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Summary.  Considered here are model equations for weakly nonlinear and dispersive 
long waves, which feature general forms of dispersion and pure power nonlinearity. 
Two variants of such equations are introduced, one of Korteweg-de Vries type and 
one of regularized long-wave type. It is proven that solutions of the pure initial-value 
problem for these two types of model equations are the same, to within the order 
of accuracy attributable to either, on the long time scale during which nonlinear and 
dispersive effects may accumulate to make an order-one relative difference to the wave 
profiles. 

Key words, long wave models, Korteweg-de Vries-type equations, regularized long- 
wave equations, dispersion relations 

1. Introduction 

This paper is concerned with model equations for long waves that incorporate the 
competing effects of nonlinearity and dispersion. The prototypical equation in view 
is that due to Korteweg and de Vries, but a general class of such models will be 
considered here. Many articles have been written about such models since the mid- 
1960s, some of which will be mentioned presently. 

The issue that will be the focus of our efforts here concerns the comparison between 
the two different forms 

r/t + ~Tx + ~TPr/x - (Mr/)x = 0 (1.1) 

and 
r + Cx + ~eCx + (M~)t = 0 (1.2) 
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of these models. In (1.1) and (1.2), 77 and ff are functions of the two real variables x 
and t, p is a positive integer, and M is a Fourier multiplier operator in the x variable 
defined by 

m v ( k )  = m(k)f~(k)  (1.3) 

for k E N, where a hat adorning a function of x connotes that function's Fourier 
transform. Such equations have been derived as models for nonlinear dispersive waves 
in many different physical contexts, and in most situations where they arise x is 
proportional to distance measured in the direction of wave propagation while t is 
proportional to elapsed time. These connotations will be adopted as a descriptive 
device henceforth. Interest is often focused on the pure initial-value problem for (1.1) 
or (1.2) in which ~ or ( is specified for all real x at some beginning value of t, say 
t = 0, and then the evolution equation is solved for t ----- 0 subject to the restriction 
that the solution respects the given initial condition. The thrust of our theory is that 
for suitably restricted initial conditions, the solutions r/ and ff emanating therefrom 
are nearly identical at least for values of t in an interval [0, T] where T is quite large. 

In the remainder of this introductory section we will first recall the original context 
in which this issue arose and the earlier work that spawned this study. A more detailed 
description of the present contribution is then provided. The section finishes with 
commentary on the import of our theory and a general appraisal of the relative merits 
of these two types of model equations. 

The plan of subsequent sections is as follows. We begin in Section 2 with a brief 
review of the existence theory pertaining to the initial-value problems for equations 
(1.1) and (1.2). Section 3 is devoted to the statement and proof of our main comparison 
result, Theorem 3. The next section contains applications of Theorem 3 to well-known 
and often-used model equations. The relatively simple case where the symbol m of 
the dispersion operator M in (1.3) is homogeneous is treated first in Theorem 4 and 
the associated result Corollary 1. Then, as an example of the use of the main result 
in analyzing equations with nonhomogeneous symbols, the intermediate long-wave 
(ILW) equation is discussed in the statement and proof of Theorem 5. The last section 
provides some details pertaining to the existence theory described in Section 2. 

Earlier Theory and Rationale 

To understand more precisely the results in view, and to grasp their importance, it is 
worthwhile to briefly review the theory developed earlier for the special case of the 
Korteweg-de Vries equation itself in Bona et al. (1983). Among the many assumptions 
that come to the fore in deriving models like those in (1.1) and (1.2) are that the wave 
motions in question have small amplitude and large wavelength. Letting a and A, 
respectively, denote typical, scaled, nondimensionalized values of these quantities, 
the assumption is that both a and A - l  are small. However, in order that nonlinear and 
dispersive effects be balanced, these two small quantities must be related. In the case 
of the Korteweg-de Vries equation where p = 1 and re(k) = k 2, so that (1.1) and 
(1.2) take the forms 

~Tt + rlx + rlrlx + rlxxx = 0 (1.4) 
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and 

~ , + f f x + C & - & x t  = 0, (1.5) 

this relationship is usually expressed by the stipulation that the Stokes number S = 
aA 2 is of order one. The assumptions of small amplitude and large wavelength are 
embodied in requiring the initial data to possess the form 

71(x, O) = ~(x ,  O) = a g ( h - l x ) ,  (1.6) 

for x E ~,  where g and g '  are order-one functions. Taking S = 1 and letting 
= a = h -2, we may rescale the variables to obtain the initial-value problems 

Et 4- Ex + EEEx + eExxx  = 0, (1.7) 

and 

with 

Zt  + Zx + e Z Z x  - eZxx t  = O, ( 1 . 8 )  

E ( x , O )  = Z ( x , O )  = g ( x ) .  

It is typical that the formal error made in using these sort of approximate models is of  
higher order in the small parameter e, so that a more accurate rendition of  the physical 
situations underlying (1.7) and (1.8) is to append a term of formal order e ̀ ~ to the right- 
hand side, where a > 1. In the case of plane waves on the surface of shallow water, 
a = 2. A heuristic argument that applies to both (1.7) and (1.8), based on the solution 
g ( x  - t)  + Et to the simple initial-value problem Et 4- Ex = e, E ( x ,  O) = g ( x ) ,  

leads one to the expectation that nonlinear and dispersive effects arising from the terms 
e E E x  and eExxx ,  respectively, may contribute an order-one effect to the wave profile 
on a time scale of  order E -a . Similarly, one expects the error terms may accumulate 
in such a way that they have an order-one effect on the wave profile on a time scale 
of  order e-2 .  Thus interesting nonlinear and dispersive effects are expected to appear 
in times of  order e-1 while the model may be formally invalid by the time t is of  
order e-2 .  It was proved in Bona et al. (1983) that under quite reasonable smoothness 
hypotheses on g, there is a constant C which depends only on g, and is therefore of 
order one, for which 

l ie  - zIIL=<~) = sup  Ig(x, t )  - Z ( x ,  t)l ~ c~2t 
x E ~  

(1.9) 

for 0 --< t --< e -1. The result (1.9), and others like it for different measures of the 
distance between two functions of  x,  are interpreted to mean that at least on the 
interesting time scale e -1 the solutions of  the initial-value problems for the models 
(1.7) and (1.8) agree to within the accuracy of  either model. 

The theoretical results just outlined laid to rest a controversy that had been ac- 
tively debated for about a decade, the issue being to decide which of  equations (1.7) 
and (1.8) is best suited for modeling the propagation of  small-amplitude long waves. 
The point was raised implicitly by Peregrine (1966) in a paper on undular bores. For 
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sufficiently gradual bores, Korteweg--de Vries-type equations provide a suitable model 
for this kind of wave motion, though dissipative effects might need incorporation 
should quantitatively accurate prediction be in view. In his work, Peregrine improved 
on the earlier theory due to Airy (cf., Stoker 1957) by keeping dispersion within the 
description. Taking as his starting point the Boussinesq system of equations, he made 
an assumption of unidirectional wave propagation and derived (1.8), noting in passing 
that this equation was like the Korteweg-de Vries equation. After a brief physical 
analysis, Peregrine used (1.8) as the basis for constructing a scheme to numerically 
follow the evolution of bore-like initial data 

Z(x ,  O) = b(1 - tanh(x/d)) ,  (1.10) 

where d and b are positive constants. His finite-difference scheme for (1.8) was 
adequate to resolve the formation of undulations on the trailing side of the bore-like 
solution that emanated from (1.10). Although Peregrine's work appeared at about 
the same time that the inverse-scattering theory for the Korteweg-de Vries equation 
was being developed, the discussion of the relative merits of (1.7) and (1.8) began 
later. 

Benjamin et al. (1972) made a careful study of the model equation (1.8), establish- 
ing a sound theoretical basis for the initial-value problem and also examining some 
of the qualitative properties of solutions. They recognized explicitly that the relation 
Et + Ex = O(e) implies that Exxx = -Exx t  + O(e), from which (1.7) and (1.8) 
are seen to be formally equivalent to within the order of the error terms. They also 
presented commentary on both the models (1.7) and (1.8), terming the latter the regu- 
larized long-wave equation. This appellation reflected their view that (1.8) was a more 
favorable prospect for simulating small-amplitude long waves than (1.7). At about the 
same time, Zabusky and Galvin (1971) presented some experimental results on surface 
water waves showing the Korteweg-de Vries equation to be a qualitatively reasonable 
model in certain circumstances, while Hammack (1973) obtained some experimental 
confirmation of the qualitative efficacy of the regularized long-wave equation. The 
line instigated by Zabusky and Galvin was continued and refined in the interesting 
study by Hammack and Segur (1974). 

The issue of comparing (1.7) and (1.8) became sharply focused during the Clarkson 
meeting on nonlinear waves in 1972 (see Newell 1974), which included as participants 
almost all the just-named scientists and many other experts. A number of interesting 
points were made on both sides of the topic, and a rejoinder to the remarks of Benjamin 
et al. (1972) appears in Kruskal (1975). 

The issue was greatly clarified by the results (1.9) which, as explained above, 
indicate that it does not matter which equation is chosen if it is intended to model 
genuinely small-amplitude long waves with the pure initial-value problem over time 
scales for which either model has a good chance of providing an accurate description. 
Adding to the work of Hammack, Bona et al. (1981) made an extensive, quantitative 
comparison between the predictions of (1.8) with suitable dissipative terms added and 
the outcome of laboratory experiments. In these comparisons, one may observe in 
some detail the gradual divergence of the predictions of the approximate theory and 
reality as the Stokes number increases. 
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Description of  New Results 

It is our purpose here to extend the arguments in Bona et al. (1983) so that they yield 
analogous results as regards the initial-value problems for (1.1) and (1.2). In terms 
of the variables pertaining to (1.4) and (1.5), and dropping the assumption that S is 
exactly equal to one, the result (1.9) becomes 

[17 - - -  Ca3 -lt, (1.11) 

provided 0 ----- t ~ a -  ~ A. 
It is specifically this latter type of result that will be extended to the more general 

equations depicted in (1.1) and (1.2). The appropriate balance between nonlinearity 
and dispersion is struck in the regime where a is small, A is large, and 

aP 
is of  order one (1.12) 

re(A-l)  

as a ,  A -a - ->  0. Indeed (1.12) guarantees that the nonlinear and dispersive terms of 
either equation (1.1) or (1.2) are balanced. Ignoring for the moment  the questions 
of  existence, uniqueness, and regularity of  solutions, the results established in this 
article have the following general form. Let ~/and ( be solutions of  (1.1) and (1.2), 
respectively, such that 

7(x,  O) = ~(x, O) = ag (A- l x )  (1.13) 

for x E ~.  Consider values of  a and A -1 in the interval (0, 1) such that (1.12) is 
valid and let r denote a value representing the common order of  a p and re(A-l) .  
Then for any integer s -> 0, there is a constant C = Cs > 0 which is independent 
of  a and A such that 

11  (7 - i f )I lL2( . )  cE(2p+I)/PI -(2s+I)/2t (1.14) 

for all t in the interval 0 -< t -< ~- lA.  By interpolating the case s = 0 and s = 1 
in (1.14), one finds that 

IIn - -< (1.15) 

for the same range of a ,  A and t. 
The inequality in (1.15) is interesting. For at the right-hand endpoint of  its temporal 

range of proven validity one obtains that 

IIn - - -  c ,  

even though both 7 and ff separately have size of  order a = e 1/p. Moreover, this 
latter estimate holds for all t -< AE-1, and this interval of  time is large enough that 
significant alteration of  the wave profiles can occur due to the accumulation of non- 
linear and dispersive effects. But, on the same time interval, the accumulation of the 
effects of  the neglected error terms has formal order el+l/p. Thus it is concluded 
that over this time interval the outcome of predictions using either equation (1.1) or 
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(1.2) is the same to within the accuracy afforded by the approximation inherent in the 
use of either model. 

Relative Merits of the Two Models 

To complement the discussion of the preceding subsection, in which the similarities 
between the model equations (1.1) and (1.2) came to the fore, it may be useful to 
record here some of the more appreciable differences between the two equations. 
As seen from our current vantage point, the most obvious differences which present 
themselves are the following. 

1. For certain, special equations of type (1.1), methods related to inverse-scattering 
theory have been used to generate exact solutions and various asymptotic ex- 
pansions of solutions. In particular, for the Korteweg-de Vries equation (1.7), 
inverse-scattering theory has led to a deep understanding of the role of solitary 
waves in the evolution of general disturbances. The regularized long-wave equa- 
tion (1.8), on the other hand, does not seem to possess an inverse-scattering theory, 
although its long-time asymptotics are very similar to those of the Korteweg-de 
Vries equation. Indeed, while one may learn a great deal about solutions of an 
equation solvable by an inverse-scattering transform, even among those of the 
form (1.1) such tools are rarely applicable. Thus a good deal of the value of this 
elegant theory is to teach us what to expect in more general situations where we 
lack methods, but where the intuition garnered from the detailed study of equations 
solvable by inverse-scattering transforms is still sensibly valid. 

2. In a sense discussed by Kruskal (1975), equations of the form (1.1) are asymptot- 
ically pure, while those of the form (1.2) are not. In the case of the regularized 
long-wave equation (1.8), for example, this can be easily seen by consideration of 
the linearized equation 

ut + Ux - eUx~:t = 0. (1.16) 

Solving (1.16) by taking the Fourier transform in the x variable, one obtains that 

ft(k, t)  = e x p ( i k t  / (1 + Ek2))~(k), (1.17) 

where g is the order-one initial datum for u. If one removes from the right-hand 
side of (1.17) all effects that are of order higher than one in e, there appears 
exp(ik(1 - Ek2))~(k), which is the Fourier transform of the solution of the lin- 
earized Korteweg--de Vries equation 

ut + ux + eUxxx = O. (1.18) 

Thus the Korteweg-de Vries equation is seen to be the lowest-order approxima- 
tion to the regularized long-wave equation. This simple calculation has a precise 
analog for nonlinear equations with a general form of dispersion. For the case in 
which the operator M has a homogeneous symbol, this may be seen by considering 
the initial-value problems which appear below in (4.5a). After performing on (4.5a) 
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the change of variables (4.3), one obtains the "reduced" equations (3.1), in which 
the dependent variables have been scaled so that their size (and the sizes of their 
derivatives) is independent of the small parameter E. Of the two equations in (3.1), 
only the first (corresponding to an equation of the form (1.1)) is asymptotically 
pure, in the sense that its form is independent of e. For the case in which the symbol 
of M is not homogeneous, an example of the asymptotic purity of equation (1.1) 
is given below in the reduction of the intermediate long-wave equation (4.9a) to 
the form (4.12a). 

3. Global existence and well-posedness results for the pure initial-value problem for 
equations of type (1.2) are comparatively straightforward to establish, while such 
results may be problematic for equations of type (1.1) (compare Theorems 1 and 
2 below). 

4. In practical applications of either model equation, or in numerical simulations, one 
is often obliged to impose boundary conditions at finite values of x rather than 
at infinity. Such initial boundary-value problems are considerably more tractable 
for equations of type (1.2). Consider, for example, the initial-value problem for 
equations (1.7) and (1.8) when posed on a semi-infinite interval (as would be 
appropriate for modeling a wavemaker at one end of a long channel). Although 
well-posedness results for both problems exist (see Bona and Bryant 1973; Bona 
et al. 1981; and Bona and Winther 1983, 1989), a comparison of these papers 
will quickly convince the reader of the difference in complexity between the two 
problems. As for two-point boundary-value problems, well-posedness results for 
the regularized long-wave equation are again seen to be straightforward in Bona 
and Dougalis (1980), whereas no such results are yet known for the Korteweg- 
de Vries equation. 

5. Although the linearized dispersion relations for equations (1.1) and (1.2) are nearly 
equivalent for small values of the wavenumber k, they are widely disparate for 
large values of k. In this respect, the regularized long-wave equation (1.8) can be 
said to provide a slightly better model for water waves than the Korteweg-de Vries 
equation (1.7) because its linearized dispersion relation oJ(k) = k/(1 + k 2) more 
nearly mirrors that of the full Euler equations than does the relation o)(k) = k - k 3 
for the Korteweg-de Vries equation. Moreover, because the regularized long-wave 
equation has a linearized dispersion relation which tends to zero as the wavenumber 
becomes large, it is not prone to the dispersive blow-up that has been shown to 
hold for the Korteweg-de Vries equation (see Bona. and Saut 1991). 

6. Related to the last point is the fact that solutions of equations such as (1.8) are far 
easier to approximate numerically than solutions of the Korteweg-de Vries equa- 
tion. Indeed, from the linearized dispersion relations given in the preceding para- 
graph, it follows that the linearized group and phase velocities for the Korteweg--de 
Vries equation are unbounded, whereas those of the regularized long-wave equa- 
tion are not. Thus high-order accurate, unconditionally stable numerical schemes 
are not difficult to construct for the regularized long-wave equation (cf., Bona et 
al. 1981), whereas such schemes are very difficult to design for the Korteweg-de 
Vries equation (cf., Arnold and Winther 1982, Baker et al. 1983, Bona et al. 1986, 
1990, 1991, Dougalis and Karakashian 1985, and Winther 1980). 
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2. Summary of the Existence Theory 

In this section we recount briefly the general theory relating to the initial-value prob- 
lems for (1.1) and (1.2). Some of the facts stated below are well known, while others 
have not appeared in the literature on these sort of nonlinear dispersive wave equations. 
The new theory that is stated here is established in Section 5, after the exposition of 
our main results in Sections 3 and 4. Some results for special realizations of equations 
(1.1) and (1.2) will also find their way into the exposition in Section 4, but these will 
be quoted in the context in which they arise. 

Throughout our discussion, p will denote a positive integer, the operator M will 
be as formally defined in (1.3), and it will be assumed that the symbol m of M is 
such that there are positive constants ml and m2 for which 

mllkl~ <_ re(k), for all Ikl --- 1, and (2.1) 
m(k)  <- m2(1 + Ikl) ~, for all k E ~, 

where 1 -< /z -< v. 
The notational conventions will be those which are in current usage in the theory of 

partial differential equations. Thus Lp = Lp (~ )  is the Banach space of measurable, 
pth-power integrab!e functions and the usual norm on this space is denoted l" Ip. The 
Sobolev spaces of Lz-functions whose first s derivatives lie in L2 is written as H ~, 
and the usual norm on this space is denoted I1" I1~. m somewhat more general, and 
slightly less standard class of spaces will also be useful here. These are the Hilbert 
spaces H = H,~ of real-valued functions f defined on ~ for which 

Ilfll~ = (1 + ,~(k))lf(k)12dk (2.2) 
Go 

is finite, equipped with the obvious inner product. It will always be assumed that the 
weight a satisfies the condition that 

c~ ~ 0 and c~ is an even, continuous function. (2.3a) 

Since ce ~ 0, it follows that H,~ is a linear subspace of L2. It will also often be 
assumed that 

1 + or(k) 
E L1. (2.3b) 

The assumption (2.3b) implies that Ha is embedded in Cb, the Banach space of 
bounded continuous functions defined on R equipped with the L~-norm, and that H,, 
is a Banach algebra (cf., Hormander 1976, ch. 2). Thus there are constants Cl and c2 
such that if f ,  g E H,~, then 

Ifl~ - cxllfllH and IlfgllH <-- C211fIIHIIglIH. (2.4) 

The most commonly encountered examples of such spaces H are the previously men- 
tioned spaces H s. Indeed, if s > �89 then H s = H,, where a satisfies (2.3b), and 
consequently possesses the properties in (2.4). 
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ff X is any Banach space and T > O, then C(O, T ; X )  is the space of continuous 
mappings of the interval [0, T] into X with the norm 

[]Ullc(o,r;x) = sup [[u(t)][x. 
O<_t<~ T 

The value T = + ~  is allowed in this definition and in those that follow, though 
in such cases it must be stipulated that u is both continuous and bounded as a 
mapping from [0,T] to X. If k is a positive integer, Ck(0, T ; X )  is the subspace 
of C(O,T;X)  of functions whose first k derivatives with respect to t also lie in 
C(O,T;X) ,  equipped with the obvious modification of the norm on C(O,T;X);  also, 
C (0,T;X) ~ k oo = fqk=lC (0,T;X), but no topology will be needed for this function 
class. The inner product in L2 will be denoted simply by ( , ) while the pairing 
between H s and H -s is written < , >~. Similarly, the pairing between one of the 
spaces Ha and its dual H,~ is denoted < , >H~. The space H* may be identified 
with the class of tempered distributions S whose Fourier transform is a measurable 
function S(k) such that 

is finite. 
First, attention is given to the pure initial-value problem for (1.1). For this, the 

following theorem applies. 

Theorem 1. Consider the initial-value problem 

~Tt + 71x + ~lPrlx - M~Tx = O, ] 

J ~(x ,  O) = g(x) ,  
(2 .5)  

where p >- 1 is an integer and the symbol m o f  M satisfies (2.1). I f  g ~ H s 
where s > 3, then there exists a To > 0 depending only upon Ilgllr such 
that (2.5) admits a unique solution which, for  any T < To, lies in the class 

3 C(O, T;HS) ,  where r is any number between ~ and s. Moreover, the correspon- 
dence that associates to initial data g the unique solution ~q is continuous f rom H ~ 
to C(O, T ;HS)  for  any T < To. The existence time To depends inversely upon Ilgllr 
with limllgllr--,0 T0(llgllr) = +o~. 

I f  it is known a priori that the solution ~7 remains bounded in H r on any bounded 
time interval, then it follows that To may be taken to be +oo and the solution is 
therefore global in time. Thus if  p < 21z, i f  p = 2t z and the data is not too large 
in L z, o r  if p > 21~ and the data is small enough in H M2, then To = +c~. 

Remarks. It follows from the differential equation that the "q whose existence is 
asserted in Theorem 1 has r/t E C(0, T; HS-~- l ) .  Further temporal differentiability 
is readily deduced provided s is large enough. For commentary on this theorem, its 
proof, and some recent generalizations, please consult Section 5. 

The theory for the initial-value problem for (1.2) is a little different as will be 
apparent from an inspection of the next theorem. 
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Theorem 2. Consider the initial-value problem 

~t + ~x + ~P~x + M~t = 0, l (2.6) 
( ( x ,O)  = g(x) ,  J 

where p >- 1 is an integer and the symbol m of  M satisfies (2.1). I f  g E H s 
where s > �89 then there exists a To > 0 depending only upon I[gl[s such that (2.6) 

admits a unique solution which for  any T < To, lies in C~(O, T;HS) .  Moreover, 
the correspondence that associates to initial data g the unique solution ~ of  (2.6) is 
continuous f rom H s to C~(O, T;HS)  for  any T < To and any finite value o f  k. The 
existence time To depends inversely on llglls and To --+ + ~  as llglts --~ o. 

I f  it is known a priori that the solution ~ remains bounded in H ~ on any bounded 
time interval, then it follows that To may be taken to be +oz and thus the solution is 
global. I f  I~ > 1 and g @ Hm, then for any p the solution is global, while if I~ = 1, 
p <-- 3 and g, g'  ~ Hm, then the solution is global. 

3. The Main Theorem 

The principal technical result that arises in our theory is enunciated and proved in this 
section. 

Consider the equations 

a) ut + uPux - Nux  = 0 ] 

and l (3.1) 

b) vt + vPvx - Nvx  + eNv t  = O, 

subject to the initial conditions 

u(x, O) = v(x,  O) = g(x)  

for x @ ~.  As was the case before, p is a positive integer while N is defined by 

Nu(k)  = n(k )~(k)  

where the symbol n of N satisfies 

nllkl ~ -< n(k), for Ik[-> 1, 

n(k)  <- n2(1 + tkl) ~, for all k E ~, 

for some positive constants nl and n2, where 1 --< /x ----- u as before. 

(3.2) 

Theorem 3. Let s >-- 0 and suppose that g ~ H s+2v+l. Suppose also that 
both equations in (3.1) have solutions corresponding to initial data g that lie in 
C(O, To;HS+Z~+l) for  some To > O, and let B = ]lulIc(o,ro:14,+2~+~). Then there ex- 
ist positive constants C and T, depending only on s, nl,  n2 and B, such that the 
difference u - v satisfies 
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I l O ~ ( u  - v)tl0 --< CEt (3.3) 

for  all e and t for  which 0 < e <- 1 and 0 <- t <- min{T, To}. 

Before embarking on the proof of  Theorem 3, it will be helpful to establish a 
couple of  elementary lemmas. 

L e m m a  1. Let k -> 3 be an integer. Then there exists a constant C = C(k )  > 0 
such that for  any A > 0 and �9 in the interval (0,1], the inequality 

�9 A + A 2 + e - 1 / 2 A  3 + e - l A  g -t- �9 �9 + �9 ~ C ( � 9  + �9  ( 3 . 4 )  

is valid. 

Proof. An application of  Young's inequality yields that 

�9 (2-j)/2AJ ~ C(�9 4" �9 (3.5) 

provided that 3 -< j -- k, where C depends only on j .  Applying (3.5) k - 3 times, 
the left-hand side of  (3.4) is inferred to be less than 

C ( � 9  + A 2 q- e(2-k)/ZAk). 

Another appeal to u inequality gives 

A 2 <-- C ( � 9  + �9  

and (3.4) follows. [] 

L e m m a  2. Let a ,  13 > 0 and p >- 1 be given. Define 

T = /3-1/PaO-~176 (1 + z~ -1 dz ,  if p > 1, 
J0 (3.6) 

1, if p =  1. 

Then there exists a constant C = C(p) > 0 which is independent o f  a and/3 such 
that i f  y ( t )  is any non-negative differentiable function defined on 0 <- t <- T satisfying 

d ( y 2 ( t ) )  --< a y ( t )  +/3yP+l(t) ,  for 0 <- t <- T, 1 
(3.7) 

J y ( 0 )  = o,  

y( t )  <- C a t ,  for 0 -< t -< T. 

Proof. From the inequality in (3.7), we know that for t E [0, T], 

2y ' ( t )  --< 1. 
a +/3yO(t)  

Integrating this inequality over an interval [0, t], where 0 < t --< T, leads to 

then 
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h((~/a)l /~ <-- l a(o-1)/ofll/~ (3.8) 

h(z) = (1 -t- zP) -1 dz. 

The function h is strictly monotone increasing on R +, and so h - l  is well-defined 

on the interval 0 -< x -< Io(1  + zO) -1 dz. For t -- T, the right-hand side of  (3.8) 
lies in the domain of  h - l ,  and so it transpires that 

(~/ot) l /py( t )  <__ h - l ( l  a(p-1)/pl~l/ot) 

for 0 -< t <- T. But if 0 -< t -< T where T is specified in (3.6), then 

la(o_l)/pB1/p t < 1 fO ~ 2 _ - ~ (1 + zP)-ldz,  

and hence there exists a constant C depending only upon p such that h - l ( w )  ~ 2Cw 
provided that 0 <- w <- lta(p-1)/pfll/P and t E [0, T]. It thus follows that 

y(t) <- Cat  

for 0 ----- t <- T, as advertised in the statement of  the lemma. [] 

Proof (of Theorem 3). Define w to be v - u where u and v are the solutions of  
(3. la) and (3. lb), respectively. Then the function w satisfies the initial-value problem 

W t --[- WPWx q- wP-JuJWx -q- wP-JuJux 
j = l  "= 

- N w x  + eNwt  -t- � 9  = O, (3.9a) 

with 

w(x, 0) = 0. (3.9b) 

Consider first the case s = 0. Multiplying equation (3.9a) by w, integrating over 
the spatial domain, and integrating by parts several times (this is justified under the 
smoothness assumed about u and v) le.ads to the relation 

d 2 + ewNw]dx = ~ y j  wJup+l-Juxdx - 2E wNutdx  (3.10) 
. o ~  o ~  

where the y) are particular constants. Let Ao(t) denote the square root of  the integral 
on the left-hand side of  (3.10). Then nw(', t)Ho <- ao(t) and, since 0 < �9 - l,  

Ilw(', t)ll�89 - - -  w(. ,  t)[Io + --< C�9 ~Ao(t) 
n l  
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for all t E [0, To], where nl is the constant appearing in (3.2) and C connotes an 
absolute constant depending only upon the particular norm chosen for the spaces H s . 
These observations may be used to bound the terms on the right-hand side of  (3.9) 
as follows: 

I~_ wNu,dx = f~_ wN(Nux -uPux )dx  

<- Ilwllo(llN2uxllo + IIN(uP ux)llo) 
(3.11) 

<- c n~llwllo(llull2~+ l + Ilull~llull~+i) 

<- c ( n  + np+l)llwll0 

<- CAo(t); 

f ~ c o w J u P + l - J R x d x  ~ clwl~lul~+l-Jluxl~ 

<- clwl~ 

-< CIIwll~__, (3.12) 
2 j 

<_ c (llw[l~ltwll~ -=) 
2 

< CAo(t)Je(2-J)/2; 

where use has been made of standard Sobolev inequalities, interpolation results and 
the fact that H s is an algebra for s > 1. Combining (3.10), (3.11), (3.12), and 
Lemma 1 yields the differential inequality 

d~[A02(t)] --< C[eAo(t) + eO-P)AP+l(t)]. 

Apply Lemma 2 with a = CE,/3 = Ce O-p) and p = p to conclude that 

Ao(t) <- CEt 

for 0 --< t --< T(0) for some T(0) > 0 which is independent of  e. Because 

Ilu(', t )  - v ( ' ,  t)ll0 = IIw(., t)ll0 --- Ao(t), 

this completes the proof of  the Theorem in the case s = 0. 
Next consider the case s = 1. Multiplying equation (3.9) by Wxx, integrating over 
and integrating by parts leads to the equation 

d~[al ( t )2]  = 2I~_wPwxwxxdx-2eI_~(wxNuxt)dx  
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_lr.~",}/k p -k -1  3 k p-k  2 k-1 w w~u dx + IX~ w WxU uxdx (3.13) 
k=l k=l 

p=l  f_~ q- Z Pk wP-kWxl'tkl'lx dX 
k=l 

for some constants Yk,/zk, vk, where 

As before, we have that Ilwxllo -- t 1 ( o  and 

C Ilwxlll - _ ~ A l ( t ) .  
~2n 1 

The second term on the right-hand side of  (3.13) may be estimated as follows: 

~_ ( w x N u x , ) d x  <-- Ilwxllollgux,llo = Ilwxllollg(o~(Nux - u P u x ))llo 

<- cllwxllo[n~llull2v+2 + n211upuxllv+,] (3.14) 

<- CIIwxllo[ll.ll=~+2 + II~ll~+~llull~+2] 
<- CAI(t). 

To obtain an effective upper bound on the first term, we proceed to write the inequal- 
ities 

f ~ w P w x w x x d  x <- ~ Iwl~-llwxl 3dx 
o z  

< P w P - l w  3 - - ~  ~ x3  

(p- 1)/2 (p 1)/2 3 - cllwllo IIwAo Iw~13. 

Since the case s = 0 is already in hand, Ilwll0 ~ c for all t with 0 -< t -< T(O). 
Hence the right-hand side of  the last inequality may be majorized by 

CIIwA~g-'V21wxl~ <_ ce,(t)(e-'v2llwxll~ 

<_ cz,(t)(p-1)/=llwxllgllwxll~ 

<_ CAl(t)(p+3)/z[e-�89 
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Indeed, all the terms under a summation sign in (3.13) may be estimated in a manner 
similar to that used for the term that was just bounded. These estimates may be 
combined with (3.13), (3.14) and the fact that E -< 1 to yield 

d 2 ~-~[Al(t) ] --< C(eAI(t) + E-PAl(t) p+2) 

and it then follows from Lemma 2 that 

A~(t) <-- CEt 

for 0 --< t --< T(1) for some positive value T(1) which is independent of  e. This 
proves the theorem in case s = 1. 

The cases s -> 2 may be deduced in exactly the same way as the case s = 1, 
though the details are naturally a little more complicated. Multiplying equation (3.9a) 
by c~Sw and integrating over the spatial domain results in the identity 

As(t)] 2 = -2e  (OSw)(OSNut)dx + Ox(W Wx)OxW 
o~ o~ 

+ OSx(wP-kwxuk)dSwdx k=l k = (3.15) 

where 

+ Z k Ox(W UxU )O~wdx, 
k = O  ~ 

1 

As(t) = [(c~Sw) 2 + ecTSwN(O~xw)]dx , 

and the formal calculations leading to this relation are easily justified. 
We now set about bounding the terms on the right-hand side of  equation (3.15). The 

first integral on the right-hand side of  (3.15) is majorized by CEllO~wno <- cEas(t) 
where C depends only on B. Upon using Leibnitz' rule to expand the differentiated 
terms in the remaining integrals, one obtains expressions which are easily estimated 
using the assumed bound on ]lu]ls+2~+l and the already established bound on ][w]ls 
for s = 0. For example, one of  the terms arising from the second integral on the 
right-hand side of  (3.15) is bounded above as follows: 

ff f[~ , , , ,  , w p ( O S x + l w ) ( O S w ) d x  ~ C ]w p - 1  W x  O S w Z d x  
co co 

p - 1  s 2 
<- clwl  lw l llaxwllo 

_ p s 2  
< CIIwllsll xw[Io 

s p s 2 
<- c (llwllg + Ilaxwll0)llaxwllo 
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~< C(1 + As(t)P)As(t) 2 

<~ C(As(t)  2 + e-PAs(t)p+2). 

Continuing with such estimates, one derives from (3.15) an inequality of the form 

d [ a s ( t ) ]  <~ c ( e a s ( t )  + As(t)  2 + " .  + e -Pas ( t )  p+2) 

<- C(EAs(t) + e-Pas(t)p+2).  

As before, Lemma 2 then implies that 

A~(t) <- Ce t  

for 0 <-- t <- T(s)  where C and T(s)  > 0 are independent of E. 
The proof of the theorem is thus completed. [] 

Remark. A little more care with the above energy estimates allow one to establish 
the conclusion (3.3) of Theorem 3 based on the possibly weaker assumptions that 
g E H,~ where a(k )  = kS+ln2(k) and that, for some To > 0, I[ullc(o, o;.o) = n is 
finite. 

4. Applications to Model Equations 

In this section the technical results of the preceding section will be used to effect a 
comparison between solutions of the initial-value problems (1.1) and (1.2), repeated 
here for convenience, 

a)  17t '1- Tlx + ~Pl'~x -- M~qx = O, ] 

b) (t + (~ + ~P~x + M~t = 0, I (4.1) 

C) "O(x,O) = ~ ( x , O )  = e l / p g ( A - l x ) ,  

where the use of e to stand for a p introduced below (1.12) is continued and 

M v ( k )  = m(k)f ,(k) 

for all k E ~. If we define 

n(k)  = E - l m ( A - l k ) ,  (4.2) 

then solutions u and v of (3.1) are related to solutions r/and ~" of (4.1) via the changes 
of variables 

rl(x, t) = ea/pu(A-a(x - t ) , eA-a t ) ,  l (4.3) 

~(x, t) = ~ I / P v ( ~ - I ( x  - t), ~/~-lt). J 
Consideration is first given to operators M = M~ whose symbol m is homogeneous 

of degree /.t where /x _> 1, so that re(k) = [kl ~. As explained in the introduction, 
the regime in which the models (4.1) may be expected to apply is where the ampli- 
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tude parameter e is small and the combination el/~'h has order one. The following 
theorem shows that in the just-mentioned regime, the solutions of (4. la) and (4. lb) 
corresponding to the initial data (4. lc) are close to each other over appropriately long 
time scales. 

Theorem 4. Let p be a non-negative integer, let s >- O, and suppose g E H s + 2 / * + l  . 

Suppose also that the initial-value problems 

a) ut + uPux - M~ux  = O, 1 

b) vt + VPVx - M u v x  + eMuv t  = 0, I (4.4) 

c) u(x ,O)  = v(x ,O)  = g (x )  

have solutions u, v E C(O, To;HS+2t*+l) for  some To > 0. Let B = Ilullc(o, r0;u,+=~+l). 
Then there exist positive constants C and T which depend only on s and B such that 
the solutions ~7 and ~ of  the initial-value problems 

a) ~Tt + ~Tx + ~qPrlx - Murlx = O, 

b) ~, + ~x + (P~x + M~TIt = O, 

c) ~7(x, O) = ~(x,  O) = e l / p g ( e l / ~ x )  

satisfy the inequality 

'2+ • + 2s+l x 
I losr / -  exS~'[Io --< C , '  p 2~ )t 

for  0 < �9 <-- 1 and 0 <-- t <-- e - ( l + ~ ) m i n ( T ,  To). 

(4.5a) 

(4.5b) 

Proof. For any e in (0, 1], define h to be I~ - 1 / #  . Then the solutions 77 and 
of (4.5) are related to solutions u and v of (3.1) by the changes of variables 
(4.3), where the operator N appearing in (3.1) is exactly equal to M~ because of 
(4.2) and the homogeneity of the symbol of M , .  (In particular, the constants nl 
and n2 appearing in (3.2) may be taken equal to 1.) In view of the stated ex- 
istence assumptions about solutions of (4.4), we may apply Theorem 3 to con- 
clude that there exist constants C,  T > 0 which depend only on s and B such 
that 

IIoZu - 0Zvll0 (4.6) 

for all 0 < e --< 1 and 0 --< t -< min(T, To). The assertion contained in Theorem 4 
now follows from (4.6) by inverting the changes of variables (4.3). [] 

Combining Theorem 4 with the existence theory reviewed in Section 2 gives the 
following set of results. 

Corollary 1. Let p, s, and M~ be as in Theorem 4 where I~ >-- 1. Then the 
hypotheses concerning the initial-value problems (4.4) are valid and the constants To 
and B are both o f  order one if  g is. Consequently, i f  g is order one, then so are the 
constants C and T appearing in the inequalities (4.5). 
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As examples of  the application of Corollary 1 to concrete problems of  interest, 
consider the generalized Benjamin-Ono equation (Benjamin 1967) 

~t + fix + rlP~x - H~Txx = O, (4.7a) 

and its regularized version 

(4.7b) 

where H here connotes the Hilbert transform. Taking g E H 3+s and assigning initial 
data 

~ ( x , O )  = ( ( x , O )  = a g ( h - l x )  

where both a and h -1 are small and aPh  has order one leads to the conclusion that 

Ilas(  - Oil0 ~ Cs a2p+lA-(2s+l)/2t 

for 0 <-- t <-- T h a  - p ,  where C and T are order-one constants. Interpolation leads to 
the conclusion that 

[3J(r/ -- ~)1~ -- Cja2p+lA- (J+l ) t  

provided 0 -< j < s, for the same range of  t. In particular, for the Benjamin-Ono 
equation itself, the case p = 1 in (4.7), we have that 

Ix 1 - ~1~ <-- C a 3 h - l t  

provided that 0 <- t <- T h a  -1,  a and h -1 are  small and ah  has order one (see 
Benjamin 1967, p. 559). 

In the remainder of  this section attention is given to showing how to use our theory 
in cases where the symbol m of  the dispersive operator M is not homogeneous. In 
such situations, it is often useful to keep in mind the underlying physical situation 
being modeled to guide the formulation of  precise theorems. We shall show how 
the issues are resolved for the particular case of the intermediate long-wave (ILW) 
equation, though the reader will readily appreciate how the analysis can be adapted 
to encompass other such equations. The ILW equations have the forms in (4.1) with 
p = 1 and M -- MH, where the symbol mH of MH is given by 

1 
mH(k )  = k coth(kH) - - -  

H 

and H > 0 is a parameter having a definite physical significance to be explained 
presently. Rewriting the symbol mH(k )  as l f l ( k H )  where/3(z) = z coth(z) - 1, and 
noting that f l ( z )  ~ z as z ~ 0~ while/3(z)  -- z Z / 3  as z ~ 0, one understands that 
mH(k )  ~ k if k H  >> 1, but that m n ( k )  ~ k 2 H  for k H  << 1. Thus m n  is far from 
being homogeneous, and in fact the relation (1.11) which guarantees that a balance is 
struck between nonlinear and dispersive effects depends strongly on H.  It is therefore 
useful to recall how the parameter H is related to the waves being modeled. 



Model Equations for Long Waves 363 

The role of the ILW equation in modeling small-amplitude long waves in a two- 
layer fluid system has been explained by Kubota, Ko and Dobbs (1978). This paper 
considers a system consisting of a homogeneous layer of finite depth resting on a thin 
pycnocline which in turn lies over another, heavier, homogeneous layer. The whole 
fluid body is bounded above and below by horizontal, impermeable planes. The layers 
are supposed to extend indefinitely in the horizontal plane and motions are considered 
that are uniform in one of the horizontal directions, say along the y-axis of a standard 
Cartesian coordinate system, and which propagate in the perpendicular direction, so 
along the x-axis. The top and bottom layers have depths H1 and H2, respectively. The 
ILW equation itself arises in two different circumstances related to the aforementioned 
fluid system. In one instance the depths of the two layers are essentially the same, so 
H~ = H2 and up to a constant of proportionality these quantities both equal H. In 
the other, one of the layers is very much smaller than the other, so that the pycno- 
cline is located quite close to a solid boundary. In this case, H essentially corresponds 
to Hi + H2, the total depth of the two-fluid system. In either of the above cases, H 
may take any value in (0, o~). Both of the parameters a and A are scaled by the pyc- 
nocline thickness, which in turn must be small compared to H in either of the above 
cases. 

Theorem 5. Let s >- 0 and suppose g E H s+5. Fix a positive depth H and consider 
values of  the amplitude a and wavelength A such that a, A -1 ~ (0, 1] and for which 

a 

0 < C 0 ~ ~ C 1. (4.8) 
A-1 coth(HA-1) - H-1 

Then there exist constants C,  T > 0 depending only on s, Co, C1 and Ilgll +5, but not 
on H, such that the solutions ~7 and ~ of 

a) ~t + ~Tx + ~ l x  - MH~Tx = O, ] 

b) ~t + ~x + (~x + M~l(t = 0, I (4.9) 

c) rl(x, O) = ~(x, O) = a g ( A - t x )  

satisfy the relation 

-   ffllo Cta3  -(s+�89 

for all t such that 0 <- t <- Aa- IT .  

Proof. Both the initial-value problems in (4.9) are globally well posed in H s+5 as 
assured by the results quoted in Section 2, so that both r /and ~ lie in C(0, T ; H  s+5) 
for every T > 0. Moreover, because of the bounds that follow from the countably- 
infinite string of conservation laws appertaining to (4.9a) (cf., Abdelouhab et al. 
1989), IIn(', t)llr is bounded in terms of Ilgllr for all t -> 0, for r = �89 
k = 0 ,  1,2 . . . . .  

Rewriting (4.8) as 

Co <- a H / ~ ( H / A )  <- C1, 
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and using the properties mentioned above of  the function f l ( z )  = z cothz - 1, one 
easily obtains that there exist positive constants B0 and B1, depending only on Co and 
C1, such that 

where 

Bo ----- A/Ao -< B1 (4.10) 

1 / a ,  if a H  >- 1, 

Ao = Ao(a ,H)  = , f ~ a ,  if al l<--  1. 

If  one transforms the equations (4.9) via the changes of  variables 

y/(x, t )  = au(Aol (x  - t),  a)to-Xt) 
and (4.11) 

~(x ,  t) = a v ( A o l ( x  - t),  aAo-lt) ,  

then the initial-value problems which result may be written in the form 

a)  ut + UUx - L K u x  = O, 

b) vt + VVx - Li~vx + a L r v t  = O, 
(4.12) 

c) u ( x , O )  = v ( x , O )  = g --~x , 

where K = a l l ,  and the symbol nK of LK is given by 

{+ k coth(kK) K '  if K > 1, 

1 n r ( k )  = coth(k x~-)  - ~-, if K -< 1. 

4K 

An application of  Theorem 3, with /x = 1 and v = 2, to the problems (4.12) then 
yields the estimate 

IIo~(.  - v)l[o ~ C a t  (4.13) 

for 0 --< t --< T. Here the values of  the constants C and T are determined by the quan- 
tities s,  n l ( K ) ,  na(K), and B, where B = B ( u )  = and nl(K),  nz(K) 
are such that 

n~(K)lkl <- n r ( k ) ,  for Ikl >-- 1, 

n K ( k )  <-- nz(K)(1 + [k[) 2, for all k ~ •. 

The quantity B ( u )  varies with a, h, and H through the dependence of  the solution u 
of (4.12) (a),(c) on these parameters. However, there exists a constant B0, depending 
only on Co, C1, and [[g[[s+5 which majorizes the value of  B ( u )  for all values of  the 
parameters a, A, and H.  To see this technical fact, first apply Theorems 7.1.1 and 
Lemma 7.2.2 of  Abdelouhab e ta l .  (1989) to obtain the estimate 

Ilullc(o,~;.s+5) <- a,llu(x, o)[Is+5, 
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where A1 is an absolute constant which is independent of the value of K in the range 
{0 < K < ~}. Then note that (4.10) implies 

Ilu(x, 0)L+5 = IIg(~x)ll~+5 ~ A211gL+5, 

where A2 depends only on Co and C1. Hence the desired constant B0 is given by 
no = A1Azllglls+5. 

Next, it will be shown that the constants nl(K) and n2(K) may be chosen in- 
dependently of K. To prove this, define the function 7(0) for 0 E R by y(0) = 
I(0 coth(0) - 1)/01, and note that y is an even function which is monotone increas- 
ing and bounded on the interval 0 -< 0 < oo, with supo>o(7(O)/O) = Q < 
and info<_o<_l(y(O)/O) = R > 0. For K --> 1 one has nK(k) = ]k[~,(kK), so 
that 

nK(k) <-- Irl~lkl ~ Iris(1 + Ikl) 2, for all k, 

and 

nK(k) > [kiT(l), for Ikl-> 1. 

On the other hand, for K < 1 one has 

nK(k) = k 2 (.y_(k x/~) ) 
17 x ' 

so that 

n r (k )  -< Q k 2 -< Q(1 + Ikl) 2, for all k E R, 

and 

= Ikl~'(l~4K)) - > \  4 ~  Iklr(4K-------~)4K-- > elkl, foral l  [kl-> 1. nK(k) 

Therefore, for any K ~ (0, ~), one may choose hi(K) = min{3,(1), R} and n2(K) = 
max{b,l~, Q}. 

It follows from the assertions proved in the preceding two paragraphs that (4.13) 
holds for constants C and T which depend only on s, Co, C1, and ][g[[s+5. Inverting 
the change of variables (4.11) now gives 

IIog(n - 0110 ~ Ca3Ao (~+�89 
for 0 <-- t <-- Aoa-lT.  A final application of (4.10) then yields the result. [] 

5. The Existence Theory 

The existence theory enunciated in Section 2 is discussed here. We begin with the 
theory for the initial-value problem (2.6). As before, p is a positive integer and the 
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symbol m of the operator M is taken to satisfy (2.1). The first result is a theory of 
local existence following the lines put forth in Benjamin et al. (1972). 

Lemma 3. Suppose tz >- 1 and p >- 1 and that the initial data lies in a space 
H = Ha where oe satisfies the conditions (2.3). Then there exists a maximal time To 
which depends only upon g such that for each T < To, the initial-value problem (2.6) 
has a unique distributional solution ~ lying in C(O, T; H). The maximal time interval 
has a lower bound which is related to Ilgll;', and which approaches +~ as IIg[[~ 
approaches O. This solution is infinitely differentiable in its temporal variable, and its 
temporal derivatives of all orders lie in C (0, T; Ht~) where [3 (k ) = ka (k ) /  (1 + re(k)). 
The mapping that associates to initial data g E H~ the solution ~ of(2.6) is, for any 
R > O, continuous from the ball of radius R about zero in H into C(O, T;H)  where 
T = T(R). I f  t* > 1 and g E H~ where y(k)  >-- or(k) and y(k)  has polynomial 
growth at infinity, then it follows that the solution ~ of (2.6) lies in C(O, T; He). 

Proof. Consider the integral equation 

;0' ~(x, t) = g(x)  - Q[~(', r) + 

where Q is the operator defined by 

1 ( p + l ( . , r ) ] d r  (5.1) 
p + l  

ik ^ k 
Q~O(k)-  1 + m ( k ) t / , ( ) .  (5.2) 

The assumption (2.1) on m coupled with the fact that/z -> 1 implies that Q defines 
a bounded linear operator on any space H = Ha. Let R = 211gll,, and let BR be the 
ball of radius R centered at the origin in C(0, T;H) ,  where the value of T will be 
chosen presently. For any function Z ~ C(0, T; H),  define A(Z) to be that function 
of (x, t) E ~ • [0, T] obtained upon replacing ~ by Z in the right-hand side of (5.1). 
It will be shown that the correspondence Z ~ A(Z) maps C(0, T;H)  into itself and 
that if T is well chosen, then in fact A : Bn --+ BR and A is contractive on this latter 
set. 

To see that A maps C(0, T;H)  to itself, simply note that A is the composition of 
three operators, all of which have the desired property, namely 

Z ~ Z + ( p + I ) - t Z  p+I, W ~ Q W , a n d Y ~  Y 

(In analyzing the first mapping listed above, use is made of the fact that H is an 
algebra.) 

To prove the other two assertions, consider ~1 and ~z in BR and estimate A~l - A~a 
as follows: 

fo, [ ' +1,] I[Aff, - e f f 2 1 l c r  --- Q ~', - if2 + - - ( C  +1 - ~ II,,d~ 0s% p+ 1 

f0 _< sup c I1~, - ~211H(1 + I1~( + ~ ( - 1 / .  + . . .  + ~llH)a~" 
O<_t<_T 
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L <- sup C lift1 - ~211~,(1 + c(llr  + 11~211g))d~ 
O<_t<_T 

<-- CT(1 + gP)ll~rl - ~-IIc<o,~;~), (5.3)  

where essential use was again made of the fact that H is an algebra. As the radius R 
is fixed, we may choose T so that CT(1 + R p) = 1, say. It then follows that 

lIAr, - A~zlIc(o,T;H> ~ 111ff~ -- ff2IIc(o,T,H> 

provided that ~1, (2 E BR. Furthermore, if ~ E BR, then 

I[A~llc(o,~.,H) <- Ilg[lH + HAft - A(O)I[c(O,T;H) 

1 
-< IlgllH + ~llCllc<0.~;M) 

-< IR + IR = R, 

so that A maps BR to itself. 
It follows from the contraction-mapping theorem that (5.1) has a unique solution 

~" E BR. Moreover, if (5.1) is differentiated with respect to t, there appears the 
relation 

~t = - Q  (~ q- ~ +  1 ~p+I), ( 5 . 4 )  

and since (I  + M)Q = Ox (as operators from Ha to H~/~l+lkl)), it follows from (5.4) 
that 

(I + M)( t  = - ~  - (Pfx,  (5.5)  

at least as an equation relating distributions in H~, where fl is defined above. Further 
examination of (5.4) reveals that fit lies in C(0, T; H~). The right-hand side of (5.4) 
may therefore be differentiated with respect to t, and so ~tt is seen to exist and is 
given by 

~tt = -Q(~ t  + ~'P~'t). 

Continuing this argument inductively leads to the conclusion that ~ E C~(O, T; HI3). 
Plainly (5.1) implies that if(., t) ~ g as t ---> 0. 

Because the solution ff above was obtained by use of the contraction-mapping prin- 
ciple, there is automatically implied uniqueness of the solution, at least within the 
ball BR. It is worth note that uniqueness can be established in the large, and not just 
locally. Thus one may assert that for any value of T, there is at most one solution 
in C(0, T ; H  ~) of the integral equation (5.1), and so there is at most one solution of 
the initial-value problem (2.6) corresponding to g. To see this, note that for small 
values of t, ( is unique by virtue of the uniqueness aspect of the contraction-mapping 
theorem. Let ffl and ~z be two solutions and suppose them to be equal for 0 --< t -< to, 
but on no interval [0, to +e l  where e > 0 is sufficiently small do they agree identically. 
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Rewrite the equation (5.1) as 

fO t~ 1 ~(x, t) = g(x)  - Q[~'(., T) -[- " ~ ' T ~ P + I (  ", T)]dT" 

ftt 1 - Q[~'(-, z )  + _ _ ~ . p + l ( . ,  ~-)]dz 
0 p + l  

ft 
t 1 

= G(x)  - Q[~'(., T) -[- _ _ ( p + l ( . ,  "r)]dz 
0 p + l  

= ~(~),  

say. Our assumption implies that the integral equation ~" = A(~') has two distinct 
solutions on any time interval [to, to + e] for small enough e. However, by choosing 
R large enough and e small enough, we can assure that the mapping ff ~ /~(~ ' )  maps 
the ball BR of radius R centered at the origin in C(to, to + e ;H)  into itself and is 
contractive there, where H is as in the statement and proof of  the lemma. Indeed, 
the argument is the same as that exposed above. However, by choosing R yet larger, 
both ~'1 and ~'2 restricted to the time interval [to, to + e] will lie in Bn, and thus a 
contradiction is reached. 

Having established that the initial-value problem (2.6) possesses a solution corre- 
sponding to any g ~ H a ,  at least for some time interval [0, T1], say, attention is now 
given to extending the interval of  existence. The contraction-mapping argument may 
be used again starting with ~(-, T1) as initial data. This will yield a solution of (2.6) 
on a time interval [0, T2] where T2 > T1. Continuing this line of  argument inductively 
leads to an increasing sequence {Tk}~=l of  times such that a solution of (2.6) exists 
on the time interval [0, Tk] for all k = 1, 2 . . . . .  Moreover, on each temporal interval 
[Tk, Tk+l], k = 1, 2 . . . . .  the solution ~" is given as the fixed point of  an integral 
equation like (5.1) by virtue of the contraction-mapping theorem. Two possibilities 
now arise, either To = limk--,~ Tk is finite or it is +oo. If  To = +o% then the solution 
of (2.6) is global in time, whereas if To < +o% then 

lim sup t)llH = +o~. (5 .6)  
t--~ To 

Otherwise, if K is a finite upper bound for t)l[H on [0, To), then the local existence 
theory obtained by the contraction-mapping theorem as above, when applied with 
initial data ~'(., to) where to E [0, To), will always extend the solution by at least 
�89 + ( 2 K ) p ) - I c  -1 where C = Cp is the constant appearing on the right-hand side 
of  (5.3). In consequence of this lower bound, it follows that in a finite number of  
iterations of  the contraction-mapping argument, the solution will have been defined 
on a temporal interval [0, To + e] where E > 0. This contradiction forces the validity 
of  (5.6). It follows from these arguments that 

To = sup{T : 3 a solution ~" of  (2.6) in C(O, T;H)}, 

and that the solution ~" can certainly be extended over any time interval [0, T] for 
which one has an a priori deduced bound on the norm of ~" in H .  
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Use will be made of the last-mentioned conclusion to verify the statement concern- 
ing the maximal interval of existence. To this end, consider again equation (5.4) and 
take its inner product with ~ in the Hilbert space H.  Because Q is a bounded operator 
on H and because H is an algebra, it is readily deduced from the result of following 
the above prescription that 

d[ lc ( ' ,  t)ll~ ~ c~llc(', t)ll~, + C211~'(', t)ll~ +z. 

Integrating the differential equation obtained by demanding equality in the last in- 
equality leads to the upper bound 

I1~(', t)ll~, --- 

and therefore it is concluded that 

eC'tllgll~ 

I 1 -IlgllD ~ (  ec'pt/e - 1)12/p' 

+ 

Combining this bound with the result from the last paragraph leads to the stated 
conclusion about the maximal time of existence. 

The continuous-dependence results follow from the fact that a solution ~ is obtained 
at least locally in time by iterating the operator A on any function in Bn. More precisely, 
let R > 0 be given and let T1 be determined by the relation CTI(1 + R p) = 1, where 
C is the constant appearing in the last line of (5.3). Let gl, g2 ~ H and suppose 
IIg~ll, IIg=ll ~ �89 Define a l  and Aa to be the operators given by the right-hand side 
of (5.1) with g replaced by gl and g2, respectively. Then if we view gl and g2 as 
elements of C(0, T1;H) which are constant in time, the contraction-mapping principle 
assures that as n tends to infinity, ATgi converges in C(0, T1;H) to the solution ~i 
of (5.1) with g replaced by gi, i = 1, 2, where A~' is the nth iterate of A i . The 
inequality (5.3) with CTI(1 + R p) = �89 and the triangle inequality quickly lead to 
the estimate 

[~'~gl - A~gzl[c(o,~l;m ~ (1 + �89 + . . .  + ~)llg~ - g211~, 

which holds for all n. Thus if ffl and if2 are the two solutions of (2.6) corresponding 
to gl and q2, respectively, then 

I1~ - ffzllc~0,~,,~ ~ 2llgl - g211H. 

Thus the solution depends continuously on the data at least on [0, T1]. In particular, 
I1~i(', T1) - ~'2(', 7"1)[I,t -< 211gl - g211. Making the same argument starting with data 
~1(',/'1) and ~2(', T2) rather than gl and g2 leads to the conclusion that the solution 
depends continuously on the data on the time interval [0, T2]. Continuing in this 
manner leads to the desired conclusion. 
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As for the final statement in the Lemma, suppose /x > 1, g E H~, and that 
there is a solution ~" of (5.1) in C(0, T;H~). It should follow that ~" E C(0, T;He). 
Consider the set F of all weights /3 such that a(k) <- /3(k) <- y (k ) for  all k and 
which are such that ~" ~ C(0, T;HI3). The set F is not empty since a ~ F. If 
/3 ~ F, and H/3 2) H e, then direct consideration of the integral equation (5.1) 
and the operator Q assures that the right-hand side of (5.1) lies in C(0, T;Ho,) where 
w(k) = min{y(k),/3(k)(1 + [kid-l)}. Hence, ~" itself belongs to C(0, T;Ho,). Iterating 
this argument a finite number of times leads to the stated conclusion since y has 
polynomial growth at infinity. [] 

Remarks. The continuous dependence of the solution on the initial data extends 
to the temporal derivatives. Thus for any positive integer j ,  the mapping that 
associates to data g the j th  temporal derivative 0tJ~ " is continuous from H~ to 
C(O,T;Ht3), where /3 is defined above. Indeed, the solution ~ of the initial- 
value problem (2.6) can easily be shown to depend analytically on its temporal 
variable t. 

Consider the special case of the spaces H~ in which a = m, the symbol of the 
operator M appearing in (1.3). It is a simple consequence of Plancherel's theory that, 
on account of (2.1), if f E H ~, then 

I_ y(x) + f(x)Mf(x)ldx -- ctlfll ,o (5.7) 

for some constant c depending only upon the particular normalization given to the 
Fourier transform. It follows by taking limits that the relation (5.7) holds for f E Hm, 
provided the second term on the left-hand side is interpreted as < f ,  Mf  >m where 
the brackets connote the pairing between Hm and its dual space H~,,. The space Hm 
intervenes naturally in the following energy-type estimates. 

Lemma 4. Suppose tx >-- 1 and that ~ is a solution that lies in C(O, T;H,n N H ~) 
1 Then for each t of the initial-value problem (2.6) with initial data g, where s > ~. 

in [0, T], 

Z(', t)llHo = Ilgll.m. <5.8) 
If, in addition, ~x E C(O, T;Hm), then for each t in [0, T] we also have 

II~'x(', t)ll2, : ]lg'2llHm - P fo f~_ 'P-lff3xdxds. (5.9) 

Remark. If /x > 1, then nm C H ~/2, so the restriction that ~" lie in C(O, T; Hm N H s) 
for some s > 1 only amounts to the requirement that ~" lie in C(0, T;Hm). 

Proof. Both of these relations follow readily for smooth solutions. Formula (5.8) 
follows from multiplying the evolution equation in (2.6) by ~', integrating with respect 
to the spatial variable over ~ and with respect to the temporal variable over [0, t], 
and noting that 
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~_ ~(~x + ~P~x)dx = O. 

Formula (5.9) follows via the same route after multiplying by ~xx and integrat- 
ing by parts suitably. Having established these formulas for smooth solutions, the 
stated results then follow from a standard limiting procedure and the aforementioned 
continuous-dependence results. [] 

We are now prepared to prove Theorem 2. 

Proof. Let g be fixed data satisfying the hypotheses of  the theorem, and as before, 
let 

To = sup{T : 3 a solution ~" of  (2.6) in C(0, T ;H)}  

where H = Hm i f / z  > 1 and H = Hm fq H s i f / z  = 1. In either case, we certainly 
know that To > 0 by virtue of  Lemma 3. Moreover, as remarked earlier, to establish 
the theorem it suffices to deduce that To = + ~ ,  and for this it is sufficient to show 
a priori that lift(',/)IIH is bounded on bounded time intervals. 

First consider the case wherein /z > 1. In this case, H = H,n C H ~/2 satisfies 
the conditions for the direct applicability of  the local existence theory. Moreover, by 
Lemma  4, I1~(', t)ll. does not depend on t. Hence in this case the desired result follows 
easily (and is independent of  the exponent p) .  

The case /x  = 1 is less obvious because the local existence theory does not apply 
to Hm. Instead, we let H = H,~ where a(k )  = kam(k) .  The local existence theory 
certainly applies in this space, and we are left to find bounds on the norm of ff in 
this space. Because of (5.7), a bound on f in the space H,~ is equivalent to bounding 
Ilffx(, t)llHo, and because of (5.9), the latter will be provided as soon as the last term 
on the right-hand side of  (5.9) is seen to be under control. 

Attention is now turned to this latter task. First, since (5.8) holds, it is inferred that 
lift(., t)lh/2 is bounded, independently of  t since /~ >-- 1. With this remark in hand, 
proceed as follows: 

If~_ffP-'ff3dxl <- Iff(', t) lP-ll&( , t)l~ 

<_ C[fflP-lll&[[~/6 

_< clClU~[IClI3/6 

<- clClU~llCllN/211r 

[,, -< c c111/2(1 + log(1 + 11r 1/~ IIclIN/ IIclI,/ , 

where in the second step use was made of a standard Sobolev imbedding theorem, the 
fourth step is a standard interpolation, while the last step makes use of  an inequality 
of  Brezis and Wainger (1980). Since 1[~'(., t)ih/2 is bounded, independently of  t, this 
quantity may be absorbed into the constant c, thus leaving the upper bound 
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[lffx(', t)ll /z Ilffx(', t)Jl~,m 

f0 ' c,  + s)ll /2 + s)tl /2 log(1 + s)ll312)<P- V2ds. 

The left-hand side of  the last inequality is equivalent to the H3/2-seminorm, and 
because the L2-norm is known to be bounded independently of  t, it is concluded that 
this inequality amounts to 

yZ(t) <-- C1 + C2 {yZ(s ) + yZ(s)[log(y(s)) ] 2 }ds, 

where y( t )  = 1 + t)lh/2. A Gronwall-type argument then assures that y( t )  is 
finite on bounded time intervals provided that (p  - 1) /2  ~ 1, which amounts to the 
restriction p ~ 3. 

With this bound in hand, the desired result follows from our previous remarks. [] 

As for Theorem 1, these results are essentially all contained in the work 
of Abdelouhab et al. (1989) (see also Sant 1979 and Felland 1991). The local 
theory of existence and the continuous dependence can be obtained directly 
from the semigroup theory of Kato (1975, 1983). The global theory depends 
on a priori bounds. As just explained with reference to the initial-value prob- 
lem (2.6), the length of the time interval over which the local theory guaran- 
tees existence depends upon Ilglls, where s > 23-" Thus, arguing as before, if it 
can be shown that solutions of  (2.5) remain bounded in H s at least on any 
time interval of  finite extent, it will follow that such solutions can be globally 
extended. 

We content ourselves with an indication of how the aforementioned bounds are 
obtained. The details may be carded out exactly as indicated above, and we may 
suitably pass over them here. First, because M is a self-adjoint operator, it follows 
readily that if ~7 is a smooth solution of (2.5), then 

" q 2 ( X ,  t )dx  = g2(x )dx ,  (5.11) 

so the Lz-norm is seen to be an invariant of the motion associated with the evo- 
lution equation. A somewhat more elaborate calculation reveals another invariant, 
namely 

(�89 - I ,np+2~z/v __ l op+2~,.]a. -~-~q ,~.~ = �89 p+2~' " - " "  (5.12) 

(Naturally, it must be assumed that g ~ Hm in order that the right-hand side of  (5.12) 
be finite). It then follows from (5.11), (5.12), and standard Sobolev-space estimates 
that if p < Z/z, if p = 2/z, and [gi2 is not too large or if p > 2/x and [[giij,/2 is small 
enough, then r / remains  bounded in H 2g on bounded time intervals with a bound that 
depends only on llgll2~- 
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