit speci- 
fications (subscripts s and w denote strong and weak 
specifications, respectively); and Y,j and Ywk are the 
corresponding targets (for instance, Ao >_ 80dB, set- 
tling time < 0.1#s). 

The cost function is defined in the minimax sense as 
follows, 

minimize e;(x) 

= max{Fq,(y,~i), Fsj(ysj), F~k(Ywk)} 
(5) 

where the partial cost functions F~ ( ® ), Fsj ( • ), 
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and Fwk( * ) are defined as 

t% (Y~i) = - ~ wi log(ly,~il), 
i 

Fsj(ysj) = Ksj(ysj,  Ysj) 

F~k(y~k) = --K~k(y~, Y~k)log \Y~kJ 

(6) 

where wi (called weight parameters for the design ob- 
jectives) is a positive (alternatively negative) real num- 
ber if Y,~i is positive (alternatively negative), and for 
Ks:i( * ) and Kwk( * ) we have 

- o %  if strong 
Ksj (Ysj, Ysj ) = restriction holds 

~ ,  otherwise 

ecsgn (kk), if weak 
= restriction holds 

kk, otherwise 

(7) 

K.k(y~k, Y~k) 

where kk (weight parameters assigned to weak restric- 
tions) is a positive (alternatively negative) real num- 
ber if the weak specification is of > (alternatively _<) 
type. Weight parameters are used to give priority to the 
associated design objectives and weak specifications. 
As shown in the cost function formulation, only rela- 
tive magnitude of the weight parameters of the same 
type makes sense. In (7) weak specifications are as- 
sumed positive. Sign criteria is reversed for negative 
specifications. 

Strong restrictions are checked first at each itera- 
tion. If any of them are not met, the corresponding 
movement must be rejected. Otherwise, weak restric- 
tions are examined. Weak restrictions have priority 
over' design objectives. If some weak restriction is not 
fulfilled, the cost function is built only with their con- 
tribution. Hence, if no circuit sizing is able to cover all 
weak specifications, the optimization process will pro- 
vide results as close as possible. Once all of them are 
met, the design objectives are evaluated and their in- 
fluence in the cost function guides their maximization 
or minimization. 

4. Parameter Updating and Process Management 

Figure 3 shows a block diagram illustrating the opera- 
tion flow in the proposed methodology. The updating 

vector, Axn, is randomly generated at each iteration. 
The value of the cost function is calculated at the new 
parameter space point and compared to the previous 
one. The new point is accepted if the cost function has 
a lower value. Unlike deterministic techniques, it may 
also be accepted if the cost function increases, accord- 
ing to aprobability function, 

/ ' ,4 
P = P o e  T (8) 

depending on a control parameter, T. The random 
character of movements and the statistical acceptance 
of those which increase the cost function enable es- 
caping from local minima and hence wide exploration 
of the design space. This probability of acceptance 
changes during the optimization process, being high at 
the beginning (for large T) and decreasing as the system 
cools (decreasing T). This is the general concept lying 
behind simulated annealing optimization techniques - 
a process whose name is justified by its analogies to the 
physical annealing in solids [16]. The tool proposed 
herein incorporates new heuristics relating to both pa- 
rameter updating and the cooling schedule itself, as 
explained below. 

4.1. Cooling Schedule 

Cooling schedule refers to the strategy used to mod- 
ify the temperature while the process evolves. Unlike 

~PAR INITIAL DES1GN / 
AMETER ESTIMATE x 0 J  

COST FUNCTION [ 
EVALUATION (b(x) 

(ELECTRICAL SIMULATION) / 
J 

~ NO ~- 

Fig. 3. Operation flow in the proposed methodology. 
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classical simulated annealing algorithms [ 16], where T 
in (8) decreases monotonically during the process, our 
tool uses a composed temperature parameter, 

T = a(x)To(n)  (9) 

where n denotes the iteration count, To(n) (the nor- 
malized temperature) is a function of n, and o~(x) (the 
temperature scale) is a function of the position in the de- 
sign parameter space. Our tool incorporates heuristics 
to choose To and ce for increased convergence speed, 
namely: 
• Non-monotonic and adaptive normalized tempera- 

ture. 
• Use of a nonlinear scale, with different expressions 

for different regions of the design parameter space. 

4.1.1 Normalized Temperature. Instead of a conven- 
tional slow monotonically decreasing temperature [ 18], 
a sequence of fast coolings and re-hearings is used. In 
circuits with not very demanding specifications, this 
enables to obtain feasible designs for low iteration 
counts. Also, for those cases where demanding speci- 
fications are asked for, we have found that this strategy 
reduces iteration count by, on the average, a factor of 
6. Two different evolutionary laws for the normalized 
temperature are incorporated in the tool: exponential 
decreasing, and linear decreasing. For illustration pur- 
poses figure 4(a) shows an exponential schedule with 
eight re-heatings. Initial and final temperatures, num- 
ber of coolings, decreasing law and rate, etc., are com- 
pletely controlled by the user. An alternative cooling 
schedule makes To to change as a function of the per- 
centage of accepted movements, 

To(n) = To(n - 1) + (1 P ) \ ps n) (10) 

where p is calculated as 

number of accepted movements 
P = number of movements (11) 

during the last M iterations, where M is an heuris- 
tic variable whose typical value is around 25;/3 in (10) 
controls the rate of temperature change and has a typical 
value around 0.1; and Ps (n) is a prescribed acceptance 
ratio, which can be fixed or vary with some given law. 
This schedule provides very good results for practi- 
cal circuits, rendering the outcome of the optimization 
process somewhat independent of the specified values 

of the initial and final temperature. Figure 4(b) illus- 
trates this type of cooling schedule. 

4.1.2 Temperature Scale. As (9) shows, the temper- 
ature scale parameter is a function of the position in 
the design parameter space. More specifically, the 
scale depends on which region of the parameter space 
is reached after each movement. This is so done to 
compensate the large differences that may eventually 
appear in the increments of the cost function in the dif- 
ferent regions. Thus, no temperature definition is used 
for those regions where strong restrictions do not hold, 
due to the fact that any design entering this region is 
automatically rejected. On the other hand, in regions 
where some weak specifications are violated, temper- 
ature is given as 

T = To [kmaxl ~ ce(x) = ]~max (12) 

where kmax is the weight associated to the maximum 
among the Fw( • )'s in (6), and To is the normalized 
temperature at the current iteration. Finally, if both 
strong and weak restrictions hold, temperature is given 
as 

r=To lwi[  (xl:  [wil (13) 

where w~ is the weight associated to the i-th design 
objective. 

4.2. Parameter Updating 

Concerning the updating of design parameters three 
kinds of heuristics have been adopted: 
• Changes in the amplitude of the movement Axn as 

a function of the temperature. In particular, at high 
T, large amplitude movements are allowed as they 
are likely to be accepted and favor wide exploration 
of the design parameter space. On the contrary, at 
low T, acceptance probability decreases and, hence, 
only small movements are performed (equivalent to 
fine-tuning the design). 

• The possibility of defining logarithmic scales for 
independent variables. This has been done be- 
cause many design parameters, i.e., transistor sizes, 
bias currents, etc., may vary over several decades. 
For instance, a change of 2#A in a bias current 
does not have the same significance if the previ- 
ous bias current value is 5#A as if it is 100#A; 
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Fig. 4. Cooling schedules: (a) exponential decreasing with 

hence, linear movement of this variable would un- 
derexplore the low bias current range - a draw- 
back which is overcome by using logarithmic scales. 
Discretization of the design parameter space. Many 
design parameters are already discrete in nature, i.e., 
in many microelectronic technologies transistor di- 
mensions can only vary over integer multiples of 
the technology grid. Our discretization consists in 
making discrete those variables which are contin- 
uous, and define a larger size grid for those vari- 
ables which are already discrete in nature. Then, the 

re-hearings; (b) adaptive temperature with given acceptance ratio. 

parameter space can be viewed as a collection of 

hypercubes. Only movements over vertices of this 

multidimensional grid are allowed, being marked 

when they are visited. Thus, if during the optimiza- 

tion process one vertex is re-visited the correspond- 

ing simulation need not be performed. Hence, an 

important number of simulations is saved. When 

this optimization process ends, a local optimization 

is started inside a multidimensional cube around 

the optimum vertex for fine tuning of the design. 
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Fig. 5. (a) Test function with two variables for optimization heuristics comparison; (b) cross section. 

In this local optimization, design variables recover 
their continuous nature or their original grid size. 
Together with these heuristics, large efficiency en- 

hancements are also achieved by proper control of the 
DC electrical simulator routines. For this purpose a 
dynamic, adaptive, DC initialization schedule is im- 
plemented which uses operating point information of 
previous iterations to increase convergence speed of the 
simulator. This yields significant CPU time, especially 
at low temperatures. 

4.3. Heuristics Comparison 

A multiminima analytical function is used in what fol- 
lows to demonstrate the advantages of the proposed 

heuristics. Its mathematical structure for an N- 
dimensional case is 

N 

S(x) = K .  min{ -e  -~ EL~(~k-d)2 H c o s ( x k -  d), 
k = l  

N 
N 2 

- 1 7  oos(x,< + d) + 
k = l  

(14) 

where K, ~, d and 7 are constants. This function has 
one absolute minimum (of value - K )  and many lo- 
cal minima, and exhibits the interesting feature that the 
number of minima increases linearly with the number 
of variables. This means that the complexity of the 
optimization process is determined exclusively by the 

10 
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Fig. 6. Cooling schedule heuristics comparison. 

number of variables, and not by structural changes in 
the cost function. Figure 5(a) shows tfiis function for 
two independent variables. A cross-section is shown 
in figure 5(b). 

The heuristics described in Section 4.1 and 4.2 have 
been tested using the test function in (14) with differ- 
ent number of independent variables. The test proce- 
dure consisted in the repeated execution of the different 
heuristics on the test function, starting from random 
points of the parameter space and with a fixed iteration 
count. For each of these executions the best achieved 
minimum was stored. Experimental results arising 

11 

, les  

from these tests are shown in the three-dimensional 
plots in figure 6. In order to get better insight into the 
test results, the plot of the test function is allowed to 
take only integer values. Hence, theminimumachieved 
at each test execution is represented by its closest in- 
teger value. The X-axis in figure 6 represents the 
magnitude of the achieved minimum (its closest in- 
teger value). The Y-axis corresponds to the number 
of independent variables in the test function f (  • ), 
and the Z-axis represents the percentage of iterations 
that achieved that minimum. Figure 6(a) corresponds 
to a conventional cooling schedule. It had a single 

11 
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cooling with fixed scale in variable movements and 
variable Markov chain length [ 16]. For a function with 
a small number of variables most iterations provided 
the global minimum of the function but this percentage 
decreased rapidly when the number of variables was 
increased. Figure 6(b) corresponds to our improved 
cooling schedule with the same number of iterations. 
The cooling schedule used had four successive coolings 
and re-heatings, variable scale, and a Markov chain 
length equal to 1. Most iterations provided the global 
minimum of the function, even when the number of 
independent variables was increased. 

5. Extension to Low-Variability Sizing 

All heuristics mentioned above assume that devices 
of the same type (i.e., NMOS transistor, PMOS tran- 
sistors, etc.) have identical technological parameters 
(i.e., threshold voltages, intrinsic transconductance, 
etc.) and that these parameters remain constant for a 
given technology. However, this does not hold in prac- 
tice; technological parameters are subjected to large 
random variations which may degrade significantly t h e  
performance of analog cells, specially when small de- 
vices are used [19, 20, 21]. 

Although statistical process variations can not be 
annulled, they can be measured, captured into mod- 
els [19, 20, 21] and incorporated to the circuit design 
process. However, the conventional approach to mea- 
sure performance variations by Monte Carlo simula- 
tions is very costly in CPU time and, consequently, 
not well suited to be used in an iterative optimization 
loop. Since dispersion of the transistor parameter val- 
ues is inversely proportional to the device's area, and to 
the distance among nominally identical devices [21], a 
strategy to reduce variability of the cells is to put ad- 
ditional constraints on the design variables. However, 
this strategy drastically reduces the search space, limit- 
ing the achievement of demanding performances. The 
heuristics described below provides a more convenient 
approach that takes advantage of the large amount of 
data generated during the statistical optimization pro- 
cess. It encompasses a modification of the cost func- 
tion structure and a new comparison methodology, in 
combination to the nonmonotonic cooling schedule. 

First of all, design specifications, and, hence, the 
cost function is made to depend not only on the vector 
of design parameters x, but also on a vector of transistor 
model parameters e. These model parameters change 

during the optimization process as a consequence of 
the dependance of their statistical variability with de- 
vice area and distances between devices [21]. At each 
iteration, design parameters are updated according to 
the heuristics in Section 4.2 and device model parame- 
ters are changed according to the statistical distribution 
of the technological independent parameters [20]. In 
addition to enlarging the number of parameters, a new 
addend is incorporated to the cost function to evaluate 
the sensitivity of performance specifications to device 
model parameter variations. Such addend is 

1 ~ i = l  y~peci (X,~ , e . ) -  Yspec~ (X~-  1 ,e.~_ 1 ) 
y~po~ (x~ ,e,~) ~ - z - - - - - - - -  

E5=1 I j,n - e j ,n- l l  

"Wl " W2 t 

(15) 

which incorporates information from the last M iter- 
ations, where M corresponds typically to the number 
of iterations performed in one cooling. Each addend 
in (15) contains the ratio of the relative increase in the 
specifications (either weak specifications or design ob- 
jectives) to the increase in the L device model param- 
eters with respect to previous iteration. The numera- 
tor evaluates relative variations of the P performance 
specifications with respect to previous iteration due to 
variations in the design parameters x, and the device 
model parameters e. 

The amplitude of design parameter variations de- 
creases along each cooling. Therefore, the variability 
of performance specifications is evaluated with higher 
precision as the optimization process evolves. This fact 
is reflected in (15) by the weight parameter wl, which 
is given by 

W l  = r n - 1  (16) 

where r in an heuristic parameter larger than 1. Hence, 
wl increases along a cooling, giving more importance 
in (15) to the addends corresponding to the last itera- 
tions within each cooling. 

A similar weighting between different coolings is 
done with parameter w2, which is given by 

w2 = r ' l -  t (17) 

where r'  is a heuristically chosen constant parameter 
which must be smaller than 1 and I is the ordinal of the 
current re-heating within the cooling schedule. 
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The cost function at some given iteration must be 
compared with some previous iteration in order to ac- 
cept: or reject the current design parameter movement. 
A new comparison methodology is introduced adapted 
to the new cost function formulation. Each iteration in 
a given cooling is compared with the iteration of equal 
ordinal from the best of previous coolings, for accep- 
tance or rejection, following the statistical optimization 
principles of Section 2. If rejected, the design point of 
the best cooling is adopted as new point in the current 
iteration and the optimization process continues. Since 
(15) is added to the cost function, the optimization pro- 
cess tends to minimize it. That implies small specifi- 
cation increases in the last M iterations and, hence, 
reduced performance statistical deviations. 

A mathematical test function has also been used here 
to prove the method's capability and as a benchmark 
for heuristics refinements. Its analytical slruture for an 
N-dimensional case is 

k = l  

+ h  dist2(X'Xmin) + E sin 
k = l  ' 

(18) 

The first addend in (18), sets the mean value of f (  • ) 
and the second one creates variations around that mean 
value. Statistical deviations are simulated at the third 
addend by means of a random variable, h. The global 
minimum of dispersion is located in Xmin. Sinusoidal 
variations set local dispersion minima. A method to 
reduce variance will be acceptable, if the final solution 
is clese to Xmin. 

For a test example with eight independent variables 
comprised in the interval xn E [-0.7, 0.7], a mean 
value K = 100 and sinusoidal variations with an am- 
plitude K ~ = 10, the new heuristics provides a solution 
to a distance of 1.75 from the global minimum, where 
standard deviation is o- = 0.25. A conventional statis- 
tical optimization technique ends in distances around 
12 from Xmin, where standard deviation is cr = 12. 

ment of silicon prototypes of the circuits demonstrate 
the feasibility of the approach. 

6.1. Fully Differential Class-AB Opamp with 
Dynamic Biasing 

Let us first consider the fully differential opamp of fig- 
ure 7 [22], intended for a 16bit@ 16-KHz second order 
EA modulator. This class-AB opamp includes dy- 
namic biasing of the output branches to obtain large 
output swing and high slew-rate, and uses a dynamic 
common-mode feedback network. These advanced cir- 
cuit strategies, and the complexity of the circuit itself 
(it contains 48 transistors) renders its sizing a diffi- 
cult task, hard to handle for system level designers. 
However, the herein proposed methodology was able 
to automatically size the circuit for the intended appli- 
cation after I hour CPU time on a 100mips sparcstation, 
starting from scratch and with no designer interaction 
required. Table 2 shows the sizing obtained. 

The first column in table 1 contains the design goals, 
which includes a design objective on the power con- 
sumption and weak restrictions on the gain-bandwidth 
product (GBW), phase margin (PM), input white noise 
and output swing (OS). Figure 8 shows the evolution of 
the cost function during the optimization process. Note 
that the vertical axis contains two regions, separated by 
a dashed line. The weak region corresponds to the case 
where any of the weak restrictions is violated, while 
the objective region corresponds to the case where all 
weak restrictions are fulfilled; inside this region the 
optimization process focuses on the design objectives. 
Note that a good design (meaning one that fulfills all 
the weak restrictions) is obtained after 750 iterations. 
Simulated results corresponding to the obtained sizing 
are shown in the second column of table 1. 

Figure 9 is a microphotograph of a CMOS 1.2#m 
double poly n-well prototype of the fully differential 
opamp. Measured results from the silicon prototype 
are also shown in table 1. The EA modulator CMOS 
prototype, which was built using this opamp, displayed 
a measured resolution of 15.7bits @ 16KHz. 

6. Practical Results 

Proposed techniques have been applied to a wide vari- 
ety of analog building blocks. Results are shown for the 
design of two fully-differential opamps, a comparator 
and an output buffer. Simulated results and measure- 

6.2. Fully-Differential Folded-Cascode Opamp 

As a second example, let us consider the folded- 
cascode fully-differential opamp of figure 10, which 
displays the sizes provided by the tool. These sizes 
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J 

Fig. 7. Fully-differential opamp. 

Table 1. Simulated and measured results for the class-AB opamp. 

Specifications Simulated Measured Units 

Ao >_ 70 74.9 74.6 dB 
G B W  > 20 19.7 19.4 MHz 
P M  _> 60 63.3 65 o 
Input white noise _< 50 44.7 - n V / x / ~  
O S  > 7 8.0 8.2 V 
Offset - - 3.35 mV 
Power minimize 4.3 4.3 mW 

Table 2. Sizing for the opamp of figure 7. 

M1,2 149.2/2.2 
Ma,4 22.0/2.2 
M5,6 80.4•2.2 
M7,8 11.8/2.2 
M9,1o 149.8/2.2 
Ml1,12 65/2.2 
M13,14 78.8/2.2 
M15,16 34.2/2.2 
M17,18 121.8/2.2 
M19,2o 142.8/2.2 

/zm /~m M21,22 48.2/2.2 
M23,24 42.8/2.2 
M25,26 6.2/2.2 
M27,2s 5.4/2.2 
M29,3o 78.8/2.2 
M31,a2 34.2/2.2 

Maa-4s 5.0 / 1.2 
Mblas 378.0/5 
C1-4 0.4 
Iblas 74 

pF 
/zA 

were obtained for the specifications needed in a 
17bit@40KHz fourth order EA modulator. The spec- 
ifications are given in the first column of table 3. Once 
again only the power consumption was a design objec- 
tive. The optimization process started from scratch on a 
10-dimension design space and required about 45mins. 

of CPU time on a 100mips sparcstation. Simulation 
results for the sized circuit are shown in the second 
column of table 3. The opamp has been integrated in 
a CMOS 1.2ram double poly n-well technology. Ex- 
perimental results are given in the third column of ta- 
ble 3. The final E A  modulator prototype displayed 
16.8bit@40KHz [23]. 

6.3. Regenerative Comparator 

The comparator used in the same 17bits EA modu- 
lator was designed using the high-frequency regen- 
erative latch of figure 11 to meet the specifications 
of table 4. The simulated and measured results of 
the sized schematics provided by the design tool are 
also shown in table 4. As for the previous opamp, 
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3 .5  

~ 2 .5  

£' 1.5 
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-0.5 ' 56o lo'oo 
0 # iterations 

Fig. 8. Cost function evolution for the optimization of figure 7. 

o 

.> = 

©~z0 

Fig. 9. Microphotograph of the fully-differential opamp of figure 7. 

measurements correspond to a prototype built in a the measured resolution time and have found that they 
CMOS 1.2#mdoublepoly n-welltechnology. Wehave can be fully explained by taking into account the dy- 
analyzed the origin of the slight deviations observed in namics of the measurement set-up. 
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T  618/3 
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t/A 
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Fig. 10. Fully-differential folded-cascode opamp. 

Table 3. Simulated and measured results for the folded-cascode opamp. 

Specifications Simulated Measured Units 

Ao > 70 78.52 76.01 dB 
G B W  (lpF) > 30 34.88 - MHz 
G B W  (12pF,1Mf~) 4.17 4.21 MHz 
P M  (lpF) > 60 66.28 - ° 
P M  (12pF, lMf~) 87.2 86.8 o 
Input white noise ___ 12 13.53 - nV/v/-Hz 
S R  ~ 70 74.81 70.5 V/,us 
O S  > 4-3 =I=3.2 4-3.0 V 
Offset - - 3.35 mV 
Power minimize 1.95 1.93 mW 

6.4. High-Frequency Analog Buffer 

The analog buffer of figure 1 was designed for very low 
input capacitance. The sizing obtained after 30mins 

2.4/1.8 "1 ~ 2.4/1.8 

2/18 ~-~ 10.4/1.8 ~ 2/1.8 

I *° IE IE 12.2/1.8 / 

2/1 8 ~ / 1 . 8  

Fig. 11. Regenerative latch. 

CPU time is shown in table 5. Table 6 shows the spec- 
ifications, where the DC gain (A0), output range (OS), 
and power consumption are design objectives; the 3-dB 
frequency is a weak restriction, and the input capaci- 
tance is included as a constrained design objective. As 

Table 4. Simulated and measured results for the comparator. 

Specifications Simulated Measured Units 

TPHL < 20 8.0 12.0 ns 
TPLH < 20 10.0 14.0 ns 
Resolution < 60 40 36.4 mV 
Offset - 77 22.5 mV 

Table 5. Transistor sizes for the analog buffer of figure 1. 

M1,2 48/2.2 M5,6 20.8/2.2 M8 403.2/2.2 /~m 
M3,4 167.2/2.2 M7 148.8/3 G'c 4.7 pF 
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shown in the third column of table 6 the tool was able 
to obtain a solution with input capacitance as low as 
0.07pF and f3aB of 34.35MHz. 

Table 6. Simulated results for the analog buffer (output load 
10pF@ 1Mf~). 

Specifications Simulated Units 

f-aa'.B > 30MHz 34.35 MHz 
minimize Gin, with Cin < 0.1pF 0.07 pF 
maximize Ao - 0 . 1 6 9  dB 
maximize O S  [ -2 .2 ,  0.6] V 
minimize Power 3.726 mW 

6.5. An Example of Low Variability Sizing 

The reduced variability technique has been applied to 
practical topologies with good results. Table 7 gives the 
results of the application to the folded-cascode opamp 
of figure 10. Electrical parameters were correlated ac- 
cording to [16], and their variations are proportional 
to transistor area and the distances between them [21]. 
Comparative Monte Carlo analyses are shown for the 
design obtained with the statistical optimization tech- 
nique described in Section 3 and 4, and that described 
in thins section. In particular, we have focused on those 
specifications which are more sensitive to technologi- 
cal variations: offset, DC gain, common-mode rejec- 
tion ratio, and power supply rejection ratio. Probability 
distributions resulting from Monte Carlo analysis for 
the latter two are very asymmetric. Hence, it is more 
interesting to show their possible minimum value in 
said probability distribution. 

Experimental results with the memory-less tech- 
nique of Section 3 and 4 are seen to differ with the 

results shown in table 3 for the same example. This is 
due to the change in technological parameters. A tech- 
nology with available data about electrical parameter 
correlations was necessary to apply the reduced vari- 
ance technique. Hence, it was reasonable to compare 
the results with the memory-less technique using the 
same technological parameters. 

6.6. Discussion of Results 

Summarizing, previous results demonstrate the possi- 
bility to size complex analog cells in fully automatic 
way, starting from scratch and without designer in- 
teraction required - features that render the proposed 
methodology very appealing for system designers. As 
a matter of fact, resorting to the concourse of this 
methodology, and using it also at the functional and 
system levels has enabled to design full-custom EA 
modulators with reduced manpower in short time cy- 
cles [23]. 
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