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Abstract. We give a genera1 method for proving uniqueness and global Markov 
property for Euclidean quantum fields. The method is based on uniform 
continuity of local specifications (proved by using potential theoretical tools) 
and exploitation of a suitable FKG-order structure. We apply this method to 
give a proof of uniqueness and global Markov property for the Gibbs states and 
to study extremality of Gibbs states also in the case of non-uniqueness. In 
particular we prove extremality for ~o~ (also in the case of non-uniqueness), and 
global Markov property for weak coupling q~4 (which solves a long-standing 
problem). Uniqueness and extremality holds also at any point of differen- 
tiability of the pressure with respect to the external magnetic field. 

I. Introduction 

Among stochastic processes indexed by time t those with the Markov property, and 
in particular diffusion processes, play a fundamental role, see e.g. [DeMe, RogWi]. 
The search for a suitable extension of the Markov property and of Markov 
stochastic (diffusion) processes to the case where the one-dimensional time index set 
is replaced by a multidimensional indexing set has been of constant interest to 
probabilists. One direction in which such extensions has been looked for starts with 
work in 1945 by P. L6vy, and has been investigating fields with continuous 
realizations like homogeneous extensions of Brownian motion (Brownian sheet, 
Yeh-Wiener process), fields with independent increments, multiindices martingales, 
see e.g., for recent work and references [Ro I-3, NuZ, Ru]. 

For application in physics, in particular quantum field theory, random fields 
which are homogeneous (stationary) with respect to symmetries of the indexing set 
(typically ]R d with symmetry group the euclidean group) are particularly important. 
It turns out that to combine Markov property and homogeneity requirements 
generalized random fields (i.e. random fields with realizations which are generalized 
functions), rather than ordinary random fields, have to be considered, cf. [Mo, 
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Ne12,4, Wo], (in which Gaussian Markov generalized fields are discussed). The 
usefulness of a Markov property for generalized random fields was briefly pointed 
out by K. Symanzik, but it was after fundamental work by Nelson [Nel 1-4] that the 
importance of Markov fields in the context of (constructive) quantum field theory 
became clear. In particular it was pointed out that essentially the Markov property 
together with homogeneity properties (Euclidean invariance) permit to construct 
relativistic fields from Euclidean fields. Guerra [Gu] gave the first striking 
convincing applications of such ideas to control the infinite volume limit of the 
pressure in P(cP)2 models. Since then the basic work by Guerra, Rosen, Simon and 
others use the Markov property of free fields and interacting fields with a space time 
cut-off, see e.g. [Sim] and references therein. 

Whereas the Markov property of free quantum fields was well understood and 
studied (see e.g. [Ne12-4, AHK2-4] and, especially for connections with potential 
theory and Brownian motion, [Dy, R61, 2, Kol]) as well as the one for space-time 
cut-off quantum fields [Nell-4], the Markov property for the non-Gaussian 
generalized random fields of Euclidean quantum field theory in the infinite volume 
limit remained unproven for many years until it was eventually proven in models 
with weak trigonometric interactions (Sine-Gordon model) in [AHK7] and with 
general exponential interactions [Gie 1, Ze 1]. Yet the case of polynomial inter- 
actions (P(q~)z-model) remained open. The fact that the Markov property (in the 
global sense, made clear by work of [New1, AHK6-9,14, F61, R61,2] or at least 
with respect to half spaces) yields the cyclicity of time zero fields (in fact is equivalent 
with this) and hence a Schr6dinger representation for quantum fields and a 
canonical formalism (in the original sense of [HePa, Ar]), was made clear by the 
work [AHK 2-5,14,15, AHKR, AK, Her, K11,2]. In particular quantum fields with 
the global Markov property turn out to have generators described (at least on a 
dense domain) by infinite dimensional Dirichlet forms, and being connected then in 
this sense with infinite dimensional diffusion fields, for which there is presently a 
well developed mathematical theory, see [AHK2-5,14,15, Kul ,  ARI,2] and 
references therein. 

Despite the importance of these connections the difficulty of proving the 
Markov property made it necessary to find substitutes of it which, although, 
weaker, were sufficient to permit a passage from homogeneous (Euclidean) 
quantum fields to relativistic quantum fields. Such a substitute was found by 
Osterwalder and Schrader [OsSch 1,2], see also [G1], and further discussed e.g. in 
[Heg, K11,2, Chal, Ac, Ok, Ku I ], also in its relations with the Markov property. 

The Osterwalder-Schrader property (also called T-property or reflection 
positivity property) have been verified in all constructed models. However, as 
mentioned, the Markov property is much stronger and it alone fully justifies e. g. the 
canonical Schr6dinger representation. For this reason the problem of proving it 
remained a very important problem of quantum field theory and the theory of 
random fields. One of the purposes of the present paper is precisely to provide the 

4 first proof of the Markov property for the q?2-model. By this we have also that the ~0z 4 
models satisifies Nelson's axioms for quantum fields [Ne 1-4, Sim]. Let us now 
discuss other topics of concern in our paper. 

Whereas the global Markov property discussed above is difficult to prove, the 
local Markov property holds for all constructed fields and in fact it is at the basis of 
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the construction of Gibbs states starting from quantum fields given first in a 
bounded region of space-time. This construction is a "multi-time" analogue of the 
Kolmogorov's construction of Markov processes from Markov kernels, the basic 
analogue of Markov (transition) kernels being the local specifications studied e. g. in 
[Do 1, LaRu], (which handle in particular the case of statistical mechanics). See 
also, for a more general setting and the abstract study of the related Martin-Dynkin 
boundary [F62, Pr]. Gibbs states have been discussed in quantum field theory in 
[GRS 1,2, DoMi, FrSi, AHK5,7], see also [Sire, G1Ja] and references therein. Far 
reaching connections of the concept of specifications and Gibbs states with 
potential theory have been studied in [AHK3, R62,3, Ze2]. The construction of 
particular Gibbs states has been achieved in polynomial interactions, see [G1Ja] and 
references therein, trigonometric [FrSe] and exponential interactions [AHK1, 
FrPa], see also [AHK 15] and references therein. The question of the structure of the 
space of Gibbs states to a given interaction (specification), an extension of the one 
dimensional problem of constructing Martin-Dynkin-boundaries (cf. [F62, B1P, 
NgZ]) is of great interest. 

Uniqueness results have been given in statistical mechanics [Do, F61, AHKO, 
Pr, Geo] (and references therein) and quantum field theory, for weak coupling 
trigonometric interactions [AHK 7] and general exponential interactions [Ze 1 ], see 
also [Gie 1 ]. In the present paper we present a general condition for uniqueness for 
P(~o)2 models and as an example we apply it to the q~* interaction. A related result is 
also discussed in [Gie3]. The case of weak P(q))2 models is solved in another paper 
of ours [AHKZ]. 

Weaker uniqueness results in sense of independence of classical boundary 
conditions for thermodynamic functions or Gibbs states are contained in [GRS I, 2, 
G1Ja, FrSi]. Structural results for the space of Gibbs states in the case of non- 
uniqueness have been obtained in classical statistical mechanics of lattice systems 
(following ideas by Dobrushin, Minlos-Sinai, Gercik) by Pirogov-Sinai [Sin] (and 
references therein), tn specific models of classical lattice statistical mechanics, 
complete structural results are known, [Aiz, Hig], see also [Me]. The extension of 
Pirogov-Sinai results to the study of phase transitions in quantum field theory have 
been given in [Irn 2] (see also [GIJa, FrSi] and references therein). Structural results 
on the complete space of Gibbs states have been given in the case of free fields in 
[HoSt] (see also [R63]) and in the case of trigonometric and exponential 
interactions in [Ze4]. 

In the present paper we introduce an FKG-order in the set of Gibbs states 
for quantum fields, analogous to the well known FKG-order for lattice systems 
(cf. [Pr, BeHK, Sire]). In particular we consider FKG-maximal states and prove 
their extremality for some P(qo)2 models. 

As to the (global) Markov property the first proofs in classical statistical 
mechanics of lattice systems were obtained in the case where one has uniqueness of 
Gibbs states [AHK6,7, AHKO, F61, BePi, Go], extensions to the case of non- 
uniqueness for FKG-maximal states were given in [F61, Go, Ze5]. For other 
models of statistical mechanics see [Wi]. For a proof that all Pirogov-Sinai states in 
classical lattice statistical mechanics have the global Markov property see [Ze3]. 
For counterexarnples to the conjecture that all extrernal states have the global 
Markov property see [Ke 1, Isr] (see also [Ke2, AFHKL] for further discussions of 
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equivalence conditions of the global Markov property and criteria for it, also in 
relation to extremal Gibbs states). 

We already mentioned above results on the Markov property of Gibbs states in 
quantum field theory (free fields, fields in a finite space-time volume with general 
interaction, fields over IR 2 for trigonometric and exponential interactions). In the 
present paper we give the first proof that also the weak coupling q~4 interaction has 
the global Markov property. Our method is based on a combination of methods to 
establish uniform continuity of local specifications and the exploitation of the 
FKG-order we introduced. It should have applications also to other models. In a 
companion paper we prove the uniqueness of Gibbs measures for weak coupling 
P(cp)2 models using cluster expansion [AHKZ]. 

The structure of the paper is as follows: 
In Sect. 2 we introduce the basic space of regular probability measures, in which 
later on we will introduce our Gibbs structure. We also recall basic results on the 
Dirichlet boundary value problem with distributional data which will be used to 
represent the conditional expectations needed for discussing local specifications and 
the Markov property. A basic estimate on the solution of the above Dirichlet 
problem (of the "large deviation type") is given in Lemma 2.1. 

In Sect. 3 we introduce the concept of local specifications and a concept of uniform 
continuity for them. Roughly speaking this expresses a weak dependence of the 
conditional expectations, associated with complements of bounded open sets, on 
boundary conditions near their boundary #-a.s. with respect to a given regular 
probability measure, as well as a continuity property of sample paths of the field. In 
Theorem 3.1 we show that every local specification associated with quantum fields 
in two space-time dimensions is uniformly continuous a.s. with respect to Gibbs 
states of the specification. 

In Sect. 4 we introduce an FKG-order for quantum fields on the lattice and in the 
continuum. For this we use the representation of specifications given by solutions of 
the Dirichlet problem for distributions mentioned above. 

In Sect. 5 we discuss extremality in the set of Gibbs states. In particular we prove 
(Proposition 5.1) that uniform continuity of local specifications together with the 
convergence of the specification with boundary conditions "dominating at infinity" 
towards # yields extremality of #. This criterion is then applied to the q~-model to 
prove extremality of its Gibbs states, in particular the FKG-maximal Gibbs states 
are extremal (Propositions 5.3, 5.4). Extremality of Gibbs states for models with 
exponential respectively trigonometric interaction is also proven and uniqueness 
results are given (Theorem 5.6). 

In Sect. 6 we give a general method for studying the global Markov property for 
quantum fields. This method is based on uniform continuity of local specifications 
for conditional Gibbs measures, together with control on the solutions of the 
Dirichlet boundary problem for distributions and the FKG-order for continuous 
fields which we introduced. We apply the method to prove the global Markov 
property for weak coupling symmetric q~24 fields. 
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In Sect. 7 we give some remarks on the structure of the set of Gibbs measures. In 
Proposition 7.1 we show that certain Gibbs states #± are FKG-maximal and so 
extremal. In Proposition 7.2 we prove that at the points of differentiability of  the 
pressure in P (q~)2-models with respect to an extremal magnetic field there is a unique 
extremal Gibbs measure. We conclude the paper by formulating some expectations 
concerning the structure of Gibbs states for general P(cp) 2 models. 

The main results of  this paper have been announced at the Symposium of the 
Bernouilli Society in Rome (June 1988) and at the International IAMP Conference, 
Swansea (August 1988) (to appear in the Proceedings, eds. I. Davies, A. Truman, 
1989). 

2. Regular Probability Measures on ~'(IR 2) 

Let ~- be a family of  bounded open subsets A of IR 2 with piecewise ~fl-boundary 
~A. Let ~ o - { A n s ~ , n ~ N }  be a countable base of  ~,~, i.e. an increasing and 
absorbing (i. e. A, c A n + 1 and for aI1 A ~ ~,~ there exists n ~ N s.t. A c A,) sequence of 
elements from .Y. We shall always assume that ~o  is a Fisher sequence in the sense of 
e.g. [Isr] i.e., as n-~ ~ ,  q d(O, ~An) b < [~A, I < c 2 d(O, OA,) b for some constants cl, c2, 
b = d - 1 ,  where It?Al means the length of  ~A. 

Let us introduce the Sobolev norm II Ii -1 on the space of  tempered distributions 

If(q)12 dq < o% f ~  D~'(IR z) with Fourier transforms which are functions f s . t .  ~ qZ +too 2 
by setting ~z 

If(q) l 2 
I q2 + m  2 dq , (2.0) 

N2 

with m o > 0 constant. 
We call H_ 1 (lRa) the Sobolev space with this norm. Let G -  ( -  A + mg)-1, with 

A the Laplacian on IR 2. Then 

Ilmll _, = r S f(x)mx-y)S(y)axas. 
~2~Z 

Let Z denote the Borel a-algebra in N'---N'(IR 2, IR). Let 40(f), f e n  be the free 
Nelson Markov field, i.e. 40(f) is the generalized Gaussian random field with mean 
zero and covariance 

#o ((P ( f )  q~ (g)) = ( f ,  g)  - t 

with ( f , g ) - i  =- ~ ~ f ( x ) G ( x - y ) g ( y ) d x d y .  4o(f) is thus the coordinate map at f 
N z N 2 

on N' .  We can l o o k  upon ~o, cf. [AHK7], as a random ~eld indexed by measures  
of finite energy i.e. such that 40(Q) has mean zero and covariance 

(0, 0 ' ) -1  - ~ ~ do(x)dQ'(Y)G(x-Y)  < oo. Let Z(A)  be the ~-algebra generated by 
N2 ~2 

q~(~) with s u p p 0 c A .  Any function F on (N',  27) which is Z(A)-measurable for 
some A e W  is called a local function. 
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Definition 1. A probability measure # on (~ ' ,  S) is called regular if for some p => 2, 
any A , s ~  there exists a constant c , > 0  s.t. 

~o(s)  < eC.(tlfll-, + ttfll"-,) (2.1) 

for any f ~ H - 1  with supp f c A , ,  and such that d(suppf,  gA , )> l ,  where 
d(A, B) =- inf {[x-y[, x E A, y s B} is the distance of two sets A, B. 

We call .~d r the set of all regular probability measures. For any S-measurable 
function Fand  any probability measure p on (N', 2;) we use the notation pFfor  the 
expectation E(F) of F with respect to #, We call p, c, the parameters of  regularity 
of #. 

Remark. The above definition of regularity is in fact independent of the chosen 
parameter mg (cf. [AHK7]). 

Remark. By the construction of 2-dimensional scalar quantum fields with 
exponential, trigonometric and polynomial interactions one obtains measures # 
which are regular in the above sense. In fact all measures associated with such 
models satisfy the bound 

#e~°(Y)<--exp(allG*fNL1 +b  NflT-, +ellG*fHf?, (2.2) 

for some constants b > 0, a, c > 0p > 4  (where Ii IIL, denotes the Lq-norm) (cf. [G1Ja, 
AHK I, 7, FrSi]). 

It is shown in [AHKZ] that (2.2) implies the regularity bound (2.1) with c, s.t. 
c,< C]A,] */2 for some C>  0 (where JAil denotes the volume of A,). 

Let A e ~ -  and consider the harmonic measure (Poisson kernel) Oe°{(x), for 
zeOA, x e A ,  i.e. the solution o f ( - A  +m2) O~{(x) =0  for x e A  and ¢~(x)-~6z(x'  ) 
for x ~ x ' , x '  e~A. 

It is possible to define cnOA (X) for any q e ~ ' ,  x s A in such a way that X-~O~A(X) 
is --A + m ~ -  harmonic in A. Moreover there exists a #-measure 1 subset (2(A) of 
@' s.t. f2(A)eZ(aA) and for ~/e ~2(A), ¢~A(x) is the locally uniform limit in x ~ A  
of 0a O,~(X)--5 ¢ °2 (x ) (q ,h~ ( . - z ) )  for h~e~f0~(iR2), h~(x)~6(x), ~c--*oo, 

OA 

G - tt * h~. We set 0,1 °A (x) = 0 for t/e N '  - Q(A). We call 0~ A(x) the solution of  the 
Dirichlet boundary value problem in A with boundary condition ~ (ref. [AHKZ, 
R6 1,2]). 

It is useful to remark that O~A(.) is also the LV(# ®dx, ~ '  x A), 1 <p  < oo limit 
OA of ~,~ (.) as K-, oo. Define for A e ~ ,  [A1 > 1, 0 < e < 1" 

A~- {x ~ ~ald(x, A) < ~} 

For any ooeC~(IR2), co>0 we shall set OOoA=--inf~eaa)(X). 
We then have the basic estimate 

Lemma 2.1. Let co E C°°(IRa). Then.for any regular measure # on (~',  Z) and any 
A ~ ~o we have 

# { t / ~ '  supI~°nA~(x)l>co~A1 <exp~  1 -a-v} x~A ) L - a  ~OoA+bc(A)IOAf/2~ 2 , 
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for some constants a, b > 0 (independent of  A, s) and c ( A ) with c ( A ) = G, c, and p > 2 
bein9 as in the Definition 1 of  regularity. 

Proof. Let ZeCo~CIR), 1 ~ 9 ~ 0 ,  zCx)={10 for Ixl<& 
for Ix[ >½" 

Define 

Ze, A (X)~--~ X (~ d(x, SA) ) .  (2.3) 

Then we have [using Sobolev inequalities and the fact that )(~,A(X)=0 for 
d(x, 8A) > ½ s]: 

sup It~ffA"(x)l < sup IX~,A(X)¢OA+(x)I 
x~OA x ~  2 

<=a[i(--A+m2)Z~,a~tO~a~ltL 2 

_ _  O A ~  =atlaS', 11+~ (2.4) 

with a numerical constant a > 0. Hence 

 +aSUP 

+a ' ° 4  Itx+,A~0 II+2_-_~ 

= ~  r /~ ' :exp[ lX+,AO . 1l+2=>exp . (2.5) 

So using Tchebyshev's inequality we get 

P(co, A, ~) <__exp ( -  ~ )  #(exp ll)~,A O~A~ll + 2 ) . (2.6) 

Let us introduce the notation: 

H_ 1 ~ JY'A(x) = (-- A + m2) z~,a (x) o.°a° (x) 

=(-Az~,a(x))O°a"(x)-2VX~,a(X) • VO.°a~(x) (2.7) 

(for all x e l R  2, where we used harmonicity of ~9. °A") and denote by J,~'a(x) the 
corresponding random variable. 

Then we have by H61der inequality 
OA~ 2n ~,A 2n #llx+,A,,z,,, ll+2=#Hs,: (')HL~ 

" ; )  = ~ 1--I d 2 x i #  J~ 'A(x i )  
(supp Z~,,O. f = l  

< lsupp Z~,AI "-~ ~ d2x#((J~'a(x))2~). (2.8) 
supp )(,, a 
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From this using regularity of  # we obtain 

#(exp ]iZe, A O~ A~ II +2) ~ 2 #ch IIJ~'A( .)IIL~ 

<2[supp LA1-1 f dzxexp(c(A)[tsuppz~,all/2HJ'~'a(x)[]-i 
supp X*,A 

+ Isupp Z~,a[ v/2 tIJ~.'A(x)IIP_I]). (2.9) 

From this we get, estimating the volume of supp Z~,a : 

. 0A~ #(exp ]l)G,a~b~ t] +z)=<2exp (c(A)(218A1) vie sup [g ~/2 HJ.~'A(x)]]_I 
d(x, oa) < ~- 

IIs. ,a(x) (2.1o) 
if I~A I => 1 (since we replaced I~AI by I~AI v12. Now we have 

tls.~' A(x)-1----< J&,.A(x)I II O.~A°(x)jl-~ +41 ~Z,,A(x)J llt ~ 0"°A°(x)IJ-~l. 
(2.11) 

By definition of X~,A in (2.3) we have 

IAZ~,A (x)] =< cg -2 , (2.12a) 

I<z=,A(x)l_-<c~-* , (2.12b) 

with some constant c > 0  (independent of A ~  0 and e > 0  with Vi---~7_= i . 

We have also, using the fact that the singularity of KOA~(x,x) is logarithmic: 

sup II¢~Ao(x)ll_,= sup (goA~(x,x))l/Z<=clln+el I/e (2.13a) 
d(x, aa)  < #; d(x, OA) < 

(where K oa~ --G - G ~A~ and G oA~ - - \  [ - -  A oa~ +m2"~oJ-1, A0a~ being the Laplacian with 
Dirichlet boundary conditions on ~A,, In + e--max ([ln el, 1)), again with some c > 0 
(independent of A ~ ~o) and 0 < e < 1. Moreover 

sup IIV~,~.°a=(x)ll_a= sup lira IITi,xl7i, yK°A"(x,y)l  ]/2 
d(x, 3A)<~ d(x, OA)<~ y ~ x  

<ce -1 (2.13b) 

with some c > 0 (independent of  A e o~o) and 0 < e < 1. 
Combining (2.10) with the bounds (2.11)-(2.13) and using (2.6) we get the 

inequality in the lemma with some constants a, b > 0 (independent of A e ~0) and 
0<e,< 1. [] 

For an increasing function meC~(IRZ), co>O and a decreasing function 
e" ~7o~(0, 1) we define, with A~-A~(A) for A e f f o ,  the following subset of  ~ ' :  

f2~'°'-~neN { t leN' 'gAe~° 'A"c-A '  x~oASUp 'I/I~A~(x)I~(D~A} 

= U (J . . . . .  • (2.•4) 
n~N 

Such a function O~OA will be said to be dominating at infinity if the conclusion of  the 
following lemma holds: 
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Lemma 2. Let # be a regular measure and (c (A), p) be its corresponding parameters of  
regularity. Assume c (A) < IA I N° for some N O e N. Let 

co(x)--=e Stllxll , ~ x > 0  ( 2 . I 5 )  

St 
/ _ .  - ~ p  tt(o, OA) 

etA)==.e . (2.16) 

Let the Fisher sequence A,  be s.t. 

4 \B  5(1 lnn) , (2.17) d(O, OA,) ~ a In 

for any given 6 > 0 and some positive constant B(a). Then 

(a~, ~) = 1 . (2.18) 

Proof For any A, e ~o  we have by definition (2.•4) 

# (~  '\(2~, ~) < # (~  '\f2~, o,,,) (2.19) 
and 

#(@'\£2,,o,,,) = # ~tl e N " 3A e ~o,  Ant-A, sup I~//2Ae(x)[ > O30A ~ 

% 

l x~OA J 

<__~ #{rle~':supIt/IOA~(x)I>CO~A}. (2.20) 
A¢~o xeOA 
A.c_A 

Now using Lemma 2.1 with co, ~ given by (2.15) and (2.16) and using the assumption 
on A, respectively we get the bound 

St 

rhs(2.20)=< ~ e x p ( - B e  ~a(°'eAm)) (2.21) 
Ame °Jo 
A~=Am 

with some B > 0 independent of A m (and c,, if we take n sufficiently large). 
The right-hand side of (2.21) can be made arbitrarily small if we use the 

assumption (2.17). This ends the proof. [] 

Remark. With the choice (2.17) we have 

(LI~3A ~ ( -  ~ Inn)  4 . (2.22) 

3. The Uniform Continuity of  Local Specifications 

Let/~ be a regular probability measure on (~ ' ,  S) (in the sense of Sect. 2). 
We shall consider local specifications g in the sense of [F62, Pr], defined for 

P(cp) 2 models in [R63] (and references therein), g is by definition a family E]o, q e f2 
with O a #-measure I Borel subset of ~ ' ,  A e ~" and E~c is given by 

E~]c (F) - kto °a (e-  ua(- + ¢:a)F( , + o~A)) 

• , 
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with the interaction U a given by 

UA(~O) = ~ 4x:v (q , )  :o(X) , 
A 

with v of  polynomial, exponential or trigonometric type and : : indicating normal 
ordering with respect to the Nelson's free field measure ~ [the Gaussian measure 
with mean zero and covariance ( -  A + mo2)-1]. 

#o ~a is correspondingly the Gaussian measure with mean zero and covariance 
(-A0a+m2o) -1, with, as before, Aoa the Laplacian with Dirichlet boundary 
conditions on 0A. 

For  any Iocal specification g as above we define as Gibbs measure # for g any 
probability measure on (f2, 2; :~ O) such that for any A ~ ~- 

#EA~ (F) = #F 

for all bounded measurable F. 
The set of  all Gibbs measures for g will be denoted by f#(g). By 0ff (g)  we shall 

denote the subset of i f(E) consisting of  Gibbs measures which have no nontrivial 
convex linear representations in terms of other elements from f#(g). 

Remark. Gibbs measures and local specifications have been constructed for 
Euclidean fields with exponential, polynomial and trigonometric interaction in two 
dimensions see e.g. [G1Ja, Sire, GRS1,2,  FrSi, AHKI ,15 ,  Zel ]  and references 
therein, see also [R62]. 

Definition 1. A local specification g-= {E~o}A~: on (~ ' ,  Z) is called uniformly 
continuous #-a.e. iff there is a function e : ~ 0 + ( 0 , 1 )  such that for any bounded 
measurable local function F (in the sense of Sect. 2) 

Iim IESA~(F)--E~(F)I=O , #-a.e. (3.1) 
,No 

Theorem 3.1. Let g be a local specification for any interaction U A of  the polynomial, 
trigonometric or exponential type and let # be a regular Gibbs measure for ~g. Then g is 
uniformly continuous #-a.e. 

Proof We prove first Lemma 3.2 for all interactions. The case of  polynomial 
interactions is then handled by Lemma 3.3, the ones of trigonometric respectively 
exponential interactions by Lemma 3.4 respectively 3.5. 

Let us denote for A ~ o ,  with e=-~(A) 

,~U,,~(q~)_UA(q~+,::A~ ,//A~ Ua(q~) (3.2)  
, " t ' ¢p  - -  " t 'q~  : -- " 

We have then 

Lemma 3.2. Let #~f~(g)  be a regular measure. Suppose that 

lira #[6UA,~I=O (3.3) 
oooj o 

and with some constant 0 < C< go independent oJ: A ~ ~o 

#e -avA,° < C . (3.4) 
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Then g is' uniformly continuous #-a.e. (i f  necessary by replacing ~o in Definition 1 by 
a subsequence ~¢;). 

Proof. For any cylinder function F(q~)--P(~0(fl) . . . . .  ~o(f,)), P e ~ ( ] R " ) ,  F__>O, 
fi • @, i = 1, ... ,  n), we have, using the definition of  the conditional expectation and 
calling q~ the integration variable with respect to #~A, 

F[,~ J_ ,I, OA _L. A d+ #A~ ] [ , ,SA {,~ -- U A (q~ ~- ¢Oyd) 
K ' i ~ W ~  - - u e W r l  11 LifO k w 

e - ~ V a A + + * ~ ) ) ]  - ~  , 

with 
e'r~l - -  "rq I/Jr I " 

Dividing numerator and denominator by the factor ~ a  (e-  Va(, + 0,°A)) and using the 
properties of  conditional expectation we get that the above is equal to 

( e - - b O A ,  ~(~p) } 

L ~ A c \  ~ ] 

Using this we get the equality which is the starting point of the following: 

+ E~. (F((p + 6~ O~ a) - F(~p))I (3.5) 

<#(F(9)  E ~ ,  ~ 1 )  

i =1  

where we used for the inequality simple properties of  conditional expectations, 
measurability properties of the functions involved, a meanvalue theorem and the 
majorization 

i e -~v~," 1 < E n - -  A c E~oe_eV~. ~ 2 . (3.6) 

The second sum from the right-hand side of (3.5) converges to zero as AI"IR 2 
through ~o  (because of regularity, see [AHK7]). 

Our assumption (3.3) implies that fiUA, ~ converges by subsequences to 0, hence 

lim e-~V~,°=l , #-a.e. (3.7a) 
~ 6  

for some ~o' ~ ~o.  
We shall now use that the assumption (3.4) together with the property of  

conditional expectation implies 

#(E~,ce -~UA,"+)) < C . 
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Consider, for any bounded measurable function F: 

# (FEytc e -  OVA,o) = (i 2 (E~t ° F )  e -  ~va,O • 

By martingale convergence theorem E~cF converges in L 1 as A l" IR 2, hence by 
subsequences a.e. On the other hand exp (-5UA,~) converges to 1 by (3.7a) along 
fro'. By Fatou's lemma then for A ~ f fd ' c  fro, 

lim sup #((E~, .F)  e -*vA,°) ~12F . (3.7b) 

On the other hand by conditional Jensen's inequality 

E~oe-  ~V a,o ~ e -  E~o(6u ~,~) . 

By (3.3) the right-hand side goes to one a.s. as AI"IR 2 along ~0'. Hence for F > 0  
bounded measurable, using again the properties of  conditional expectation, 

lim inf # ( F E ' ~ e - ~ V  ~,°) > # F  . (3.7c) 

From (3.7b), (3.7c) we get 

lim E~oe-~VA.~= 1 #-a.e. (3.7d) 
~6 

for some Yo' c ~o.  
Let us now consider 

I / ] e--5UA:((a) 

By (3.7a) and (3.7d) the integrand goes pointwise, as ATIR 2 in Y0', to zero. On the 
other hand F being bounded we can bound the integral as 

: f  I) =<ltFll "\lE o) 1 • 

Using that # is a Gibbs measure together with the bound (3.6) the right-hand side 
is bounded by 2 IIFtl ¢~. Hence by weak compactness we can choose a subsequence 
fig' s.t. 

/ E ] ~ a ,  0 e -  a:-"'* lr)_.0 # ~F(q~) (3.8) 

as A T R2 in ~ ' .  This gives the stated uniform continuity of g. [] 

Let now 
U A(q 9) = S d2x : P(qO :o (x) (3.9) 

A 

be the function describing a P(q))z interaction in the region A, with P a semibounded 
polynomial. The Wick ordering is, as before, with respect to the free field measure. 
Let # be a Gibbs state for the local specification given by the above interaction. 

We have the following 

Lemma 3.3. L e t  
e ( A ) = e  -~a(°'eA) , ? > 0  . (3.10) 
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Then, with 3UA,~ 9iven by (3.2), (3.9): 

lim #I6UA,~I=O, (3.11) 
~o 

and there is a constant 0 < c < oe independent o f  A ~ ~ o  such that 

/re- ~v~., < c . (3.12) 

Proof. To get (3.11) it is sufficient to show, by the definition (3.2), (3.9) of  3 Ua,~, that 
with 

FA,~ =-- S d2 x : q~k. eao oa • o (x) (~0 (x) - ~ (x)) (3.13) 
A 

we have lim #F~], ~ = 0, for any 0 < k < deg P -  1 and 1 _< n -< deg P, n + k N deg P, 

where deg P is the degree of P. 
Let us set 

6, oOA(x)=9(6~oO.A(x))=q)@O.a°(X)--oOA(x)) , x e A  . (3.14) 

We can perform the integration by parts in the expectation #F2 ,  to eliminate 
3q~ (x), using the local equivalence of # with the free measure Po, and we get: 

p [(S~ d2zd~x6~kezA(x)G(z-x)k  : q~k-~ :o(X ) (6~ ~b~a(x)) (n - 1)Za(x))Fa,~] 

+#[(~ d2x. k. - ~3A n-2 • q~ .o(X) (0e~ % (x)) (n-- l)][~t~A(x)[{21ZA(X))FA,e] 

_{_#[~ 4 X  : , k  :o(X) (~a~j~A(x))n-l ZA(X ) {~S d27.d2y~et~ezA(x)G(z_ y)] 

k: ~0 k-1 :o(Y) (6~$~A(Y))ZA(Y) 

+ ~ d2YZA(Y) (~ d2zd2z'~e~l~za(x) G( Z --Zt)3e~I°zA(Y)" ~ Ok :o(Y) 
~A n- 1 

- p [ F ~  dzXZA(X) : fp k :o(X)((~IO~A(x)) n-I ~ d2zd2Y~e.ffl°zA(x) 

G ( z - y ) : P ' ( q ) )  :0 (Y)] (3.15) 

(for such computations see the "integration by parts formula" in [GIJa], following 
[DIG1]). We note that by definition of  6~0. A we have 

v 1 (x) =- ~ d 2 z fix ~kf a (x) ZA (X) = [ K  oA~ (X, y) --  K eA (x, x)]/~A (X) 

= l[Oe~tOA(x)i[21XA(X) , (3.16) 

v (x, y)= S y) 

= ( K  OA" (x, y )  - -  K OA (x, y)) ZA (X) ZA (Y)  (3.17) 

+ (K °A~ (x, y) - G (x, 3:)) ZA (X) ZA,\A (Y) , 
where 

K OA (x ,  y) - G(x, y) - G OA (X, y) , (3.18a) 

K Oa (x, x) =- lim K Oa (x, y) (3.18b) 
y--*X 

and analogously for ~?A,. 
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By successive integration by parts analogous to (3.15) we get the expectation of  a 
sum of (at most 52") monomials of the form 

d 
S l-[ :q)k~ :o(X~)W(Xl . . . . .  x e )dx  1 ... dx~ (3.19) 

i=1 

(k~ < deg P - 1 ,  l-<_ 2n + 2) with the kernels w (xl, . . . ,  x~) defined as the products of 
the kernels of  type (3.16) and (3.17). 

The expectation of (3.19) can be estimated by L s ( d x l . . . d x l ) - n o r m  of 
w (x 1 .. . .  , xl) for some s ~ N, see e. g. [G1Ja]. From the definition of these kernels this 
norm can be estimated by a finite product o f L  r norms (for some r ~ N) of  the kernels 
vl( .  ) and vz ( . ,  .). Since as is shown in Appendix 3.A, for any r ~ N :  

t] vl I] Lr(R 2) < c I0A I q d' , (3.20a) 

IIV2 ItL,(Nzx p2) < C ]OAIqe b , (3.20b) 

with some a, b > 0 and a constant c > 0 independent of  A, e, so by our assumption 
about e(A)  we get (3.13). This finishes the proof  of (3.11), 

Let us assume from now on, for simplicity of notation, that # is of the following 
form : 

# ( - ) = l i m  # 2 ( 0  , 

with 
#•(.  ) -  go(e -VX.  ) /Z¢  

with Z Z -  go(e- uA). 
(The general case can be handled similarly.) 
We have then, using the local Markov property of #3 : 

Zx#~e-~UA,  ~ 

= go [exp ( -  UX\ A (q)) - ~Ae OA 

= #o [e -  VS,~(e) peA ( e -  Ua(¢+oBoA* ~] 
= g o  [ e  - VX'A°(~°)(NA*e -- VA,,a) #gA (e- V~(,' +,~"3] , (3.21) 

withEg A" the free conditional expectation, i.e. the conditional expectation with 
respect to go, given the a-algebra S((?A,) [we used here again the local Markov 
property, and the S(OA~)-measurability of o~A"(x)]. 

By conditioning inequality [GRS 1, Sim] we have: 
U r --.t.oA~ ~A #~A e -  at'~-e, )~t , l  ~ ~e-UA('+O°m) 

= B °A* ( e -  UA) (q~) (3.22) 

(where we used the definition of i[i oat: and conditional expectation). From (3.21), 
(3.22) we get then 

Zx#%e - ~Ua.~ < #o [e - UZ,Ao(~O)EOA~ (e - Uaaa) 

(E~A~e- Ua)] = go [e-  UA\A~((#) -- Ua(~°)E~A~ (e - Uaaa) (q~)] 

~X,e (Eg A* (e - Uao,a)) . #o (e - ux \~o + va)) 

"~ #X,~ @ #oa~( e -  UA~\A(~O'+O~AO)Z(A\A~) UA ' (3.23) 

(with qo, (p' integration variables). 
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Using (3.23) and Jensen inequality to estimate Z(Tt\A~)uA\ZZwe get 

#~e-~VA,~<#~,~®p~A~(e--UA~a(~'+~'$A'))exp(pL~(U~\A(q~)) ) . (3.24) 

By standard arguments [G1Ja] we get the bound uniform in the volume 

I#A, ~(U A.\A (~0))1 ~ C IA~\At (3.25) 

with some c > 0 independent of A, A and e. 
Using the Duhamel expansion (cf. [G1Di, GRS2]) we get also 

#~ ~ ® #OoA~ (e - Ua*\A(q)' ~- ~l~ao) ~ e cl&\AI (3.26) 

with c > 0 independent of A, .4 and e (see Appendix 3.2). 
This together with the definition of#  and oux assumption about , (A) finishes the 

proof of (3A2), since IA,\AI can then be bounded by a constant. [] 

By combining Lemmas 3.2 and 3.3 we get the proof of the theorem in the case of 
polynomial interactions. 

We shall now complete the proof for the case of trigonometric interactions. For 
this we use the following 

Lemma 3.4. Let U a ((p) ~ ~ d 2x ~ dr(c0 : cos aq~ :o (x) with supp v = ( - 2 ~/~, 2 ]/~), 

Let # be a Gibbs state for the local specification corresponding to the interaction 
U a . Let e(A) be as in Lemma 3.3, then the same conclusions as in Lemma 3.3 hold. 

Proof  Similarly as in the case of polynomial interaction we only treat explicitly the 
case of Gibbs measures constructed with free boundary conditions, the other cases 
can be handled analogously. To show (3.11) in the present case it is convenient to 
prove that 

lim # (~ U~, ~)2 = 0 . (3.27) 

We find an estimation as A ~IR 2 on #(6UA,,) 2, namely that it goes to zero, using the 
trigonometric identities, integration by parts formula (to remove 6~0, A) and 
standard bounds for the measure/~ [FrSe, FrPa]. 

To show (3.12) we use Jensen inequality and analogous arguments as in the 
polynomial case to get the bounds 

exp ( - # (6 UA, ~)) < #e - ~v~,, < #A,~ ® #ga~ (e - u~o,A (~'+ O, TM) 

eXP #A,~(U A~\A((O)) , (3.28) 

with 
#A,~(')----lim #o(e -vx~A')-U~(') ")[~(e-UX'a'(')-U~('))] -1 , 

.~0 

and q~ respectively q~' is the integration variable of #A,~ respectively #o °a~. The left- 
hand side of  (3.28) converges to one [from (3.27)] and by analogous arguments we 
have also 

l im #A,e U Aa\A(q)) = 0 . (3.29) 
~-~0 
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For estimation of the first factor from right-hand side of (3.28) we make the 
expansion of the exponential into power series and then estimate each term 
separately, using the bounds for expectations with respect to #A,~ and /~A~ (if 
supp dr(a) = ( - 2 W ~,  2 ]/~) then the gaussian integrations with #o aA" are sufficient 
to get the estimation yielding convergence to one). 12] 

Lemma 3.4 together with Lemma 3.2 yields the proof of Theorem 3.2 for 
trigonometric interactions. Similarly we get the proof of the theorem for 
exponential interactions using the following: 

L e m m a  3.5. Let U A - 2 ~ dzx ~ dv(~) : e "~' :o(X) with 2 > 0 and v a probability measure 

on ( -  2 ]/~, 21/~), : :oSoeing normal ordering with respect to free field measure Po. 
Let # be a Gibbs state for the local specification corresponding to the interaction 

U a. Let e(A) be as in Lemma 3.3, then the same conclusions as in Lemma 3.3 hold. 

Proof As before we consider explicitly only the case where # corresponds to half- 
Dirichlet boundary conditions [AHK7, Sim], the other cases being similar. Then we 
have # = lim #X, with 

So ) _  ) z£1  , 

with Zd-= ~A(e -  u~). 
Moreover for A ~ ~o ,  A~ c ~ (as in Lemma 3.3), we have (using the definition of 

#X and conditional expectation) 

ZX# ~"- ~UA . . . .  0~o- u,~a(~0) o - u~(~0 + 6~0~% 
A ~ ' - - ~ 0  ~ 

= p~)~e- V~a(~o) l~a e -  V~(~+ ¢,~0 

< f~a e-V~(~°) l~A"e-U~(q'+¢°~') , (3.30) 

where we used the conditioning inequalities (proven similarly as for the polynomial 
interactions, by expansion of the interaction term in a power series). 

Using the definition of conditional expectation value we rewrite the right-hand 
side of (3.30) in the form 

g a  e - u;'~o(q~)(Ega°e- 5~aa(q~))EgA"e- UA(~) 

= Aff e-U(z,ao)~a(,)(EgAoe-U~.,~(~o)) 

< ~to ~x (e - v,x,,~a(,)) , (3.31) 

where in the first equality we used the properties of  conditional expectation and in 
the last inequality we used the positivity of the considered interaction. Now using 
the Jensen inequality we get 

__< exp #~L,(Ua.\a(~p)) , (3.32) 
with 

ttX, ,(.)___ [~X(e- v~x,~.,~)]-1 

•/~0°X(e- V'X~a°'~"') . (3.33) 
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On the other hand, again from the Jensen inequality, we get 

exp ( -- #X6 U a,~) < #xe -  ~v A,~ . (3.34) 

From (3.32) and (3.34) using the exponential bound for the measures with 
exponential interactions we get as in [Ze 1] (Lemma 1.4.2) that 

lim #,~,~ Uao\a(q~) =0  (3.35) 
a;o 

and (using also Lemma 1.5.1 of [Zel]) 

lira ~lOUa,~(~0)l = 0 .  (3.36) 
~o 

This ends the proof of Lemma 3.5 and Theorem 3.1. [] 

4. The FKG-Structure on a Lattice and in the Continuum 

Let ~ be as in Sect. 2. For A e ~  and coecg(N 2) let ~/~A be the solution of  the 
following free Dirichlet problem 

2 OA -A+mo) t~ ,  o (x)=0 in A 
(4.1) 

~ a ( x )  = co(x) in A c 

(this correspondends to the quantity ~ / o a ~  introduced in Sect. 2, in the case where 
q = co). Let/~o respectively p~A be the Gaussian measure with mean zero and the 
covariance G respectively G °A (as in Sect. 2). For any polynomial, exponential or 
trigonometric v, as in Sect. 2, let 

UA(~ °) ==" S : v(q~) :o(x)d2x (4.2) 
A 

with the normal ordering : :o with respect to ~o. 
Let us define correspondingly E~'~ as the local specification to the interaction UA, 

as in Sect. 2 (with the continuous function 09 instead of the distribution ~/). 
Let 6 > 0  and let Z~=-{nf=(nlb,  n26), n~TZ2}. 
Let ~a  - ~ c~ Z~. For A~ e .~a we define the energy functional on (f2 a = IR z~, S0) 

. 2 
(Sa the Borel o--algebra m lRZ*): 

H a ~ ( q ) - 1 6 2  ~ q i ( ( -Aa+m~)q) i ,  (4.3) 
i~A6 

with A a the Laplacian on Z~ (see Appendix A4). 
We also define the free lattice measure Po,a by 

#o,a --- lim p~,a , with 
~o 

A - -  #o, ~ = 6o {(S dqA~ (e - Ha,(q).))/(I dqA~e --Ha6(q))} , (4.4) 

with 60 a point measure concentrated on {q, = 0} and ~o a filter of finite subsets of 
Z] invading all the lattice. (We remark that the above limit is unique in the set of all 
probability measures supported on tempered sequences.) 
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Define the lattice interaction by 

U A ~ ( q )  = - ~ 2  2 : v ( q i ) : O , ~  ' (4.5) 
i e A 6  

with normal ordering with respect to #o,~. Then we define the measures E~%0 by 

E2,  ,(F) -- 6,o {(~ dqA,e -Ha,(q)- UaAq)r(q)) 

. . . .  H a . ( q ) _  .[j aqa~ e v~,(q))-l} , (4.6) 

with 6~, the point measure on f2, concentrated on {co(if), i ~ Z  a} for a function 
co s ~g (IR2). 

Lemma 4.1. For any rectangle A ~ ~ ,  in the sense of  weak convergence o f  measures." 

lim E~% ~=EA% . (4.7) 
6-~0 

Remark. The lemma can be extended to hold for any sufficiently regular set A ~ ~ ,  
see e.g. [GRS 1 ]. 

In the following we shall call for simplicity regular sets the sets in ~- for which 
(4.7) holds. 

Proof First we note that changing the integration variables 

---> t OA qi qi=qi+O,~,e (4.8) 

with ~,~a a solution of Dirichlet problem (4.1) but on the lattice, we get 
U 0A E °' I'~{"~--["A e -  a . ( q + ~ , a ) ' ~ - I  Ac,3 *~ \ ~ )  - -  \/ '*0,~ ] 

(4.9) 
U OA . , ,A { o - -  a~(q+~, ,~)l f ' [ . .~A_,l ,  6A ~ 

I~O,b \w .L \ t  1 t Wto, ~52) " 

Now it is known [GRS 1, Sire] that the measure /t6A~ can be represented as the 
restriction of/~o to the o--algebra generated by {q~(f,~):nb~A~}, for suitable test 
functionsf,~ (defined in Appendix A.4). Using our Lemma A.4.4 together with the 
Theorem VIII.5 [Sim] (see also [GRS 1 ]) for polynomial interactions we get (using 
also the definition of UA) 

U + ea lim ([2A,6(e--Ua~(q+~p°of~) )-1 i~o,~( - -  a,(q C J F ( q +  ~t co ,OA6)) ---- E]o ~' (F) , (4.10) 
6 ~ 0  

for any cylinder function F(q0 - F(q~ (fl) . . . . .  ¢p (f,)), - ~  cg(IR"), f /6  ~ ,  suppfi ~ A. 
This ends the proof of our lemma, for the case of polynomial interactions. In the 
case of trigonometric respectively exponential interactions one proceedes in a 
similar way. [] 

It is known (see [FKG, GRS 1, Sim, G1Ja]..,) that on lattice we have an F K G  
structure which we formulate as follows: 

For any increasing measurable function F, i6 ~ Z~" 

og(i~) < ~ ( i 6 ) ~  E2o,~(r) < E~A~,~(r) . (4.t i) 

This is expressed by the writing E~c~ < E~o~. 
FKG 
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We extend the definition of the symbol _< also to the continuum case, writing 
FKG 

E2o < Eft° iff o)<e5 , og, oS~cg(IR z) =*.Eyc<E~o . 
vK~ 

Our Lemma 4.1 and (4.11) imply immediately: 

Proposition 4.2. (FKG-structure in continuum). For any reoular set A ~ ~ and any 
~o, c~ eff(lR2): 

o.) < c9 E ~  < Eff~. (4.12) 
FKG FKG 

Remark. FKG-structures have various consequences see e.g. [Pr, Sim, BeHK, Go, 
Ze 5]. In the next sections we shall exploit the above FKG-structure for the study of 
Gibbs measures of Euclidean fields. 

In the following the concept of FKG-maximal Gibbs measure will be useful. 
We call a Gibbs state # e f# (g) FKG-maximal if it is maximal with respect to the 

partial order N defined in N(g) by # < #' iff for any bounded measurable local 
FKG FKG 

increasing function F we have #F_~#'F. 

Remark. In the case of compact specifications (defined in [Pr, BeHK]) the existence 
of FKG-maximal Gibbs states have been shown and properties of them have been 
studied (see [Pr, BeHK, Ze5, Go, F61]). 

5. The Extremality 

Let # be a regular Gibbs measure for a local specification g - {EAo~}A~ on (~ ' ,  S) 
(as in Sect. 2). Let No be a countable increasing absorbing family of open sets as in 
Sect. 2. Let ~ ( g )  be the set of Gibbs states for g and c3fq(g) be the set of extremal 
points of fg(g), We have the following 

Proposition 5.1. Suppose there is co ~ cg (IRd) satisfyin9 (DIe A : e°~(°'oa) for some c~ > 0 
and any A ~ ~o,  such that 

# = l i m  E~c . (5.1) 
e,;o 

I f  g is unformly continuous/z-a.e. (in the sense o f  Sect. 3) then 

# ~ ( g )  . 

Proof  Let F be an increasing bounded measurable local cylinder function. Let A,, 
A ~ o ,  A ,  c A .  Then for t/el2 . . . . .  [where f2 . . . . .  is defined in (2.14)] we have 

E~ (F) -- (E~o (F) -- E~°(F)) + EA~a°(F) 
<= ( E~o (F) - E~j~°(F)) + E~,c(F) (5.2) 

[where we used FKG-order (Sect. 4) and the definition (2.14)]. 
Since 8 is uniformly continuous by our assumption and U f2~,o~,, is from 

n~N 

Lemma 2.2 of g-measure one (if e, o) are suitably chosen) so the first term from the 
right-hand side of (5.2) converges to zero as A'~ 11t 2. The second by our assumption 
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(5.1) converges to #(F). Hence we get/~-a.e. 

lim E~o(F) </~(F) = lim E~%(F) (5.3) 
~ 6  5~6 

(~o' - ~'o, the limit by subsequences exist by martingale convergence theorem). On 
the other hand by the definition of  Gibbs measure 

U lim E~]c ( r )  = # r  . 
~ 6  

This then, together with (5.3) implies 

t i m E ~ o ( F ) = # ( F )  , #-a.e. (5.4) 

This in turn implies p ~ f f ( g )  (see e.g. [F62, Pr]). [] 

Remark.  a) The proof  is similar to the case of  lattice fields [Ze5]. 
b) The same result holds if we replace co + - co by co- -- - co. 
c) In the set of Gibbs states supported on ,9 ~' this implies # is F K G  maximal, as 

shown by using similar methods as in [BeHK, Ze5], as we shall discuss later on. 
The above proposition implies also a uniqueness result if we have lim E~c °~ = #. 

Namely if g is/2-a.e, uniformly continuous for co as in Proposition 5.1 for some 
other probability measure/2 and/2 ( ~  f2~,o~,,)= 1 we get for/2 a.e. ~/~Se', 

p = l i m  EAO °~ < lim E~]o < lim +o,_ = = (5.5)  
So  FKG S o FKG So  

so we have 
lim E~o=# , /2 a.e. (5.6) 
so 

This is the uniqueness result we alluded to. 
Now we will verify (5.1) in some particular models of  euclidean field theory in 

R z. We will discuss separately the case of  P(q~)2 interactions (starting with the : q~4 :z 
case), exponential and trigonometric interactions. 

The Extremali ty  o f  the : q~4 :e Model. Let for A ~ i f ,  

U A (q~) -= ~ : 2q~ 4 + bq~ 2 + h~0 :o (x)dzx (5.7) 
A 

with 2 > O, h > O, b e lR and if h = O we take 2 > O and b e ]R both small or 2 > O, b e lR + 
sufficiently big (as specified below). 

Let g = {E~]o}a~s be a local specification corresponding to the interaction (5.7) 
(cf. Sect. 3). 

Let 
# = lim E°c . (5.8) 

so 

This measure is known to exist (e.g. [Nel3, Sire]). 

L e m m a  5.2. I f  co6(g(lR2), co>O then 

8oo = < E~% (5.9) 
FKG 
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and for any f~  ~, f >  0 

E~c~o(f) < E°cqJ(f) + ~¢~A (f)  

--E],(q~(f), U'(~o) ( ~ . / ~ A ~ A ) )  , ( 5 A 0 )  

with E(F,G)-E(FG)-E(F)E(G)  and OA ~k o (x) the solution of the boundary value 
problem OA ~/o (X) of Sect. 3, as a distribution tested with the test function f. 

Proof. The first statement has been proven in Proposition 4.2. To prove (5.10) we 
use the lattice approximation and the GHS inequality (e. g. [Sim]). We have 

• P~5(e- v~"(*O)e*'(h:~"') , (5.11) 
with 

OA - __ 
h~,,a(t3)= ~ o9(]6) for ige~Aa, (5.t2) 

I j - i t = l  
j~OA~ 

and zero otherwise. 
For f ~  ~ ,  f >  0 we have 

1 d 
E~.,~qg(f)= E°o.~qg(f)+ ~ ds ds E~,aq~(f) 

0 

1 

=E°o, aq~(f)+f  dsE~a(go(f), qg(h~a~)) 
0 

< EOo EOo ~p (h~,. a)) , (5.12) 

where in tM inequality we used GHS inequality. 
From integration by parts we get 

oa 

_ _  OA _¢o,a(f)_EO (go(f), , oa U,~(~ho,,~(.))) , (5.14) 

where 

and we used that 

r A - -  2 Ud(0o, a(')) = 6 ~ (42 : ~0] :o(i6) 

+ 2bq~(i6) + h )O°oa.~(iS) , (5.15) 

~o0,A(is) = Z G(iS,jS) Z Q(]'3) (5.16) 
jgJ ~ OAe~ j 'O ~ OAe~ 

[ j - j ' [ = l  

is the solution of  the free Dirichlet problem for (-Aa+m~) on the lattice (see 
Lemma A4.2). 

Now using (5.13) and the fact that from Lemma 4.t respectively A4.3 E]Ao ,a and 
~o~,a~ converge as 5---,0 we get (5.10). [3 

From the above lemma we get that if EA°O has the cluster property uniformly in 
the volume (which we have by the above mentioned choice of parameters 2, h, b) 
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then the right-hand side of (5.10) converges to zero as AT ]R z if co(x)=e ~llxll for 
some 0 < e < m, where m is the physical mass for the model [Sire]. Using the fact 
that equality of first moments and F K G  inequality imply equality [FrSi] and 
Proposition 5.1 we obtain 

P r o p o s i t i o n  5.3. I f  the interaction UA is given by (5.7) with 2, h, b as specified 
there, then 

#= l im  E°~=lim E ~  (5.17) 

f o r  co(x)= e ~tlxll with some o~ such that 0 < c~ < m (m the physical mass). Moreover 

~ e ~ f ¢ ( ~ )  . 

Proof. a) By analogous arguments we can get the same result for h < 0. 
b) A similar result has been obtained before in the lattice case [Ze5]. 
c) The parameter e in the above Proposition can be chosen to be an increasing 
function of  mo, since the physical mass is increasing with m o (cf. [G1Ja]). 

Since to get Proposition 5.3 we used only (the convergence of  the lattice 
approximation and) the fact that the measure E~g for 0<co0<co has a cluster 
property uniform in the volume, so by analogous arguments (taking coo to be a 
constant boundary condition) we get in the multiphase region (when h=0 ,  b 
sufficiently smaller than - 1 )  the extremality for the FKG-maximal measures. 

We note that the existence of E~2 in this case follows from Jim2, Gid]. 
Let #h be the measure defined by (5.8) with h 4 0 in (5.7). We define the Gibbs 

measure g+ as 
U + ( ' )  - lira #h ( ea~ ~xa).)/~ #h (eh~xA)) , (5.18) 

AJ'N, 2 

for h > 0 large enough [FrSi]. Similarly we define #_ by the same formula with h < 0, 
Ihl sufficiently large. By [FrSi] we have #± are FKG-maximal. 

We can then formulate the following 

Proposition 5.4. For the interaction (5.7) with h = 0 and b < - 1, [b [ sufficiently big, the 
F K G - m a x i m a l  measures #+ satisfy 

#± =lim Ef t  °~ (5.19) 

f o r  any co o f  the f o r m  co(x)= e ~If~tl f o r  some ~ > O. Moreover they are extremal.  

P r o o f  Let g = {EAo}a~ be the local specification for the interaction (5.2) with h, b 
as assumed. Then, by Theorem 3.1, g is/~-a.e, uniformly continuous for any h ~ IR. 
Hence we get, as for (5.2) 

/z+ < lim E~'c (5.20) 
FKG ,~ro 

(and this holds also, with the reverse inequality, for h < 0 and - co  instead of  co). On 
the other hand for any Gibbs measure ¢t for g we have 

# < # +  . ( 5 . 2 1 )  

So iflim E2, '° exists we get (5.19) (and analogously for #_), [using #+ are maximal 
~ o  

and (5.18)]. 
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Since one can show [Im2, Gid] that 

kt + --- lim E,]cof 

with co~ > 0 being a translationally invariant configuration of  minimal energy, so 
using Lemma 5.2 (with co~ instead of  zero) and the fact that E ~  has a uniform in 
A c ~o  cluster property [Im2, Gid] we get 

O 9  + . #+ =lim E]~ ° = hm E~% + (5.22) 
~-~o ~o 

(here we used the GHS argument of  Lemma 5.2.) 
(Analogous arguments work for #_ .) [] 

The Extremality for Exponential Models. Let for A e ~- 

UA(qg)-~), ~ dzx j'dQ(~):e~:o(X ) 
A 

with 2 > 0  and d0(~) a probability measure on ( - 2 V ~ ,  2 ]//~). 
Define E]~ for above interaction UA(~p) as in Sect. 3. 

Lemma 5.5. Let co~cg(lR2), ~o>0, then 
0 co E,]o < EA¢ , 

and for any f~  ~, f >  O, 
co 0 OA 

E~o~o(f )  < E ~ ( f )  + ~, o ( f )  . 

(5.23) 

(5.24) 

(5.25) 

Proof. (5.24) follows from the convergence of lattice approximation. To show (5.25) 
we take first the lattice approximation E2~o of E2c. Then we have 

1 d sm 
E'~c,6(~o~(f)) = E°c 6(q~o(f)) +! ds ~ Ea~ ~(~o6(f)) 

1 

= EOo,6(~06(/)) + ~ dsE~aco(cp~(f), oa ~0~(ho,,o)) , (5.26) 
0 

where h~,~ was defined in (5.12). 
Using the arguments from the proof  of  Lemma 1.5.1 of  [Ze 1] we get for co ~ 0, 

O<E~O, (q~z(f), ~A oa aa q~ (h~,, ~)) </~o, ~ (q~6 ( f )  q~ (ho,, ~)) 
OA = ~co,~(f) (5.27) 

(where we used the definition of c~A ~,~). 
From (5.26) and (5.27) and convergence of lattice approximation (Sect. 4) we get 

E~oq~(f) < E°ccp~)+ O~A(f) . [] (5.28) 

Remark. The same holds if one adds the term h~o(ga) with h s IR to the interaction 
(5.23) [since (5.27) holds in the same way). 
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As a consequence of Lemma 5.5 and Proposition 5.1 we get 

Proposition 6.5. The measure #-- l im E°o satisfies 
~ o  

# = lim E3'o (5.29) 

for co = e" I lxll and 0 < ot < too, and so 

# e ? ~ ( ¢ )  . 

Remark. The parameter e can be chosen to be an increasing function of  m o (cf. 
[Ze 1]). We can extend the above proof  to the case of  trigonometric interactions 

UA(Q))~I~ I d2x : sin(cttP(x)+ fl) : , (5.30) 
A 

2 small, I~1 < V~--~, 0 </~ < 2rc, by using an integration by parts in (5.27) and using 
cluster expansion arguments of [AHK7, FrSe]. 

We summarize the results of  this section in the following 

Theorem 5.6. Let U A be o f  the q)4 respectively exponential respectively trigonometric 
.form given by (5.7), respectively (5.23) respectively (5.30). Then the Gibbs measures 
#-+ = lim E,~e '° with o9 (x) = e" I lxll 0 < ct < m, (with m the physical mass) are extremal 

~o 
Gibbs states. In the case of  weak coupling @ or trigonometric or exponential 
interactions we have uniqueness o f  Gibbs states in the sense that #+ = #_ (hence the set 
o f  tempered Gibbs states has only i point). 

Remark. The parameter ~ can be chosen to be an increasing function of the free 
mass m o. 

6. The Global Markov Property 

Let Q c Ig 2 be an unbounded open set with a piecewise UX-boundary OQ and such 
that ~ 2 _  Q is also unbounded. Let A ~ ~o (with ~-o as in Sect. 2), A n Q =~ 0 and 
A • QC ~ 0. We assume that ~A n OQ consists of a finite number of points. We say 
that a probability measure # on (~  ', Z) has the 9lobal Markovproperty (GMP) if for 
any F ~ Z (Q ), G ~ Z (QC) bounded measurable we have 

E(FGIZ (6~ Q )) = E(FtZ (OQ )) E(GIS (0 Q )) , 

where E(.IS(OQ)) means conditional expectation with respect to/~ and S(~Q) 
(cf. [AHK7, F61]). 

We write then for simplicity # e GMP. We say # has the local Markov property if 
the above relations only holds with Q replaced by Q c~ A with A bounded and open. 

Let co ~ U (IR 2) and # an extremal Gibbs measure as in Proposition 5.1 such that 

# - l i m  E°o=lim E2o , (6.1) 
,-~o ~ o  

with E~o belonging to a specification for an interaction of the type considered in 
Sect. 5. Let ~,~a~e)(X) be the Poisson kernel considered in Sect. 2 and consider 
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This is an element of H_ 1 (IR2). Consider q>(f) with 9 e  supp#. We denote this 
random variable also by 

()~Z E OQ ~ Oz (An Q) (X ) ) - -  ,l. 0 (A c~ Q) [.v.~ = ~,flOQ ' .~J  • 

Let us define 
_ .[OQ 

I~Q,A(" ) = #(E~Ac~Q),( .  ))  . (6.2) 

Here ~-'(APrl[OQnQ)* is defined as E~A~Q)~ but with tI(z(zeOQ)$~(A~Q)(x)) instead of 
I ~ ( A r ~ Q ) ( x ) .  

Remark. If more general interactions than those of Sect. 5 are considered then we 
should replace E~IAO~Q), by ~"(AnQ)Pq[0Q+~°°10a . . . .  ¢'~" some bounded configuration co 0 e ~(IR2). 

Suppose that the interaction which gives the specification is symmetric (i.e. 
invariant under ~o-*- q~) and we have using this symmetry and the definition of 
E~tAO~Q), for any f ~  ~ ,  f=> 0 

#q9 0 c )  : 0 = ]2Q, A 9 ( f )  (6.3) 

(for any A ~ ~0)- 
Our assumption (6.3) implies that if 

lim #e,A < # (6.4) 
o~0 FGK 

then by [FrSi], 
lim #Q,a=# . (6.5) 
~o 

By an argument in [Go] this implies that # has the global Markov property i.e. 

# e GMP (6.6) 

To prove (6.4) let us take, for a fixed Aoe~-  o, GeXQ,,~ao, FeSQ,~A o to be some 
bounded (measurable) cylindric and non-negative functions. Then for A o c A e ~o 
we have with ~ > 0, using the definition of/tQ, A and the properties of specifications 

- -  n t O Q  - -  ~t ~ ] O Q  #~2,a GF= #( GEIA~Q)OPO - # [E3,( GE~Aoe),F) ] 

'~ " G ,IQ =.[(E~-EAo ) (  elA~e)oe)] 

+ # [E~ja°(GE~]~e)oF)] , (6.7) 

with ~ the integration variable with respect to the measure E~]~. 
Let us consider E gl°Q(a~,Q),r," for F bounded increasing. 
By first replacing t~ by a regularized version ~ ,  taking a lattice approximation 

E~e~o~(F) of E~e~o, using FKG order [since E(a=~e~o~(F) is an increasing 
cylinder function] we get for G bounded increasing 

if r/e f2,,~,, [this set is defined in (2.14)] so that $~a"<co. 
Now taking the continuum limit fi j, 0 and afterwards removing the regulariza- 

tion ~ we get 

EOA"~ (GE~A~,Qc,F) < E~o(GE~,~Q)oF) . (6.9) 
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Let ZA.,o) be the characteristic function of £2 . . . . .  . Then we get from (6.8), integrating 
with respect to #, inserting (1 --ZA,o,)+XA,,o on the right-hand side and bounding 
:ta,~, by 1 : 

#EAo¢~'(GE( AqlaQ:~ Q)cr) < E~c(GE~QQ)oF)+ "( 1 -zA, I1 11  /IG • (6.10) 

Using 
E:IAOQQ)c(F) ~ l~(A~qlgQc~ Q)c + COeA (P)" " (6.11 ) 

[which is proven again by going to a lattice as in (6.8) and using F K G  order], 
and the compatibility conditions of a specification, we get from (6.11) 

E'~(GEq( IAaQQ)~(F)) < E~  (GF) . (6.12) 

Inserting (6.12) into (6.10) we get 

#ECA:A'(GE~IaQQ)cF)<EX~(GF)+#(I--ZA,~,)IIFIIooHGI[o~ . (6.13) 

Recalling ZA, co=Za~,~o,n for some n (since A e ~ ' )  we can choose e as a function of A 
s.t. 

#(1--ZA,o,)~0 as ATIR 2 , (6.14) 

as in Lemma 2.2. 
Inserting this into (6.13) and by going to subsequences we get 

~ .  tllOQ • lim #EA~ (GE(A c~ Q),F) <= hm E'~(GF) , (6.15) 
,~o ~ o  

and the limit on the right-hand side, by (6.1), is equal to 

#(GF) . 
Hence, using (6.7) we see that if 

lim [#(E,]~-E~ ~') qloO (GE(A~Q)OF) I =0  , (6.16) 
~-~o 

then 
lira #Q, a GF< #GF . (6.17) 
,~o 

This implies, by an approximation argument and the definition of FKG-order 

lim #0,A ~ # , (6.18) 
,~o FKG 

which together with our assumption (6.3) gives (6.5) and so the global Markov 
property for the measure #. 

Let us now consider (6.16). We can and do assume that 

F(tp) = F(tp (f~) . . . . .  (p (f,)) (6.19) 

with P e ~ ( ] R " ) ,  f~e@, s u p p f ~ Q ~ A ,  f / > 0  and []-Fl]oo, ][0iF[[ < oo (with ~i the 
derivation in the i-th argument). 

We also assume corresponding properties for G. 
Let 

6 Ua,~(q~ ) = UA(¢ p + ,/,Oa~_ ,/, 0a~ _ Va (¢P) (6.20) " rq)  "r~p .' 
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Using the definition ofE¢,~ a~ given at the beginning of Sect. 3 we have, calling q~ the 
integration parameter witia respect to EA~ a°, setting 5,0~ °a -- O~A=_ O0A and proceed- 
ing as in the proof of (3.5), 

#(E]o--,_,A ~ : t,aJ_,(AnQ)C~t.: 

= #E~,~ { [ G ( ~p ) E~Q),(F) ] 

-L2Io(=-, ,.,) , , , , j ; .  (6.21) 

Using the definition of conditional expectation we can omit E I .  and replace 
everywhere t /by q~. By adding and subtracting the term 

6 °aO ....t_..q ,I, OA~ lz '(q~+ * ~  )l Qt'b-"~] (6.22) # [ G ( ( P - - , , ~ w . ~  :.L,(AnQ)~ t--)J , 

we can rewrite (6.21) in the form A +B, with 

~]AOQQ t'~.t,.t,_L..~ ,I,¢3A'~ K;'(~O+b=oe*A)]~3Q[~-"I). (6.23) A - # { G ( q O E  ) , ( F ) - , . , v e - , , : , ,  :'~(Ana)" ' :  :S , 

{([ 1 B = - #  1 EIo(e_aV=,=(.) ) G(~o+6 dtOA'~'~g[~°+ =O. ]foqdit;"~'( (6.24) ¢'r~ 1: (AnQ)'  ~'--)S " 

Since by our assumption G e N e ~ a  o for some A o ~ o ,  so 

G(q~+5=O2 A) ~ G(q0#-a.e. q~ . (6.25) 
~o 

This is seen using the fact that G is a cylinder function with the assumed properties 
(6. t 9), so that 

i=1 

and the right-hand side goes to zero by the properties of 0~ °a as A T IRZ- 
From the proof of the uniform continuity of local specifications we know by 

(3.8) that for a subsequence A ]" IR 2 

] e--'~UA'=(qO 
- ~ 0 , #-a.e. ~o . (6.26) 

(6.25), (6.26), together with properties of conditional expectations, imply that B-+0 
as ATIR z, by subsequences. Hence to prove (6.6) using (6.25) and the uniform 
bounds on F, G, we need only show that #-a.e. 

0A 
r~vlaQ :~,~ ~-(~0+~d,~ ) , ,~:~ ,0  . (6.27) 

This will be shown in Lemmas 6.1-6.3, in which we assume that our interaction UA is 
such that the measure # is constructed by the cluster expansion [as for weak P(q02 
and weak trigonometric interactions]. 
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Lemma 6.1. For any F like in (6.19) we have for  ATIR 2 along some subsequence 

x.,(AnQ),k* )--L,(AnQ)C V t : j  , .  , /~-a.e.. 

Proof. Let us introduce the notation, for any s s [0, 1 ] : 

[F]~, - [#~a ~ e e -  UA~d ~°' + ¢2 nQ)] -1 

#~0 A n Q(e - ua.e(~' + e~ a ~e(q~) ~v . . . .  t.OA n Q'v~ (6.28) 

with q; an integration variable with respect to the measure #o ~A:~e and 

0anQ :d'OAnQ ~A (6.29) 
7~,s (q~)-- ~'(~o+:~d,~ ),0e ' 

Then we have for F as in (6.19), by adding and subtracting F(q~' + ~9~a n Q) and using 
the mean value theorem: 

6 oa a lT(~P + ~/~ )eQt'~"~ /7(°1 Q [LT~I 
~'~(A n Qf ~,~2 - -~"~(AAQ) 'V~l l  

= ~ Iq/~,~21eQ(f31 
i=1 

+i [e]~ [Flo[ (6.30) 
[ ~ ] o  

The first term in the right-hand side goes to 0 as ATIR 2 by the construction of the 
Dirichlet solution ~:~a and the regularity of # (this is similar to [AHK7]). 

The second term goes to zero as a consequence of [F], - IF]--->0 and [~ ] ~  [~ ]o 
pointwise for a subsequence of :-o, on a subset of #-measure one, as shown in the 
next lemma. [] 

L e m m a  6.2. Let  ~ ( A ) =- e -  ~e(°'~A) for  some ? > O, and let [F]~ be as in (6.28). Then there 
exists a 7o > 0 s.t.for all 7 > 70 and some ~ ~ °Jo, F any bounded measurable function 

lim #][F]~(A)-- [F]ol =0  . 
~6 

Here # =  limA~o #a is a limit o f  f inite volume measures 

/~ =-/~o (e- o".) /Z~ , z~  -/~o (e- ~ )  . 

U A is an interaction as in Proposition 5.1 [F]xa) is defined by (6.28). 

Proo f  Let A, A s ~o,  A n Q ~.,t. Then by definition of #ff and [F]~ we have: 

#~([[F]~- [F]o ) =Z,~ ~ 

#oeVZ_(a~e) II~A,~Q(e- U ~d~o' + ~'~(~o)) 

F(q¢ + ~A~2Q))-- u~AnQ(e- Ua~(q~'+~b~e) ~k,~ . . . . .  (6.31) 

F(~o' + ,/ .~a~Q~l ~' ~]OQ ::i , 

with ~ a ~ Q  given by (6.29). 
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Using the definition of  conditional expectation with respect to Po, (6.31) can be 
bounded as follows (using also the definition of  ~x): 

#2(l [F]~ - [F]ol) 
d, aAc~Q-L- ,I, OAnQ "t < #~{lexp ( -  [Ua ~ o(q~ - ~e~,loa - ~a~o~AIc~Q ~' 

OAr',Q 
- UA~,e(~o)t)F(q~ - -  O~t0A ) 

- exp ( - oa ~, [UA ~ Q (q~ --  O~lOA Q) --  U~  ~ e(q~)])  

• F(q~- Oo°~]e)l} . (6.32) 

Since A ~ ~-o was arbitrary we get, using the definition of#,  the same inequality with 
replacing/~3". 

We shall now prove that from Lemma 6.3 we can finish the proof  of Lemma 6.2 
(and hence also of Lemma 6.1). 

It is easy to see that what is needed is an estimate of the right-hand side of(6.32) 
with F replaced by I (this is so as seen by the fact that flFII  < oo). This latter 
estimate is a consequence of  the following Lemma 6.3. 

Lemma 6.3. Let A s o ~  o be a rectangle with Ac~Q#:O, A n Q C  +O. We assume also 
that IA c~ 3QI < e'IOAI with a constant c' > 0 independent o f  A ~ ~o.  Then there exists 
70 > 0 s.t. for ~ > ~o and e = e -  ed(0, 0A) : 

-- -- OAnQ OA~Q -- U 
g l e  [ v ~ e ( e  0~10a +t)6.O,oalc3 Q) anQ(q0] 

OAoQ 
- -  e - [ u A ~ e ( ~ °  - O,loa ) - u ~ e ( e ) ]  I = g  ~ <  ( 6 . 3 3 )  

for some 1 > a > 0 independent o f  A ~ ~o,  7 and #. 

Proof. Let A g -  {x s A c~ Q : d(x, ~3Q u ~3A) > 3k} for 1 _< k _  ri, with ri = d(0, aA) + 1 
3 

Let )~& be the characteristic function of  Ak. First adding and subtracting a 
A~-depending term, we get by the triangle inequality the estimate: 

OAc~Q c~AnQ 1.h.s. (6.33)<#lexp(--[UA~e(q~--q~,plo A +O~d,~,laQ) 

U OAc~Q OA c~Q 
- -  UA ~e(~0) l )  - -  e x p  ( - -  [ A ~Q(q' - -  O~I0~ +)cx~ O~oO:al0 e )  

--  U ~ e ( q ' ) l ) t  

[ U  [,~ ,I, OAmQ.a_.~ d , ~ A ~ Q  "t 

exp ( 0a ,, e - - [UA~o(~  o --O~10a ) - -  U a ~ e ( q ' ) l ) [  • (6 .34)  

In the same way, adding and subtracting a A2-depending term in the second term of  
(6.34), estimating as before and then going in this way by r~- 1 - f o l d  iteration we 
get: 

1.h.s. ( 6 . 3 3 ) < # [ e x p ( -  OA~O ,I,3Ac~Q [ U A ~ Q ( q ) - -  @(o]OA "+'W3~0$ald Q;  

~AnQ OA mQ 
- -  UA n Q (~0)]) - -  exp ( - [ U  A n Q ((/9 - -  I~/q~[OA -~- )~.'~1 I~(~,~keoa)lcq Q) 

- -  UAnQ(~D)])I  
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i f - -1  
e x  U OAc~Q OA c~Q + E P l P ( - [  A~o(qO--O~loa +ZX~'(,LOga)IOQ) 

k = l  

- Ua,.,e(~O)]) - e x p ( -  [ U A n Q ( q )  - -  O~#02QArzXk+ "I'SA n e  "~ 1 tP(fO°A)lc~Q) 

~ O A n Q - -  . S A c ~ Q  
--  UAnQ((D) ]) [ +#lexp ( -  [Ua~,e(q~ - I[[(olOA -I- )~qJ(3~O~a)iOQ) 

- UA n e(q~)] ) -- exp (-- [UA~,Q(q~ _ , f ,  OAne~ _ UA no(q~)]) I (6.35) 'g q~IOA r 

Since on the right-hand side of(6.35) there are less than [d(0, 8A)]  number of terms 
(by our choice of r~), (6.33) will be proven if one will get estimations for each term 
from the right-hand side of(6.35) analogous to the one for (6.33) (since e is decaying 
exponentially). 

Let us thus consider a single term from right-hand side (6.35) with some 0 < k _< t7 
(with obvious definitions for k = 0 and k = r 0. Using the representation of # given in 
[FrSi] (recalling our assumption on the interaction !) we get, with 

[ U  [ _ _I .OAnQ+ . S A n Q  . Fkk+l(CP) exp( t AnQkt~It/]~plOA ZXkll/(oOoa)lOQ) 

.I, SAc~Q + ,, .b OA n Q  ,~ - U a ~Q(~o)]) - exp ( - [Ua ~e(~o - ~'~oloA z& +, v'(~Og,)i~Q~ 

-- Ua ~e(q~)] ) (6.36) 

that 
l~(IF~,k + ~ l )= # o ( O ° a ~ e - ~ l A ' l e  -U"°(~°), IFk, k+~(q~)[) 

= #0  (QOA~ e - ~tA'l  exp ( -- [ UA~\( A n Q) ( ~ )  

[+~ d, OAnQ 8A n Q  
"-I- U ( ( A n Q ) \ X k ) u ~ k +  l \ t / . ,  - -  eq)lOA + ZX~,+I @(5~o~A)IOQ)]) 

.t.OAr~Q . . O A  n Q  . . .  
'lexp ( -  [ U z~ \ x~ + ~ ( cp - ilt qqOA -1- ZXk lff (Oat~°eA)lc~Q ) l) 

- e x p  ( -  U&\X~ + 8Ac~Q ~(~0  - -  Oq~10A ) ) l  , (6.37) 

with 00ao > 0 (the boundary density), e > 0 (the infinite volume pressure) defined as 
in [FrSi] (we also used the definition of Fk, k+~). 

NOW we take the free conditional expectations first with respect to £(S~) with 
S~ --- A ~ ~ (Ak\Ak + a). We shall denote by H s the conditional expectation with respect 
to #o and to the o--algebra 2; (S), for any measurable set S c IR 2. Afterwards we will 
apply the H61der inequalities together with conditioning inequalities (cf. [GRS 1, 
Sim]) to remove the volume factor. 

(An Q)\Ak 

~ k c ~ Q  

L ~k+lnQ 
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The right-hand side of (6.37) can be rewritten by splitting 

and inserting a conditional expectation (using that in expectations conditional 
expectations drop out). So we get: 

~(IFk ,k+ 1 i) = go (~°A°e-~° IA~\Ale - UaaA(CP)A 

e - ~ I~k\'~+~l ]exp( -- U&t~k + ~(q) _ 7"q~loa'l'O(anQ) 

, O A n Q  " - - e x p ( - - ( U & t & + ~ t w - - V ,  elOA ssi , )~& l//(tfls~A)lOQ ) (.~ ,I.,9(Ac~f2)'~'d (6.38) 

where 

A =- l I s ~  [e  - ~ IS~le - v~q(~o)  

e-  ~sk~,~,-~,~l . . . .  a~+,~'(~o*oll~' l . (6.39) 

using H61der inequality with exponents 1-+1-+-1+1-=1, l < q <  4 we get Now 
q p r s 3 

that the right-hand side of (6.38) is less or equal 

(go (~oea°)q) l/'l [go (e-<~<° IAAAI- uaaa(~o))p)]i/p 

(go (A'))l/r e - ~® 13a~k+, I (6.40) 

[go lexp (_[Uxk \Z~+, (4o_a ,  OA<~e_ _Oa~Q ,,  tf elO A -b Z . ~  qJ (,L,p~a)loQ) l 

_exp ( _  [UxktXk+~(q~ ,l, aa n a'~1;i,11I, 
- -  7"q, IOA J s l ~  ] • 

The f irst factor  in (6.40) is tess or  equal to one [FrSi].  The second is un i fo rm ly  
bounded in A ~ ~ i f  ~ = e  -~(°,°a). We prove below that 

(go At)  ~i" < d t°AI (6.41) 

1 
with a constant c>  0 independent of A~J~o and decreasing to zero with - -  
(m o being the free mass in go) and that rn~ 

,I, OAnQ - -  ~ OA c~Q .~. 
{go (1 exp ( - [U&\&+ ~ (4o - q'q, lOA "l-Z-4t, lll(5.O~,a)lOQJ]) 

exp( U OAnq s 11~ 
- -  --[ ff~XX~+l(~0--O~i0A )1)1)} 

<e"' , (6.42) 

with some constant 0 < a ' <  1 independent of A and e. Since the constant y from 
definition of e can be taken arbitrary big if m 0 is sufficiently big, (cf. Remark after 
Theorem 5.6) so the estimates (6.41), (6.42) give us (6.33). 
It remains therefore only to prove (6.41), (6.42). For this it is useful to recall the 
relation between the conditional expectations [I s with respect to go and S(S) and 
the solution O~s of the Dirichlet problem for - A  + m  2 in S discussed in Sect. 2: 

( l l s F ( .  )) (rl) = I~S r (  • + O °s) , (6.43) 

r/s N '  (1R2), Fbounded measurable on N '(11t 2) (or positive measurable). For this see 
e.g. [AHK7, DoMi, R62,3]. 
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Proof  o f (6 .4 t ) :  Using (6.43) and the definition (6.39) of  A, we can rewrite A in the 
form 

A =/~s~ [e-  ~Js~l (6.44) 

e-V~d~'+~ )] , 

where q~' are the variables of  integration with respect to/~s~. 
We have set 

=~/~p "~[--~FtpIOA AAk+ I W(a,~a)IaQ] II, SktaQ 
~ -  osk ~I,o(a~Q)+.~~ ,I,O(A~Q) 1.-, (6.45) 

and we used the properties of  conditional expectations [with respect to /~o and 
Z(aSk)], to simplify the expressions for ~ entering (6.44). 

Let Zke(~°3(~[  2) with 0 < ~ N  1 and 

t for d(x,  a S k U a Q ) > 3  
~k(X)-- 0 for d(x, a S k w a Q ) < 2  . 

Let us change the integration variable q ~ t p  +)~k ~ in the #o°s~-integration. Then 
we get 

#~Sk(e -~lS~l e - u~(,' +~,)) 

= #~s~ [e -~dS~le- u~A~°'+O -z~)**) 

e - * % ) e  - 1/2 [Ih~J[ ~_ a] , (6.46) 
with 

h k (x) - ( - A + m~) Zk qb (X) 

= - 2  V~,. Vq~(x)  - (A~k) Cb~(x) . 

We remark that hk(X ) is localized close to aS k u aQ, since it is built with the special 
smooth function ~k and the harmonic function ~ (observe also the support 
properties of  Zk and ZJk + ~)" 

In order to bound (6.46) we proceed as in the proof  of  extremality for the weak 
coupling P(~o)2 model, see [AHKZ], cancelling the volume factor necessary to 
bound the q~'-expectations of  exp [-Usk(¢0'+¢~.o)] by introducing a Neumann 
condition on the boundary a~ k of  the set ~k =- {x~ A n Q Id(x, aS  k u aQ)>= 4} and 
using a conditioning inequality (cf. [GRS 1, Sim]). 

We shall also use from now on the notation #o x for the field measure with Xbeing 
a Dirichlet boundary condition on aS s and Neumann boundary condition on ~Sk- 
Then we get that (6.46) is less or equal 

/~  (e -~ l~ t e  - u~ 0 • B(~0) (6.47a) 
with 

e-~°'(h~)]) e -  ~/2 tlh~lE~_~ . (6.47b) 

We observe that we used the fact that supp hk c (Sk\Sk) [to drop the factor q)'(hk) in 
the first expectation]. We have the bound for the first factor in (6.47): 

#x (e - e® I~1 e - uf~) G eClOAI (6.48) 

2 
with 0 < c--,0 as rn--~o ~0 ,  see [AHKZ]. 
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Here we assumed that 

]An t~Q] < C[OA] (6.49) 

for some constant C>  0, independent of 2, m 2 (and 8A). 
The quantity B(tp) in (6.47) is localized in a set which has volume bounded by 

(2C+ 3)4]~A] (this is due to our definition of Sk, Sk). Using this and (6.48) we get 
(6.41) by using in (6.46) repeated H61der inequalities to control separately the term 
containing the interaction Usk and the term exp [ - ~ o ' ( h k ) 1  I[hk[]2_l]. Here we 
also use the fact that IIhk [121 contains exponentially decaying factors in the distance 
from the boundary OS k w aQ, as seen from (6.45), which gives us the estimate 

m (e2 IlhklB O < e blOAP (6.50) 

for any fixed constant a > 0 and a constant b decreasing in mo. 
Moreover we also use a Gaussian integration to control the exp (tp'(hk))-term, 

followed again by an estimate of the type (6.50). 
This completes the proof of (6.41). 
There remains the 

. 1 1 1 
Proof of(6.42). We have with H61der exponents t, t', such that t+~7  = s '  that the 
left-hand side of (6.42) is bounded as follows 

- -  ~ _ n , n 

(#ole 
~ ~ O ( A n Q )  

_ e - U ~  .... (~-q,#~)l~)~/~ 

1 

o 

d UX~\X~+, (q~--':~ane)~+zgx~O(aoq,:'~laa (6.51) tl" ~olOA : 

(where we used the fundamental theorem of calculus and H61der's inequality). 
The first factor from the right-hand side of (6.51) has (from the Duhamel 

expansion as e.g. in [GRS2, G1Ja]) the following estimation 

fn, 
< e  cloAI , (6.52) 

it 
with a constant c > 0 independent of A e ~-, e and z, and decreasing to zero as m~" 

(We used here that [.4k\-dk+d < e'IgA[ with some numerical constant c' > 0.) 
The second factor from the right-hand side of (6.51) has the simple estimation 

d f']l/,' 

<e b" (6.53) 

with some 0 < b' < 1 independent of z e [0, 1 ], e and A e ~-o. 
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Here we use the definition of 6~@~aloQ, in the proof of Lemma 3.3. 
By combining (6.51) with (6.52), (6.53) we get (6.42). By what we said before 

engaging in the proof of (6.41), (6.42) this proves (6.33), hence Lemma 6.3. By 
arguments preceding Lemma 6.3, Lemma 6.1 and Lemma 6.2 are also proven, 
which in turn prove (6.27), hence (6.16). But this then yields (6.17), (6.18), which, as 
remarked after (6.18) completes the proof of the global Markov property of #, with 
respect to any unbounded open set Q with a piecewise cga-boundary OQ such that 
]R 2 - -  Q is also unbounded and A n Q 4: 0, A n QC 4: 0. Moreover OA c~ 0Q consists of 
a finite number of points and IA n 0QI < CIOAI for some constant C > 0 independent 
of 0 < 2, a free mass m~ > 0 and A e fro. In the proof we used both 2 small and m~ 

large, but this model is equivalent with the model with m~ 2 small (cf. [G1Ja, GRS 1 ]). 
V 

Hence we have proven the following: 

Theorem 6.4. Let A e ~o ,  with ~o  as in Sea .  2 and let U A be the ~o~-interaetion 
UA((p)= ~(~ : (p4 : (x)  H-b : (p 2 :(x)), b e N ,  2~0.  Let # be a Gibbs measure to this 

2 <  
interaction. Then there exist K > 0 s. t. for  all ~ = K the measure # is extremal and is 

the unique point in the set o f  regular Gibbs measures. Moreover # has the global 
Markov property. 

Remark. In particular/~ in Theorem 6.4 has the Markov property with respect to 
halfplanes (just take Q to be such). As well known this implies in particular that the 
cyclicity of the time zero fields hold and moreover that t ~  q~(t, x), t e IR, x e IR is a 
symmetric Markov process (cf. [AHK 15]). The global Markov property, together 
with the known results on the quantum fields associated with #, imply that # yields 
models satisfying all Nelson's axioms for quantum fields (cf. [Nel 1-4, Sim]). 

7. On the Structure of the Set of Gibbs Measures 

Let P(q~) be a fixed semibounded polynomial. Let h~ be a positive constant 
sufficiently large so that the measures 

#o (e - (~(~o)a-T h~ ~oA).) 
#P(~o)mh.~o(') --lim (7.1) 

constructed by the cluster expansion [Sp] are unique [AHKZ]. 
We will assume from now on that the following property holds: 

Assumption. There is a function o)Ecg(1R2)2 co>0 dominating at infinity as in 
Lemma 2.2 such that 

+ 6 9  #e(~)~h~e=lim E f , p(~o)_mh~e . (7.2) 

Remark. This assumption is satisfied for the : ~ 04 :z model, as discussed in Sect. 5. 
Moreover the corresponding statement is satisfied for general interactions on a 
lattice [BeHK]. 
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For a fixed h~lR, h (±) be defined by +_(h~-h(±))-h.  Let 

#J~)~o)- h~o (") - lira #e(~)-T h~ ~o (e T-h ~ k0a. ) 
. ~_h~:~,~. (7.3) 

~o #e(q))T-h~o(e ,za) 
be the ultraregular states constructed in [FrSi]. If h elR is fixed we will write 

+ _ _  -t- 
# -  = YF(~o)- h~. 

Proposition 7.1 Suppose that (7.2) is fulfilled then #+- are FKG-maximal Gibbs 
measures (in the sense o f  Sect. 4 ) for  the interaction P(~o)-hrp, i.e. 

(7.4) 
- # +  # = < # < 

F K G  F K G  

(where, as in Sect. 1, Jg~ denotes the set of  regular probabiIity measures, as in Sect. 2 
gP(o)-h~ denotes the specification o f  the interaction P(q))-  h(o and ~ ( g )  the set o f  
Gibbs states to the spec~cation g). 

Proof. Let oecg(~2) ,  co>0 be dominating at infinity for /~ (in the sense of 
Lemma 2.2) and # ~ ~ (&e(~)-h~)c~ Jg~. Using the uniform continuity property for 
the local specification, proven in Sect. 3, we get using the F K G  order 

lira E~o '° < # < lim E~ +~' , (7.5) 
,~o F K G  F K G  ~'~o 

with EA~GEp(~,)_h< o. By the definition (7.3) we have that the measures #-+ are in 
fa(gv<,)-h,)- On the other hand we have for any 71, A e ~ o ,  71~A, 

- o ~  h c-)--  - 

EA,,p(~)+h.~(e ~ ' )  <= EA-~,~(~)-h~ 
A~,P(~o)+h~q~ke ) F K G  

<~ +o~ E f ,~P(~°)-hoo~ °(e-h'+)q~7' ") 
= E~,p(~,)-h~o < , (7.6) 

FKG FKG E+,~(~o)_h~e(e -h'*'~°x) 

where we have explicitly denoted to which specification a given measure belongs. 
We note that (7.6) gives us the compactness of the sequences 

- 

Passing to the limit with A t IR2 through a subsequence ~o' using (7.2) together with 
the definition (7.3) we get 

# -  =< limE2~ ~ =< l i m E  +~Ao = < #+ • (7,7) 

This together with (7,5) gives us (7.4). [] 

The above proof  implies the identification 

#± =l im Ef~ '° (7.8) 
~ 6  

(which follows from (7.4) and the choice of  ~o as dominating at infinity). 
By using the uniform continuity of ge(e)-h~o, we have by Proposition 5.1 the 

extremality of the considered measures. 



412 S. Albeverio, R. Hoegh-Krohn, and B. Zegarlinski 

Let 

~ (P(~p) - hq~) -= lim 1 [e(~)a-h~a]) S% ~ In #o(e- , (7.9) 

be the infinite volume pressure. 
We recall that e~(P(cp)-hq)) as a convex continuous function of h is a.e. 

differentiable with respect to h. Combining that with the result of [FrSi, 
Corollary 4.3] we get the following result 

Proposition 7.2. At the points h of  differentiability of  the pressure ~o~ (P(~o) - hq~) with 
respect to h • IR, there is a unique (in the space of regular measures) extremal Gibbs 
measure 

# = # +  = / t - = l i m  E~c '° . (7.10) 
~6 

Remark. By the method used in Sect. 6 it should be then possible, using (7.8), to 
extend the proof of the global Markov property to the case of the F K G  maximal 
measures for general P(cP)2 models. 

Let us close with some expectations concerning the structure of Gibbs states for 
general P(q~)2 models: 

1. cS(g(P(~p)2) ) = Jr , .  
Moreover we expect that (if P is non-identically zero) ~(~(P(9)z))a~/{5~,(~z), 
where dgs~,(~) is the set of probability measures with support on 5 ~ '(IR2). Let us 
note however that for free specifications [HoSt], for specifications corresponding to 
trigonometric interactions and some exponential interactions [Ze4] there are Gibbs 
measures which are regular but not in #/s~,(~2). 

2. We expect that there are only finitely many extremal Gibbs measures for any 
P(q~)z-interaction. For 2 : ~o 4 :z + b : rp 2:2, b ~ - 1, one can expect on the basis of 
[Aiz, Hig] and approximations arguments of the continuum model by Ising-like 
models (cf. [Sim]) that 8 ~ ( ~ 2 : ~ o 4 : 2 + b : q ~ 2 : ) ~ { / . t - , ~ + } .  

It is expected that in multiphase region 8~(P(~P)2) consists of measures 
constructed by [Ira2] (using an extension of Pirogov-Sinai theory [PiSi2]). 

3. In two dimensions there is no breaking of translational symmetry, i.e. Vx • IR 2, 
Yg • f¢ (o~p(,0h) satisfy T~kt = #  (with T~ being translation by x) and every Gibbs state 
is invariant under time-reflections and is reflection positive. 

4. For any #•Ofa(gp(,)2) we have kt•GMP. 
The work [Ze3] suggests Ytt• ~(6°p(,ph), # •  GMP. 
Furthermore we expect # • fa(ge(,)~)<*# • GMP. 

5. The set 8fq(gp(,)~) of extremal Gibbs measures should be totally FKG-ordered 
(i.e. Y#,#'•Sfg(~e(~o)~), # -  ___< # __< #' or #' __< # __< /~+) and so any Gibbs 

FKG FKG FKG FKG 
measure for ge(,h fulfills F K G  inequality. 

Appendix 3.A 

In this Appendix we prove lemmas yielding the estimates (3.20) [recalling the 
definitions (3.16), (3.17)]. 
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Lemma A3.1. For 0 < e <  l, p ~ N  and A E ~  o, 

tl ZA ( K°A~ -- K°a)It v <- cp (e 1/410A I) 1/" (A3. I) 

with a constant c > 0 independent o f  p, e and A. 

Proof  Since for d(x,  0A)<½ we have 

gOa (x, x) <= a [lnd(x, ~?A)[ (A3.2) 

(see e.g. [G1Ja, AHK7])  and analogously for aA~, so we have 

d 2 x [K °A~ (x, x) - K °a (x, x)[" 
d(x, OA) < d/2 

< c f p A I  ~ dsl lns lP~c~p!  IOAle TM 
0 < t ; < ~  1/2 

(the last estimate coming from integration by parts and estimating a logarithmic 
term against d/4). 

For d(x,  0 A ) > e  1/2 we have 

[K°n~(x, x)  - K°a(x,  x)[ < C 3 ~1/4 e-  be~x, Oa) (A3.4) 

which implies, using the exponential decay in (A.3.4) 

dzxlK°A"(x,x)-K°a(x,x) lP<c~lOAleP/4 . (A.3.5) 
d(x,  OA) > e 1/2 

All constants a, b, c i > 0 are independent of A, ~, p. From (A.3.3) and (A.3.5) the 
bound (A.3.1) follows. [] 

Lemma A.3.2. With a constant c > 0  independent of  0 < e <  1, A and p e N we have 

a) I](KOA°(x,y)--KOa(X,y))ZA(X))~a(y)IIp 

< cp(d/gfozl)  ~/p , (A.3.6) 

b) It(K°a~(x,y)-G(x,y))g~a(x)XAaA(y)IIp 

< Cp(el/4IOAI) 1/p . (A.3.7) 

Proof  We have, for x, y ~ A, 

[K oA~ (x, y) - K oA (x, y)[ = I G 0a (x, y) - G 0A~ (X, Y)l - (A. 3.8) 

For d(x. OA)<d/2 using the exponential decay of covariances and arguments 
similar to those leading to (A.3.3) we get 

I d2x ~ dzy lK°a" (x , y ) -KeA(x , y ) lPNcPp!  d/4lOAI . (A.3.9) 
d(x,  OA) < e l/z A 

For d(x,  O A ) > d / z  we use continuity of  the difference (A.3.8) in e and the 
exponential decay in d(x,  y). We then obtain 

d2x ~ d2y lK°a"(x ,y ) -K°A(x ,y ) [~  
d(x,  OA) > e 112 A 

~cP eP/4IOAI . (A.3.10) 

From (A.3.9) and (A.3.10) we get (A.3.6) and (A,3.7). [] 
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Appendix 3.B 

The exponential bound (3.26) follows from Duhamel expansion, for which we need 
the following two lemmas below: 

Lemma B.3.1. 
Ua~\a (q~ +,t~e~0> = o a  _clA,\Alc~ege/2 , (B.3.1) 

with e~ ~ a In (~c + 1) and the constants c, a > 0 independent o f  A, ~, ~:. 

The proof of (B.3.1) is standard and follows from the definition of normal 
ordered semibounded polynomials in the field with a cutoff. 

Lemma B.3.2. 
#~,~ ® l~oAq UA~\A(~D Kt ~_@q~OA~)_ Un~\a (~, + $$A~)jv 

< ~-~P(p degP)! cVIA,\AI av , (B.3.2) 

with a ,c ,~>O independent o f  Tt, A,~,p, and ~. 

Proof It is sufficient to consider p even (using H61der inequality). 
Then we start with Gaussian integration of the field ~o'. We integrate the Ill ~a* 

@~a~ variables using the integration by parts formula [G1Di, G1Ja] for the measure 
#X,~- 

From that we get the representation of the left-hand side of (B. 3.2) as the sum of 
two terms 

~0 [UA~\A ( ~ )  -- UA~\A ((~)1 p -~ z~ . 

The first term has just the estimation (B.3.2) (see [G1Ja, Sim]). The estimation for 
the second term A follows from the standard bounds with measures #X,, [G1Ja] and 
is uniform in A. [] 

Appendix 4.A. The Potential Theory on a Lattice 

Let ~ be the family of open bounded sets A c IRd with piecewise c£ 1-boundaries 0A. 
For c~>0 let Zao ' - {n3- (n16  . . . . .  nd3):ne7/a}. If A e ~  then A o - A n ; g g  and 

c - -  d A6 = 2go\A6. The boundary OA6 of A6 is defined by 

~ A o =- {n3 e A~ : d(n6, A~) = 6 } (A.4.1) 

with d(- , . )  the usual euclidean distance in IR e. 
The lattice distance is given by 

In-m] = - min ]n~-mi] . 
i=l, . . . ,d 

Let 

and let 

Lz,~--L2(2~g)- {f:;gg--,iRl6 d ~ If(n6)l z < co} , 
n~Z ~ 

{60-e i f n = n '  } e,~(n'3)~ , n~7l e 
otherwise 

(A.4.2) 

(A.4.3) 

(A.4.4) 
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be its base. For f~L~,  o the lattice Laplacian is defined by 

( -  Aaf) (n~) =- 6 -2 ~ (f(na) - f ( n ' a ) )  . (A.4.5) 
In ' -h i  =1 

The standard result from the potential theory on the lattice is given by the following 
lemrna (see [GRS1, Roy, Sire]): 

Lemma A.4.1. a) There is a unique function Ga(n6, .), n6 ~ ;gd a which tends to zero at 
infinity such that 

( -  A~ + m~) G 0 (n&.) = e,a . (A.4.6) 

The matrix Go(n6, m6) is symmetric and positive definite. 
b) For any A o = ;g~ c~ A, A e ~ there is a unique symmetric and positive definite 

matrix G~a(xa, Ya), xa, Ya e ;gg such that the function G~ a (xa,.) fulfills 

( - A a + m ~ ) G ~ a ( x ~ , . ) = e ~  for x a e A a w i n t A  ~ 
(A.4.7) 

G0 °a(xa,.) = 0 ,  for x a e OA; . 
Moreover 

0 < G~a(xa, yo) < Go(xe, ya) . (A.4.8) 

Let G and G °a for A E f f  be the counterparts of G 0 and G~ °a (respectively) in the 

(_ present continuum case. Let G(k), ke lR e respectively Go(k), k ~  \ ~, be the 
6J 

Fourier transforms of G respectively G 0. 
Denote by f ,a(x) EH_i  the function defined by 

f e-ikn6 

f ,a(k) ~_~(27~) a/2 (Oa(k)lO(k))l/z for [k,I < •/6 (A.4.9) 

to otherwise . 

From the definition (A.4.9) we have [GRS 1, Sire] 

G~(n6, m6) = (f,a, G *f,,a)L~(p.~) . (A.4.10) 

For Ao being a product of  [ -  li6, t~6 ] n ;go, i = 1 . . . . .  dthe lattice Green function Gg A 
with Dirichlet boundary conditions on #A; can be represented using the method of 
images as follows [GRS2, Sect. III.3; G1Ja]: 

Gffa(xo,yo)= ~ ( -  l)~"Go(xo, r, ya) , (A.4.11) 

where "~ ~" 
(r,ya) ~- ( -  1)n'(y~-n~2l~6) , (1.4.12) 

and e, e ;g suitably chosen so that GffA(xo, Ya) vanishes if Yae c3A~. 

Lemma A.4.2. Let d = 2  and coe~(tR2), For any A a e ~  o the solution oa 0~,~(') o f  the 
following Dirichlet problem: 

2 OA (-Aa+mo)Oo,,a(xa)=O for x o e A  ~ , 
(1.4.13) 

aA ~,o(xa)=co(x~) for xaeA ~ 
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is given in Ao by the lattice Poisson formula 

OA ~co,6(x6)= ~ G°a(x~,n3) ~ co(n'6).  (1.4.14) 
n6~OA~ [n'--n[ ~ 1 

n'6 e OA~ 

Proof  The proof  of  this lemma follows simply from the definition of  G~ A in 
Lemma A.4.1b. [] 

• " 0 A  Now we will consider the limit of the solution ~b0~ ' ~ as 6-* 0. For  that we assume A 
of the special form s.t. A =  1--[ [-ni ,mi] ,  n~,mi~Z +, and take 6-=2 -~, 1~2~ +. 

i=1 ,2  

(The general case can be treated analogously.) By our assumptions we have 

OA; = ~?A c~ g z . (A.4.15) 

Lemma A.4.3. For any x e A c~ (~ 7£2 , 
5=_2-e 

l i m  8A OA 0 o  (x) , O~,6(x)= (A.4.16) 
5--=2-¢ ~ 0  

where oA ~o~ (x) is the solution o f  the Dirichlet problem in the continuum which 
corresponds to (A.4.13). 

Proof The proof  follows from the fact that for any x e A n (~ Z~ and n6 ~ OAo. 
5 

lira t G~a(x, n6)=~oya(x) (A.4.17) 

This can be seen using the formula (A.4.11) for G~ A (see e.g. [BrFrSp]). Hence using 
(1.4.14) we get 

lim OA Oo,6(X) = S d2YOOyA(X)CO(X)--oOA(x) " [] (A.4.18) 
6"*0 8A 

We need a stronger result to get the convergence of the lattice approximation of 
euclidean field theory. 

Define 

Z~ (k)OA - ik,,~ , O~,6(k) = - • $~,,o(nf)e (A.4.19) 
n6eAe 

with )f6(k) the characteristic function of the set k :lkil < ~  • 

Lemma A.4.4. For any 2_<p< oo, 

lim ~'81 ~'0A (A.4.20) [ll m, 6=l[Io.~ )~A 
6~0  

in  Lp(]R2) .  

Proof From definition (A.4.19) of  ~A6 we have 

fi2 
^OA < OA [AI 

I[0~°,6]]°°=I]~9~,6H~ 2~ 62 ' (A.4.21) 
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and using the max im um  principle on the lattice (see e.g. [BJS]) we get, uniformly 
in 3, 

II~'~,011"°a < 1  ilol0Ail~t/i (1.4.22) c o = 2 g  

F r o m  Plancherel theorem we have 

^0A 
[~o,0(na)l O 

n~eAa 

10o,,~(n3)l 6 (1.4.23) 
n6e Ao n,Se A,~ 

d(n,J, c3A)<e d(m3,0A)>=~ 

for  any e > 0 .  Since f rom Lemma A.4.3 

OA 0o, (x) , 

uniformly on compac t  subsets o f  A, the second sum on the r ight-hand side o f  
(A.4.23) converges to 

I ~A 2 IOo~ (X)[ d2x • 
Ac',{d(x, OA)>=e} 

Since f rom the lattice max imum principle 

0A 10~,,et < Ilcol0all o~ (A.4.24) 

the first sum f rom the r ight-hand side o f  (A.4.23) is bounded  by 

IIo, All JA {d(x, < 

Due to  the fact that  e > 0 is arbitrary we get 

~OA _____+ OA. . [10 ,&2 II ,o ZAIIL= (1.4.25) 

Fo r  any f e  6e (IR2), we have also 

j f (k) ~,~(k )4k--, j f (x) O~A(x)za(x)4 x 

=If(k)¢~a(k)za(k)d2 k , 

that  is ~OA _~ ~OAZA weakly in L2(1R 2) and by (1.4.25) we have also strong 

convergence in L 2. By interpolat ion using also (A.4.22) we have Lv-convergence. 
This ends the proof.  [] 
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