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Abstract, We demonstrate that for the systems of equations, which are invariant 
under a point group or possess conservation laws of the zeroth or first order, 
a nontrivial extension of the module of invertible transformations is possible. 
That  simplifies greatly a classification of the integrable systems of equations. 
Here we present an exhaustive list and a classification of the second order 
systems of the form u t = ux~, + f ( u ,  v, u x ,  vx), - vt = vxx + g(u,  v, u~, v~,), which 
possess the conservation laws of higher order. The reduction group approach 
allows us to define the Lax type representations for some new equations of our 
list. 

Introduction 

The systems of evolution equations, related by the invertible transformations, should 
be considered as equivalent ones. In many applications there occurs a situation 
when a system of equations possess a continuous point symmetry group, and it is 
sufficient to restrict ourselves to a reduced subset of dynamical variables, consisting 
of the group invariants. With the accuracy up to the unessential constants of 
integration, which can be removed by the transformations of the group, a reduced 
subset contains all the information about a general solution. Thus, we can also 
consider two systems of equations as equivalent ones, if their reduced subsets of 
dynamical variables are related by invertible substitutions. In contrast to the point 
transformations, such substitutions may violate local conservations laws. We shall 
study the most interesting substitutions, that preserve the locality property of the 
conservation laws (recall, the conservation law Pt = Do- is called local, if p and a 
are the functions of a finite number of the dynamical variables). The considered 
module extension of the invertible substitutions simplifies drastically the classifica- 
tion of the integrable equations. The use of these substitutions allowed us to make 
a list of integrable systems of equations [1,2, 3] more comprehensible. Many 
of the well-known equations have proved to be equivalent by this extended 
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module. We also give a list of substitutions which connect the equations of the 
list. In the end of Sect. II several transformations of the Miura type are also given. 
They make it possible to expose additional connections between the equations 
which are not related between each other by invertible substitutions. The last 
section is devoted to the description of the L -A  pairs which are necessary in order 
to use the inverse scattering transforms. As it is known, the presence of the 
commutational representation is a sufficient integrability condition of the system 
of equations. 

I. Extension of the Module of the lnvertible Transformations 

1. For  definiteness, in this paper we shall consider the system of equations of the 
form: 

u~ = Uxx + f (u ,V,  Ux, Vx), - v ,  = Vx~ + 9(u,V, Ux, Vx). (1.1) 

In particular, the systems of the two equations of the form 

u, = A(u)uxx + F(u, ux) 

possessing local conservation laws of sufficiently high order can be reduced to the 
form (1.1) (See [13). 

The invertible substitutions of variables, that do not change the form of 
system (1.1), are exhausted by the composition of the elementary substitu- 
tions x ~ ax + bt + c, t -~  aZt + d (a, b, c, deC) conformal transformations u ~ U(u), 

v ~ V(v) and involution 

u ~ v ,  v ~ u ,  t ~ - t ,  x ~ - x .  (1.2) 

The system of evolution equations is extended up to an infinite dynamical system 
in variables u, v, u l ,  h ,  uz, v z , . . . ,  where ut = ux, v~ = vx, u2 = uxx, and so on, which 
form a complete set o f  dynamical variables. Systems (1.1), that are invariant under 
the continuous conformal group action can be transformed using conformal 
substitutions and involution (1.2) to a special form, such as 

f = f ( ~ u + v ,  u i , v l )  , g = g ( ~ u + v ,  u i , v l ) ,  ~=0,1 .  (1.3) 

For  instance, the famous nonlinear Schr6dinger equation i0t = 0x, + l O ]2~ is sure 
to be reduced to the form (1.3) with e = 1: 

ut = uz + u 2 + exp(u + v), - v t  = v2 + v [  + exp(u + v). (1.4) 

If the group of point symmetries is nonabetian, then the reduction to this form is 
not unique. The Heisenberg model can serve as an example, of the system that 
can be reduced to the form (1.3) in two different ways (see below). 

Further the maximal subset of dynamic variables eu + V, Ux,Vl . . . .  that are 
invariant under the one-parametric point group transformations we shall call as a 
reduced subset o f  dynamical variables. Both reduced and complete subsets are 
generated by the action of the operator D = uiO/Ou + v~O/Ov + UzO/~u 1 + . . .  on the 
generators. For  the generators of a complete set of one should choose u, v, and for 
a reduced subset we shall choose variables eu + v, ul. The considered substitutions 
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will have the form eu + v = Z ( y , z )  u l  = W ( y , z ) ,  where Z, W, are functionally 
independent functions of the generators of a reduced y = eu + v, z = u~ (or a 
complete, i.e. y = u, z = v) subset of dynamical variables. We shall require that the 
function Wshould be a density of the conservation law of the initial system (1.3) 
(or (1.1)). That will allow us to redetermine the evolution in time of a complete 
set of dynamical variables. 

The example of the invertible substitution defined on the reduced subsets is 
U~ = exp(u + v), U + V = 2ut, which relates the nonlinear Schrtdinger equation 
(1.4) to the system Ut = U2 + (U + V ) U I ,  - V~ = V 2 - ( U  + V)V~,  the last one is 
equivalent to the famous Kaup equation. (Below we will denote such transforma- 
tions as ul ~ exp (u + v), u + v--* 2u~ .) Let's point out that this substitution is not 
the transformation of the Miura type, because the latter is not inverfible within 
the finite subsets of dynamical variables. 

There is an important class of invertible substitution that relates reduced and 
complete subsets of dynamical variables: 

u~Z(~u + v, uO v-o W(~u + v), (1.5) 

where Z, W, are any functions ( d Z / d v ~ d W / d v  ~0). In general, substitution (1.5) 
spoils the form (1.1) of the original system. This form is to be preserved iff 

Ozf /Ov l  2 = O, 2 0 Z / ~ v  = ~ f / ~ v l O Z / O u l .  (1.6) 

Consider the system of equations ut = u2 + 2vv~,  - v t  = v 2 -  u l ,  that relate to 
the system u~ = uz  + vl  2 + v(u - v2/2), - v t  = v2 - u + vZ/2 by the substitution 
Z = U 1 + v2/2, W = v. The initial system of equations which can be reduced to the 
Bousinesque equation after excluding the variable u, possesses local conservation 
laws of an arbitrary high order. Using the results of paper [1] one can check easily 
that the obtained system does not possess local conservation laws. Below we shall 
obtain sufficient conditions so that the local conservation laws would not be 
violated. 

Let us consider the following change of variables: 

ua ~ p(u, v), eu + v ~ ~(v), (1.7) 

where p is a density of the conservation law. This substitution is admissible for 
the class of system of the form (1.I) iff 

c~2g/cqul a = c32g/aulOva = a[(Og/t~u~)/(Op/3u)J/Ou = O, 

and 

= O, X = v, if ag /3u  1 = 0; 

= 1, O•/Ov = - (O9/t3ul)/(Op/~u) if 89/~ul # 0. 

Let's note that substitutions (1.7) are inverse to the substitution of the from (1.5). 
It is evident that substitutions of the form (1.7) preserve the locality property of 
the conservations laws and increase their order by one. 

2. Here we shall consider the systems of equations of the form: 

u, = u z + f ( u  + v , u l , v O ,  - - v ,  = v2 + g(u + v, u l , v O .  (1.8) 
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They are invariant under involution (1.2). We shall call them symmetrical systems. 
For  symmetrical systems we shall take the substitutions which do preserve the 
property of the higher order conservation laws to be local. Below we shall refer 
to the lemma about the invariant functions. A function g we call invariant if it is 
not changed under involution (1.2) and Og/Ou = ~g/~v. 

Lemma. I f  the local conservation law p, = Da o f  the system (1.8) possesses invariant 
density p, then function a is also invariant. 

Let's consider the following change of the reduced subsets of the dynamical 
variables: 

u + v - + p ( u + v ) ,  ui--+p'(u+v)u 1 + q ( u + v ) ,  p' 5 0 .  (1.9) 

,We require that the function p'ul + q should be a density, therefore [ p ' ( u l -  
vl) + 2 q l  = Da, and a is an invariant function as it follows from the lemma. The 
evolution of a complete set of variables is defined from the relationships ut + v, = p,, 
ut - v, = a. It is easy to check that the obtained system is also symmetrical. 

Theorem 1. Substitution (1.9) defines the equivalence relation on the set o f  symmetri- 
cal systems. 

Therefore, the systems that relate to substitution (1.9) we shall call symmetrically 
equivalent. To construct the equivalence class of a symmetrical system one should 
find all the densities of the form p'(u + v)ul + q(u + v). If there are no nontrivial 
densities, then the equivalent class can be determined by the substitution 

ui--~u 1 +# ,  vl --~V t --#.  
Let us consider two examples. The system of the form (1.1) with 

f =  2auvul + buZvi + b ( a -  b)u3v2/2 + cu2v, 9 = f *  (1.10) 

(where f *  denotes the result of involution (1.2)) by the conformal substitution 
u ~ log u, v ~ log v is reduced to the form (1.8), where 

f = ui 2 + (2aul + bv l + c) exp (u + v) + ½b(a - b) exp 2(u + v). (1.11) 

Using the conservation law of the system (1.11) with the density cut +/~ exp (u + v), 
e,/~eC, it is not difficult to check that if b = 2a, c = 0 this system is symmetrically 
equivalent to a linear one, if b = 2a, c 5 0  it is equivalent to the nonlinear 
Schrtdinger equation (1.3), and if b v~ 2a it is equivalent to the derivative nonlinear 
Schrfdinger equation (i.e. to system (1.8), (1.11) a = b = 1, c = 0). Some particular 
cases of the system (1.1), (1.10) were studied by many authors from the viewpoint 
of the inverse scattering transform. In these cases a special gauge transformation 
results in substitutions of the form (1.9). In our approach the substitutions are 
defined by the classical symmetries and conservation laws. As a second example, 
let's establish the relationship between the known systems: 

u~ = u2 - 2uiZ/(u + v), - v t = v 2 - 2vlZ/(u + v); (1.12) 

u, = uz - ul 2 + 2uivi, - v  t = v 2 - vl 2 + 2vlui. (1.13) 

The system of equations (1.12) is obtained from the well known integrable 
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Heisenberg model St = S x Sxx, $1 z + $2 2 + $ 3  2 = 1 by the point transformation: 

$1 = 2/(u + v), $2 = 2uv/(u + v), $3 = (u - v)/(u + v). (1.14) 

System (1.13) has been studied by many authors via the inverse scattering transform. 
The substitution of the form (1.9) u + v--, log (u + v), ul ~ ul/(u + v) transforms the 
system of equations (1.12) into (1.13). 

These examples show that the systems not related to each other at first glance, 
might prove symmetrically equivalent. In the case of the system (1.8) with 
~zf/c3vl z=  0 the following theorem yields a simple criterion of equivalence. 

Theorem 2. Two systems of  equations of  the form (1.8) with O2f/aVa2=O are 
symmetrically equivalent if and only if substitution (1.5), (1.6) with e = 1 makes them 
eonformally equivalent. 

The theorem means that substitution (1.9) is nothing but a composition of two 
substitutions of the form (1.5), (1.6) with e = I and the conformal transformation. 

It follows from the lemma that substitution (1.9) allows one to recount the local 
conservation laws if the densities are invariant. The following theorem shows that 
really conservation laws of higher order can be considered as invariant ones. 

Theorem 3. Let system (1.8) have at least two local conservation laws of higher order 
and p be the density of the conservation law of the order N >= 2. Then the density 
p + p* is of the order N and invariant modulo of total derivatives and densities of 
the order not higher than one. 

Corollary. I f  a symmetrical system possesses local conservation laws of higher order, 
then the system of equations, obtained as a result of the substitution of the form (1.9) 
or (1.5), (1.6) with e = 1, also possesses this property. 

For  example, the substitution of variables u ~2iu,  v ~ i tanh (u + v) in the 
following system: 

ut = u2 - 2 tanh (u + v)uj 2, - v t  = v2 - 2 tanh (u + v)vl 2, (1.15) 

results in the system 

U t = U 2 "}- D(uEv), -- v t = v 2 -- D(v2u + flu), (1.16) 

where # = 1. The system (1.15) relates to (1.12) by the conformal transformation, 
hence on account of the consequence of Theorem 3 system (1.16) possesses an 
infinite set of local conservation laws. One can make the substitution u ~ u l ,  
v--* - 2/(u + v) directly in system (1.12), in this case one obtains system (1.16) with 
# -- 0, i.e. the derivative nonlinear Schr6dinger equation. Systems (1.16) with # = 0 
and # = 1 are not point or symmetrically equivalent. 

IL Classification of Integrable Systems of the Form (1.1) 

1. In our previous papers [1, 2, 3] there have been obtained the necessary conditions 
that the systems of equations of the form (1.1) possess the local conservation laws 
of higher order. These conditions proved to be so effective that they allowed us 
to determine completely a possible form of the right-hand sides of the systems. 
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Among  them quite a lot of systems proved to be symmetrical. The afore-described 
module  extension allows one to reduce drastically a list of  integrable equations: it 
is just enough to give a representative from each symmetrical  class. Below we shall 
present an exhaustive list of integrable systems of equations of the form (1.1). 

Lis t  o f  integrable sys tems  o f  equations.  

(a) u, = U 2 "~- U l  2 "~- /)1,  

- - / ) t  

(A) ut = 

- - / ) t  

(b) u, = 

(C) Ut = 

- - / ) t  

(d) u, = 

(D) u, = 

- - V  t = 

( d ' )  u ,  = 

- - / ) t  

( d ' )  ut = 

- - V  t 

(e) u, = 

- - / ) t  ~ 

( f )  Ut = 

- - / ) t  

(g) u, = 

- - / ) t  

(G) u , =  

- - / ) t  

(h )  u,  = 

- - / ) t  "~" 

(H) u, = 

- - V t =  

v 2 --  2u 1 v~ ; 

u 2 + D(u z + v), 

v 2 - 2D(uv); 

U 2 + N2G 

v2 + v2u; 

u2 + (u + v)u~, 
vz - (u + v)v~, 

U 2 --[- u l a v l  - - 4 v l ,  

v 2 - v ~ 2 u ~  + 4 u l ;  

u2 + D(uZv - 4v), 

v z - D(vZu - 4u); 

Uz - (u + v)-2ul~-va - 2(u + v)-  l U 1 2  , 

/)2 "{- (U "I- / ) ) -  2/)12U 1 - -  2(u + v)- 1/)12; 

u z + seeh2(u + v)ulZvl  - 2 tanh (u +/) )ul  2, 

v 2 - sech 2 (u +/))vaZua - 2 tanh (u + v)vlZ; 

u2 - 2 tanh (u + v)(ul z - 4 ) ,  

vz - 2 tanh (u +/))(/)12 - -  4 ) ;  

u 2 - 2(u + / ) ) -  lulZ - 4(u + v)-212(1 + u/))ul + (1 - u2)/)1], 

v 2 - 2(u + v)- 1/)12 + 4(u + v)-212(1 + uv)/) 1 + (1 - v2)ul]; 

U 2 + U12/)1~ 

/)2 - -  U12Ul  - -  U l ;  

uz + O(uZv), 

/)z --  D(/)zu + u); 

u2 + u~ 2 - 2u~v , ,  

/)2 - / ) 2  _ 2v~ut;  

U 2 At- D(u z --  2uv), 

/)2 --  D( v2 --  2u/)); 
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(h') Nt = U2 -- 2(U + I))- lUl 2, 

- vt = v2  - 2 ( u  + v ) -  i v  12; 

(h") ut = u2 - 2 t a n h  (u + v)ul  2, 

- v t = v 2 - 2 t a n h  (u + v)vlZ; 

(i) u, = u2 + u l Z v i ,  

--/)t = V2 - - / )12Ul ;  

(I) u, = u 2 + D(uZv), 

- v, = v2 - -  D(vZu); 

(i') ut = uz  + exp(u  + v)ul2Va + Ul 2, 

--vt  = v2 - exp (u  + v)v12ul  + v12; 

(j) u t = u z - - 2 ( u + v ) - l ( u l 2 +  1), 

- v, = v2 - 2(u + v ) -  l (v i2  + 1); 

(k) u t = u z - 2 ( u + v ) - i u l Z - 4 ( u + v ) - 2 [ ( u - v ) u i  + uv i ] ,  

- v, = vz  - 2(u + v)-  lv l2  + 4(u + v ) -  2[(u  - v)v l  - vul ] ;  

O) U t -- U 2 + R(y)u12vl + R ' (y)ul  2 --  2 / 3 [ R " ( y )  --  2 c ] u  i + 1 / 3 R " ( y ) ,  

- v  t = v 2 - R ( y ) v l 2 u l  + R ' ( y ) v l  2 + 2 / 3 [ R " ( y )  - 2c]v  1 + 1 / 3 R ' ( y ) ,  

where  y = y(u  + v), y '  = g(y)  ~ 0, R ( y )  = ay  4 + by  3 + cy  2 + dy  + e); 

(m) ut = u z - 2(u + v ) -  l u l Z  - 4[P(u ,  v)ul  + R ( u ) v l ]  (u + v ) -  2, 

- v  t = v z - 2 ( u  + v ) -%12  + 4[P(u ,  v)v i + R ( - v ) u l ] i u  + v ) -  2; 

(n) u, = u z --  2(u + v ) - l [ u  lz + R(u)]  + R'(u) /2 ,  

- v  t = v 2 - 2(u + v ) - l [ v l  2 + R ( - v ) ]  - R ' ( - v ) / 2 ;  

(in Eqs.  (m), (n): P(u,  v) = 2au2v  2 + b(uv 2 - vu 2) - -  2 c u r  + d(u - v) + 2e, R(z )  = az  4 + 

bz  3 + ez  2 + dz  + e); 

(o) u~ = u2 + exp (49)(ui 2 + 1)vl + 49vUl 2 + 2ru,  

- v ,  = vz - exp (49)(vi z + 1)ul + 49~vl z - 2 rv l ;  

(p) ut = uz  + exp (49)(ul 2 + 1)vl + 49jua z + 1), 

- v ~  = v 2 - exp (49)(vi 2 + 1)ul + 49jvi 2 + 1), 

(in Eqs.  (o), (p): exp (49) = y(u + v) - y (u  - v), r = y(v  + v) + y(u  - v), y'  ~ O, (y,)2 = 
- 4 y  4 + ay  3 + by  z + cy  + d, or  (y,)Z = _ y4 q_ ay3 + byZ + cy  + d respectively);  

(q) u~ = u 2 + v i ,  

_ v  t ~- v2 _ u t 2 ;  

(Q) ut = u2 + v l ,  

- v = v2 - D(u2); 
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(r) 

(s) 

(t) 

U t = b/2 -[- (U -I- / ) ) 2  

- -  V t = V 2 47 ( U  "JF 7))2;  

u, = u 2 + (u + v)vl - (u + v)3/6, 

- v ~  = v2 - (u + v)ul - (u + v)3/6; 

IA t ~ It  2 -~- Vl~ 

--~) t  = /92 - -  U l  2 - -  (V + U2/2)Ul; 
there are six equations of  the form: 

(u) u, = u2 + vl e + O.vl + zv, 

- - / ) t  = V2 "]- //1 e - -  OvUl -~ Zu; 

where 

A. V. Mikhailov, A. B. Shabat and R. I. Yamilov 

0 = aexp  [ - - (u  + v)] + al exp(--cou -- co*v) + ae exp (--co*u - coy), 

z = b exp (u + v) + b 1 exp (cou + co*v) + b 2 exp (co*u + coy) 

+ cexp  [ - 2 ( u  + v)] + c 1 exp [ - 2 ( c o u  + co*v)] 

+ ce exp [ -  2(co*u + coy)]; 

and co = exp (2rci/3), co* = exp ( -  27:i/3): 

( u l )  U t = U 2 "t- U12, 

- - V  t = V 2 "~ U12;  

(U1) u, = u2 + 2vvl ,  

- - I )  t = V 2 -}- 2uul ; 

(u2) ut = u2 + vl 2 + b exp (u + v) - 2c exp [ -  2(u + v)-l, 

- -  1)t = / ' )  2 "[- U 12 ..~ b exp (u + v) - 2c exp [ - 2(u + v) ]; 

(u3) ut = u2 + vl 2 - {aexp [ - ( u  + v)] + coal exp ( - o ) u  - co*v) 

+ co*a z exp ( -  co*u - cov)}v l ,  

v, = v2 + u1 z + {aexp [ - ( u  + v)] + ~o*a I e x p ( - m u  -- co*v) 

+ coa2 exp ( - e ) * u  - coV)}ul; 

(u4) u t = u 2 + vl 2 - 2c exp [ - 2 ( u  + v)] - 2co*c 1 exp [ - 2 ( c o u  + co*v)] 

--2coce exp [ - -  2(co*u + coy)], 

- vt = v2 + ul z - 2c exp [ -  2(u + v)] - 2coq exp [ - 2(cou + co*v)] 

- 2co*Ce exp [ -  2(co*u + coy)I; 

(u5) ut = us + vl 2 + b exp (u + v) + co*b 1 exp (cou + co*v) + cob 2 exp (co*u + coL,), 

- v, = Vz + ul e + b exp (u + v) + cob1 exp (cou + co*v) + co*b e exp (co*u + coy); 

(u6) u t = u 2 + v l e - { a e x p [ - ( u + v ) ] + c o a l e x p ( - c o u - c o * v )  

+ co*aa exp ( -  co*u - cov)}v 1 - {a 1 ae exp (u + v) 

+ co*aa2 exp (cou + co*v) + coaa, exp (co*u + coy) + a 2 exp [ -  2(u + v)] 

+ co*a1 z exp [ -  2(cou + co*v)] + maz e exp [ -2 (co*u  + cot,)] }/6; 
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- vt = vz + ul  2 + {aexp [ - ( u  + v)] + c9*a i exp(-cou - co*v) 

+ coa2 exp ( -  co*u - cov)}ul - {a laz  exp (u + v) 

+ eoaa z exp (cou + co*v) + co*aa i exp (co*u + coy) + a z exp [ -  2(u + v)] 

+ coal 2 exp [ -  2(cou + co*v)] + co*a2 2 exp [-2(co*u + cov)] }/6; 

(v) u, = u z -- (u + v)- i(u i 2 + 2u iv 0/2 + a(u + v), 

- -  I) t = V 2 - -  (/g -~ V)-- 10)i  2 ~- 2v lu i ) /2  + b(u + v); 

(W) U t = U 2 -'}- D(U 2 -t- 0"- 1), 

- vt = vz -- 2D(uv) - I. 

The equations, denoted by one and the same letters, but differing in a number 
of primes, are conformally or symmetrically equivalent. For instance, the systems 
(h') and (h") are conforrnally equivalent, but, as has been already pointed out, they 
belong to different symmetrical classes, and systems (h), (h') are symmetrically 
equivalent, but are not related to each other by the conformal transformation. 

2. The substitutions of the form (1.5), (1.6) allow us to establish some additional 
relationships between the equations. 

T h e  list o f  changes o f  variables 

(a)-* (b) u~exp(u) ,  v ~ e x p ( - u ) v i ;  

(b) -* (A) u ~ ui /u ,  v -~ uv; 

(c)-* (A) u ~ ( u + v ) / 2 ,  v - ~  - v i ;  

(a)-~ (c) u ~  2ul  + v, v -~  - v ;  

(d)-~ (e) u ~ a r c t a n h ( u l / 2 )  - v, v -~v;  

(e)-* (D) u ~ 2  tanh (u + v), v - - * h ;  

(d") ~ (f) u ~ tanh (u + v), v-* - tanh (u + v) - 2/Vl; 

(g)-* (j) u ~  Z/u 1 - v, v - . v ;  

(j)-* (G) u - *  Z(u + v) - i  , v - ~ v i ;  

(g)-*(h") u ~ i u / 2 ,  v - ~ i u / 2  + arctanh ( -  ivi); 

(h") ~ (G) u ~ 2 iu i ,  v --* i tanh (u + v); 

(h') ~ (I) u ~ 2 ( u  + v) - i ,  v - * v i ;  

(I)-~ (H) u ~  - -uv /2 ,  v - *  - - u v / 2 - - v l / v ;  

(i)-* (h') u ~ 2 / u  1 - v i v -*v ;  

(i') ~ (k)  u-*exp (u + v), v -*  - 2 / h  - exp(u + v); 

(1)-* (m) u - * y ( u + v ) ,  v + - - 2 / v  i - - y ( u + v ) ;  

(q) ~(r)  u ~ ( 2 u  1 + v)/4, v ~  - v / 4 ;  

(r)--* (Q) u - * 2 ( u + v ) ,  v - *  - 4 v i ;  

(s)-* (t) u ~ - (u + v), v --* 2v i - (u + v)2/2; 

the following changes of variables relate (v) and (w) to linear and split systems: 
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(lin) ut = u2 + v1 + (a  - b ) u / 2 ,  

- v  t = v 2 - 2 b u  1 + (a  - b ) v / 2 ,  

(spl) ut = u2 + v- 1 

- -Vt  "~- /)2~ 

respectively: 

(v) ~(lin) u - - ,  2 ( u  + v) 1/2 v ~  - 2 v l ( u  + v ) -  1/2; 

(spl) ~ (w) u ~ u l / u ,  v ~ uv .  

The following universal substitution relates any pair equations, (x) and (X), 
denoted by the same letter, of which (x) does not contain u, v explicitly: 

(x)-~(x) u-o  ul  v--~ v l .  

A convenient graphical representation of the above substitutions is as follows: 
the systems of equations we shall denote by circles o (symmetrical systems 
correspond to black circles °) and the substitutions of variables by arrows. As a 
result we get: 

a o o o b  d . o . e  g . ~  oj 

C. o o A  fo oD i .  ~ h . o o G  
+ \ + \  

lo-*om no Oo 

u l .  - oU1 U2o U3o 

Vo--, olin splo~oW 

ko I ,  --;, oH 

po q o ~  . r  s .  ~ o t  

oQ 

U4o U5o U6o 

We notice in conclusion that it is just enough to study one of the systems from 
each connected graph: for the other equations of this graph all results can be 
reproduced via the above-given substitutions. 

3. The Miura type relationships, contrary to the afore-described transformations 
are not invertible on a finite subset of the dynamical variables. None-the-less, they 
could be useful for some applications, and allow one to relate different connected 
graphs. A full list of all admissible Miura relations goes beyond the scope of the 
present paper. We confine ourselves to citing some of the relationships of this 
category. 

As a first example we present the Miura type relations of the systems (d') and (i): 

(d') ~(i) u ~ u ,  v l ~  - ( u + v ) - 2 v l -  2(u + v) -1 

The Miura type relations of systems (e), (j) with the nonlinear SchrSdinger 
equation we present as a composition of the following symmetrical transformation: 
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ul -+ - 2(u + v ) -  lu l  , u + v-~ log [e + 2(u + v) - 2] 

(e = 4, 0 in the cases (e), (j) respectively), that  maps them into the system 

(~*) ut = u2 + {½12e - exp (u + v)]ul 2 + exp (u + v )u lv l )  [~ - exp (u + v ) ] -  1 

+ exp (u + v), 

- v ,  = Vz + {½12~ - exp(u + v)]vi 2 + exp(u + v)v lu i}  [~ - exp(u + v ) ] -  i 

+ exp (u + v); 

and then with the Miura  type relation: 

(e*)~(b)  u--+ {[2e - 2 exp (u + v)]l/2u 1 + i} expu,  

v--+ { [2e - 2 exp (u + v)] 1/2v 1 + 1 } exp v. 

The Miura  type relationship of  the system 

(I t )  Ut = U2 "~- / '/201 - -  U3V2/2,  - - / ) t  = /~2 - -  02//1 - - / ~ 3 U 2 / 2 ,  

that  is symmetrically equivalent to the derivative nonlinear Schr6dinger equat ion 
(I), with the nonl inear  Schr6dinger equat ion (b) is of the form: 

(I') =>(b) u ~ u i  v ~ v i - v Z u / 2 .  

To  find the Miura  type relations of  the systems (r) and (s) we first perform the 
following symmetrical  transformation: 

(s) --+ (s') #Z(u + v) --+ (u + v) z, #2u 1 -+ 2(u + v)ui + (u + v)S/3, 

where # = 2(co - 1)/3, co = exp (2rci/3). As a result we obtain the system 

(s') ut = u2 - (u + v)-  l(u12 + 2uiv l ) /2  + #(u + v)X/Zvl/3 + #Z(u + v)2/18, 

- v ,  = vz - (u + v)- l(vlZ + 2u~v i ) /2 , -  #(u + v)i/Zui/3 + #Z(u + 02/18, 

that  is connected with Eq. (r) by the Miura  type relation: 

(s') =>(r) 6u--+ (1 - coZ)(u + v)-  1/2u i - (u + v)/3 - oou, 

6v --+ (co - co2)(u + v)- ~/2v 1 - o.)2(u -]- v ) / 3  - OOV. 

The Miura  type relation of the following systems: 

(UI ')  3u, = - u 2  - 2v2 + D ( - u  2 + 2/) 2 + 2uv), 

- 3vt = - v2 - 2u2 + D ( -  v 2 + 2u z + 2uv), 

and 

(r') Ut = --U2 + 2*32, Vt = V2 -- 2U2/3 -- U2/3, 

which are point  equivalent to Eqs. (U1) and (r) respectively, is of the form [4]: 

(U 1') ~ (r') u-+D(Zu + v) + uv - (u + v) z, v --+ DZ(u) + D(uv) - (u + v) [D(u) + uv]. 

The Miura  type relation of (ul) and (u3) is of the form: 

(u3)=,-(ut) ul --+ui - c~{aexp [ - ( u  + v)] + eoZal exp ( -ogu  - ogZv) 

+ coa2 exp ( -  coZu - coy)}, 
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v I ~ v 1 -- fl{a exp [-- (u + v)] + a~al exp (-- ogu - co2v) 

+ co2a2 exp (-- co2u -- ore)}, 

where 2(fl - c0 = 1, 2fl 2 = a. 

The Miura type relation of (u3) and (u2) is of the form: 

(u3)=~(u2) u + v - - * u + u ,  ul ~ u l  + { a / 2 e x p [ - ( u + v ) ] - a l e x p ( - ~ o u - o ~ 2 v )  

- a2 exp ( -  co2u - o)v) }/2 

(the consts, b and c in Eq. (u2) are equal to -3a la2 /2  and 3aZ/32 respectively). 

Ill. Commutational Representation 

A commutational representation (or the representation of the Lax type) of the 
nonlinear system of equations is in the basis of the inverse scattering transform. 
It has the form [5, 6]: 

U, = D(V) + [U, V], (3.1) 

where U, V are the functions of the finite set of dynamic variables in some 
finite-dimensional unsolvable Lie algebra A, it should be fulfilled as a result of the 
initial system and it can be considered as the matrix analogue of the local 
conservation laws. However, it is essential that the functions U, V also contain 
the spectral parameter #, which is not excluded by the gauge transformations 

U ~ o - I D ( g ) + g - I U g ,  V - ~ g - l g ~ + g - i V g .  (3.2) 

For a given system of equations the commutational representation (3.1) can be 
constructed directly from the definition (3.1) considering that U and V are the 
matrices of some fixed dimension N x N. In this case a spectral parameter 
parametrizes a manifold of the solutions of Eq. (3.1). For each concrete equation 
of the matrices U, V have a rather special appearance connected with the invariance 
of the commutational representation (3.1) relative to the action of the reduction 
group with elements that are the pairs for (g, #(#)), where g is the automorphism 
of the Lie algebra A, but (g(#)) is a fractional-linear transformation in the complex 
plane of the spectral parameter # (see [7, 8, 9]). It is necessary to study the reduction 
group while calculating soliton solutions and formulating the corresponding 
Riemann problem. [7, 10]. Reduction groups are very useful in the problems 
of search, description and classification of the commutational representations 
[7, 9 11, 12]. 

Below we shall restrict ourselves to the construction of the commutational 
representations for the systems of the type (u) and the systems (m), (n). In the end 
we shall give references for the original papers known to us, which contain 
commutational representations of the other equations of the list. 

1. Consider the systems of the type (u). Suppose that matrix U depends on the 
dynamic variables u, v and does not depend on u l, vl. In this case it follows directly 
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from (3.1) and form (u) that 

V = U,ul - Uvv~ + W, 
U, + U~ = O, 

w .  = cooo + Eu, u d ,  
[U, W] + U,z, - U,z, = O. 

It is easy to get from Eqs. (3.4) that 

W = W(u, v), (3.3) 
U~ + U,, = O, (3.4) 

w~ = u . o . -  Eu, c j ,  (3.5) 
(3.6) 

U = a 1 exp ( -  cou - co*v) + a 2 exp ( -  co*u - coy) + as exp ( -  u - v) + A o, (3.7) 

where as, A0 are some constant matrices. From (3.3)-(3.5) and the fact that 
0,, + 0v = 0w + 0, = 0 (see 2, 3) it is easy to get the explicit expression for W: 

w = [u~, u . ]  + (uo  - t~.oo - u~o~)/2 - AoO + Co, [A0, U] = o. (3.8) 

(Co is a constant matrix, [Co, U] = 0.) Thus, the matrix V is expressed through U 
and 0 in the explicit form (3.3), (3.8). Without any loss of generality one can put 
Ao = Co = 0. 

Example I. The matrix 

( 0 
U =  0 

/~3 exp ( -  u - v) 

#1 exp ( -  cou - co*v) 

0 
0 

0 
#a exp ( - co*u - coy 

0 
(3.9) 

satisfies the system of equations (3.4)-(3.6) with 0 = z =O. The parameters ~ are 
free but there is an essential dependence on one parameter only # = (#1#2#3) 1/3 - -  
this parameter occurs after the gauge transformation (3.2) with g = diag ((#l/#a) l/a, 
(p2//~1) 1/3, (#3/P2)~/3). The matrix V is reconstructed by Eqs. (3.3), (3.8), 

0 # l ( -coul+co*vOexp(-cou-co*v)  #a#z (co -co*)exp(u+v)~  

V = Ft3#2(co - co*)exp(cou + ~o*v) 0 #2(-co*u1 + covOexp(--co*u - coy) t 
# 3 ( V l - U O e x p ( - u - v )  pl/t3(co-co*)exp(co*u+cov) 0 / (3.10) 

Pair (3.9), (3.10) gives a commutational representation for the system (u) with 
z = 0 = O, i.e. for (ul). 

Substitute the functions O, z into (3.8), (3.6) in the form 

0 = 2/3(o)*-  co) ~ ~ i e x p ( - c o i u -  co*iv), (3.11) 
i= 1,2,3 

z =  E {-1/2fl~exp(--2co'u-- 2co*iv) + y, exp(co'u + co*')}, 
i= 1,2,3 

that will allow us to embrace all the integrable cases (ul)-(u6). Collecting the 
coefficients at the same exponents, we get the following system of relationships for 
the matrices a~: 

[a l ,  [a~,aj]]  = ~,[ai, aj] + fl,aj + ?kay, i # j  # k # i. (3.12) 

Hence, the problem of the construction of the commutational representations (3.1) 
for the systems of equations of the form (u) is reduced to a purely algebraic problem: 
it is necessary to find finite-dimensional representation of the Lie algebra, that 
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generated by the elements ai and relat ionships (3.12). As it has been pointed  out, 
in order  to apply  the inverse scattering t ransform,  it is necessary that  this Lie 
algebra should be unsolvable and depend essentially on the free pa rame te r  #. The  
classificational result for the equat ions  of  the fo rm (u) given in I I  means  that  this 
p rob lem can be only solved while fulfilling some relationships for the constants  
~ ,  fli, Yi. In  the example  t for the matr ices  a~ have the fo rm 

al(#) = #e12, at(#)  = #e23 , ai(#) = #e31, (3.13) 

(e u is a matr ix  which has one unit in the (i,j) place and the other elements vanish) 
and are the roots  of the positive K a c - M o o d y  subalgebra  A2 (i) [13]. 

As an example  we consider this algebraic p rob lem for the system of equat ions 
(45). In this case c~ i = fll = 0, 71 = ?2 = 1, 7a = ~, and  system (3.12) has the form 

[ai ,  [ai ,  a2] ] = c~ai, [a2, [a2, al ] ] = c~a2, (3.14) 
[ai ,  [a l ,a3] ]  = a i ,  [a3, [aa ,a l ] ]  =a3 ,  (3.15) 
[a2, [a2, a3] ] = a2, [a3, [a3, a2] ] = a 3 . (3.16) 

It  is evident f rom these equat ions that  matr ices al have zero eigenvalues only. It  is 
not  difficult to check that  in the matr ices 2 × 2 Eqs. (3.14)-(3.16) do not  have 
solutions depending essentially on a free parameter .  We construct  a solution in 
the matrices 3 x 3 assuming that  they have a rank equal  to one, and consequently 
they are represented by the hivectors 

a l  = [a>(dl, a 2 = Ib>(el, a 3  = lc>(fl, (3.17) 

where I> and ( t deno te  a vector-column and a vector-row, respectively. Ni lpotency 
of these matr ices means  that  

<d[a> = (e lb> = <flc> = O, (3.18) 

Substi tuting (3.17) into (3.14)-(3.16) and  taking into account  (3.18) we get 

-2<dlb><ela>=c~, -2<dlc><fla>= l, -2<elc><flb>= l. (3.19) 

We fix gauge f reedom (3.2) by the choice of  the vector  basis 

I a > = ( 1 , 0 , 0 ) 5  Ib> - - (0 ,1 ,0 )  t~' I c > = ( 0 , 0 , 1 )  tr, 

and (see (3.18)) 

(dl = (0, #, a), <el = (b, 0, #), <f[=(#,c,O), 

where # is an arbi t rary  parameter ,  the componen t s  a, b, c are determined f rom Eqs. 
(3.19). As a result we obta in  

a l  = ] . / e l 2  - -  e13/(2#) , a 2 = #e23 -- 0~e21/(2#), a 3 = #e31 -- e32/(2#). (3.20) 

Let  us point  out  that  the dependence on the pa ramete r /~  in (3.20) is essential and  
these matr ices  cannot  be reduced to a t r iangular  form simultaneously.  Thus,  the 
matr ices ai (3.20) generate a commuta t iona l  representat ion for  the system (5). 

I t  is easy to  check tha t  the matr ices 

a l  = #el2 _ e32/(4/./) ' a l  = #e23 - ~xe2i/(4#), a 3 = #e31 - 2flel3/# (3.21) 
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satisfy the system of Eqs. (3.12) with ~i = 0, fll = f12 = ~1 = ~2  = 0 ,  f13 = ~ ,  ~3  = - 2 f l  
and give a commutational representation for the system (u2). The matrices 

al =/~e12 - 2e2t/#, a2 = #e23 - 20~e32/P, a3 =/~e31 - 2e13/# (3.22) 

satisfy the system of equations (3.12) with ~i = 7~ = 0,/71 = 0~, flz = f13 = 1, and give 
commutational representation for the system (u4). 

In all cases considered the matrices U, V, a~ have a rather special structure. This 
structure reflects automorphic property of the enumerated matrices relative to the 
action of the corresponding reduction group Gr. In this point we restrict ourselves 
to the consideration of the finite reduction groups, i.e. the groups generated by 
the transformations of the form: 

g l [ x ( ~ ) ]  = G1X(g , (~) )G1-1 ,  

g2[X(]/)] = _ GzXtr(g2(#) )G 2- a, 

where X(p) is the N x N matrix with the coefficient depending on #; G1, GzeSL(N, C); 
gl(#), g2(#) are fractional linear transformations of the complex plane # (for a more 
detailed and gauge invariant definition of the reduction group see [7]). We shall 
call the matrix X(#) an automorphic one relative to the reduction group Gr, if 

0 [ x ( ~ ) ]  = x(~)  

for all geG~. It is convenient to construct automorphic matrices via the averaging 
over the reduction group 

<X(p) > = 2:o[X(p)]. (3.23) 

For  instance, the matrices U (3.9), V (3.10) are automorphic relative to the group 
G, ~-Z3, generated by the transformation 

q [ X ( , ) ]  = QX(q(~))Q- 1, Q = diag  (co, co*, 1), q(~) = co~, co = exp (27ri/3). 
(3.24) 

They are obtained by averaging over this reduction group of the following matrices: 

U = #A, V = ]/2B + # C  + F, (3.25) 

(A, B, C, F are the matrices of a general form). 
We turn to the consideration of the commutational representations invariant 

relative to the finite reduction groups which are a stationary subgroup of the point 
# = oo generated by transformation (3.24). In this case we can restrict ourselves to 
the averaging of the matrices U of the form (3.29) (#1 = #2--P3 --#)- Here the 
corresponding matrices ai are obtained by the averaging of the matrices a~(#) (3.18). 
The finite groups of the fractional-linear transformations of the complex plane are 
exhausted by the group rotations (ZN) , dihedrons (DN) and regular polytopes. We 
have already considered the rotation group Z 3 - - i t  results in the commutational 
representation (3.9) (3.10) for the system (w2). 

The dihedron group D 3 has two nonequivalent realization (representations as 
the reduction group): 

i) The generators q, k (q3 = k 2 = (qk)2 = id) are represented by the transformations 
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q[X(/z)] = QX(q(#))Q-  1, Q = diag (co, co*, 1), q(/~) = co#, (3.26) 

k[X(lO] = - Xtr(-,5/,u)), 8~C. (3.27) 

The averaging of the matrices ai(#)/3 (3.13) over the reduction group with the 
generators (3.26) (3.27) yields (cf. (3.22)) 

al = #e12 + 6e21/#, a2 = #e23 + 0e32/~,  a3 = # % 1  + ~e13/#.  (3.28) 

The matrices at (3.28) satisfy relationships (3.12) with ~i = 7i = 0,//i = 6 and, thus, 
give commutational representations for the system of the type (u4). 

ii) Let us represent the generators q, k by transformations (3.26) and 

I: ° i) h [ X ( # ) ] = H X ( - 2 ~ / I ~ ) H  , H =  1 , ~,zeC.  (3.29) 
1/3 0 

The averaging of matrices ai(#)/3 (3.13) over the reduction group with generators 
(3.26) (3.29) yields (cf. (3.21)) 

a l  = , e 1 2  - 0e32/(z/-t), a 2 =//e23 - 6e21/(Zl~), a 3 =/~e3~ - ~e13//./. (3.30) 

The matrices a~(~) (3.30) satisfy the commutational relationships (3.12) with ~i = 0, 
f l l  = f12 = 71 = ~2 "= 0, f13 = - - 3 ,  Y3 = 4C~/Z. They generate a commutational repre- 
sentation for the system (u2) with ~ = 46z,/~ = 6/2. 

As generators of the tetrahedron group one can choose q, k (q3 = k 2 = (qk)3 = id). 
Let q have representation (3.26) and 

t [ x ( ~ ) ]  = r x ( t ( ~ ) ) r ,  r = 1 /3  - 1 , t (~)  = (~ + 2 ) / (~  - 1). (3 .31)  

2 -  

The averaging of the matrices ai(#)/3 (3.13) over the group generated by transform- 
ations (3.26) (3.31) yields 

( - 2 a  # + b  - 2 c ) (  4a 4b - 2 c  t 
aT1(#)= 4C --2a 4b , aT2(#)= --2C --2a # + b  , 

4b - 2 c  4a 4b 4c - 2 a ]  

- 2a 4b 4c )  
at3(# ) = --2C 4a 4b , (3.32) 

# + b - 2 c  - 2 a  

where 

a = ( t(#)  + t(co*#) + t (cop)) /9  = (/z 3 + 2 ) / (3#  3 - 3), 

b = (t(#) + ~t(co*U) + co*t(co#))/9 = ~,/(U3 _ 1), 

c = (t(#) + co*t(co*#) + cot(co#))/g = / ~ z / 9 ~ 3  - 1). 

One can check that the matrices arl (#) (3.32) satisfy commutational relationships 
(3.12) with a1 = 4, 7i = r1 = 0 and hence, give a commutational representation for 
the system of the type (u3). 
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Octahedron group can be represented by the transformations q, t (3.26), (3.31) 
and 

k [ X ( # ) ]  = - -  x t r ( -  2/p)). (3.33) 

It is evident that the matrices a i corresponding to this group are obtained from 
the matrices ari(/~) (3.22) as follows: 

a i = aT/(# ) - -  aTitr( - -  2/#). (3.34) 

One can prove that matrices a~ (3.34) satisfy commutational relationships (3.12) 
with ct i = 12, 7i = fli = 32, and hence, generate a commutational representation for 
the system of the type (u6). 

2. Consider systems (m), (n). System (m) represents a well-known Landau-Lifshitz 
model with a biaxial anisotropy. The commutational representation for it has been 
practically simultaneously obtained in papers [14, 15]. The author of the first 
paper proceeded directly from the definition (3.1), in the second one this system 
of equations and its commutational representation have been obtained as a result 
of the quasi-classical transition from the exactly solvable quantum XYZ model. 
Here following paper [10] (for detail see [16]) we get this commutational 
representation having averaged the matrices 

U = i/#z~,0-kSk, (3.35) 

V =- i l a k ( A k / #  + 2Sk/# 2) (3.36) 

(here A k = Zekz,,,S1S,,,:~), corresponding to the Heisenberg model over the infinite 
reduction group Gr, given by the generators 

0'1 l -X(#) ]  : G 3 X ( #  q- (.,0)0"3, Im (03/03') ~ 0, 

0'2 [XQ~)] = 0"1X(# -t- 03')0-1 . (3.37) 

As a result we obtain 

U = i-Y',0"kWlk(#)Sk, 

V = il0"kWlk(#)S1SmxeUm + 2iI0"kW2k(l~)Sk, (3.38) 

where W"k(#) are elliptical functions which expressions through the Weierstrass 
function have the form 

Wl1(#) = ((~) + ((# + 03') -- ( ~  + 03) -- ((# + 03 + 03') + 2((03), 

W12(#) = ~ )  -- ~(# + co') -- ( ~  - 03) + ( ~  + 03 + 03'), (3.39) 

w13(#) = ~ ( # ) -  ~(~ + 03') + ¢(# + 03)-  ~(# + co + 03') + 2~(03'), 

W"+ ~k(#) = ( - -  1)a/a!d"(Wlk(#))/d#°, 

and (Wak(#)) 2 -- (W~m(#)) 2 = (Jm - dk)/2, J k ~ C .  I t  is easy  to check  that (3.1), (3.38) 
yield a sy s t em o f  equat ions 

St = S x S~x + S × JS, J = diag (J1, J2, J3), $12 "~ $2 2 -~- $3 2 ~-- 1, (3.40) 

which is reduced to the form (m) by the substitution (1.14). 
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I f  we subst i tu te /z  2 instead of # in matr ices (3.35), (3.36), then their  averaging 
over  the reduct ion g roup  G, (3.37) gives a commuta t i ona l  representat ion for the 
system 

St = S x Sx~ - (S(S, J S ) ) J 4  + JSx/2, (3.41.) 

related by the substitution (1.14) to system (n) in which 

U = iZtTkW2k(#)Sk, 

V = i27tr k W2k(#) [ - -  JkSk/2 + ~,S1Smxektrn] - -  2i~'ak W4k(#)Sk • (3.42) 

Representa t ion (3.1), (3.42) has been obta ined  in pape r  [17] by  ano ther  m e t h o d - -  
the au thor  proceeded f rom the infinite-dimensional Lie algebra of a strictly unit 
growth as first occurred in reports  [11, 12]. We  point  out  that  the elliptical 
functions W2ak(#) in (3.42) can be subst i tuted for the rat ional  functions of a new 
spectral  parameter .  Really, f rom definition (3.39) one can get easily the following 
relat ionships between the functions X k = W2k(#), Yk = W4k(IZ): 

X i X j  = Yk -- JkXk/4, k ~ i v~j v ~ k, (3.43) 
X l Y  i - X iY ,  = ( J i -  Jj)Yk/4 + (Ji z - Jj2)Xk" 

The intersection of quadrics  (3.43) yields a curve of  the zero genus which can be 
simply uniformized by rat ional  functions. Here  a uniformizing variables will serve 
as a new spectral  parameter .  But f rom the practical  viewpoint  the representa t ion  
obta ined by  averaging over  the reduct ion group  is the mos t  convenient  one since 
it allows to integrate a nonl inear  system by  a wel l -known scheme (see for  instance 
[16]). 

3. In  conclusion we give a list of  the original papers  where one can find 
commuta t iona l  representat ions  of  the known  systems for the equat ions  of  our  list: 
(A)-[18I; (b)-[19]; (c)-[20,l; (d')-[21]; (e)-[22,l; (H)-[23]; (h ' )~(h") - [24] ;  (I)-[25]; 
(Q)-[13]; (r)-[26]; (ul) - [26]; (U1), (u4)-[7]. 
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