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Introduction 

This  is the  second  of  a series of  three  pape r s  devo ted  to the  s tudy  of  h o l o m o r p h i c  
d e t e r m i n a n t  bundles  a n d  di rec t  images.  P a r t s  I and  I I I  of  this  w o r k  will be referred 
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to as [BGS 1] and [BGS 3]. Also the Introduction of [BGS 1] contains a general 
description of our results. We will refer to it when necessary. 

Let rc: M ~ B  be a proper holomorphic map of complex manifolds and let ~ be a 
complex holomorphic vector bundle on M. For y e B, let Zy = re-*(y) be the fiber 
over y. Assume that for every y ~ B, there is a K/ihler metric gZy on Zy depending 
smoothly on y, and let h e be a smooth metric on 4- If : = dim Zy, let 

(o.1) 

be the J complex associated with the restriction of ~ to Zy. 
In Sect. 1, we describe conditions under which the infinite dimensional vector 

bundles E°,..., E e are infinite dimensional holomorphic Hermitian vector bundles 
on B (for a special choice of the metric gZ). This is precisely the case when ~ is 
locally K~ihler (in the sense of [BGS 1]). 

Also, by using Quillen's superconnections [Q 1], higher order analytic torsion 
forms associated with finite dimensional acyclic complexes of holomorphic 
Hermitian vector bundles were constructed in [BGS 1], which are the analogues in 
any degree of the analytic torsion of Ray and Singer [RS 2]. The number operator 
N of the considered complex was used to construct such forms. 

In [B 1], Quillen's superconnections were used in an infinite dimensional 
context to obtain a local Index Theorem for families. Quite remarkably, the Levi- 
Civita superconnection - which was introduced in [B 1] to obtain a local version 
of the families Index Theorem of Atiyah-Singer [AS] - incorporates the algebraic 
formalism of the double transgression which was described in [BGS 1] to calculate 
the higher order analytic torsion forms. In particular we show in Sect. 2, that the 
analogue of the number operator is now the K/ihler form of the fibration. 

However several difficulties arise. Contrary to [B 1] and [BF 2] where, because 
of"extraordinary cancellations," the asymptotic expansions as t~ $0 of the objects 
which were considered were non-singular, we here have singular expansions like 

A_,  + Ao + O(t). (0.2) 
t 

Still the "interesting" quantity is Ao. 
In Sect. 2, Ao is calculated by complicated algebraic manipulations on traces, 

and also by using Brownian motion and anticommuting variables. For greater 
clarity, we have described some of these manipulations in a finite dimensional 
context in [BGS 1]. 

Also in Sect. 2, we obtain several results on secondary characteristic classes for 
direct images in any degree. In particular an analogue of [BGS 1, Theorem 0.3] is 
proved in Theorem 2.21 in any degree, and is related to work by Gillet and Soul6 
[GS1,2] on direct images in Arakelov theory. Theorem 2.21 will be used in 
[BGS 3] to prove [BGS 1, Theorem 0.3]. 

Our paper is divided into two sections. In Sect. 1, we introduce K/ihler 
fibrations. In Sect. 2, we calculate higher order analytic torsion forms for direct 
images, and we study their behavior in exact sequences. 

Let us point out that the analytic torsion was introduced in Riemannian 
geometry by Ray and Singer [RS 1 ], and in complex geometry by the same authors 
[RS 2]. Several developments in the Riemannian case were also obtained by 
Cheeger [C] and M/iller [M]. 
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We will use the same notations as in [BGS 1] to which the reader is referred. 
In particular, ifB is a complex manifold, P denotes the set of smooth differential 

forms on B which are sums of forms of type (p, p) (for 0 < p < dimc B). P' denotes the 
subset of P which consists of the forms co in P which can be written in the form 
co = ~ q  + ~t/ ' .  If 0~, co' ~ P, we write o) -= co' if 0~- co' ~ P'. 

I fE  is a vector bundle on B with connection V and curvature V 2, we denote by 
ch(E) the normalized Chern character cohomology classes which are represented 
by the forms Tr [exp( -  V2)]. 

I f K  is a Z 2 graded algebra, if A, B e K, we denote [A, B] the supercommutator 
of A and B. 

Finally the notations Tr and Tr, are used for traces and supertraces. 
The results contained in this paper were announced in [BGS 2]. 

I. K/ihler Fibrations 

In this section, we introduce K/ihler fibrations, and we derive their main 
properties. 

In fact, let us remember that in the case of smooth fibrations M ~ B, when the 
fibers are endowed with a smooth metric, Bismut [B 1] introduced an Euclidean 
connection V z on TZ. This connection plays a critical role in the derivation of the 
local Index Theorem of [B 1]. 

Here, when M and B are complex Hermitian manifolds, we find conditions 
under which the connection V z of [B 1] is holomorphic. This is precisely the 
K/ihler fibration condition described in the Introduction of [BGS 1], which 
generalizes the standard K/ihler condition for complex Hermitian manifolds. 

We also calculate the complex geometry of the infinite dimensional vector 
bundles introduced in [B 1]. 

This section is organized as follows. In a), we describe the construction of [B 1] 
of a connection V z on TZ. In b), the results of [B 1] are slightly extended. In c), we 
introduce K~ihler fibrations, and we derive their main properties. In d), we 
construct a family of Dirac operators, naturally associated with the family of 
operators U acting on the fibers Z. Finally in e), we prove that in a generalized 
sense, the infinite dimensional vector bundles on B, E ° . . . . .  E e, which were 
considered in (0.1), are holomorphic, and that the family ffz, depends holomorphi- 
cally on y e B. 

a) An Euclidean Connection on the Vertical Tangent Space of a Fibration 

Let n, n' be positive integers, and let M, B be smooth connected manifolds of 
dimension n + n', n'. 

Let Z be a smooth compact connected manifold of dimension n. Let n: M - - ~  B 
be a fibration of M on B, which is modelled on Z: there is an open covering 9 / o f B  
such that if U e d//, n-I(U) is diffeomorphic to U × Z. For  y e B, Zy is the fiber 

Let THM be a smooth subbundle of TM such that 

TM = THMO TZ.  (1.1) 

TriM and TZ are the horizontal and vertical parts of TM. Let Pn, Pz be the 
projections from TM on TriM, TZ. 
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The map z~, is a linear isomorphism from T f M  into T~(x~B. If Y e  TB, 
yH ~ Trim is the horizontal lift of Y in T M  so that 

yH ~ TU M , rc . yn  = y.  

Let g3, gZ be smooth metrics on TB, TZ. The metric gs lifts to a metric on THM. 
Let gB®gZ denote the metric on T M  which coincides with g~ on THM, with gZ on 
T Z  and is such that T n M  and T Z  are orthogonal. Let ( , )  be the scalar product  
for gB®gZ 

Most of the objects which we construct will ultimately be independent of the 
metric gR. 

Let V R be the Levi-Civita connection on TB for the metric gB, and V n the Levi- 
Civita connection of T M  for the metric g~®gZ. The connection V B lifts to a 
connection on THM, which we still note V B. 

Definition 1.1. Let V z be the connection on TZ  

vZ = Pz vL (1.2) 

and R z the curvature tensor of V z. Let V be the connection on T M  = TUMG T Z  
defined by 

V = VB@ V z (1.3) 

and R the curvature of V. Let T be the torsion of V, and S the tensor S = V L -  V. 

Note that V B, V L, V z, V preserve the corresponding metrics. The tensor S is a 
one form on T M  with values in antisymmetric matrices. Note that if X, Y, Z ~ TM, 
by [B 1, Eq. (1.28)] 

S(X) Y -  S(Y)X + T(X, Y) = O, 
(i .4) 

2(S(X) Y, Z )  + (T (X ,  Y), Z )  + (T(Z,  X), Y) - (T(Y, Z), X )  = 0. 

By [B 1, Theorem 1.9] and [BF2,  Sect. lc],  we know that: 
• T takes its values in TZ. 
• If X, Y e T Z ,  T(X,Y)=O. 
• V z, T and the (3,0) tensor ( S ( . ) , . )  do not depend on gs- 
• For  any X ~ TM,  S(X) maps TZ  in T*IM. 
• For  any X,  Y e T~M, S(X) Y ~ TZ.  
• If X ~ THM, S(X)X = O. 

The connection V z will be called the Levi-Civita connection of Z. 

b) Invariance Properties of V z 

We now briefly prove that V z and part of the (3,0) tensor ( S ( . ) . , . )  can be 
calculated using metrics on T M  which are not necessarily constant on TaM. 

Namely let g be a metric on T M  which has the following properties: 
• g coincides with gZ on TZ. 
• THM and T Z  are orthogonal for g. 

Let ( , ) g  denote the scalar product for g, V L'g the corresponding Levi-Civita 
connection on TM. Note that the metric gB@gZ is a special case of such a g. Pz VL'g 
is an Euclidean connection on (TZ, gZ). 
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Theorem 1.2. One has F z = Pz FL'°. Furthermore if X, X' are smooth sections of TZ, 
A, A' smooth sections of TB, and if 

Y= X' + A n, Y'= A m, (1.5) 

then 
< Vxg'g Y, Y'>o--< V~'gY ', Y>g = 2<S(X)Y, Y'>. (1.6) 

Proof. Let U be a smooth section of TM and V, W smooth sections of TZ. 
Classically [KN, IV, Proposition 2.3], we know that 

2< vvL'°v, W>o = U( V, W>s + V< W, U>g-  W( U, V> o + (EU, V], W>. 

+ < EW.. u]. v>~- <EV. w]. u>,. 

Since [V, 141] ~ TZ, by using the assumptions which we have done on g, we get: 

2<PzVt~'°V, W> = U<V, W> + V<W, PzU> - W<PzU, V> + <Pz[U, V], W> 

+ <PzEW, U], V>--<[V, W], PzU>. 

Since gBGgZ verifies the same assumptions as g, we find that 

<PzV~"sV, W> = (PzVLV, W>, (1.7) 

and so PzVt~'g= V z. 
Since V c'° is torsion free, we have 

< V ~ . 0 y ,  , L , .  , Y>.-<V~ Y, Y>o=<V~'°X, Y'>.-<V~,'"X, Y>. 
+<IX, Y], Y'>g--<[X, Y'], Y>g. (1.8) 

The vector X can be identified with the one form X:U¢TM--.<X,U>g 
= <X, PzU>, a form independent of g. Since V L'9 is torsion free 

dX(Y, Y') = < V L" °X, Y'>g- < V fi' °X, Y>g. (1.9) 

Moreover one verifies trivially that [X, Y], [X, Y'] e TZ. Since Y' ~ THM, we 
see that 

([X, Y], Y'>g-<[X, Y'], Y>g = --<[X, g'], Pzr>. (t.i0) 

Using (1.8)-(1.10), we obtain 

< VxL'gY, Y'>s-<V~'oY ', Y>g = dX(Y, Y') -  ([X, Y'],PzY>. (1.113 

Since (1.11) also holds for the metric gS@gZ, we find that 

< VxL'° Y, Y'>g- <V~ '°Y', Y>o = <V~ Y, y'> - <V~Y', Y>. (•.•2) 

Also 
V~Y=VxY + S(X)Y, VxLY'=VxY' +S(X)Y ', 

VxY'=O , VxY=VxX' ~TZ.  

From (1.13), we find that <VxY, Y'> =0, and so 

(vxLy, Y'>--<VxrY ', Y>=2<S(X)~ Y'>. 

Equation (1.6) follows from (1.12), (1.14) [] 

(1.13) 

(1.14) 
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Remark 1.3. I fe  is the second fundamental form of a fiber Z in M for the metric g, it 
follows from (1.6) that if X, X' e TZ, Y' ~ THM, then 

<a(X)X', Y'>g = <S(X)X', Y'>. 

c )  Kiihler Fibrations and the Levi-Civita Connection 

We now assume that n, m are even, so that n = 2:, n' = 2:'. We also assume that M, 
B are complex manifolds of complex dimension : ,  : '  and that ~z is holomorphic. 

Let J and J '  be the complex structure on TM, TB. J maps T Z  into itself. We 
also assume that J maps THM into itself. 

Let TcM be the complexified tangent space TcM= TM®RtE. Set 

T (~' °)M = {X e TcM; J S  = iX}, T (°'l)M = {X ~ TcM; JX  = - iX}. 

Let T*M be the vector bundle of real linear forms on TM. Set T~M 
= T*M®RffL If J is the transpose of J which acts on T~M, set 

T*(I ,°)M={a~T~M; Jc~=i~}, T*(° , ' )M={a~T~M; Jo~=-i~}.  

T *(1' °)M and T *(°' ~)M are the bundles of holomorphic and antiholomorphic one 
forms on M. 

In the same way, we define TcB , TcZ, T~M, Tc~l"°)B, etc. 
The holomorphic bundle re* T (l'°)B is isomorphic to T (1" °)M/T(1' °)Z, and we 

have the exact sequence of holomorphic bundles over M: 

O~ T(1,o)Z ~ T(1.O~M ~rc*T(1,O)B~O. 

Note that as C ~o bundles T n(l' o) M ~ n .  T (1, O)B. However in general, T m 1, o) M 
is not a holomorphic subbundle of T(~'°)M. 

Let  A(T*M) be the exterior algebra of T*M. For  0-< i_< n, the vector bundle 
AI(T*M) splits into Ai(T*M)= @ A(P'q)(T~M), where A(P'q)(T~M) is the set of 

p+q=i 
forms on M of complex type (p, q). 

Definition 1.4. The triple (re, gZ, TriM) will be said to define a Kfihler fibration if 
there exists a smooth 2-form co on M of complex type (L l), which has the following 
properties: 

a) c9 is closed; 
b) T~tM and T Z  are orthogonal with respect to co; 
c) If X, Y e  TZ, then co(X, Y ) = ( X ,  JY) .  

We say that co is associated with (re, gZ, THM). In the sequel, co will be fixed once 
for all. 

Properties a) and c) imply that J induces an isometry of TZ, that the fibers 
(Z, gZ) are K/ihler and that, when restricted to TZ, 09 is the K/ihler form of the 
corresponding fiber. 

We will denote by con, coz the restrictions of co to T~XM, TZ. We extend con and 
coz to T M  by taking the convention that, if X e TZ  and Y e T HM, then ixco n = 0 
and irco z =0.  Therefore 

oJ=ogH +o~ z . (1.15) 

The pair (gZ, TriM) is entirely determined by co, as we shall see in the following 
theorem. 
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Theorem 1.5. Let 03 be a smooth 2-form on M of complex type (1,1), which has the 
following properties: 

a) 03 is closed; 
b) I f  X,  Y~  TZ, X, Y-~03(JX, Y) defines a Hermitian product gZ on TZ. 
For any x ~ M, let T~M be the subspace of  T~M; 

Tff M =  { Y ~ T~M; for any X ~ TxZ, 03(X, 10=0}.  

Then, TaM  is a smooth subbundle of T M  such that: T M = T H M G T Z .  
(re, gZ, THM) is a Kdhter fibration, and co is an associated (1, 1)-form. 

Proof. By condition b), it is obvious that: 

dim THM + dim T Z  = dim TM,  T n M n  T Z  = {0}. 

Therefore TriM is a smooth vector bundle on M and (1.1) holds. Since 09 is of type 
(1, 1), it is clear that J maps THM into itself. The theorem is now obvious. [] 

Example I. Assume that (M, g) is a K~ihler manifold, and let • be its K~ihler form. 
If TaM =(TZ)  1 and ifg z is the restriction ofg to TZ, by Theorem 1.5, (n, gZ, TriM) 
is a K~ihler fibration. 

Example 2. I fX is a K~ihler manifold, set M' = X  x B. I f~ '  is the K~ihler form of X, 
if TriM ' = TB, by taking 03 = ~b', we still have a K~ihler fibration with constant fiber 
X. 

Remark 1.6. B is locally K~ihler. Namely there is an open covering q / o f  B such 
that, if U ~ q/, there is a closed (1, 1) form ~/v on U which induces a K/ihler metric on 
TB. 

If (re, gZ, THM) defines a K/ihler fibration with associated (1, 1) form co, on 
~-I(U), for any 2>0,  we can replace o by co+2rc*r/v. Since the fibers Z are 
compact, for 2 large enough, o + 27r't/v is a K~hler form on To- I(U), which induces 
the metric gZ on the fibers Z, and is such that THM =(TZ)  ±. This implies that 
locally on B, we are in the situation described in Example 1. 

If e is a smooth p form on M, if Ye  TM, Vye is still a p form. Vae denotes the 
p + 1 form which is the antisymmetrization of (X1,..., Xp + ~)~ Vxle(X2,..., Xp + 1). 

Since T is a 2 form on T M  with values in TZ, ire will be a p + 1 form on TM. 
Also remember that the (3, 0) tensor (S ( - ) . , . )  does not depend on g~. 

Finally note that, if Y is a smooth vector field on B, the vector field yn  acts on 
the fibers Z. Ifps is the group of diffeomorphisms of M generated by yn, and iffl is 
a smooth section of A(T*Z), set 

d , 
LZHfl=[(~s)~p~fl]~.=oEA(T*Z). (1.16) 

Note that in (1.16), fl and LZHfl are not considered as elements of A(T*M) 
but only as elements of A(T*Z). 

One verifies that Y~TB~LZ~f l~A(T*Z)  is a tensor, i.e. does not in- 
volve differentiation in Y. 

Theorem 1.7. Assume that (Tz, gZ, TriM) defines a Kgihler fibration, with associated 
(1, 1) form 03. Then: 
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a) The connection V z on TZ  preserves the complex structure of TZ, and induces 
on T(~'°)Z its holomorphic Hermitian connection. 

b) For any X ~ TZ, the 2 form <S(X) .,. ) on T M  is of complex type (1,1). I f  
X e  Ttl"°)Z, YE T(°'I)Z and Y' e TcM, then 

<S(X)Y, Y'> = <S(Y)X, Y'> = 0 .  (1.17) 

c) As a 2 form on TM, the torsion T is of complex type (1, 1). 
d) The following relations hold: 

For any Ye  TB, LZ~coz=0, 

V.zcoz=0; ircoZ=0 on THM x T Z  x T Z ,  

V.~co H = 0  on THM x TUM x THM, (1.18) 

V".oo ~ + iro) z = 0 on THM x THM x TZ .  

e) A smooth (1, 1) form ~o' on M is associated with the Kdihler fibration 
(~, gZ, TH M) if and only if there is a smooth closed (1, 1) form t 1 on B such that: a)' - o) 
=g ' t / .  

Proof Statements a)-c) only need to be proved locally. If U is taken as in 
Remark 1.6, by restricting ourselves to rt- I(U), we many and we will temporarily 
assume that co is a K/ihler form over r~-I(U). 

Let V L be the Levi-Civita connection on T M  associated with the K~ihler form 
co. Then J is parallel with respect to V L. 

By Theorem 1.2, we know that: vZ= PzV L. Since [Pz, J]  = 0, it is clear that V z 
preserves the complex structure of TZ. Since n- l (U)  is K/ihler, V L is a 
holomorphic connection on T ° '  °)M. 

Since T~I'°)Z is a holomorphic subbundle of T(*'°)M, VZ=Pz VL is a 
holomorphic connection on T(*'°)Z. Since V z is Hermitian on T(*'°)Z, V z is the 
unique holomorphic Hermitian connection on T{~'°)Z. 

Theorem 1.2 still holds with X, X' e TcZ, A, A' e TcB. Using the same notations 
as in (1.5) if Y, Y'eT(t '°)M, since VxrY, V]'Y'eT(t'°)M, we have 

<V~I, Y'> =<V:~Y', Y>=O. (1.19) 

Using Theorem 1.2, we find that <S(X)Y, Y'> =0,  or equivalently 

<S(X) (X' + A"), A 'H> = 0. (1.20) 

Also we have seen in Sect. la) that if X', X" ~ TZ, 

<S(X)X', X"> = 0. (1.21) 

By (1.20) and (1.2t), we find that (S(X) . , .> is of complex type (1,1). 
Equivalently, S(X) is a complex endomorphism of TM. 

If X e  T(L°)Z, Ye  T(°'~)Z, since T(X, Y)=0, by (1.4) we know that 

S(X) Y = S( Y)X . (1.22) 

Since S(X) is a complex endomorphism, S(X)Y~T{°'*)Z. Similarly, 
S(Y)Xe  Tt*'°)Z. So by (1.22), we get 

S(X) Y = S(Y)X = 0. (1.23) 
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Take U, V~ T(I '°)M. We will prove that T(U, V)=0.  Since T vanishes on 
T Z  × TZ ,  we may, and we will assume that V~ T H('' °)M. 

a) If  U ~ T (1' O)z, then S(V) U e Tc'M. Using (1.4), we find that if X ~ TcZ, then: 

(X, T(U, V)> = -- <X, S(U)V> = <S(U)X, V>. 

Since T(U,X)e TcZ, and S(U)X- S(X)U + T(U,X)=O, we find 

(X, T(U, V)> = <S(X)U, V>. (1.24) 

Since S(X) is a'complex endomorphism of TM, <S(X)U, V> = 0. By (1.24), we 
find that T(U, V) = O. 

b) If Ue TH(I'°)M, we have 

(X, T(U, V)> = -- (X, S(U)V> + <X, S(V)U> = (S(U)X, V> - <S(V)X, U). 

Since T(U,X), T(V,X)e TcZ, we find 

<X, T(U, V)> = <S(X)U, V> - <S(X)V, U> = 2<S(X)U, V>. (1.25) 

Since S(X) is a complex endomorphism, we find again that: T(U, V)= O. 
We have proved that T is of complex type (I, 1). 
We do not assume any longer that u is o) K/ihler form. 
Since V z preserves the metric and the complex structure of TZ, clearly 

VZogz= 0. This shows that vacoZ= O. On the other hand, it is classical that 

d = V a + i T . (1.26) 

Since co= ~oz+o9 n is closed, we find that: 

P(o9 z + c~ n) + iT((a z + o9 n) = O . 

Since T takes its values in TZ ,  iTO)n= O, and so, since v%gZ= O, 

V~co n + iT~O z = 0. (1.27) 

On TriM x T Z  x TZ ,  va(.o n -= 0 ,  and on TriM x Tr iM x TriM, iTa~ z = O. 

All equalities in d) have been proved except the first one. 
Take Y e  TB.  Clearly irH~oz=o. Therefore 

LZ,co z = irHdo~ z restricted to T Z  x T Z  . (1.28) 

Since ~on+ e~ z is closed, dcoZ= -dog" ,  and so 

LZHo~ z =  - i r~dco n restricted to T Z  × T Z .  (1.29) 

One verifies easily that ir,dco n vanishes on T Z  x T Z  and so 

LZ~o~z = o . (•.30) 

Let us prove e). If  co' =~o 'n+  o~ z is another  closed (1, 1) form associated with 
(re, gZ, TriM), we find from d) that: 

Va(~o ' n -  co n) = 0 on TriM x Tr iM x T Z .  

Equivalently if X ~ TZ ,  we find that 

Vx(cO"-og")=0 on T n M x  T H M .  (1.31) 
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Equation (1.31) exactly means that co ' n - c o n =  zc*t/. Since o) '-co is closed, ~/is 
also closed. 

The theorem is proved. [] 

Remark 1.8. If Ye  TB, by Theorem 1.7 we know that 

LZ,oz  = 0; gZy~coz=o. (1.32) 

On the other hand, we know that when acting on smooth sections of T Z  

vz~= LZ~+ T(Y n, .). (1.33) 

We conclude that 

or equivalently 

[T(Y", .)]o)z=0 (1.34) 

iro)z=o on THM x T Z  x T Z ,  (1.35) 

which was proved in Theorem 1.6. 
Note that co z is a symplectic form on Z. The relation LZ~,o~z = 0 exactly means 

that the holonomy group of the fibration preserves the symplectic form co z. 
If Y,, Z ~ TB, since V B is torsion free, we find that 

T(YU, Z n) = _ Pz [ yn,  ZU]. ( 1.36) 

The vertical vector field T(Y ~, Z H) must therefore preserve the symplectic form 
co z. The relation 

V"O~H + iTO)Z=o on THM x THM x T Z  

exactly means that T(Y ~, Z u) is a Hamiltonian vector field on Z, associated with 
the Hamiltonian function cott(Y R, ZH). 

Remark 1.9. Wemay  askunder what conditions the holonomy group of the fibers 
Z acts holomorphically on the fibers. This exactly means that, i f J  z is the restriction 
of J to TZ, if Y e  TB, then LZ~dZ=0. However since LZ~coz=0, we find that 
LZ~gZ = 0. In other words, the holonomy group of the fibration must then consist 
of holomorphic isometrics. This is of course a very restrictive assumption. 

d) A Family of Dirac Operators 

From now on, we assume that the fibration (re, gZ, TTM) is K/ihler, and that 
o~=co~+o) z is an associated (1, 1) form. 

Let A T *(°' 1)Z be the exterior algebra of T *(°' 1)Z, andAPT *(°' 1)Z the p forms in 
A T *(°' 1)Z. The vector bundle A(T *~°' 1)Z) is Hermitian, and splits orthogonally as 
a direct sum 

d 
A(T*(°'t)Z) = @ AP(T*(°'t)Z). 

p = 0  

The bundle T*~°'I)Z is identified to T(~'°)Z by the metric gZ. Therefore 
T *~°" ~)Z inherits the holomorphic structure of T(L°)Z. V z induces on 7 "*(0, ~)Z the 
corresponding holomorphic Hermitian connection. A(T*(°'I)Z) then becomes a 
holomorphic Hermitian vector bundle on M. 
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Let ~ be a holomorphic Hermitian vector bundle on M, of complex dimension 
k. Then A(T *~°" 1)Z)®~ is a holomorphic Hermitian vector bundle on M. 

Definition 1.10. For 0 < p < E ,  E p denotes the set of Coo sections over M of 
AV(T *m' 1)Z)® 4. 

As in [-B 1], we will regard E v as being the set of C °O sections over B of an infinite 
dimensional bundle. For y e B, the corresponding fiber E~ is the set of C ~ sections 
over Zy of AV(T *~°' ~)Z)®~. Set 

E + =  @ E ' ,  E - =  @ E p, E=E+O)E - .  (1.37) 
peven podd 

Let dx be the Riemannian volume element in the fiber Z. For any y ~ B, Ey is 
endowed with the Hermitian product 

h, h' eEy--* ~ (h, h') (x)dx. (1.38) 
Zy 

Let (z~= x l +  iy~,..., ze= x~+ iy ~) be a complex system of coordinates in one 

= J ( f . ~ l < j N E .  We assume that TZ is oriented given fiber Z. Clearly ~ \ axJ/ 

~ ~ 6 )  
by the base ~-Oxl, Oyl , ..., Ox t , 07 e . 

Set 

~z j - 2 ~ 

dz j = dx j + idy j, 

Offj--2 ~xj -{-i , 

d~J = d x J -  idyJ. 
(1.39) 

For every y eB, the operator ~-z, acts naturally on E r By also taking 
holomorphic coordinates on 4, ~z, is expressed locally by the formula 

0z ,=  y, d~A - (1.40) 
j =  ~ O~J " 

Let ~y* be the formal adjoint of ~ ,  with respect to the Hermitian product 
(1.38). Set 

jy = V ~ z , ,  j ,  = ~/~ j . z , ,  D,=t?,+O*. (1.41) 

The operator Dy interchanges E + and E~-. Let D +,y be the restriction of Dy to 
E +. We will write Dy in the form 

°o"]. 
By taking a local trivialization of the fibration M ~ B, one verifies easily that 

Jy, J*, Dy are first order differential operators whose coefficients depend smoothly 
on x e M. Also Dy is formally self-adjoint on E r 

We now turn A(T *¢°' 1)Z)® ~ into a Tc z Clifford module. Namely i fX ~ T ° '  °)Z, 
if X* e T *~°' 1)Z is the 1 form Y~ TcZ--+(X, Y) ,  we define 
c(X) ~ End(A(T *(°' ~)Z)® 0 by the relation 

c(X) = ]/~X* A . (1.42) 
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Similarly if X'  ~ T (°' t)Z, set 

c(X') = - - ~ i x . .  (1.43) 

The map c extends by linearity to the whole TcZ. Clearly, if X, X' ~ TcZ, then 

c(X)c(X') + c(X')c(X) = - 2(X, X')  . (1.44) 

Let V ~ be the unique holomorphic Hermitian connection on ~. Let L ~ be the 
curvature of V ~. As 2 form, L ~ is of complex type (1,1). The bundle A(T *(°' 1)Z)®~ 
is then naturally endowed with the connection vZ® 1 + 1 ® V ~ which we will note V 
(there is no risk of confusion with the connection V we had defined on TM). 

Let el , . . . ,  e, be an orthonormal  basis of TZ. w~ .... , we is an orthonormal  basis 
of TcI"°)Z, #t, . . . ,#t the conjugate basis in T ~°' 1)Z, w 1, ..., w ~ the dual basis in 
T*(L°)Z, and #1,---, #~ the corresponding conjugate basis of T *(°' 1)Z. 

We now define a family of Dirac operators acting on E. 

Definition 1.11. For  y ~ B, D'y denotes the operator: 

D',= ~ c(ej)Vej. (1.45) 
j=l 

We first prove the basic simple result. 

Proposition 1.12 For any y~B, D~,=D'y 

Proof Clearly 

D',-- 4wj)V% + = j A 

Since Zy is K/ihler, we also have 

~ZJ=d~J /x V e =#J /x Vws, U ~*= - i~ywj .  (1.46) 
OzJ 

The proposition is proved. []  

We must now compare the connection V on A(T*t°'I)Z)®¢ with the 
connection on twisted TZ-spinors which is used in [B 1]. 

If x e M, at least on a neighborhood of x~  M, the holomorphic Hermitian 
bundle det T t°' 1)Z has a holomorphic square root #, which we endow with the 
square root metric and the corresponding holomorphic connection V u. 

Set 
F+ =AevenT *(°' t )Z@#-  1 F_ = A °ad T *(°' 1)Z@#- 1. (1.47) 

By [H, Theorem 2.2], F + and F_ can be identified with the (locally defined) 
Hermitian bundles of spinors over TZ. Also A(T *(°" 1)Z) is a holomorphic vector 
bundle on M. V z induces on A(T*(°'I)Z) the corresponding holomorphic 
Hermitian connection. Therefore F, F +, F_ are holomorphic Hermitian bundles, 
and V F = vZ® 1 + 1 ® g u-1 is the corresponding holomorphic Hermitian connec- 
tion. Tautologically, V v induces on TZ the connection V z which is holomorphic on 
T ~1, O)z. 

Now, by Theorem 1.7, the connection V z on TZ is exactly the Euclidean 
connection on TZ which was considered in [B1, Sect. 1]. Also V F is a Spin(n) 
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connection on F, and so 17~" is necessarily the unique Spin(n) connection on F which 
lifts the Euclidean connection V z on TZ.  V e thus coincides with the connection on 
F which was constructed in [-B, Sect. le)]. Also, from (1.47), we find that 

A . . . .  T.~o,~)Z®~=F+®#®~,  AOaaT.(O,~)Z®~=F_®#®~" (1.48) 

Now #®~ is a (locally defined) holomorphic Hermitian bundle endowed with 
the holomorphic Hermitian connection P ® I  + 1 ® V ¢ . 

It thus follows that at least locally on M we are exactly in the situation of [B 1, 
Sect. 1]: 

- The bundles F+ and F_ are endowed with the unitary connection considered in 
[B 1, Sect. l e)]. 

The twisting bundle with metric and connection ~ in [B 1, Sect. 1] is here #®¢. 
Note that in [B 1], T Z  was assumed to be Spin, in which case # can be globally 

defined. However, as in Atiyah-Bott-Patodi [ABP], only the existence of a local 
spin structure on T Z  is needed for the results of [B 1] to apply in our situation. 

These considerations permit us to use all the results of [B 1] without further 
comments. 

e) A HoIomorphic Hermitian Connection on Infinite Dimensional Bundles 

We now define connections on the infinite dimensional bundles E p as in [B 1, 
Sect. lf)] and in [BF 2, Sect. le)]. 

Definition 1.13. For O<p<~, let V be the connection on E p such that if h is C °o 
section of E p and if Y ~ TB, 

Vyh = Vr,~h . (1.49) 

Since the curvature tensor R z of V z takes its values in the complex 
endomorphisms of TZ, R z acts naturally on AT *(°' 1)Z and preserves the grading 
of AT *(°' I)Z. 

In the sequel, (},1,..-, ye') is a complex coordinate system in B. 1 . . . .  , ,- is 

t hecorrespond ingbas i so fT~ l , ° )B , (~ l , . . . ,~e , ) thecon juga tebas i s in  T~°,I)B, 

(dyl, . . . ,dy e) and ( d y l , . . . , d f )  the dual bases in T*(I'°)B and in T*(°'I)B. 
Furtherjore e~, ...,en, wt .... ,we, ... will be taken as in Sect. ld). 

0 
We will use e, ft... as indices for horizontal variables ff~y~, and i,j.. ,  as indices for 

vertical variables like e~. 

We identify ~ and ~ , dy ~ and 7c*dy ~ etc. 

Theorem 1.14. The connection V preserves the Hermitian product of E. The 
curvature (f)2 of  V is such that if Y,, Y' s TB, 

(~)2(y, y , )=  RZ(yH, y,H)® 1 + 1 ®L¢(Y H, y,n)__ Vr(y~y,~)" (1.50) 

For any Y, Y' e T B, (17)2(y, y,) is a skew-adjoint element of EndE. As a 2-form on 
TB, (¢)2 is of  complex type (1,1). Finally, if U ~ T(I'°)B, Ve  T~°'I)B, then 

0, =0. 



92 J.-M. Bismut, H. Gillet, and Ch. Soul6 
n 

Proof Set k = -½ ~ S(e,)e,. Then, k ~ TriM. In [BF 2, Proposition 1.4], it is proved 
1 

that the connection V" on E, which is such that, if Y~ TB, V]= Vy+(k,  Yn) ,  is 
unitary. We claim that k = 0. In fact 

k = - ½ [S(w3~ + s(~)w,]. (1.52) 

By Theorem 1.7, we know that S(v~)g~ = S(gi)v~ = 0. It follows that V = 17", i.e. V is 
unitary. 

Equivalently, one can say that (-°)z)e is the volume form of Z. By 
[BF 2, Proposition 1.4], if Y~ TB, ~! 

(k, y~r) (e)z)~, =½LZ (coz)e. (1.53) 

By Theorem 1.7, LZy~mz=o, and so (k, YH)=0. 
By [B 1, Proposition 1.11], the curvature (if)2 is given by (1.50). Since F is 

unitary, for Y, Y' e TB, (~)2(y, y,) is necessary skew-adjoint. 
Since V z is holomorphic and Hermitian on T(I'°)Z, R z is of complex type (1, 1), 

and so is L ¢. By Theorem 1.7, Tis also of complex type (1, 1). It is now obvious that 
(if)2 is of complex type (1, 1). 

We identify I~O to the element of AI(T~B)®EndE,  

VD = dy ~ Fo D + d~ ~V o2_ D. 

By [B 1, Theorem 2.5], we know that VD is given by 

+d~'c(~,)IRZ(+,w,)®l+l®L¢(+,w, ) - gr(•, w,)] • (1.54) 

Note that in (1.54), we have used the fact that R z, L e, and T are of type (1,1), and 

so we eliminated terms like T ( + ,  wi). 

Also since D = 8+  J*, trivially 

~ D  = ¢~+ ¢~*. (1.55) 

Also V preserves the grading in E, and so Vg increases the degree in E by 1, 
while Vg* decreases the degree by 1. Also R z, L ~ and V r do not change the grading 
in E. We immediately derive from (1.54) and (1.55) that 

Equation (•.5•) is proved. [] 
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Remark 1.15. I f  E' is a finite dimensional complex Hermitian vector bundle on B, 
endowed with a Hermitian connection V whose curvature is of complex type (1,1), 
it is a well-known consequence of the Newlander-Nirenberg theorem (see [AHS, 
Theorem 5.1 ]) that there is a unique holomorphic structure on E' such that V is the 
corresponding unique holomorphic Hermitian connection. 

Here E is an infinite dimensional complex Hermitian vector bundle, which is 
endowed with a unitary connection whose curvature is of complex type (1,1). 
However since E is infinite dimensional, the result of [AHS, Theorem 5.1] is 
unapplicable in our situation. 

Also the condition P~-= 0 means that ~ is a "holomorphic" section of the 
"holomorphic" vector bundle EndE. 

However the fact that, at least formally, E is a holomorphic vector bundle 
will be of utmost importance when defining a genuine holomorphic structure 
on the determinant bundle associated with the family J. 

2. Double Transgression for Direct Images and the Heat Equation 

In this section, we consider a chain complex of holomorphic Hermitian vectors 
bundles on M, 

0 - ~ o ~ . . . ~ m - - > 0 .  

By considering the Dolbeault resolutions of the J complexes associated with 
¢o---~,, restricted to Zy, we obtain a family of infinite dimensional complexes 
(E~, Jy + vy). 

Using the Levi-Civita superconnection and the local index formula of [B 1], we 
obtain Chern character forms on B for this family. The purpose of this section is to 
double transgress these Chern character forms by imitating formally what has 
been done in [BGS 1] for finite dimensional complexes. 

In a), we briefly describe the Levi-Civita superconnection of [-B 1]. In b), we 
prove that in our situation, the Chern character forms of [B 1] associated with the 
Levi-Civita superconnection Au - which depends on a parameter u > 0 - are in the 
space P considered in [BGS 1]. 

In c), we prove that the form c~ = co R + co v plays the role of a number operator 
associated with the ff complexes. In particular, we find that this formal number 
operator together with the Levi-Civita superconnection verify the algebraic 
identities which were proved in [BGS 1] in a finite dimensional context. 

In d), and imitating [BGS 1], we double transgress infinitesimally the local 
index forms of [B 1]. However, contrary to the situation considered in [BGS 1], 
certain asymptotic expansions (for u++0) have singular terms. Before obtaining the 
integrated double transgression of the local Chern forms, we need to understand 
the structure of such expansions. 

Thus in e), and extending Bismut-Freed [BF2, Sect. 3], we prove in full 
generality that the first transgressed forms are non-singular as u++0. 

In f), and by a formal transfer of the results of [BGS 1], we obtain various 
identities with anticommuting variables, and we establish a generalized Lich- 
nerowicz formula. 
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If Nu is our generalized number operator - which also depends on u > 0, we 
calculate in g) the asymptotic expansion of Tr~[N,(exp-A~)] which is of the form 

Trs[N,(exp-A~)] = C__ ~ + Co + O(u). (2.1) 
u 

C_~ and Co are explicitly calculated using the identities established in f). 
Understanding the structure of Co will be essential in establishing [BGS 1, 
Theorems 0.1, 0.2, and 0.3]. 

In h), when (E, ~+ v) is acyclic, we obtain a double transgression formula in P 
for our Chern character local forms. This formula is of an essentially analytic 
nature. It is obtained as a generalized analytic torsion in the sense of Ray-Singer 
[RS 1, 2]. 

In i), we prove in Theorem 2.21 that when the chain complex ~ is acyclic, the 
double transgressed forms constructed in h) are equal in P/P' to the differential 
form appearing in [BGS 1, Eq. (0.6)]. Such a result is a double transgressed version 
of the Atiyah-Singer Index theorem for families [AS, B 1], since it equals an 
expression constructed by analytic methods, i.e. a generalized analytic torsion, to a 
local expression obtained via secondary characteristic classes. 

The proof is technically difficult due to the fact that P' is in general not closed 
for any reasonable topology. However in degree 0, P' is irrelevant. The proof of 
Theorem 2.21 in degree 0 becomes much simpler, and most of the technicalities 
disappear. 

In application to determinants in [BGS 3], we only use Theorem 2.21 in degree 
0. So the reader interested in determinants may well skip most of the technicalities 
of the proof of Theorem 2.21. 

Finally, observe that in degree 0. Theorem 2.21 exactly says that the Ray- 
Singer analytic torsion of a certain infinite dimensional complex is given by a local 
formula. 

Note that as in [BGS 1], the notation [A,B] will always represent the 
supercommutator of A and B. 

a) Kfihler Fibrations and the Levi-Civita Superconnection 

We now suppose that the assumptions of Sect. Ic) are verified. The fibration 
(Tc, g z, TaM) is K/ihler with associated (1, 1) form o=coLr+coz. 

The bases (ei), (wi)... are taken as in Sect. ld). 
Let 

0 ~ o ~  ~ 1 ~ . . .  ~ ~,,~0 (2.2) 

be a holomorphic chain complex of finite dimensional holomorphic Hermitian 
vector bundles on M. Set 

4+ = @ ~j, 4- = @ ~j, ¢ = ~ + O ¢ - .  (2.3) 
jeven jodd 

Then ~ _+, ~ are also holomorphic Hermitian vector bundles, and ~ is naturally Z2 
graded. 

Let V ~j be the unique holomorphic Hermitian connection on ~j, whose 
curvature we denote by L ej. Therefore V ~= @ V e.j is the unique holomorphic 
Hermitian connection on ~ and IS = ®L ~j the corresponding curvature. 
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Let v* be the adjoint of v. Set 

V= v + v*. (2.4) 

For  O<j<m,  we can do the various constructions of Sect. 1 (with ¢=~j). E~, 
El ,  E i denote the corresponding infinite dimensional Hermitian vector bundles on 
B which we endow with the (unlabelled) "holomorphic" Hermitian connection V. 

Also the unlabelled families of operators J, ~-*, D act on Eg as well as the vertical 
Clifford multiplication operators c(ei). 

Let z be the involution defining the grading on E j, i.e. ~ = +_ 1 on E l .  We will 
take the convention that v, v*, V act on Ej like z(l®v). Therefore v, v*, V 
anticommute with the vertical Clifford multiplication operators c(e~). 

We thus have an infinite dimensional "holomorphic" double chain complex of 
infinite dimensional vector bundles on B, 

0 0 0 

T T T 
o -+ E~ ~ E~ -~ . . .  ~ E~ -~ o 
0 - ~  ~ 

o -~ ~o ~ EO _ ~ . .  ~ Eo _~ 0 

? T 
0 0 0 

As in [BGS 1, Sect. ld)], the double complex has a horizontal, a vertical, and 
a total Z grading. Set 

E= @ E~, E+= @ E~, E_ = @ Et]. 
j,p j+peven j+podd 

The operators J, if*, D, v, v*, V are odd in End E. Since v is holomorphic, we have 

[~, v] = E;*, v*] = 0, (if+ v) 2 = (J* + v*) z = 0. (2.5) 

Also V splits into V= V'+ ~", where V', V" are the holomorphic and 
antiholomorphic parts of V. By Theorem 1.14, 

¢"(J+ v) = 0, ¢'(ff* + v*) = 0. (2.6) 

For  u > 0, V + l//u(D + V) is a superconnection on E. This superconnection is the 
natural extension of the superconnection of [BGS],  Sect. lc)] in an infinite 
dimensional situation. However, due to the results of Bismut [B 1], we know it is 
not the right choice of a superconnection to obtain a local form of the Theorem of 
Atiyah-Singer for families. 

So we define the Levi-Civita superconnection introduced in [-B 1, Sect. 3]. 

Definition 2.1. For u>0,  the Levi-Civita superconnection A, on E is given by 

a~= P + ~ ( D  + V)-  ~ dyadic r ' a~  " (2.7) 
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Instead of (2.7), we will also the notation 

c(T) 
A,= V + ~/-u(D + V ) -  4-- ~ .  

When V=0,  by [BF2, Proposition l.18], A, is 
superconnection of [B 1, Sect. 3]. 

exactly 

(2.8) 

the Levi-Civita 

b) Construction of Chern Character Forms in P 

We now prove a first basic result concerning the superconnections ~ + Vu(D + V) 
and A,. 

In all the formulas where characteristic classes appear, R z will be considered as 
the curvature tensor of T(I'°)Z. 

Let us recall that the ad-invariant Todd polynomial on complex (~, f) matrices 
is characterized by the fact that if B is diagonal with diagonal entries yl ..... Ye, then 

e yj 
Td(B) 

I-I 

t l l  1 - e -  Y J" 

Theorem2.2. For any u>0,  the smooth differential forms on B, Trs[exp-(V 
+ ]Su(D + V)) 2] and Trs[ex p -  (Au)2], are elements of P. They are closed and they 
are in the same cohomology class, which does not depend on u > O. 

Also, uniformly on compact sets in B 

 imT, exp = ~ Td( - R z) Trs[exp( - L¢)], (2.9) 
u~lO a 

and the differential form in the right hand-side of (2.9) is also in the same cohomology 
class as Tr~[exp-A2].  

I f  B is compact, let T~ ~ K(B) be given by 

Tj = Ker(D + I E3) - Ker(D_ ]E).  

The differential forms considered above represent in cohomology 
ch(T o -- T 1 -t- T2...). 

Proof The proof that Tr~[exp-(lY+ ~/u(D+ V)) 2] is in P is the infinite dimen- 
sional analogue of the proof of [BGS 1, Theorem 1.9]. We here use instead the 
relation (2.6). 

Also one verifies that 

[c(T), V] = 0. (2.10) 

We thus find that 

c(T) 2 ~, 
A~ = ¢ + g~uD- ,7~- ,  + ~/u(V v + ¢"v*) + u([~, v*] + [~*, v]) + u(vv* + v* v). 

,~V U /  (2.11) 

The operators [~, v*], [~-*, v], vv*, v*v preserve the total grading in E. 
V'v is of type (1,0) and increases the total degree in E by 1, while V"v is of type 

(0, 1) and decreases the total degree in E by 1. 
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/ c(r)~ 2 
now calculate ~ V + ~/uD- We 4]fuJ acting on E k. Remember that by the 

results of Sect. ld), we can use the results of [B t], with ~ =P®~k, where # is any 
locally defined square root of detT(L°)Z endowed with the corresponding 
holomorphic Hermitian connection. The curvature E ¢~ of #®~k is given by 

E ¢~ = ½ Tr[RZ]I + L ~ . (2.12) 

Let K be the scalar curvature of Z. By Theorem 1.7, we know that <S(ej) .,. ) is 
a 2-form of complex type (1,1). Using [B 1, Theorem 3.6], we find that on E k 

~ c ( T )  2 1 
(V+I /uD- -4~ )  =-u(~,+~--~tS(ei)wJ,~%)c(#~)d?#" 

+ ~ u  ~(ei)#j,+)c(wj)dy'+Ju @(e , )+,+)dy 'dy ' )  2 

uK u + --~-- + -~ [c(wMw)®IJ~(% wj) + c(wMwj)®IJ~(w,, ~j)] 

k ) j  

+dy'dya®E'k(;,, @a ) . (2.13) 

One again verifies that the terms on the right-hand side of (2.13) are of 
three kinds: 
• The terms which preserve the grading Of Ek and which are of type (0, 0) or (1, 1) 
in the Grassmann variables in T~B; 
• The terms which increase the degree in Ek by I and are of type (1, 0) in the 
variables in T~B; 
• The terms which decrease the degree in Ek by I and are of type (0, 1) in the 
variables in T*B. 

Using [BGS 1, Proposition 1.8], we find that Tr~[exp-(A~)] is also in P. 
When v=0, (2.9) is a consequence of [-B 1, Theorems 4.12 and 4.16]. When 

v 4=0, exactly the same methods permit us again to prove (2.9). In particular, 
because it has the weight u, the 0 order operator [0-*,v] +[J ,v*] does not 
contribute to the limit. 

When v -- 0, the final part of the Theorem is proved in [B 1, Theorem 3.4]. 
Replacing D by D + bV ((3 <_ b <= 1) and using the fact that the cohomology class of 
the corresponding forms does not change with b - see in particular [B 1, 
Remark 2.3], the end of the Theorem holds in full generality. [] 

Remark 2.3. It is a consequence of Bismut-Freed [BF2, Theorem 1.19] that in 
degree 0 and (1, t), Trs[ex p -  (I 7 + ]/Tu(D + V)) 2] and Tr , [exp-  (A,Z)] coincide. 

In general, Trs[eXp-(V + ~/u(D + V)) z] does not converge as u+10, except in 
degree 0 and (1, 1). This explain why we need to use the Levi-Civita superconnec- 
tion to study higher degree characteristic classes. 
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c) Number Operator and the Levi-Civita Superconnection 

The double complex E has a horizontal and a vertical grading. Let N~x, Nv be the 
number operators corresponding to these two gradings. N H and N V act on E k by 
multiplication by j and k. N = N n + N V is thus the total grading number operator. 

These Nn, Nv, N are the right choice of number operators if we use the 
superconnection ~ + yu(D + V). We can thus reproduce formally what has been 
done in [BGS1]  to double transgress the Chern forms Tq[exp 
- (V + ~#u(D + V))2]. 

However because of (2.9), the right forms to consider are Trs[-exp(-A2)]. The 
number operators have to be changed in order that certain basic commutation 
relations are still verified. 

We first evaluate the number operator N v in terms of the vertical Kfihler form 
~0 z. Note that coZ~A2(TZ). The element of the Clifford algebra c(TZ) which 
corresponds to co z identified with the antisymmetric matrix j z  is o~ z'c given by [B 1, 
Eq. (1:2)] 

co z'c = - ¼o~Z(wi, ~j) [c(~j)c(wj) - c(w~)e(~j)]. (2.14) 

Proposition 2.4. We have the following identity 

(2.15) N v =  - icoz'c + -~. 

Proof. By (1.41), 

z " - CJ ̂  i % -  ~ c0 ' =~[-%WA +~Ai%]=i 

e 
Also Y, ,)J/xi~,~ acts on E~ by multiplication by k. Equation (2.15) is j=l 

proved. [] 
We now will define a new vertical number operator, which is an element of 

A(T~B)QEndE,  and depends on the parameter u >0. 

Definition 2.5. For u > 0, the operators N'v,,, N~ are given by 

E 
N'v, =-icoz,c+icon t , /2u+ ~, N , = N ' v , , + N H .  (2.16) 

We now prove a family of commutation relations which exactly extends 
[BGS i, Eq. (1.24)]. 

Theorem 2.6. The following relations hold: 

[~,N.]=0, [~",vJ=E~',v*]=O, 
IV", a] = IV', J*] = 0, [8, ~o H] = ic(T (a' o)); [ j . ,  con] = _ ic(T(O, 1)), 

[~,, e(T o, o))] = [V', e(T (°" 1))] = 0, [~, e(T o , o))] = [ j . ,  c(T(O, 1))] = 0, (2.17) 

IV-U(a-b V) C(~ )), Nul--- Vu(~%-v)-c(T(l'0)) 
4 ~ '  

c(T(°,l)) 
[Vu(8*+v*)--c(T(l"°)) N , ]  = y ~ ( ~ - * + v * ) + -  

4Va ' 4 Zu 
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In particular 

c( T( l, °)) ~ c( T(°, l )) ~ 

c(T("°))~ 2 (ff'+[~uu(J*+t)*) c(T(°"))'X2 

[ c ( ~  ° c(T(°"))],ev ~ J A. ~ = e" + ~#u(~+ v) )), e' + ~ ( J *  + v*) 

[v"+~(~+,,) 4~ ' 
c(T(°'")~] 

(2.18) 
Proof  The number operator N v is parallel for the connection V. Therefore by 
Proposition 2.4, we find that 

[ ¢, coz, c] = 0. (2.19) 

Of course, (2.19) reflects the fact that V is unitary and preserves the K/ihler form 
(.oZ. 

Also, by Theorem 1.7, 

V"- cow = 0 on THM x TWM x THM.  (2.20) 

It follows that 

[V,o~ w] =0.  (2.21) 

We have thus proved that IV, N~, ,] = IV, Nu] =0. Clearly 

[J, Nv] = - ~-. (2.22) 

Also since c(T ° '  o)) increases the vertical degree by 1, we also have 

r - c(T (1, o)), Nv  ] = c( T (1' o)). 

Also trivially 

[c(T(1, o)), cow] = O. 

By Theorem 1.7, we know that 

V~co w + irco z = 0 on 

Also 

EJ, cow] = c(w,)V,,,co"; E~-*, cow] = c(~kvw,o)~. 

(2.23) 

(2.24) 

TWM x THM x T Z .  (2.25) 

(2.26) 
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Using (2.25), we find that 

[ J, con] = - c( w i)coz( T, w i)= it(T(1"°)), 
(2.27) 

[ j , ,  con] = _ c( ~ i)coZ( T, w i ) = _ ie( T(O. t)). 

Using (2.6), (2.21) and (2.27), we find that 

[~,,, c(T(1, 0))] = [~,, c(T(O, 1))3 = 0 .  (2.28) 

Also 

[j ,  [j ,  con]] = [[ j ,  ~], con] _ [if, [j ,  o n ] ] .  (2.29) 

Since j2 =0,  we find that: [J, [8, con]] =0,  and so using (2.27), we get 

[L c(T (1' o))] = 0. (2.30) 

In the same way, we can prove that 

[ j . ,  c(T(O, 1))] = 0. (2.31) 

Using (2.22)-(2.31), it is now easy to prove the final equalities in (2.17). 
Since (e(T("°))) 2 =(c(T (°' i)))2 =0,  the second series of equalities in (2.18) is a 

consequence of (2.17). 
Since (~,)2 = (ff,,)2 = 0, we find the third series of equalities in (2.18) also hold. 

The fourth and fifth equalities in (2.18) are now obvious. The sixth equality is a 
consequence of (2.17). []  

Remark 2.7. Theorem 2.6 should shed some light on the result of Theorem 2.2 
which asserts that Trs[ex p -  A, 2] is in P. 

In fact by Theorem 2.6, |/~u(Y+v) -~e(T(l"°)) is a "holomorphic" function of 
47. 

y e B; it increases the degree in E by 1, and its square vanishes, while ]/u(Y* + v*) 

_ e(T(O, 1)) is "antiholomorphic," decreases the degree by 1, and also has a square 

which vanishes. The situation is then formally identical to what was done in 
[BGS 1]. 

N~, u, Nu will play the role of vertical number operators and of total number 
operators. In this respect, the final equality in (2.18)is of critical importance, since 
it shows that Nu incorporates the basic features of a number operator, as used in 
[-BGS I]. 

It follows from (2.17) that 

(¢,, + y)2 = 0. (2.32) 

We now give an intepretation of (2.32) which will be very useful in [BGS 3]. 
Because of the splitting T (1' °)M = T (1' °)ZO T ml' °)M, we have the identification: 

A( T *(°, 1) M) = A( T*( °, 1) B ) ~  A( T*(O, a )Z) . 

ft, + ~z acts naturally on the smooth sections of A ( T  *~°' I)B)QA(T*(°" 1)Z)® 3. 
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So [Y" +~z acts naturally on the smooth sections of A(T *(°' *)M)®~. 
Also 0 ~t acts naturally on smooth sections of A(T *(°' *)M)®~. 

Theorem 2.8. We have the equality of operators acting on smooth sections of 
A(T *(°" 1)M)®~ , 

= lY- + ~z. (2.33) 

Proof Equality (2.33) is clearly local. Therefore, if U is any open set in B, we only 
need to prove (2.33) on re-I(U). 

Recall that in Sect. 1 a), we were free to choose any metric gn on TB. Therefore, 
we can assume that U is small enough so that gB induces a K/ihler metric on U. We 
now will work on rc-*(U). 

The connection V = VBG V z is complex, i.e. induces a connection on T(I'°)M. 
The operator V", which acts on smooth sections of A(T~M), was defined in 

Sect. 1 c). We extend V a into a operator acting on smooth sections of A(T*M)®~ 
in the obvious way. 

By (1.26), we know that we have the equality of operators acting on smooth 
sections of A(T~M)®~, 

V ~ = V a -t- i T • (2.34) 

Also V a splits into va= va'+ V a', where V a', P "  are the holomorphic and 
antiholomorphic parts of V ". 

The connection V B is complex and torsion free, and also, when restricted to one 
given fiber, the connection V z is complex and torsion free. We thus find that 

V""= V" + ff z. (2.35) 

By Theorem 1.7, T vanishes on TcZ × TcZ and is of complex type (1, 1). 
Therefore 

iT=dZi/',dy~ir~o o'l+dziAd~iT*~ ~'~+dy~/xd~Pi t~ ~',. (2.36) 

Clearly c7 M = V ~". Moreover tiM, p,, and 0 z map forms of type (0,p) into forms 
of type (0, p + 1). Due to (2.36), we see that iT maps forms of type (0, p) into forms of 
type (I, p). 

From (2.34)-(2.36), we obtain (2.33). []  

d) Double Transgression of the Chern Character: The Infinitesimal Form 

We now prove the natural analogue of [BGS 1, Theorem 1.15] in an infinite 
dimensional context. 

Theorem 2.9. For any u > O, the smooth differential form Trs[N . exp - A, z] is in P. 
Also 

c(T)-~exp(-A~)], (f--~)Tr~[exp(--A2)]=(-21)((OB+~)Tr~[(V-u(D+V)+4I/~ j 

Trs [ (V~(D + V) + 4l/-u jc!7)]---" e x p ( -  A2)[~A = (0" - ~-n) Trs[Nu exp( - A•)] 
(2.37) 
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in particular 

( f~) Tr~[exp(- A2)]= ( @ )  ~t?B Tr~[N~exp(- Aa~)] . (2.38) 

Proof To differentiate traces or supertraces, we must proceed rigorously as in 
[B 1, Sect. 2], i.e. use the fact that since D 2 is fiberwise elliptic, exp( -  A 2) is given by 
a fiberwise smooth kernel depending smoothly on y s B. Ultimately the manipula- 
tions of [B 1, Sect. 2] show that formally, in this situation, we can use the same 
commutation rules as in finite dimensions. 

The first line of (2.37) is then a simple consequence of the superconnection 
algebra. The second line of (2.37) can be proved by the same arguments as in the 
proofs of [BGS 1, Theorems 1.9 and 1.15], simply using the commutation rules of 
Theorem 2.6 instead of [BGS 1, Proposition 1.6]. [] 

Before giving an integrated version of Eq. (2.38), we will study the behavior of 
the various quantities appearing in (2.37)-(2.38) as uS J,0. 

In Theorem 2.2, we have shown that as u150, Tr~[exp-A,  2] is non-singular 
because of certain cancellations obtained in [B I, Sect. 4]. This implies that related 
cancellations occur in right-hand side of (2.37), 2.38). 

We will study these cancellations, and also calculate explicitly certain terms in 
the corresponding asymptotic expansions. 

e) Asymptotic Behavior of the First Transgressed Forms 

We first study the behavior of Tr.~I(]~(D+v)+ C4@u)eXp(-A2)l as u~$O. The 

result which we will obtain generalizes the result obtained in Bismut-Freed [BF 2, 
Theorem 3.41 which was only concerned with the degree one part of this 
expression. 

The result which we will prove is true in full generality for any family of Dirac 
operators of the kind considered in [B 11 and has nothing to do with complex 
geometry. It will be formulated in complex geometric terms for simplicity. 

Here du denotes the odd Grassmann variable corresponding to u s R +. 
Recall that E ~k has been introduced in (2.12). 
L e t / J  denote the corresponding curvature tensor associated with 4, i.e. E e 

=½ Tr[RZ]I + L ~. 
Proposition 2.10. For any u > O, we have the equality 

A~_du(I/~(D+v)+C(T)'~41/U.] ( 1 @  _~;@ = - u  re ,+  c(ej)dy 
I "  

1 l@(ei)~_~,+)dy~df? c(ei)du~ z + ~ (S(ei)e,,+) c(ej)df~ + ~u ~-~ J 

uK u ,~ + ~-  + (~)c(ei)c(ej)®E (e,,e,)+ Vuc(e')dy'®L'~(e"\ ' ~--~Of} 

+Vuc(ei)dy~®E~(ei,+)+dy~dy~®IJ~(~,@~) 

+ V~VV+ u[D, V] + uV 2 - du]//uV. (2.39) 
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Proof When du=0,  (2.39) is exactly [B 1, Theorem 3.6]. Also 

(S(e~)Q, + )  [c(Q)dy~c(ei)du + c(ei)duc(e j)dy~] 

-((S(ei)e4'+>)dy~du[c(ej)c(ei)-c(ei)c(ej) ] 

- 4 ei)ej- S(Q)e~, 

=-¼<T(ei, e~),+)dy~duc(ej)c(ei) • (2.40) 

Since T(e i, e j) = O, (2.40) is O. Of course, (2.40) is still 0 when replacing ~y~, dy ~ by 

~37,, d~.  Also, by (1.4) 

l (s(e,)-~y~, ~yp> duc(ei)dy'dy=du\4~]" 

It is now easy to obtain (2.39). [] 

Theorem 2.11. There exist Coo even differential forms A o, A1,... in P, and C oo odd 
differential forms B 1, B2,..., such that for any k ~ N, 

k 
Tr~[exp(-- A~)] = E Aj uj + °(uk), 

o (2.41) 
c( T)'~ 2 -] Tr~[(I~(D+V)+~)exp(-A.)~= B juJ + o(uk) , 

and the various o(u k) are uniJbrm on the compact sets in B. Also 

Ao = ~ Td(- R z) Tr~[exp(- L¢)], (e n + ~ )B  i = -- 2jAj; j > 0. (2.42) 
Z 

Proof By Greiner [Gr, Theorem 1.6.1], we know that for any k'~N, 

T, Eexp{u(( +o+v 
where o(u k') is uniform over the compact sets of B. We now rescale dy ~, d~ ~, du into 
dy ~ di~ ~ du 

We thus find that for any k e N, 

Trs exp -A2+du  I / ~ ( D + V ) + ~ j ] j =  -¢+~')Y' E)uJ+o(uk). (2.43) 
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Also by Duhamel's formula, the left-hand side of (2.43) is given by 

Tr~[exp(-A2,)+duTr~[([fu(D+V)+ c(T)'~ ~--~) exp(-  Au)J. 27 

We thus deduce from (2.43) that 
k 

Tr~[exp(-- A~)] = • Aju ~ + o(uk), 
- ( e + e ' )  

Tr~ ]/u(D + V) + 4~/uJ exp(-  A 2) = -~e+e')2 B y  + o(uk). 

To prove (2.41), we will show that E)= 0,j < 0 and that E; does not contain du. 
By Proposition 2.10, we find that the right-hand side of (2.39) is exactly of the 

same form as the corresponding formula of [B 1, Theorem 3.6] for A 2, with the 
c(ei)du 

exception that ~ appears. 

We can thus use formally the results of [B 1, Sect. 4], which already show that, 
for j<0 ,  E)=0. Let us prove that E~ does not contain du. 

Note the commutation relations 

[c(ej)dy ~, c(ei)du] = 26~dy=du. (2.44) 

TxZy, with Wo = w'~ =0, and let P1 TakexeZrLetw,  lbeaBrownianbridgein . ,1 
be the law of w '1 on g([0, 1]; TxZr). 

By proceeding as in [B 1, Theorem 4.12] and using the commutation relations 
(2.44), we find that as u]$0, the left-hand side of (2.43) has a limit and that the only 
term where du appears is given by 

~exp {...¼ i (S(w'~)dw'~-S(dw'~)w'l, + )  dy~du 

+¼ i (S(w'~)dw'~-X(dw'~)w'~, + >  dy~du...} dP~(w'~). (2.45) 

Since w '~, dw'l ~ TZ, we have 

S(w' i )dw' 1 _ S(dw' 1)w, ~ = - T(w' 1, dw' 1 ) = 0. (2.46) 

It thus follows from (2.45)-(2.46) that E; does not contain du. 
The explicit expression of Ao has already been found in (2.9). Using (2.37), we 

obtain the second expression in (2.42) [] 

Remark 2.12. The asymptotics as u+J,0 of the first line of Eq. (2.37) is now fully 
understood. 

We will study the asymptotics of Tr,[N, exp(--A,Z)]. The presence of the 
io n 

diverging term-2-u-u in N, already indicates that it will be more difficult. In order to 

solve these difficulties, we now will establish certain formulas which are the infinite 
dimensional analogues of the results given in [BGS 1]. 
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f )  On Certain Identities Verified by the Levi-Civita Superconnection 
We now establish the infinite dimensional analogues of [BGS 1, Theorems 1.10, 
1.12, 1.13]. 

Let da, dd be two odd Grassmann variables. We still use the convention that if 
tl ~ A(T*B)~C(da, d~), if ~ is written in the form, 

tl = tlo + dath + ddtl2 + dad@a(th ~ A( T~ B), 0 < i < 3), 

then, we set 

[q]aaa~ = r/3. (2.47) 

Theorem 2.13. For any u > O, b > O, 

buTrs[(Vu(O+V)+:~!)exp(--A~+buN,)] 

= (O n -  ~-~) Tr~[exp(- A z + buN,)]. (2.48) 

Let O,e P be given by 

Ou=Tr.fexp(_A2_da(~/u(ff+v,+ c(T'I' °)') 

-d{t(V~(ff*+v*)+ c(T(°'a))~ -dadgiogZ'C+buN.)] daa~ (2,49) 

Then, for any u>O, b>O, 

0 
O-u Trs[exp(- Az. + buN.)] 

=--(~-~)dBTrs[(l/~(D+v)+C(T)~exp(--A2+buN.)] 

E 2 , 

or equivalently for u > O, b > O, 

(~u)Tr.[exp(-A~+buN.)]=-(~)~OBTr~[exp(-A~+buN.)] 

+d 2 . +b(O,+Trs[(N n ,~)exp(-A.  +buN,)]) (2.51, 

Proof Using the commutation relations of Theorem 2.6, the proof of (2.48) is 
formMly identical to the proof of [BGS 1, Theorem 1.10]. Also the proof of (2.50) is 
formally identical to the proof of [BGS 1, Theorem 1.12]. Note that 

(~--~)[uNJ=--iooZ'~+N~t+~, 

and this explains why ~o n does not appear in the final term in the right-hand side of 
(2.50). 
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Equation (2.51) is a consequence of (2.48) and (2.50). [] 

As in [BGS 1, Theorem 1.12], we now differentiate (2.48), (2.50), and (2.51) at 
b~O. 

If ~f~A(T*B)QC(du), 11' can be expanded as 

~' = ~'o + d u ~ i  , ' ' tlo , t h ~ A(T*B). 

Set: 

[~']d"=~i. 

Theorem 2.14. Let cr., ~'. s A(T*B) be given by 

cr ={Tr~[exp(-AZ.-da(]//u(j+v)+C(T'~'°')t 

- d a (  l /~(J*+v*)+ 4]fu j-daddi°3z'~)J~ ' 

c(rl l l l" °~,=Tr,[N, exp(-A2+du(]fu(O+V)+ -g-~jj  j • 

Then 

(2.52) 

a'. = (0 ~ -  2)½ ~-~ Tr~[exp(-A2. + bN.)]b = o- (2.53) 

Moreover 

(2.54) 
or equivalently 

E 2 =e.+Trs[(N~+~)exp(--A.)]-~B'{~2~Tr~[exp(-A2.+bN.)]b-o -~-~z/] 

(2.55) 
Proof One immediately verifies that 

4Vu/ b=O" 

Dividing both sides of (2.48) by b and replacing in the right-hand side of (2.48) 

~b by 1 (  632 ~b, we obtain (2.53). 2\ bV 
Differentiating both sides of (2.50) at b = 0, we obtain (2.54). (2.55) follows from 

(2.53) and (2.54). [] 

The second key step in establishing the asymptotics of Tr~[Nu exp(-  A~)] is the 
following remarkable formula: 
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Theorem 2.15. For u > O, 1 < i < f, let Qiu, QI i, be the differential operators 

(2.57) 

Q~= e~+ 2 ~u s(~i)% ~c(w)~y ~ 

Then 
/ c(T(1,°))'~ / c( T (o, 1)) "~ 

4]/u ] 4~?u ] +aadftic°z'c 

(Q.Q. + Q. Q.) + + u([g*, v] + [J, v*] + v ~) - -  U 2 i ti ~i i 

i = 1  

- , o  _ _ , , _  c(w,)e(w;)® L (w~, + [c(wOc(wj)®l~ (w~, w~) + wj)] 

(2.58) 

Proof We will prove (2.58) when v=0,  the extension to the general case being 
trivial. 

If da=dgl=O, (2.58) is exactly formula (2.13), where we have used the base 
(wi, v?i) instead of (ei). Note that here we also use the fact that by Theorem 1.7, 
S( w i)~, j = S( ~ ~)w g O. 

In general, the extra contributions of da, dgt to - u Z (Q~Q',~, + Q'dQ~) is given 
by i= 1 

da a ,  
dal//-u~ + d a ~ *  + ~ (S(¢2i) ~y ~ +)dy~'d~ ~ 

d~ c~, 

--~ (w~)wj ,  (c(~3dac(~,j)d~ ~+c(~)dy~c(~3da) 

---~ (v~i)#j, (c(wi)dac(wj)dy ~' + c(wj)dy~c(wi)da) 

1 --g(c(wi)dac(~i)d~ + c(v~i)d~tc(wi)da). (2.59) 
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By (1.4), we know that 

,0) ~ ~ - 

2 

Also 

c( # Odac( # j)d y ~ + c( ¢e y)d y c( # Oda = O, 

and a similar relation holds for the conjugate quantities. 
Finally, using (2.14), we find that 

- ¼(c(wi)dac(#i)ddl + c(#~)dac(wi)da) 

= ¼dada(c(wi)c(~i)_ c(ye~)c(wi) ) = dadaieoz, c. 

Equation (2.58) follows from (2.59)-(2.62). [] 

(2.60) 

(2.61) 

(2.62) 

g) The Asymptotics of Tr~[N, exp(-A2)]  

We now establish several explicit results concerning the asymptotics of 
Trs[N, exp(-A2)]  as u$$0. 

I denote the identity map on T ° '  °)Z. 

T h e o r e m  2.16. There exist smooth differential forms C_ 1, Co .. . .  , D _ z, D_ 1 . . . .  in P 
and smooth differential forms on B Eo, E . ... such that as u$$0, for any k e N ,  

k 

Tr,[N,  e x p ( -  A2)] = Y~ Cju j + o(uk), 
j = - - I  

k 
~r~, = y~ E y +  o(uk), (2.63) 

j = 0  

1 2 Trs[exp(-- A, + bN,)]b = o = ~ Dj uj + O(Uk), 
j = - 2  

and the various o(u*) are uniform on compact sets on B. 
D_z, D_ 1 are closed, and for j>O, (OB-~)D~=Ej. C-1, Co are closed 

differential forms given by 

\ z r a /  z z 
(2.64) 

Co = z ~b 

Td(-- R z) Tr~[exp -- I~] +e I 

( l ) t T d ( - R Z ) T r , [ N n e x p - L ¢ ] - d n E °  I 2 
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I f  E o =E0(v), then 

Eo(v)=Eo(O)+ ~ z 2 ,=o '  

(2.65) 
and so 

dBEo(v)=dBEo(O)--(2~z)tSzicoTd(--RZ)[(f--~)Tr,(exp-(V+V~V)Z)],=o • 

(2.66) 
Finally 

(O n -  3n)Ci = B j, (~aO")C~ = --jA i (j > 0). (2.67) 

Proof The existence of the expansions (2.63), and the corresponding cancellations 
can be proved easily by the methods of the proof of Theorem 2.11. 

Using (2.53), we find that D_ 2, D_ 1 are closed and that forj > 0, (O n -  ~)Dj = Ej. 
From (2.37) and (2.41), we also find that C-1, Co are closed and that for j > 0 ,  
(~B_ ~B)Cj= Bj. Using (2.42), we find that for j > 0, (~On)Cj = - j A j .  

We now calculate C_ 1 and Co. 
Clearly 

C_ ~ = lim Trs[uN, exp(-A~)] .  (2.68) 
u~. 1~0 

Also 

uN,= -iucoZ'c+ ~ -  +u Nn+ . 

Note that co z' c has length 2 in c(TZ). In uNu, each vertical Clifford variable has 

the weight V ~. It is then easy to adapt the proof of [B 1, Theorems 4.12 and 4.16] 
and obtain the first line of (2.64). 

We now calculate Co. Clearly 

Trs[uN, exp(--A2)]=C_I +Cou+...+CkUk+X+o(uk+I). (2.69) 

One verifies easily that we can differentiate (2.69) so that as u~+0, 

Trs[uN . exp( - A2)] = C O + Z (J + l)Cju j + o(uk). (2.70) 
1 

We now will use (2.54). By the methods of [B 1, Sect. 4], one finds that 

(2.71) 
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We now will prove that lim o-, exists and we calculate this limit. Let O, be the 
u$$O 

operator appearing in (2.58). We have 

cr, = Tr~[exp - 0,]  a~a~ . (2.72) 

To go back to the formulas in [B 1, Sect. 4], we scale the Grassmann variables 
1 u O .  

dy', d~ ,  da, d5 by the factor ~ ,  and replace u by ~ .  O, is changed into ~-.  We 

now study the limit as u ~ 0  of Tr~ [ e x p -  ~--~" 1 . 

Formula (2.58) shows that we can use the methods of[B 1, Theorem 4.12] since 
it has the same structure as the formula of [B 1, Theorem 3.6], given in (2.13). So we 

already know that has a limit as u~$0.  

For the same reason as before, v does not contribute to the limit. Also E ~ 
contributes to the limit in a trivial way. So in order to simplify the argument, we 
will temporarily assume that v = 0, ~ =/~-~ and so E ~ = 0. 

We now adopt without further reference the notation of [B 1, Sect. 4] to which 
the reader is referred, except that t in [B 1] is now u. 

Take x o e Z y  o. Let W'hl(O<h<t) be a Brownian bridge in T~oZro with w~ 1 
=w'~ 1 =0. Let P1 be the law ofw '1 on cg([0, 1]; TxoZyo). We can split w; 1 as a sum 

W~I 1 - 1 .  ,a l  ~ T ( 1 , 0 ) 7  G1 ~ T(O, 1) z "= Ylh -t-  r l h ,  ' th  ~ ~xo ~Yo ~ ' lh  = ~'xo Yo" 

Let x~(0 < h < 1) be the Riemannian Brownian bridge in Zy o with x~ = x~ = Xo 

associated with V~w '1 as in [B 1, Sect. 4]. ~ '"  denotes the parallel transport 
operator from fibers over x~ into fibers at Xo along x u. Set 

h 

7h "= ~ %,h" ,dx~,,, (2.73) 
0 

and decompose "f~ in the form 
u__ u ~-u, T2,o)Z,o, °h ~ ~xO ~Y0 " (2.74) 

Let el . . . . .  e, be an orthonormal real base of TxoZyo, (f~) a real base of TyoB, dy '~ 
the corresponding dual base in Ty*B. 

Equation (2.58) shows that instead of the equation in [B 1, Definition 4.11 we 
now consider the solution U~ of the equation 

Uo = Ia~o(r~z)®u- 1" (2.75) 
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By proceeding as in [B 1, Theorem 4.1], we can integrate Eq. (2.75) explicitly. 
We obtain 

1 I (~;~S(dx~)ei,£)l/~c(e~)dY '~ Ul=exp 2uu o 

o (S(dx~)f~'fe)dY dy + o} ~/u(c(de~)da+c(d~)d~) 

i /Pz(S(dx~)f~), Pz(S(dx~,)fp)\ +(¼) \ / dy,~dy,P 

+ ( 1 )  f ((zho'"S(dx~)d~',f~ 1 

+ ~ ((z~S(dx~)d~,, f , )  - (Zho "'"S(dx~,)d~, f~))dy'~da 
O < _ h < h ' < _ l  

} + I((e~, d~)  - (~,  de~))dada . (2.76) 
0 

[B 1, Theorem 4.2] remains formally verified when replacing exp - by 

exp ( - -~-). If Wl(xo, x{)) is the kernel ofexp ( - -~) ,  the asymptotic evaluation of 

Trs[P](xo, x0) ] can be done as in [B 1, Theorem 4.I2], to which we refer for the 
main arguments. 

With the notations of [B 1], we know that 

7~ = ]//uw'h a + hv Z(Vuw'l ) . (2.77) 

Since w]t = 0, we have o:~ = vZ(|/uw ' 1). By [B 3, Eq. (4.178)] (with b'= 0), we find 

that as u$~,O, vZ(]/uw'1) --*0, or equivalently 
U 

e~ --*0, ~ ~0 .  (2.78) 
U U 

The same argument as in [B 1, Eq. (4.43)-(4A5)] shows that 

( t )  (<% S(dx~)deh,,f~)-(Zo S(dxh,)d~h,£)) I h,U U ~t hr, u U tJ 

O<_h<_h'<_l 

1 

~¼ ~ ( S~o(w'l)dtl - S(dw'l)q, f~) . (2.79) 
0 

By Theorem 1.14, S(w'l)dtl=S(rl)dtl, S(dw'l)tl=S(dtl)tl, and so the right-hand 
side of (2.79) is exactly 

1 

-¼ f (T(q, dr/), f~) =0.  (2.80) 
0 
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A similar analysis can be done on the conjugate term. Finally, using (2.77), we 
find that 

f ((gh, deh) -- (~ ,  d~h)) "~ i ((rib, dqh) - (q,, dtlh)) 
0 0 

= - S (JZw",dw' l )  • (2.81) 
o 

Using [B 1, Theorems 4.12 and 4.14] and returning to the initial scaling, we find 
that 

lim Tr~[exp(-O, ) ]=  ~ exp ^ ½ ((RZ-iJZdada)w'l, dw ' l )  dPl(w'~). 
u$.~0 

(2.82) 

In (2.82), exp ̂  indicates the exponential in the algebra A(T*M)@C(da, da). 
Let A' be the complex Hirzebruch polynomial. If B is a (~, E) complex matrix 

with diagonal entries Yl, ..., Ye, we have 

Using a formula of P. L6vy as in [B 1, Theorem 4.16], we find that 

A'(R z -  iJZdadd). (2.83) l i m T r , [ e x p ( - O , ) ] =  ~ ]  z~ 
u + , 0  

With a general 4, we obtain 

lim Tr~[exp(-- 0,)] = ~ A'(R z -- iJZdadd) 
u~,~O ~ Z 

x exp(--½WrR z) Wr,[exp( - L¢)]. (2.84) 

Using (2.84), we find that 

l ima  u = A'( R z -  ibJZ)]b = o 
u ~ o  

X exp( -- ½ Tr R z) Tr~[exp( - L¢)]. (2.85) 

Using (2.54), (2.70), (2.71), (2.85), and the fact that on T°'°)Z,  j z =  iI, we get 

I a C o = ( 2 ~ t ) e z ( - ~ ) [ A ' ( R Z + b I ) ] b = o e x p ( - 1 T r R Z ) T r ,  Eexp(-L¢)] 

( l )  e [ ( ~ )  ] d'E° (2.86) + ~ ~zTd(-R z) Tr, n n +  e x p ( - L  ¢) 2 

If B is a (E, f) matrix, we have 

Td( - B) = A'( B) exp(-- ½ Tr S); 
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and so 

Td(- B -  b I) = A '( B + b I) exp(- ½ Tr B) exp ( -- b---f ) , 

which implies that 

[(~--~)Td(-B-bI)I=[~--~A'(B+bI)I exp(-½TrB)-(~)Td(-B). 
b = 0 (2.87) 

From (2.86), (2.87), we obtain (2.64). 
We now study the dependence of Eo on 4, g e and v. 
When scaling the Grassmann variables dy ~, d~, du into dy" dy du 

study the constant term in the expansion as u,~0 of t /~,  ]f~, 1//~, we must 

Tr~[(_i~oz,~+ icon f (V~(D+V) + c(T)))~ln" +N•+ ~)exP{½(-A2+du 4~J,]JJ " 

(2.88) 
# 

By proceeding as in Theorem2.11, we see easily that N ~ + ~  does not 
contribute to this term. 

We now use Proposition 2.10 to obtain a probabilistic representation of the 
kernel of 

( -i°az'~+i°an)2u jexp {½(-AZ+du(V-u(D+v)+c(T)))~4V~)jj. 
c(e,)du 

As u.H,O, in (2.88), a first sort of term will come from the factor-~7~-,," Since v 

contributes by terms which are factor of u, the same argument as in (2.45)-(2.46) 
shows that v does not appear in this part of the constant term in the expansion of 
(2.88). After reseating, we obtain Eo(0). 

A second sort of term in the expansion of(2.88) comes from dul/~V. Then l/uVv 
and ~/u[D, V] necessarily contribute to the constant term, while u g  2 does not 
ultimately appear. We obtain after rescaling 

(~---~t)e~(2)Td(-RZ)[(;)Tr~(Vexp(--V+]/~V)2)],=o . (2.89) 

We thus obtain (2.65). 
By [BGS 1, Theorem 1.15], we know that 

dB[( l-~']Tr,(Vexp(-(V+I/~uV)2))l=(-2~---u)Tr, exp(-V+]/-uV)2. 
(2.90) 

Equation (2.66) follows from (2.65) and (2.90). The theorem is proved. []  

Remark 2.17. It is elementary to verify directly that C_ 1 and Co are closed. 
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In the case of finite dimensional complexes, we saw in [-BGS 1, Sect. 1 c)] that 
the analogue of Co is the derived Euler characteristic, which is naturally a closed 
differential form. In particular, C~o °) is an integer. 

In our infinite dimensional context, the closed form C o plays formally the role 
of a derived Euler characteristic, but in general C~o °) is no longer an integer. It is 
remarkable that in cohomology Co is given by characteristic classes, i.e. Co has a 
topological interpretation. 

f Finally observe that z \-~)[Td(-RZ-bI)]b=° Tr~[exp(-L¢)] will be inter- 

preted as a secondary characteristic class in [BGS 3], when we study the varia- 
tion of the analytic torsion with respect to the metric. 

We finally state a consequence of Theorem 2.16. 

Theorem 2.18. For u>0, let a u be the differential form in P, 

a~=Trs[exp(_A2_da(V~(J .+v)+ c(T(l"°))) 

( c(r,o :,!))l.o.o 
-d'i\ 41/u ) ) J  " 

(2.91) 

There exist smooth differential forms in P, F_ x,Fo, ..., such that for any k ~ N, as 
u$ O, 

F-1 
a~ = - -  + Fo + Flu +... + o(uk). (2.92) 

u 

Also 

Tr Eexp,_ ,l  ,oO, 0 ,293, 

dnEo 
If  ooH=O' F°-- 2 

Proof Using formula (2.54), we know that 

a~=(~u)uTrs[Nuexp(-A2)] 

- T L  _ieoz, c+Nn+~ exp(-A,)  + T  

It is now easy to prove that tr~ has the expansion (2.92). By using the methods of 
[B I, Sect. 4], we find that 

lim Trs[iuc~ z'¢ exp(-  A2)] 
ul.$O 

=(2~t)e~z(--i~)~)Td(-RZ)Trs[exp(--L~)]. (2.95, 
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Using (2.63), (2.94) and (2.95), we obtain the first line of (2.93). If co n = 0, (2.94) is 
equivalent to 

a,=(~u)[uTr~[N~exp(_A~)]]_Tr~[N~exp(_A2)]_~ d~a',2 

= u [TL[N, exp(-  A,Z)]] + d~a~ (2.96) 
2 

Since u(-~,,)~r~[N, exp(-A:)] ]  does not contain a constant term in its 

dBEo 
asymptotic expansion, we find that F 0-- 2 

In degree 0 in A(T~B), we can always neglect co~/, i.e. assume that con=0. 
The theorem is proved. [] 

h) Double Transgression of the Chern Character Forms 

By Theorem 2.16, we know the asymptotic expansion as u$~0 or 
Trs[N . exp(-A2)]. We are thus ready to imitate [BGS 1, Sect. 1 c)] in order to 
calculate the double transgression of the Chern character forms Trs[exp(-A2)]. 

We do the basic assumption that the double complex (E, ~-+ v) is acyclic. 
r - /  

It is then not difficult to show that as uTT+oo, Trs[exp(-A2)], Trsl(~/uD 
L\ 

+ ~ )  exp(-- A2)/, TL[N ~ exp( -  A2)] decay exponentially uniformly on com- 
4Vu: J 

pact sets in B. 
In fact, one can show that A~ is a small enough perturbation of D E and that 

Tr,[exp(-uA2)l decays exponentially. By rescaling the Grassmann variables in 
T'B, we therefore obtain the exponential decay of Tr,[exp(--A~)]. A similar 
argument also works for the other considered quantities. 

Definition 2.19. For s e C, Re(s) > 1, ~E(s) e P is defined by the relation 

_ ! u s-1 Trs[N~ exp(-  A2)] du. (2.97) 

Because of the expansion (2.63) ~(s) is indeed well defined for Re(s)> 1. It 
extends into a meromorphic function on C with simple poles, which is holo- 
morphic at s = 0. In particular 

- C o ,  

~(0)=- -  Tr~[N, exp(_A2) ] C_~ C ~du (2.98) 
U 0 ;  U 

+ co 2 d u  
- ! T r y N . e x p ( - a . ) ]  

If deC*, we can change Vu(ff+v) c(Z(l'°)) ]//ua(J+v) c(T(l"°)) 
4V ~ into 4l/_u~ , 

l/-u( ~* + v* ) -- c( Tt °" 1)) c( r~ O, , )) 
4V ~ into ~/ud(F* +v*) 4~/_~a and Nu into Njal2,. A 2 is 
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changed into A~al~ . and ~E(s) into lal-2S~F(s). It follows in particular that ~ 0 )  is 
changed into ~ ( 0 ) -  2 Log(lal)~(0). 

Theorem 2.20. If  the chain complex (E, J+ v) is acyclic, then 

Tr~ ~ ( D + V ) +  c(T)_~exp(-A~)]du --(~n-~)~}(0), 
o 4|/u/ J u 

(2.99) 
( 1 )  e ~  z~ Td(--RZ)Tr~exp[-L¢]= -~8~'~(0). 

Proof Observe that by Theorem 2.11, the left-hand side is indeed well defined 
since as u ~ 0  

( 1 ) T r s [ ( l / ~ ( D +  V)+ c(T))exp(--A~, 1 =O(1). 

By Theorem 2.9, we find that 

1 ~ u s- a Tr~ (D + V) + exp(-- A~) du. 
--(~"--~-8)~E(s)= F(s-) o 4Vu/ _I 

Using Theorem 2.11, we immediately obtain the first line in (2.99). The second 
line follows from Theorems 2.2 and 2.9. [] 

i) The Case where (~, v) is Acyclic 
We now do the assumption that (3, v) is everywhere acyclic. Hence (E, 8-+ v) is also 
everywhere acyclic. 

Recall that (~(s) has been defined in [BGS 1, Definition 1.16] (where ¢ was 
instead denoted E). In particular 

~ u ~ ( 0 )  = -- Trs[exp( - L~)]. (2.100) 

Also, if c~, ~' ~ P, we write c~ = ~' if ~ -  c( ~ P'. 
We now state the basic result of this section. 

Theorem 2.21. If  (~, v) is acyclie, then 

~(0) = ~z Td(- RZ)('¢(O). (2.101) 

Proof We briefly explain the two main steps of the proof. The first step is to show 
that if for t>0,  ~E,,(S) is the zSta function associated with the chain complex 
(E, V~8+ v), then ~,t(0) is constant in P/P'. The second step will consist in proving 
that as t+,~0, 

0 + A _ /  1 

Note that since P' is generally not closed in P, we will have to be careful in the 
convergence arguments. However in degree 0, (2.101) is simply an equality of 
numbers, and P' is irrelevant. The argument is much simpler in this case. 

Only the degree 0 part of (2.101) will be used when we study determinant 
bundles in [BGS 3]. 
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Step 1. For t>0 ,  we scale ~, 0" by 
superconnection over B 

t ~ + ]/Tu([/~D + V ) -  Au-- 

the factor l/t. Namely, let At, be the 

c(T) (2.102) 
4t#  t" 

If A, = A,(v), we have the obvious 

(2.103) 

The total number operator corresponding to A~ will of course be N,t. 
Let ~,t(s)e P be defined by 

_ ~ u s- 1 Tr~[g, t exp( -  At) 2] du. (2.104) 
0 

By Theorem 2.20, we find easily that 

- Td(- R z) Tr~[exp - L~ (2.105) 

Definition 2.22. For t > 0, s e C and Re(s) large enough, set 

at(s)= F~I ! uS-lTrs N,tex p -(A*,)Z+du ] / ~ D + ~ ] ] j  du 

c(Y .1'0)) ~/~1)) .t_du(]//~,.jr c(Y(°'l)) , . /- ,~Tdu. 
4]/Ut ~ -l-Vuv ) )J  au. (2,106) 

By proceeding as in the proof of Theorem 2.11, we find easily that for a given 
t > 0, as u~,~0, the expressions appearing in the integrals which define at(s) and/?~(s) 
have asymptotic expansions where only integer powers of u appear. In particular 
at(s) and//t(s) are meromorphic functions of s, which extend holomorphically at 
s---0. 

Recall that Eo(0) was defined in Theorem 2.16. 

Theorem 2.23. For any t>0,  the following identity holds: 

N ~, t(0)= + OBN(O)-- (~ 0R)/~',(0) 

+1 1 
t { ( ~ )  ~z~--b [Td(-Rz-bI)]b=°Tr~[exp(-L~)] 

+f(~--~t)ezTd(-RZ)Tr~[exp(-L~)]}' - 1 ( ~ +  OB)Eo(0 ) 

2t 2 (~'B + C3B) 
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0 , In particular, for any t>0 ,  ~E, t (0 )  is an element of P'. 

Proof For Re(s) large enough, we have 

_ 1 ~1  
~ E , , ( S ) = (  ~ ) ~ U -  {Tr~[~Nutexp(-(At)2)] 

By proceedings as in [BGS 1, Eq. (1.106)] we find that 

~ 0  t ~2 -~b[Tr~I[A,,,~Au]exp(--(Au)+bN,,t)]]o= ° 

BO 0 , , z  = - d  ~[Tr,[(~{Au)exp(-(Au)+bN~t)]]b= ° 

~ t =o ~-b [ Tr~ [ ( ~[ Au) exp(- ( A~,)2 + b[ A~, N,,t]) l] b (2.109) 

As in Theorem 2.6, we split At, into a holomorphic and a antiholomorphic part 
so that 

t t, t ,  ( A t , ) 2  = ( A t , q 2  (~. A,= A u + A. ; , u, =v, (At")z_ t, t,, , - - u ,  - [ A . ,  A u ]  • ( 2 . 1 1 0 )  

By formula (2.18) in Theorem 2.6, we find that 

[At,, Nut ] = 2u ~ ( -  At" +A.),t' 

(2.111) 
1 ,,, t, , ~ t ~[-Au  + Au,Nv, J =  ~tAu. 

We thus find that 

~ {Tr~[(~ A~)exp(-(At,,)2 + b[At,,,N,,t])]}b= ° 

{Trs[N~, ut exp ( -  (At) 2 + b[At", N,,J)] }b = o 

+ 2/--0b Trs Nv ,,,exp. -(A,,)+2bu Au-A,,,o-(-A,,~u +Au) b=O " 

(2.t12) 

Using (2.110), we know that 

[At,,"- A:', ~--~(- A:" + A:')] = ~u (A:) 2 . (2.113) 
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The second term in the right-hand side of (2.112) is then given by 

U O , t 2 U 0 , F q 
t 5u(Tr*[Nv'"'exp(-(A") )])+Tr, LTg(Nv..,)exp(-(A~)2) j. (2.114) 

Observe that 

8 u 0 , -ico u 
-& N , t =  t gu (Nv,,t)  = - ~  . (2.115) 

From (2.108)-(2.115), we find that 

8 ~  1 
oi ¢~''(s) = ~ (o + OB)o~,(s) - 1 ( 8 , _  OB)fl,(s) 

1 +~ 8 
tF(s) ! u~-~uTr*[N'v'"texp(-(A~)2)] du. (2.116) 

For Re(s) large enough, we can integrate by parts in the last integral in the 
right-hand side of (2A16), and so we obtain 

1 S +oo 
+ t F ( S )  ! uS-* Trs[U'v,,,texp(-(Atu)Z)]du. (2.117) 

In Theorem 2.16, Co depends explicitly on v through Eo. We will now write C~ 
instead of Co. Set 

C°'v-C°~ - ~ -- 2~i ~z T d ( -  R z) Trs[Nu exp( -  L~)]. 

Using Theorem 2.16 and Eq. (2.7t), we find that for t > 0, as u~ ~0, we have the 
asymptotic expansion, 

Tr~[N~ ,t exp( -  At) 2] = C _ 1 + C~(~ + O(u). (2.118) 
' u t  ' 

From (2.117)-(2.118), we find that 

8 , 1 c~,/v7 (2.119) 

Equation (2.107) is proved. 
Using (2.100), we know that the differential form Tr,[exp(-L¢)] is exact. It is 

8r', p,. 
now clear that ~-(~,t(0) is in The theorem is proved. [] 

Step 2. We know that E0 = Eo(v) is the constant term in the asymptotic expansion 
of a' u. Also we saw in the proof of Theorem 2.16 that Nu does not contribute to 
Eo(v). 
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Therefore Eo(v) is the constant term in the asymptotic expansion as u$$0 of 

~ - ~ } } j  • 

In particular Eo(0) is the constant term in the asymptotic expansion as u$$0 of 

Tr~ [N~,,. exp ( - ( f f  + ]/~D c(T)']2+du(V~D+C(T)']'~]a" 

We now slightly generalize the definition of Eo(0 ). 

Definition 2.24. E~(0) denotes the constant term in the asymptotic expansion as 
uSJ, O of 

c(T) z c(T) a, 

Of course the existence of the asymptotic expansion of (2.120) can be proved as 
in Theorem 2.11. Incidentally, note that the proof of Theorem2.11 shows that 
(2.120) is non-singular as u$$0, so that E~(0) is the limit of(2.I20) as u$$0. Also one 
verifies easily that for h > 0, E0V~(0) is a smooth function of h. 

Definition 2.25. For u R 0, set 

C- I (u)=  2-~ -~- Td(-RZ)Tr~[exp-(V+]//uV)2], 
(2.121) 

Co(U)=(2+~y~(~--~)[Td(-RZ-bl)]b=oTr,[exp-(V+VuV)Z] 

+E ~ ~z Td(-RZ)Trs[exp-(V+]/uV)2] 

+ ~ ~z Td(-RZ)Trs[Nnexp-(V+]//uV)Z]-½dBEV~(O)" 

For Re(s)> t, set 

- ! uS-lCo(U) clu, 
(2.122) 

- ! l ( u )  u " 

Note that in Theorem 2.16, we have 

C _ 1 = C_ 1(0), Co = Co(0) + C21(0). (2.123) 

Also it is obvious that 20, 21 extend into meromorphic functions on C, which 
are holomorphic at s = 0. 



Direct Images and Bott-Chern Forms 121 

Theorem 2.26. There is fl e P such that as t~O, 

~E,t(0) = + 2;(0) + fit + o(t), (2.124) 

and o(t) is uniform over compact sets in B. 

Proof. Using (2.98) and (2.123), we have 

i (  C_ 1(0)+ C'_ l ( 0 ) u -  ~o(0)) duu ~ ,  t(0) = -- Tr s {Nut exp-- (A~) 23 - ut 

- +S ~° Tr~[N.~ exp-- (A.) ] u + 
1 

• Expansion as t~$O of Tr~[N.texp--(A~)2]. 

We claim that for u > 0, as t~.,~0, we have the asymptotic expansion 

(C-l(u)~ +Co(u)+O.(ut), (2.126) Tr~[N"texp-(A~)2]= \ ut ] 

and O(ut) is uniform as u is bounded. 
Equivalently, we must prove that as u'++0, 

Tr~[N.,exp_(g+~D+l~v_(C_(T)~21 ~ ~ , \4~/-~,jj j = ( ~ , ( u ) ) + C o ( u ) + O , ( u '  • 
I+++ ~ 

One verifies easily that as u'$$0, 

Tr~[Nnexp- - (V+Vu 'D+VuV- \4~ , i I i #  j 

\2rci) ~z Td(--RZ)Tr'[Nnexp-(V+I/~V)2]" (2.127) 

One is thus led to study the behavior as u'++0 of 

Observe that [NT,.,, v] = [Nv,.,, v*] = 0. It is then not difficult to adapt the 
methods of [BGS 1, Theorem 1.12] and of Theorem 2.13, in order to obtain a 
formula for 

, 

~u,) u r . [Nv, . 'exp--  \4l~,)) ] 

in which ~/uV plays only the role of a "parameter." 
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We find that 

(~---~)(u'TL[N'v,u, exp-(A~,'lu)Z]) 

-da(~uu'J* + c(T(°'i))'] 'Td~da ~-~,-]-dadaioJz'<)J + ( ~ )  Tr~[exp-  (A~'/") 2 ] 

~ ; ) , , / j  • (2.128t 

Using (2.128), we can proceed as in Theorem 2.16 and obtain (2.126). 
Note that quite naturally, ~'_ 1(0) does not appear in (2.126). 

• Uniform estimates as uT + oo. We claim that for any compact set K in B, there 
are constants cK>0,/~K>0 such that for any u>=l, t>0 ,  yeK 

t lTr~ [N,~ exp - (Atu)2] I *( C K exp ( -  #KU). (2.129) 

First note that the factor t on the left-hand side of(2.129) kills the divergence of 
Trs[N,texp-(A*,) 2] as t~0 .  A result similar to (2.129) was proved in FB2, 
Theorem 1.3]. The proof of [B 2, Theorem 1.3] uses essentially the fact that V is 
invertible, and can be easily adapted in our situation. 

Also if Ou(ut) is taken as in (2.126), for u_>l, we find that [O,(ut)i <= Cut. 
Therefore, for t > 0, 

i O,(ut)d~ <=Ct, (2.130) 

and so using (2.126), we get 

TL[Nutexp_(A,)2 ] C_ 1(0)-]- C_ 1(0)/3 _ ~o(0 ) 
o \ ut • 

- \ t / o  \ u i Z  + !(Co(U)- o(t). 
(2.131) 

Using (2.126), (2.129) and the dominated convergence Theorem, we find that, as 
t++0, 

Trs[N"texp-(A") I - u - =  . (2.132) 
i \ 1 \  u / u  

From (2.125), (2.131) and (2.132), we get 
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or equivalently 

~, ,(0)= ( ~ ) )  +O( l t ) .  (2.134) 

Also for t>O, Tr~[N,,exp-(A~) 2] decays exponentially as uT + oo and this 
uniformly as t stays bounded away from 0. From (2.125) we deduce that 

(t;~k,(o))= } (t - o Trs [g"~exp- (" )  ])-C°(0) u 

+~ ~ ~ 2 2 d u  , ~ (tTGEN"texp-(A") ] ; + F'(1)Co(0). (2.135) 

Using (2.128) and proceeding as in Theorem 2.16, we find that as t[[0, 

(~)(tTrs[N,,exp-(A~)2]) has an asymptotic expansion, which is given by 

On the other hand, by using formula (2.129), and by proceeding as in the proof 
of [13 2, Theorem 3.1], we find that for any compact set K in B, there are constants 
c) > 0 and #)  > 0 such that for any u > 1, t > 0, y e K, then 

< (t Trs[N,t exp -- (Atu)2]) = c K exp( -- #Ku). (2.137) 

Using (2.135)-(2.137) and the dominated convergence theorem, we find that as 
t~o, 

( ~ )  ( t~ , , (0) )=-  i (Co(u)- Co(0))~ - 

or equivalently 

+~ Co(U)~ + r'(1)C0(0) + o(1), 

(2.138) 

,(0))-- + o(1) 

More generally, by calculating one term more in the asymptotic expansion of 

(~) (t~'E,t(O))-this is possible by the uniform bounds in [B2, Theorem 1.3] - we 

find that there exists fle P such that 

(~ t )  (t~.,(0))= 2'o(O)+2flt+o(t). (2.140) 

Integrating (2.140) and using (2.134), we find that (2.124) holds. The theorem is 
proved. [] 

We now complete the proof of Theorem 2.21. By proceeding as in 
Theorem 2.11, 2.16, and 2.26, we find easily that as t$+0, a't(0 ) and fit(0) have 
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asymptotic expansions similar to the expansion (2.124) for ~},t(0), and that 
moreover, the operators 8 ~ and ~ can be applied to these expansions. Using 
Theorem 2.23, we find that there are differential forms t/_ z, t/_ 1 in P', and also 
smooth differential forms ~,Ic' t on B such that 

m ,  (2.141) 

and moreover, tc'~ and t¢ 7 depend continuously on t together with their derivatives, 
and have a limit together with their derivatives as t++0. 

Integrating (2.141 ) and comparing with (2.124), if we identify the constant terms 
in the asymptotic expansion of ~,t(0), we find that 

2~(0) - ~(0) e P ' .  (2.142) 

Using [BGS 1, Theorems 1.15 and 1.17], we find easily that for any u>0 ,  

~°(u) -  ~ ~z Td ( -RZ)Trs [Nnexp - (V  +]/uV)2]" 

Proceeding as in [BGS 1, Eq. (1.72)], we get 

Zo(O)- [ Td(--RZ)~'~(O)eP ' . (2.143) 
Z 

The theorem is proved. []  

Remark 2.27. A by-product of the proof of Theorem 2.21 is that the logarithmic 
singularity which should appear when integrating the right-hand side of (2.107) 

, I  

vanishes identically. Also observe that when integrating the coefficient of t~ in the 

right-hand side of (2.107), we obtain the coefficient of 1_in the expansion of ~,,(0). 
t 

The fact that this coefficient coincides with 2" 1(0) can be verified directly. 
In a preliminary version of this paper, we gave a proof of Theorem 2.21 based 

on a slightly different principle. 

Remark 2.28. In Gitlet-Soul6 [GS 1, 2], a group/£o(X) was introduced, whose 
generators are triples (E, h, t/), where E is a holomorphic vector bundle on the 

P 
complex manifold X, h a smooth Hermitian metric on E, and ~t a class in ~ .  These 
are submitted to the relation 

(E, h, t/' + t t') = (S, h', q') + (Q, h", ~") + (0, 0, ch(Cg)) (2.144) 

for every exact sequence cg: 0 ~ S ~ E ~ Q ~ 0, and choice of metrics h', h, h" on S, E, 
, t, P "" Q, and forms q ,t/ eft; .  Here ch(~) is the element of P defined in [BGS 1, Eqs. 

(1.124)]. 
Let Y be a Kfihler manifold and f :  X x Y ~ X  the first projection. In [GS 1], a 

direct image morphism f :/~o(X x Y)--+I£o(X ) was introduced using a notion of 
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higher analytic torsion similar to ~(0). If ¢=(~j)o=<~<,, is an acyclic complex of 
holomorphic  Hermitian bundles on X x Y, the following relation holds in 
go(X x ~, 

(-- 1 }/+ ~(~j, 0) = (0, c"h(~)). (2.145) 

Theorem 2.21 means that this relation is respected by f,. The same will hold for 
an arbitrary smooth  projective map  ~:M--*B. 

Acknowledgements. The authors are indebted to Professors J.-B. Bost, J. P. Demailly, N. J. Hitchin, 
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