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Abstract. It is shown that the Bruhat-Tits tree for the p-adic linear group GL(2) 
is a natural non-archimedean analog of the open string world sheet. The 
boundary of the tree can be identified with the field of p-adic numbers. We 
construct a "lattice" quantum field theory on the Bruhat-Tits tree with a simple 
local lagrangian and show that it leads to the Freund-Olson amplitudes for 
emission processes of the particle states from the boundary. 

1. Introduction 

In the early days of string theory the string world sheet was thought of as being 
imbedded into a D-dimesnional space-time, with the string action given by the area 
swept by the world sheet (the Nambu-Goto action [1]). In the course of further 
development, the approach due to Polyakov [2] proved more fruitful for 
quantization purposes; the string world sheet was now looked at as an abstract 
surface with a metric living on it. More precisely, the prescription was to consider a 
certain two-dimensional theory with its fields taking values in a D-dimensional 
space, and functionally integrate over the fields as well as the metrics. In critical 
dimension (D = 26) the world sheet can be thought of as an algebraic curve over the 
complex number field, which has allowed for diverse applications for the methods 
of modern algebraic geometry in perturbative calculations of string amplitudes 
[3]. Adopting the algebraic-geometrical point of view, it would be quite natural to 
go beyond the complex number field and to consider other number fields on an 
equal footing. The first attempts of doing so were made in recent papers [4-6]. 

A further extension of the notion of the bosonic string world sheet was 
suggested by Freund and Olson [4], who started with the fact that, as the 
physically sensible quantities (scattering amplitudes) are given by integrals of 
complex-valued functions on the world sheet, the world sheet by itself is 
unobservable. So they chose it to be a manifold over p-adic number field Qp (p - a 
prime integer). From the conventional point of view based on the archimedean 
topology, non-archimedean local fields Qp possess a number of peculiar "fractal" 
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properties. On the other hand, however, there is a democracy among all the Qp's 
and the usual real number field R, in that they are all of the completions of the same 
rational number field Q. It may be hoped that "the p-adic," or non-archimedean 
physics may considerably enrich and clarify the conventional "real" physics. In 
particular, a p-adic theory might yield a natural regularization of quantum field 
theory. 

We shall assume that the reader is familiar with basic facts about the p-adic 
fields: the metric properties, integration rules etc. All necessary facts can be found 
in the books [7, 8], and in recent physicists' works wherein the p-adic abc has been 
reviewed several times. 

Freund and Olson [4] have given a formal recipe for calculating tree bosonic 
string amplitudes. Their prescription amounts to setting the correlators of p-adic 
vertex operators V~ (unknown as yet, actually) equal to 

j :  l Y J(x9 < j[I Ix - xj l;  (1.1) 

with xj e Qp and ~j real (~. ~i = 0). Here and below, I Ip is the p-adic norm. The 
correlators (1.1) are to be integrated over Qp with the Haar measure dx i for N -  3 
variables xj. For example, the p-adic Veneziano amplitude reads 

Ap(kD k 2, k a, k4) = ~ dxlxlklk2[l - -  2~[P" Iklk3 , (1.2) 
0p 

where k~ are D-dimensional vectors, k~k i denote the corresponding scalar products, 
and kl + k2 q- k3 -t- k 4 -= 0 is understood, together with k~ = 2. 

The above prescription seems to be a promising suggestion, as it leads to the 
remarkable Freund-Witten product formula [9, 10] for the Veneziano amplitudes: 

A® I] Ap= I . (1.3) 
P 

Here, Ao~ denotes the usual Veneziano amplitude and p runs over all prime 
numbers. Some non-trivial extensions of this formula also exist [-11]. 

A natural question to ask is whether it is possible to obtain the Freund-Olson 
amplitudes (1.2) within a Polyakov approach? Or, can one construct a field theory 
on a p-adic manifold with correlators given by (1.1)? We will show that, at the tree 
level of string perturbation theory at least, the answer is in the affirmative, and we 
will actually construct the required theory. 

The archimedean case teaches us that algebraically non-closed local fields 
play the role of a boundary of an open string world sheet (thus, R is the 
boundary of the upper half plane H). The situation in the non-archimedean case 
turns out to be quite analogous: the field Qp is in fact the boundary of a discrete 
homogeneous space Tp, the so-called Bruhat-Tits tree, which is a natural candidate 
for the interior of the open p-adic string world sheet [12]. 

The Bruhat-Tits tree Tp is an infinite graph containing no cycles. Each vertex is 
a starting point of p + 1 edges. The boundary of the tree (i.e., the union of all 
infinitely remote vertices) can be identified with the p-adic number field. All 
necessary properties of the Bruhat-Tits trees are reviewed in Sect. 2. In Sect. 3 we 
are concerned with the study of functions and operators on the tree. We introduce 
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a local Laplacian, acting in the space of functions defined on the tree vertices, 
which turns out to be analogous to the usual Laplace operator. Viewing the tree as 
a sort of lattice approximation to the archimedean world sheet (the vertices being 
identified with lattice sites), the tree Laplacian becomes a finite-difference analog of 
the usual Laplacian. We shall construct harmonic functions on the tree and, also, 
solutions to the Dirichlet and Neumann problems. 

In Sect. 4 we consider the "lattice" field theory on the tree with a simple 
quadratic action 

Sp[q)] ~2(&ego) 2 . (1.4) 
e 

Here &Zo is the difference of the values q~ takes at the endpoints of a given edge e, 
and the sum is going over all edges. Extrema of the action (1.4) are precisely the 
harmonic functions on the tree. In the theory governed by the action (1.4), we shall 
find out the amplitudes of tachyon emission from the boundary of the tree. These 
amplitudes will be seen to coincide with those postulated by Freud and Olson. 
Similar to the archimedean case, calculating the three bosonic string amplitudes is 
reduced to solving the Neumann problem in the interior of the world sheet with 
g-functional sources on the boundary. 

The same p-adic tachyon amplitudes are known to arise from another p-adic 
string action [13], namely, the non-local one given by 

,,~ " dx d ((p(x)- g0(y)) 2 ;~PE~P] g y ~ , (1.5) 

where q~(x) is a continuous function on Qv" This action seems, at first sight at least, 
to be quite different from the above action (1.4). However, the fact that the Freund- 
Olson amplitudes are reproduced by both points to some relation between the 
two. This relation is revealed in Appendix C. Once the local action (1.4) has been 
introduced, the non-local action (1.5) becomes a secondary object which can be 
derived from the local action by integrating out the interior of the Bruhat-Tits tree 
in a way very similar to integrating out the interior of the usual unit disc on the 
complex plane. 

In Sect. 5 we discuss some open problems and possible future directions of the 
p-adic string theory. 

In Appendix A we show how to calculate some integrals encountered in Sect. 3. 
Appendix B contains several useful identities; a direct proof of projective 
invariance of the amplitudes represented as integrals over the boundary of the tree 
is also given here. 

2. The Bruhat-Tits Trees 

In the archimedean case the field of real numbers R can be considered as the 
boundary of the open string world sheet. The interior H of this world sheet (the 
upper half plane) admits a homogeneous space description as SL(2, R)/SO(2) with a 
natural SL(2, R)-invariant hyperbolic metric. In this metric the world sheet is non- 
compact, but it can be compactified by adding points at infinity (looked at as the 
boundary). 
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It turns out that this somewhat unusual realization of the interior of the world 
sheet does have a natural p-adic generalization which is achieved by replacing 
SL(2, R) with its p-adic counterpart GL(2, Qp), the group ofinvertibte 2 x 2 matrices 
over Qv and, correspondingly, SO(2) with the maximal compact subgroup of 
GL(2, Qp). To be more precise, consider the homogeneous space 

Tp = P GL(2, Q yPGL(2, Zp). (2.1) 

We use the standard notation PGL(2,K) for the group of fractional linear 
transformations of the projective line Pr(K) over a ring K (we will deal with the 
cases K =  Qp or Zp in what follows): 

PGL(2, K) = GL(2, K)/K* , 

where K* denotes the multiplicative group of the ring K and GL(2, K) is the group 
of invertible 2 x 2 matrices with entries in K. In (2.1), Zp is the ring of p-adic 
integers, i.e., the numbers x ~ Qp such that Ix[p< 1. Thus, Z* consists of numbers 
with unit norm. It is known that GL(2, Zp) is the maximal compact subgroup of 
GL(2, Qp) in the p-adic topology and all other maximal compact subgroups are 
conjugate to it [14]. 

The space Tp (2.1), endowed with a natural GL(2, Qp)-invariant metric, is an 
infinite discrete space called the Bruhat-Tits tree by the mathematicians. It is 
known to admit several equivalent descriptions [14, 15]. We shall see that Tp is the 
true non-archimedean analog of the world sheet. This section contains all 
necessary information about  Bruhat-Tits trees; almost all of it is extracted from 
[14, 15]. 

Besides (2.1), there exists a more explicit description of the Bruhat-Tits tree in 
terms of lattices in the p-adic space W=Qp(~Qp. By definition, any free 
Zp-submodule of rank two in W is called a lattice. The simplest example of such a 
lattice is the submodule Zp® Zp. Zp-submodules in W,, though named lattices, have 
a faint resemblance to the ordinary lattices in euclidean space. For example, any 
Zp-submodule is compact. This is a manifestation of the following "empirical 
rule": when going over from the archimedean fields to the non-archimedean ones, 
continuous objects may become discrete, and vice versa. 

Two lattices 11 and I2 are called equivalent if tl = 2- 12 for some nonzero 2 e Qr- 
Consider the set of equivalence classes of lattices in W. One can define a distance 
between the classes L1 and L2. It is easy to show that one can choose 
representatives l~ eLi  (i= 1,2) such that 11 C I 2 (i.e. there are no incommensurable 
lattices in the non-archimedean case). The factor module 12/ll is finite; it has the 
form 

12/ll = ( Z p/(p)") • ( Z p/(p)") , (2.2) 

where m, n are some positive integers and (p) C Zp denotes the maximal ideal in the 
ring Zp. The following definition of the distance can be shown to be independent of 
the choice of the representatives: 

d(L1, L2) = Im-  hi. (2.3) 

Obviously, d(L1, L2) > 0 and d(L 1, L2) = 0 iff L 1 = L 2. 
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Yp p't (Qp) 

Fig. 1. A Bruhat-Tits tree and its boundary (p=2) 
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The set Tp of the lattice equivalence classes with the metric (2.3) is just the 
Bruhat-Tits tree with the marked point C (the "origin," or the "centre" of the tree) 
corresponding to the lattice~Zp@Zp. The definition (2.1) is equivalent to the 
definition of Tp in terms of lattices. The group GL(2, Q.p) acts naturally on the tree 
leaving the distances invariant, with the maximal compact subgroup GL(2, Zp) as a 
stabilizer of the origin C. 

Now let us describe the tree less formally. The standard way to visualize Tp is to 
draw a graph (or a "lattice" in the usual, non-p-adic, sense) which is actually the 
tree. The vertices of this graph (or, sites of the lattice) correspond to the classes of 
the p-adic lattices in W, two vertices (sites) zt, zz being connected by an edge iff 
d(zl, z2) = 1 (Fig. 1), i.e. all nearest neighbours are connected by edges. It is proved 
in [14] that this graph contains no loops. Each site has exactly p + l  nearest 
neighbours and there is only one path in the tree connecting any two sites. 

We have described the "interior" of the tree. Now let us compactify the tree by 
"adding points at infinity." Any half-infinite path in the tree (without returns) 
starting at C will be called a ray. The set of all rays will be called the boundary OTp 
of T r Roughly speaking, each ray may be thought of as leading to a point at 
infinity. The boundary can be naturally identified with the p-adic projective line 
pl(Qp) [14]. Due to the lack of space we have no possibility to describe this 
identification in more detail. Finally, there exists an equivalent definition of the 
boundary in the language of group theory: let BpcGL(2,Qp) be the Borel 
subgroup, i.e. subgroup of matrices of the form 

(0 
with e, fl, 7 ~ Qp- Then we have the following isomorphisms: 

0 ~ ~ PI(Qp) ~- GL(2, Qp)/Bp. (2.4) 

It is obvious from these definitions that GL(2, Qp) [or PGL(2, Qp)l acts on OTp. In 
fact, any g ~ PGL(2, Qp) acts on Tp by automorphisms. Suppose some ray x (starting 
at C) is transformed under the action of g into the half-infinite path x' starting at 
g(C). Strictly speaking, this path is not a ray [since, generally, g(C) + C], but after 
joining the initial segment C ~g(C) it becomes the ray which we will denote as g(x). 
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w 1 
z2 z 2 w2 ~ w2 

2 W 1 Zl  Z2 

W 1 

a) 6~0 b) 6=0  c} 6=0 

Fig. 2. Examples of intersections in the tree 

For  future convenience we need to introduce some more notations. Let zl, z2, 
wl, w2 be the vertices of the compactified Bruhat-Tits tree Tp = TpwOTp (some of 
these vertices may lie on the boundary). We shall denote the oriented path 
connecting the sites z~, z2 as z 1 ~ z  2. Let 

5(zl ~z2, wl -~wz) (2.5) 

be the length of the common part of these paths (with the negative sign when the 
orientations are opposite). So 6 (2.5) is an integer number (Fig. 2). As a rule, in what 
follows the vertices of Tp will be denoted by the letters z, w and boundary points by 
x,y .  

There exists a GL(2, Zp)-invariant (i.e., invariant with respect to the "rotations" 
around C) distance on the boundary: 

]x, ylv=p-~c~x'c-~Y); x , y ~ T  v. (2.6) 

Note that for any x, yeOTp, ]x, ylp__< 1. 
The distance Ix, Y]v gives rise to the GL(2, Zp)-invariant measure #0 on the 

boundary. In order to define it, one needs the notion of a branch in the tree. Let 
z, z' E Tp be nearest neighbours: d(C, z) = d(C, z') + 1. Suppose we cut the edge (z, z'), 
then one of the two subtrees thus obtained does not contain the origin C. We call 
this subtree a branch B~ with the origin at z (Fig. 3). The boundary OBz of B~ is the 
set of all half-infinite paths (without returns) in B~ starting at z. The boundary of 
any branch is an open compact set in pl(Qp). The measure/ t  o is defined by 

#o(~B~)= p -a(c'~) (2.7) 

Fig. 3. A branch Bz 
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C_1 C = Co C1 

o A? A o 
p-1 pO pl 

Fig. 4. Identification pattern of the p-adic numbers with the points on the boundary of the tree 

for any branch B z. Its additivity can be easily verified. Locally constant functions, 
which span a broad class of continuous functions [8] on PI(Qv)=OTp, can be 
integrated over the boundary with this measure. 

Up to now we have not introduced any coordinates on pl(Qp). One may wish 
to deal with a coordinate function on pl(Qp), i.e. to identify the boundary with the 
field of the p-adic numbers. In terms of the tree this amounts to choosing three rays 
leading to the points which are to be identified with 0, 1, and oo. The rays must have 
no common edges. In order to clarify the rules of this identification, it is useful to 
draw the tree in a somewhat different way (see Fig. 4). Writing down the number 
x e Qp in the form 

x = p"u, (2.8) 

U=ao +a lp+a2p+. . . ,  

where the coefficients a, take values in the residue field Fp and a o =t= 0, the ray C--*x 
that corresponds to (2.8) coincides with the path oo --,0 as far as the vertex C, and, 
further, goes within the corresponding branch. The direction to be chosen at the i th 
step is determined by the coefficient ai-1 in (2.8). 

The distances on Qp have a nice interpretation in terms of the tree: let x, y ~ Qp, 
then 

11 - x/ylp= p -~tx-~°'y-~°°) (2.9) 

The measure d#o defined by (2.7) is related to the Haar  measure dx on Qp by the 
following easily verified relations: 

d#o(x)=dx, Ixlp< 1 ; 
(2.10) 

d#o(x)=dx/Ixl~, Ixl~>l. 
To conclude this section, we would like to make several remarks. Some 

properties of the Bruhat-Tits tree are analogous to those of one-dimensional 
chains (the one-dimensional chain corresponds formally to the case p = 1), but in 
other respects the tree resembles, rather, an infinite dimensional object. In fact, one 
can define a dimension D of the regular infinite lattice by the following formula: 

D = lim InN(R) (2.11) 
R-~o~ l n R  ' 

where N(R) is the number of lattice sites inside the ball of radius R. It is easy to 
check that in case of the tree N(R) grows exponentially with R and (2.11) has no 
finite limit, i.e. D = oo. 
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It is interesting that for the tree the power of its boundary is greater than that of 
the interior: Tp is countable, whereas OTp has the power of the continuum. This 
probably points to a non-trivial connection between open and closed strings in the 
non-archimedean case. 

3. The Laplacian and Harmonic Functions on the Tree 

Let us assign a real or complex number ~p(z) to each site z s Tp. In this case we shall 
say that ~p(z) is a function on the tree. In this section we study operators acting in 
the space of such functions. 

In the archimedean case the Laplacian is an SL(2, R)-invariant operator on the 
upper half plane H. One can expect that its analog on the tree should be a 
GL(2, Qp)-invariant operator. Let us recall basic facts about invariant operators on 
homogeneous spaces [-16]. 

Let G be a real or p-adic Lie group, Ko its subgroup, and M = G/Ko the coset 
space. The invariant operator L is characterized by the property 

L( ~o(gz) ) = (Lop) (gz) (3.1) 

for any g s G and any function ~p(z) on M. This operator has the kernel l(z, z') such 
that/(gz, gz') = l(z, z'): 

L~p(z) = S dz'l(z, z')q~(z'), (3.2) 
M 

where dz' is the invariant measure on M. 
A function q~ on M may be considered as a function on G constant along every 

coset class [-in this case it will be denoted as O(g)]. Every invariant kernel l(Zl, z2) 
gives rise to the function L(g) on G such that 

L(g2 lgl) = ~(gl, g2), (3.3) 

L(g) being bi-invariant with respect to Ko: 

L(kgk')= L(g) 

for any k, k' ~ Ko. Conversely, any Ko-bi-invariant function L(g) yields an invariant 
kernel according to (3.3). The action of L may be represented as a convolution: 

L~(g) = (q3 • L)(g) = ~ dg~(o(ga)L(g; ~g), (3.4) 
G 

where dg is the Haar measure on G. 
We are especially interested in the case G = PGL(2, Qp), K o = PGL(2, Zp). The 

algebra of invariant operators on Tp (or, in other words, the algebra of PGL(2, Qp)- 
bi-invariant functions o n  PGL(2, Qp) with the multiplication given by the 
convolution) is called the Hecke algebra in mathematical literature E17]. It is well- 
known that the Hecke algebra is commutative and is generated by a constant and 
the characteristic function of the double class 
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The invariant operator that corresponds to this function (called the Hecke 
operator ~'e) acts on a function q~ on Tp as 

p + l  

Z (3.5) 
i=1 

where z~ are all the nearest neighbours of z. So we see that i'p is a local operator. 
We shall define the Laplacian on the tree by the following formula: 

z]p = ~p-- p--  I ,  (3.6) 

i.e. 

p + l  
z]v~°(z) = Z q)(z,)- (p + l)~0(z). (3.7) 

i=1 

The constant - ( p +  1) in (3.6) is necessary for the Laplacian to have a zero mode 
q~ =const ,  as in the archimedean case. Note  that under a formal limit p-~l,  (3.6) 
becomes a finite-difference analog of the second derivative on a one-dimensional 
chain. 

Now our aim is to find eigenfunctions of the Hecke operator (or the Laplacian). 
In order to do that, let us introduce an auxiliary function e,,~(z) (# is a complex 
number) by the formulae 

<z, x> = x, c - - ,  z) + x, C - ,  z) , (3.8) 

e,,~ =p~<Z,x>. (3.9) 

The following simple fact is crucial for the subsequent constructions: eu,~(z) is an 
eigenfunction of the Hecke operator with the eigenvalue p, Wpl-~,: 

Tpe., x = (P~ + p l -u)eu, x(z). (3.10) 

The proof is straightforward and will be omitted. 
Two remarks in order: 1) In our previous paper 1-12] e.,x(z) was defined by 

using horocycles in the tree. Probably, the present definition (3.9) is somewhat 
simpler. 2) Our method is very similar to the construction of eigenfunctions of the 
Laplacian on the euclidean space and the upper half plane [18-1. Our function 
~,,~(z) (the elementary solution) is an analog of the plane wave in the euclidean 
space. 

For  # equal to I in (3.10) we see that 

el ' x(z) = p<Z, ~> _ P(z, x) (3.1 l) 

is a solution to the Laplace equation for any x e 0Tv: 

I]pP(z,x)=O. 

Now we immediately obtain a large class of solutions to the Laplace equation (we 
shall call these the harmonic functions on the tree): for any locally constant 
function f (x )  on OT v let 

F(z)= I dl~o(x)f(x)P <z'~'> , (3.12) 
0Tp 
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with the measure #o (2.7). Obviously, ~pF(z)= 0, i.e. F(z) is a harmonic function. In 
order to investigate the properties of the integral (3.12) it is sufficient to calculate it 
when f (x )  is the characteristic function of the boundary of an arbitrary branch ~. 
This calculation is presented in Appendix A; the result is 

Fw(z)= ~ dlto(x)P(z,x)= ~I+P-I - -P-d(~ 'w) - I '  z~Bw (3A3) 

Thus we see that Fw(z)~O when z~OTp and z~B~,  and F~(z ) -~ l+p  -1 when 
z ~ O T  v and z~B~.  

Now we can solve the Dirichlet problem on the tree, which means to 
reconstruct the harmonic function on Tp from its boundary values. The solution is 
given by the analog of the classical Poisson formula: 

P ~ dUo(x)e(z,x)~o(x) (3.14) ~o(z) = p + ~  or~ 

with the Poisson kernel (3.11). It follows from (3.12) and (3.13) that q~(z) is harmonic 
on Tp and ~o(z)~q~(x) when z ~ x .  The analogy with the classical boundary 
problems is in fact even more close. 

More precisely, let D(z, w) be a symmetric function of the vertices z, w which is a 
solution to the equation 

,~pD(z, w) = ,5~. ~ (3.15) 

with the boundary condition 

tim D(z, w)=O. 
z~OTp 

In (3.15) 8~,w is the Kronecker delta. One can prove that D(z,w) is uniquely 
determined and we shall call it the Dirichlet function on the tree 2. We claim that 

D(z, w) = (p- 1 _ p) - a p - a(z, ~) (3.16) 

since this expression possesses all the required properties. 
Let us define the analog of the normal derivative at the boundary of the 

function q~ by the formula 

8~, p) q~(x) = lim (~0(x)- ~p(z))p ~(c' ~) (3.17) 
g ---~x 

whenever the limit exists. It is easy to check that 

P(z, x) = (p - p - 1)8~,V)D(z, w)l~ = x (3.18) 

as in the classical theory of boundary problems. 
Another important  task is to find a function q~ on the tree such that 

~ o ( z ) :  e(z), a(,p)q,(x): o, (3.19) 

1 I.e. the function equal to 1 on 8Bz and 0 otherwise 
2 In order to simplify notations we shall omit the index p in D(z, w) 
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where Q(z) is some function (a source). A solution exists only if 

Z Q(z)=0 
z ~ T r, 

and has the form 

where 

(3.20) 

~0(z)= Z N(z,w)~(w), (3.21) 
WE T p  

N(z, w) =k(a(z, w)-d(C, z)-d(C, w)) (3.22) 

is the "Neumann function" on the tree. The Neumann function is the solution to 
the equation 

^ 

ApN(z, w) = 6~,, - 6c, z, (3.23) 

and the condition (3.20) is necessary to cancel out the contribution of the auxiliary 
source in C [see (3.23)]. 

For  completeness let us write down a solution of the Neumann problem on the 
tree. The problem is to construct a harmonic function F(z) such that 

O(f)F(x)= J(x), (3.24) 

where J(x) is some continuous function on the boundary. The Neumann function 
(3.22) has the following boundary value: 

N(z, x) = lim N(z, w) = - 6(C-~x, C-*z). (3.25) 
W ~ X  

Using (3.23), (3.25) one can show that the Neumann problem admits a solution 
only if 

dt~o(X)J(x) = O , (3.26) 
OTv 

and this solution is of the form 

F ( z ) = - ( p - 1 )  f dPo(X)J(x)N(z,x). (3.27) 
OTp 

In Appendix A we describe how to calculate integrals of this kind. 
It is noteworthy that the Neumann and Dirichlet functions on the tree are quite 

different things (roughly speaking, the former is a logarithm of the latter). 
However, such a situation is not so surprising as it might seem, since the 
boundary is a more powerful set than the interior (see Sect. 2) and so the 
boundary condition play the most essential role. 

4. Gaussian Model on the Tree and the p-Adic String Amplitudes 

Now we are ready to introduce the action for the p-adic string on the Bruhat-Tits 
tree. Let XU(z) be a mapping from the set of vertices on the tree to a D-dimensional 
euclidean space (p = 1, 2, ..., D). We shall consider a model with D scalar fields on 
the tree governed by the action 

Sp[X] = ~ ~ (reX") 2 , (4.1) 
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where 6eX ~ is the difference 

X (ze) 

(ze and Z'e are the endpoints of the edge e). The sum in (4.1) runs over all edges. The 
constant tip denotes "a p-adic string tension." Throughout this paper the 
summation over repeated indices is assumed. We shall suppose that some 
appropriate boundary conditions are chosen so as to make the sum convergent. 

One can consider this theory as the Gaussian model of statistical mechanics on 
the tree, then Sp[X] is the energy of the system for fixed values of statistical 
variables XU(z). The partition function and mean values are calculated in the usual 
manner: 

Z (p) = ~ D X  exp ( - Sp[X]), 
(4.2) 

(A(X) )p  = (Z {z')) - 1 S D X  A(X) e x p ( -  Sp[X]), 

where the symbol of functional integration should be interpreted as 

D + c ~  

SDX-.FI Yl (4.3) 

For the infinite tree these relations are rather formal since a limiting transition 
to the infinite number of vertices is required for practical computational purposes. 
In other words, (4.2) should be supplemented with a prescription restricting the 
integration region in the infinite dimensional space of functions. Due to the great 
importance of boundary effects in the tree, the concrete form of the limiting process 
may alter the answers considerably. However, we shall not discuss these questions 
in the present paper. 

It should be noted that some examples of statistical models on the Cayley trees 
(or Bethe lattices) have already been known in solid state physics and statistical 
mechanics [19] (without any reference to the p-adic context). The homogeneous 
Cayley trees differ from the Bruhat-Tits trees in only one respect: the number of 
nearest neighbours of a vertex in the Cayley tree may be any natural number (not 
necessarily p + 1 with a prime p). It would be interesting to interpret the known 
results about the statistical models on the Cayley trees starting from the p-adic 
point of view. 

Now we are going to find the equations of motion (extremum configurations) 
in the theory with the action (4.1). For this purpose the sum over the edges should 
be transformed into that over the sites. Suppose the normal derivatives 0(,P)q) and 
0~,P)f exist for the functions q~(z) and f(z). Then using the definitions (2.7), (3.7), and 
(3.17) one can prove "the Green formula" on the tree: 

~ ( 6 e q ) ) ( t e f ) = - Z q ~ ( z ) d ~ , f ( z ) + ( p - 1  ) y d#o(X)q)(x)O(,P)f(x). (4.4) 
e Tp a Tp 

After setting q ~ = f = X  u and varying with respect to X ~ with fixed boundary 
conditions, we arrive at the following equation of motion: 

dpX"(z)=O. (4.5) 

Thus, the solutions are the harmonic functions, which permits us to use the 
methods of Sect. 3 to calculate the integrals (4.2). The remaining part of this section 
deals with the tree N-point amplitudes. 
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Consider the scattering of N identical scalar particles attached to the boundary 
of the tree (which corresponds to the open string case). Let E(p m C Tp denote those 
tree vertices which lie on the "sphere" of radius R: {zeE~R)ld(C, z)=R}. As our 
starting point, we postulate the following natural definition of the N-point p-adic 
open string amplitudes: 

S D X  exp - Sv[x ] ~j. X"(zj) 
A~N)(kl .... , kN)= lim • = (4.6) 

R-+ oo {zj~ E~R, S D X  exp( - Sp[-X]) 

The sum goes over the positions of N points zj on E(p R). The coordinates XU(z) are 
assumed to satisfy the Neumann boundary conditions: 

07)XU(y) = 0, ye•Tp, (4.7) 

which is what one will have required for an open string. 
The routine machinery for calculating the Gaussian integrals (4.6) consists in 

finding out the solution X~ to the classical equation of motion obtained by varying 
the exponent: u 

flvz]pX~,(z)---i 2 k~Sz,~. (4.8) 
j=l 

Obviously, this is the problem (3.19). Integrating out the zero mode yields the 

factor 6 =Z in (4.6), which enforces the condition of solvability of (3.20): 
J 

N 
2 k f = 0 .  (4.9) 

j = l  

We shall omit this factor in the following, thus keeping in mind that the 
momentum conservation (4.9) is satisfied. The solution of (4.8) is 

N 
Xc~l(Z) = - - i f ; 1  j~= l k~ N(z ,  z j) ( 4 . 1 0 )  

with N(z, w) being the Neumann function (3.22). Substituting X~ into (4.6) yields 

A(em(ka ... .  ,kN)=l im F, exp{(2flp) -1 '  ~k~kjN(z~,z j )} .  (4.11) 
R--" oo {zj}~E~R) i,j= 1 

kik j stands here for k~k~j; we are going to suppress the index/z. The sum in the 
exponent is, obviously, 

N N N 
~, kikjN(z i, zj) = - ~, k~d(C, zi) + 2 2 kikjN(zi, zj). (4.12) 

i , j=l  i=1  i<j 
(R) The summation over Ep can be replaced, when R 0% with an integral according 

to 
Z _~pR {. d#o(y). (4.13) 

E(p R) OTp 

Note also that when d(C, z j ) ~  it follows from (3.22) that 

N(zi, z j) = - 6(C ~ zi, C ~ zi). (4.14) 
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Collecting everything together, we arrive at 

A~m(kl . . . .  , kN) = lira pNR exp(--(2flp)- XkZ~NR) 
R--~ oO 

( ) x t d#o(Yj)exp -f121" 2 kikjS(C--~yi, C--*Yj) • 
OTv j= 1 i<j  

The limit exists only if 

k~= 2flpln(p), (4.16) 

which, as will be clear in Appendix B, is at the same time the condition for the 
projective GL(2, Qp)-invariance of (4.15). Assuming (4.16) to hold, choose the scale 
so that k 2 = 2, i.e., set tip= (In(p))-1. 

Finally, using (2.6), Eq. (4.15) takes the form 

N N 

A~N)(kl, "--, kN)= I I~ d#o(Y9 i~j IYi'YJlkP~kJ" (4.17) 
8Tp j= 1 " " 

The group PGL(2, Qp) acts projectively on 0T v = Pl(Qp) (see Sect. 2). It is shown in 
Appendix B that the condition k 2 = 2 ensures the projective invariance of (4.17). 

This sort of "gauge" invariance does not lead to an infinite factor, since the 
integration is confined to a compact region. We can nevertheless fix a gauge in 
(4.17) so as to be able to compare it with the amplitudes of I-4]. This is carried 
through in the standard way. As a group element is determined by three 
parameters, it is possible to fix arbitrarily three variables, as, for example, YN = yO, 

_ o = yO_ 2. The measure thus is to be replaced with YN-x--YN-x, YN-2 
N N N 

1-] d#oO'j) ~ I-[ 6(Yk, Y °) F| ly,,,,y, lvj~= dl~o(yj), (4.18) 
j = I  k = N - 2  N - - 2 < m < m < N  "= 

where 6(x, y) is the &function on 0Tp defined in an obvious way. 
To compare (4.17) with the known expressions for the p-adic amplitudes we 

identify the boundary of the tree with Qp, as explained in Sect. 2. Then the measure 
d#0 undergoes the transformation (2.10), while the distance Ix, y[p is transformed as 

[ [x -y[p ;  [xlv< 1, lylp< 1 

Ix, y lp~Ix-~-y-~Ip;  Ixlp~l, lylp>l (4.19) 
(1 ,  otherwise. 

On the left-hand side x and y denote the points on the boundary, whereas on the 
right-hand side the images thereof under the identification aTp ~ Qp, that is, x and y 
are proper p-adic numbers on the right-hand side of (4.19). Thus, once we have 
fixed a gauge, Eq. (4.17) takes the form of an ( N -  3)-fold integral over Qv" Setting, 
as usual, yN=0, YN-1 =1,  YN_2=O9 and using (4.18) we see (4.17) to be equal to 

N - 3  N - 3  
A(N)"~ ~ 1"~ d y j  1-[ k~kN k ikN- i  krakn [Y,lv II-y~lp I] Y,,-Y,, p , (4.20) - - p  

Qv j = t  i = 1  m<n 

which is precisely the Freund-Olson amplitude. 
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Note that the expression (4.17) for the amplitudes has some advantages over 
(4.20), as the integration goes over a compact domain and all the integration 
variables enter symmetrically. 

It is known that p-adic N-point amplitudes can be calculated explicitly for 
arbitrary N [10, 20], the answer being expressed as a stun of tree diagrams of an 
effective field theory. Remarkably, these tree graphs can be visualized in terms of 
the Bruhat-Tits trees. 

To complete our discussion of the local action for the p-adic string, we wish to 
point to its relation to the non-local action on Qp proposed in [13]. It turns out 
that (1.5) is in fact an "effective" action on the boundary of the tree, obtained from 
(4.1) by integration out the interior of the tree. This is demonstrated in Appendix C, 
where we present an alternative way to calculate the amplitude (4.6). 

5. Concluding Remarks 

We hope that the above results will be useful in clarifying the physical meaning of 
non-archimedean field theory. Thus, the Bruhat-Tits tree might be considered as a 
natural "lattice" approximation to the world sheet and thus used for regularisation 
purposes. In many respects, the tree seems preferable as compared with the usual 
triangular or quadrangular lattices. 

Finally, we would like to discuss possible future developments of the non- 
archimedean strings. An essential remark to the above construction is that it is 
only partly analogous to the Polyakov approach in the archimedean case, since we 
have at present no idea of what the integral over metrics may correspond to. The 
point is that the Bruhat-Tits tree is an analog of the unit disc (or, the upper half 
plane) with fixed hyperbolic metric, and it is unclear what kind of tree 
transformations might correspond to changing the metric. The Bruhat-Tits tree 
actually does have a huge automorphism group [21] [which is much larger than 
GL(2, Q,)!] but it is very much unlike the usual conformal group in that it does 
preserve the distances in the tree. A more hopeful fact is that an analog of the circle 
diffeomorphism group Diff(S1) is known for the tree [22]: the group consists of 
exactly those automorphisms of the boundary, ~Tp, that extend to the interior of 
the tree to within some neighbourhood of the boundary. 

From the adelic point of view it is natural to consider the trees T v for all p 
simultaneously and to unify them all into the space ®pTp whose points 
correspond, roughly speaking, to rational lattices in a two-dimensional real linear 
space. Presumably, field-theoretic models on trees can serve, in a sense, as 
"building blocks" for conformat field theories on the disc (in analogy to the adelic 
string hypothesis [9]). 

It may be conjectured that a physical theory built over non-archimedean fields 
should have a richer algebraic structure as compared with the usual "real" or 
"complex" theories, due to the fact that the Qp field has infinitely many algebraic 
extensions, whereas real numbers, only one. The study of these extensions and 
their corresponding Gatois groups is a subject of an advanced mathematical 
discipline, the algebraic number theory [23]. The question arises as to how all 
these extensions may show up in the non-archimedean strings. It had been 
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conjectured (by analogy with the archimedean case) that while the fietd Qp 
corresponded to the open string, quadratic extensions thereof, Qp(l/~), should 
correspond to the closed string. It seems that this conjecture has been taken for 
granted in all subsequent works on p-adic strings. However, the true situation is 
more subtle. 

First of all, Qp has three distinct quadratic extensions [8]. Further, even if these 
were somehow dealt with, the role played by extensions of higher degree remains 
unclear. (The strings - if any - which might correspond to these extensions have 
been called "even more closed" in [10].) 

As more appropriate point of view, we would like to point to the following 
possibility: algebraically non-closed local fields (including all finite degree 
extensions of Qp) might correspond to different types of open strings. 

In fact, let K be an extension of Qp of degree n ([K:Qp] = n) with the 
ramification index e(K/Qp)-e [23]. Set f =  hie. A Bruhat-Tits tree T(K) can be 
assigned to any such K by the following procedure: 1) insert onto each edge of Tp 
e -  1 new vertices separated by equal distances, 2) draw new branches in such a way 
that each vertex have exactly pf + 1 nearest neighbours. Clearly, the tree T(K) has a 
boundary (?T(K), being therefore the interior of an open string world sheet. The 
constructions of Sects. 3 and 4 obviously go through when applied to T(K). 

It may be expected that the non-archimedean closed string is related to the 
completion of the algebraic closure of Qp, the field O, and, as such, should be 
described in terms of some limiting transition. Even if this is not exactly the case, 
our results point to a possible highly non-trivial relation between closed and open 
non-archimedean strings. 

A sensible thing to do first would be to investigate in what way distinct finite 
extensions are related physically. The bosonic string theory is not likely to be of 
any use in doing so, since it involves all finite extensions independently and on an 
equal footing. Quite another situation might be encountered in the theory of 
fermionic p-adic strings. Indeed, by a direct analogy with the archimedean case, we 
can propose the following non-local form of the open fermionic p-adic string 
action over the p-adic field: 

gp[lp] ~ J, dx dy~p(x) s i g ~ y )  ~p(y). (5.1) 

Here, sign~(x) is the multiplicative unitary character on Q* that corresponds to the 
quadratic extension Qp(l/~) [8]. Note that parafermions emerge naturally in the 
p-adic case when one replaces sign~(x) in (5.1) with any multiplicative unitary 
character (z~(x) on Q*. By the class field theory [23] distinct characters to(x) 
correspond to distinct algebraic extensions of Qp3. Thus the fermions on Qp should 
know about algebraic extensions of Qp. This will be considered in more detail in a 
separate paper [24]. 

When this work had been finished. J. Nekovar informed me about Cartier's 
work [25] wherein harmonic functions on the tree had been considered. 

3 This is exactly the reason for R to admit precisely one such character, the sign(x) 
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Appendix A 

In this appendix, we discuss the calculation of the integrals (3.13) and (3.27) over 
the boundary of the tree. As an example, consider 

Fw(z)= j" d#o(x)p <z'x> (A.I) 
OBw 

for arbitrary branch Bw. Two cases are distinct: 

1) z ~ B w .  In this case, as shown in Fig. 5a, the vertices C, w, and z lie on the 
same "line." Let the vertices z k belong to the segment w - ~ z  of the above "line," with 
d(C, Zk) = k (k = d(C, w), d(C, w) + 1 . . . . .  d(C, z)). To simplify the notation, we will 
write d(z) instead of d(C, z). The vertex z k has p -  1 nearest neighbours zk,, which do 
not belong to the path C--.z .  Consider the branches with the origins at Zk,~. The 
boundary of each of these branches has the measure p-k-  1, while the function 
(z, x)  is constant on these boundaries, ( z ,  x ) = 2 k - d ( z ) .  Adding up the contri- 
butions of these branches, together with that of the branch B=, we obtain 

d(z)- 1 
Fw(z)= ~ ( p - - l ) p - k - l p 2 k - d ~ ) + p - d ( = ) p d ( = ) = l + p - l - - p - ' t ~ = ) - ~ .  (A.2) 

k =d(w) 

2) z ¢ Bw. This case, in turn, involves several possible positions of C relative to z 
and w. We consider in detail the case when the three points do not lie on the same 
"line" (Fig. 5b). Then 

/Zo(~B~) = p-  a(w), (z, x )  = 2d(zo)- d(z); 
(A.3) 

F~,(z) = p -'~(~)p2d(~°) - d(z) = p -,z(~, w). 

Other cases can be considered analogously, with the same result (A.3). 
The calculation of the integral 

d#o(x )N( z , x )  
OBw 

[required in order to check (3.27)] goes through in a similar way. 

Appendix B 

In this appendix we give the proof of the projective invariance of the integrand in 
(4.17). 

To begin with, note the following useful identity: 

•(W 1 --+W2, Z 1 ---~Z2) ~- 6(W 2 ---+ W3, Z 1 -"t'Z2) = 6(W 1 ---> W3, Z 1 --'~Z2) . (B.1) 

. T 
~ C  w z k zX",,~- / C  : I z o z \  

al b) 

Fig. 5a and b. Different relative positions of the points C,z, w: a z ~ B  w, b z¢Bw 
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As noted in the main body of the paper, the elements of GL(2, Qv) act on Tp as graph 
automorphisms, i.e., they leave the distances (2.3) invariant. Clearly, GL(2, Qp) acts 
on 0T, as well, although distances (2.6) may be changed, due to a shift of the centre 
C. Let g e GL(2, Qp). Using the invariance of (2.3) and the identity (B.1), one can 
prove the following identities: 

<g(z), g(x)> = <z, x> + <g(c), g(x)>, (B.2) 

<z, x ) -  (z, x'> = 2a(x'-+x, C~z) (8.3) 

for all z e Tp and x, x' eaT,.  For  brevity, denote g-  1(C) = C'. Using (B.I)-(B.3), we 
obtain 

2 6 ( C - - * x , C ~ y ) - 2 6 ( C ' - * x , C ' ~ y ) = ( C ' , x ) + ( C ' , y ) ;  (B.4) 
whence 

Ig(x), g(y)lp 2 -- p2~(c-~ ~, c-~,) - 2~(c'-+ ~, c'-")Ix, yl 2 

= p<O- 1~c),~> + <o-~c),r>lx ' YI~ = P(C', x). P(C', y)Ix, yl 2 

[see (3.11)]. Hence the transformation law for the measure d#0 is 

d#o(2) = P( C', x)d#o(X ) (B.6) 

with ~ - g(x). 
Applying these relations to (4.17) and making use of the mass shell condition 

k 2 = 2, we arrive at 

N N N 

1-1 lY,, YjI~ '~' = [I P- ~(c', y~)~<j ly,, yjlkp 'k~. (B.7) 
i<j j = l  " " 

In view of (B.6), it becomes obvious that the integrand in (4.17) is projectively 
invariant. 

Appendix C 

We are going to demonstrate how the non-local action (1.5) on Qp, proposed in 
[13], can be derived from (4.1) by integrating out the interior of the Bruhat-Tits 
tree. 

Consider the sphere ~(m of radius R centered at C, i.e., (see Sect. 4) the set ~ p  

{zld(C, z )=R} .  Let J~(z) be a source supported by E(pm: 

N 

J~(z)=i Z l~.~,~; zjeF4 ~, (C.1) 
j = l  

where ks, as usual, are the conserved momenta. Let, further, XR(Z ) be a function on 
E(, R). We have the following obvious equality: 

= DXR exp (i F, JR(Z)XR(Z)) ~ D X  exp(-- SpEX]). 



Non-Archimedean Strings and Bruhat-Tits Trees 481 

The integrations with respect to DX are understood to be carried out with the 
Neumann boundary conditions. For  finite values of R we have a finitely multiple 
integral with respect to DXR. 

The meaning of the transformation (C.2) is that it allows one to carry out first 
the inner integration on the right-hand side. Shifting the integration variable as 

X(z) = Xo(z) + (c.3) 

where X~oR)(z) is harmonic inside E~ R) [i.e., for d(C, z)< R -  1] and equals Xa(z ) at 
any point of each branch Bz with origin at z ~ E~ R}. It can be shown that X~o R} is 

F, {a~ and otherwise arbitrary. We defined uniquely. The function Xq(z) is zero on _p 
wish to integrate Xq out of the right-hand side of (C.2). Substituting (C.3) into (C.2), 
the action takes the form 

- 2 ln(p)SvEX ] = E Xq(z)JpXq(z) + 2 X(oR)(z)2pXq(z) 
Tp Tp 

+ Z + Z (¢.4) 
Tp Tp 

By the definition of X~o a), ApX~oa)(z) is non-zero only on E~ R), which means that the 
third term in (C.4) is zero. So is the second term, since, by a straightforward 
application of Green's formula (4.4), it equals the third term. Thus the action is 

- 2 ln(p)SpEX] = ~ Xq3pXq + Y~ X~o~)3pX(o R) • (C.S) 
E~R~ 

To normalize (C.2), divide it by the same expression with JR = 0. The resulting ratio 
will be denoted as Ap[JR] [see (4.2)]: 

We see that the integral over Xq on the right-hand side is cancelled against that 
very integral in the denominator, leaving us with 

A,[JR].,~IDXRexp((21n(p))-l ~ X~oR)ApX(oR)+i 2 ~ '  JnX(oa)~./ (C.7) 

From the definition of X(o R), 

X . (z ) ,  z (C.8) 

where z, is the unique vertex adjacent to z which belongs to the sphere E~ R- 1). 
In the limit R-~oo in (C.7), 

N 

JR(Z)-+J(y) = i Z kjb(y, yj), (C.9) 
j = l  

where y~0Tp and 6(y, yj) is the delta function on OT~. We shall assume that 

lim X~oR)(z)=Xo(y), (C.10) 
R~cJo 

a locally constant function on 0Tp. [It is understood in (C.10) that z ~ y  as R ~  oo.] 
Making use of the definition (3.17) of the normal derivative, and of Eq. (C.8), the 
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limit is found to be 

Av[J]~DXoexp( Pn,;)jr d#o(y)Xo(y)'~(,V)Xo(y)) 

+ i .I d#oO')J(y)Xo(y). (C.11) 
oTp 

For  the derivative O~P)X 0 an explicit expression follows from the Poisson formula 
on the tree (3.14): 

O~)Xo(y ) = (1 + p -  1)- 1 

Substituting this into (C.11) yields 

with 

. . . .  X o ( y ) -  Xo(y') (c.12) 
OTp 

Ap[J] ~ ~ DXo exp ( -  Sv[Xo] + iavp ~ d#°(Y)J(Y)X°(Y)) (c.13) 

. . . . . . .  (Xo(y ) -  Xo(y')) 2 
SpI-X°] = 4(pP(P- 1 ) +  1) In(p) ar,I a#otyIa#otY) ~y,~p . (C.14) 

This reproduces the non-local action of [I 3] after the identification 0Tp ~ Qp, 
and the subsequent reinterpretation of (C.14) as an integral over Qv [see (2.10) and 
(4.19)]. The action (C.I 4) thus emerges as an "effective" action governing the field 
dynamics on the boundary of the world sheet. 
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