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A b s t r a c t .  We consider the particular case of the planar three body problem obtained when the masses 
form an isosceles triangle for all time. Various authors [1, 2, 12, 8, 9, 13, 10] have contributed in the 
knowledge of the triple collision and of several families of periodic orbits in this problem. We study the 
flow on a fixed level of negative energy. First we obtain a topological representation of the energy 
manifold including the triple collision and infinity as boundaries of that manifold. The existence of orbits 
connecting the triple collision and infinity gives some homoclinic and heteroclinic orbits. Using these 
orbits and the homothetic solutions of the problem we can characterize orbits which pass near triple 
collision and near infinity by pairs of sequences. One of the sequences describes the regions visited by the 
orbit, the other refers to the behaviour of the orbit between two consecutive passages by a suitable surface 
of section. This symbolic dynamics which has a topological character is given in an abstract form and 
after it is applied to the isosceles problem. We try to keep globality as far as possible. This strongly relies 
on the fact that the intersection of some invariant manifolds with an equatorial plane (v =0) have nice 
spiraling properties. This can be proved by analytical means in some local cases. Numerical simulations 
given in Appendix A make clear that these properties hold globally. 

1. Triple Coll ision Manifo ld  

We consider, in the plane, three masses ml ,  m2 and m 3 at the vertices of an isosceles 

triangle. Let xl  the distance between ml and m E and x2 the ( s igned)d i s tance  

between the center of masses (c.o.m.) of m 1 , m 2 and m a (see Fig. 1.1). We fix the c.o.m. 

of m l , m z , m 3  at the origin and we take ml - m E  and the suitable velocities of the 

three masses in order to maintain the isosceles configuration. We introduce the 

parameter of masses e - maim 1 and after a suitable scaling we suppose ml - 1. The 
equations of mot ion  are 

X2 ~" 

2 8eXl 
(X 2 + 4X2) 3/2'  

8(2 + e)x2 
(X 2 + 4X2) 3/2" 

(1.1) 

The energy integral is given by the function 

H -  ~ 2r + V ( x , , x 2 )  (1.2) 
4 2 + e  
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Fig. 1.1. 

where 

V(X1 , X 2 )  = 
1 4e 

X1 (x~ + 4x2) 1/2 

is the potential .  

If we fix a value h of the energy, the mot ion  takes place in a 3-dimensional  

manifold ~ .  When  the energy is positive or zero, it is known  (see [4]) that  for all the 

initial condi t ions  the three masses escape to infinity. We study the case where energy 

h < 0. After a suitable scaling of variables and time we can restrict at the level 

h = - 1 .  Therefore  from now on we suppose that  ~U is the manifold of constant  

energy - 1. 

The zero velocity curve (see Fig. 1.2) given by 

--V(x 1 , X 2 )  - -  1 - 0 (1.3) 

is the bounda ry  of the region where the mot ion  takes place. The projection of this 

region on the posit ion plane is called Hill's region and given by - V ( X l  ,x2) - 1 >/0. 

The system (1.1) has two singularities: for X x = 0, which cor responds  to double  

collisions, and for X l = x2 = 0, that  is, at triple collision. 

In order  to study the behaviour  of the orbits passing near triple collision we use 

the blow up me thod  due to McGehee  [6]. The suitable t ransformat ions  of the blow 

up in the isosceles problem have been made by Devaney [2]. In the remaining part  

of this section, we present a summary  of known results abou t  triple collision in the 

isosceles case. 

Let us in t roduce  some nota t ion:  x T =  ( X 1 , X 2 )  , p = A ~ , A  = diag(1/2, 2e/(2 + e)). 

We define new variables r, s, v, u, 0, u, w by 

r = (x r Ax) 1/2, 
s = r -  1 X "-- (A - 1 )1 /2  ( c o s  0 ,  sin 0), 0 e E - n/2, n/2], 
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F i g .  1 .2 .  

where  

V - -  r 1 /2  (S ,  p ) ,  

I1 = r l / Z ( A  - 1 p __ (S ,  p ) S )  

W = U cosO(W(O) )  -~/2, 

--" N ( A  - 1 ) 1 / 2 ( - s i n  O, cos  0), 
(1.4) 

V(O) = - 1 / (x /~cos  O) - 4e3/z / (2e  + 4 sin 2 0) 1/2, w ( o )  = - c o s  or(o) .  

Scaling the t ime by d t / d r  = r 3/2 and  dr/d '~ = cosO/(W(O)) 1/2, we get f rom (1.1) 

r' = rvcos  O(W(O))- 1/2, 

v' = x//W(O) (1 - cos O(v 2 - 4rh)/(2 W(O))), 

O'  = W ,  

w' = sin 0 ( -  1 + cos O(v 2 - 2rh)/W(O)) - vw cos O/(2x/W(O)) + 
+ ( cos  0 - w 2 /2 )  w'(o)/w(o). 

(1.5) 

In (1.5) the pr ime ' means  differentiat ion with respect  to ~?, except  in W'(O) where  

W'(O) deno tes  d W(O)/dO. We rename  t -- g. After (1.4) the energy in tegral  becomes  

2 W 

2 cos 0 

,  oS0(r  
W(O) 2 " (1.6) 

The  t r ans fo rma t ion  (1.4) is analyt ic  at r > 0 and  defines a vector  field which is 

analyt ic  at the po in ts  of the phase space with r > 0. This  vector  field can be 

ex tended  analyt ical ly  at the poin ts  with r = 0, tha t  is, at triple collision. 
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We define the triple collision manifold c~ as the 

[0, ~ )  • [~ • [ - r t / 2 ,  rt/2] • R with r = 0 such that  

set of points (r, v, 0, w)~ 

W 2 /)2 COS 0 
t = 1. ( 1 . 7 )  

2 c o s 0  2W(0) 

cd is a two dimensional  invariant manifold, topologically equivalent to a sphere with 

four holes (see Fig. 1.3). The flow defined by putt ing r = 0 in (1.5) is gradient-like 

with respect to v and it is easy to prove that there are six critical points, (v, 0, w) = 

( + x / / - 2 V ( 0 ) ,  0,0) where 0 is one of the central configurations. In fact, these are the 

unique critical points of the global system (1.5). 

The Euler configuration corresponds to 0 = 0 which is a local min imum of V(O). 

There are 2 configurations of Lagrange type for the local max imum of V(O), 0 = 

+_ 0L(e) = _+arctan ((3e/(2 + e))1/2). We put 0L = 0L(e) if there is no confusion. 

On q~, the Lagrange points L i'~, M i'~ are saddles and the Euler points are sink (E ~) 

or source (E i) with respect to the flow restricted to ~ ,  with complex eigenvalues for 

e < 55/4 and real ones for e >/55/4. F rom now on we assume e < 55/4. First of all 

we recall some properties of the flow on ~.  

Let P be one of the Lagrange points. We denote by W~ with ae  {s, u}, the stable 

(a = s) or unstable (a = u) invariant manifold of P. We denote by w "'b with �9 - p 

b~ {1,2} the branch which reaches or leaves P with w > 0 (b = 1) or w < 0 (b --- 2). 

V 

__ __~_ 

f o ~ ~ e m  
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E 

M s f 
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vl i . ~ ~ 
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Fig. 1.3. 
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We define W l , ( W 2 z )  as the open set in cd bounded  by Ws'2"�9 M'' WL 'zl' Wu'l'" M' and W ~'~L, 

(W~,  1 Wsh z, w~,, 2 and w~,2  respectively). W~sand W 2 , , " M, Es are defined in a similar way. 

The behaviour  of W ~'1 and w ''2 is shown in Figure 1.3. We can obtain W~s, W ~ L l , ,  L l M s 

and W~,  using the symmetries  of the flow in cd 

L 1" (r, v, O, w, "c) 

L 2" (r, v, O, w, z) 

, ( r ,  - v , O ,  - w ,  - z ) ,  

, (r, - v, - O, w, - "c). 

restricted to cg. 
The intersection of W~', ~t2~ (W~s ~2~) with v = 0 will be called I i'1~2) (1s'1~2)). W e  use 

m i'1~2) and m s'l~2) for the cor responding  intersections of w,,112) and W s'~2) �9 , M z M s 

respectively. 

Next  proposi t ion  was proved by Sim6 in [10]. 

P R O P O S I T I O N  1.1. 

that" 

T h e r e  ex i s t  two cri t ical  values o f  e, el, and e 2 with El < e2 such 

- w . , l  = WS,2 and  f o r  e = e2 (case (i) if e = E1 (case I I ) ,  then m i'l - -  (n/2,0) and so ,, M' M s, 

IV) ,  l ''1 = (0, -- x//2) and W~:I = W~,I. M s 

(ii) f o r  0 < e < El (case I )  m i'1 = (O,w) with 0 > O, w > 0 and I i'1 = (0, W) with 

w , , l  dies at E ~ and W ~'1 0 > 0, w < 0, so .. M' L' escapes  around  the upper  branch  o f  

b inary  col l is ion wi th  0 = - n /2;  

(iii) f o r  e > e2 (case V), m i'l = (0, w) with 0 > O, w < O, and I i'1 = (0, w) with 0 < O, 

w < O. T h e n  W~', x ends  at E ~ and w,,~,, M' escapes  th rough  the  upper  branch  o f  

0 = - n/2; 

(iv) f o r  el < e < e 2 (case 1I I ) ,  I i'x and m i'1 have coord ina tes  0 > 0 and w < O. 

There fo re  W~: 1 and w u ,  M' turn around  the upper  branch  o f  0 = - n / 2 .  

The values el = 0 . 3 7 8 5 3 2  ... and e 2 : 2.661993 ... are obtained numerically. 

They determine the five different cases ment ioned above. 

N o w  we consider  ~ in the total  phase space, cg is in the bounda ry  of ~/  and 

conta ins  the critical points  of the global system (1.5). We give the dimensions  of W~ 

on ~ and on ~t/'wcd in the Table 1.1 

TABLE 1.1 

w w w LS, M s LS, M s W LZ, M l LZ, M l 

cg 

~wcg 

0 2 

2 

2 

2 

0 

2 2 

We refer to [2] for the computa t ions .  

The collision (ejection) orbits are the union of W st't ulstu) and W stu) Ei(s) , , ,  L,(S) Mi(s )  on ~Uw (g. 
There are 3 homothe t i c  solutions (see Fig. 1 .4 )cor responding  to 0 = 0 (collinear), 

0 -  0L and 0 = - 0 L  (equilateral triangle). They are conta ined in the plane w = 0 
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Fig. 1.4. 

(see Fig. 1.3). We note  that  both W" and E s 

orbit  for 0 = 0. 

W~, coincide with the Euler homothe t ic  

T H E O R E M  1.1. W~s ( W~s) cuts 
homothetic orbit for 0 = OL(--OL). 

transversally to WL,(WMi ) along the Lagrange 

Theo re m 1.1 is proved in 

We note  that  in the 

segment  

a more  general  form in [11]. 

variables (1.4) the zero velocity curve is reduced to the 

71 = {(r, v, 0, w)6 ~/'lv = 0, w = 0, - 1t/2 < 0 < re/2 }. 

We define 

S + = {(r, v, 0, w)e "f'/'l 0 = rt/2 }, 

S -  = {(r,v,O,w)e ~ [ O =  - r t / 2 } ,  

S 1 = {(r, v, 0, w)6 <10 = 0}, 
72 = {(r, v, O, w)E ~UlO = O, v = 0 } .  

We can represent  the points  of S + w S -  by (r, v) because w = 0 if 0 = + rt/2. 

We note  tha t  the points on S + and S -  represent  the binary collisions and $1 is the 

set of coll inear configurat ions.  

2. The Flow Near Infinity 

Let pc  ~Y, (Xl(t), X2(t), :~l(t), :~2(t)) or shortly qg(t,p), will be the orbit  which passes by 
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An orbit escapes at (arrives from) infinity if x2(t ) tends to + oo when t tends to 
+ o o ( -  c~). This is the only way to escape at (arrive from) infinity when the energy is 

negative due to the existence of the zero velocity curve (1.3). 
The escape (arrival) is parabolic if Xz(t) tends to zero when t tends to + o o ( -  oo). 

If Xz(t) tends to a constant  different from zero when t tends to + oo or - oo, we say 

that the orbit is hyperbolic. 

We use the t ransformat ions  introduced by McGehee [-7] in the collinear three 

body problem. 

Let be 

X 2 - - 2 ( 2  +/3)1/3 x - 2  

"~2 "-" (2 + /3)1/3 

X 1 = ~ 2  

x l  = 2r/~ -1,  

Y~ 

dt = ~2d~c and ' = d/dK. 

(2.1) 

Inserting (2.1) in (1.2) we obtain the new expression for the energy integral 

?/2 + ~2 + 4d~2(y2 _ x 2) _ 4 /3u f (u )=  1, 

where d=/3(4(2 +/3)1/3) -1, lg = d~2x2//3 and f(u) = (1 + U2)-1/2--1. 

Now we get the following system which is regular at infinity (x = 0) 

x '  = - - ~ 2 y x 3 / 4 ,  

y, = _ ~2 X4(1 + g(u))/4,  

~ ' = ~ ,  

r/' = { ( -  1 + 4dx 2 f ( / / )  - 4 d (  y 2  _ 
X2) Gl(t t ))  

~e , 

(2.2) 

(2.3) 

where g ( u ) = ( 1  + 132) - 3 / 2 -  1 -  O(u2), GI(u)=4eu3(1 + / / 2 ) - 3 / 2  and for the last 

equation we have used (2.2). 

We use a Levi-Civi ta  regularization (~, r/) for the binary collision. If we take polar 
coordinates (R, q3) in the plane (~, r/) given by ~ = R cos q3, r /=  R sin q3, then, from 

(2.2) we obtain 

R 2 = 1 -+- R ( x , y , ~ ) ,  

where R is a function of order 2 in x, y and 2n-periodic in q~. 
The points x = 0 form an invariant manifold that we call the infinity manifold. 

Let 

4d 4d Y = Y 
X = x 1 + 4 d x  2'  1 + 4dy  

Inserting X, Y, f / in (2.2) we have for X = 0 

1712 _~_ ~2 -F- y 2 =  1. 

2 ' f / =  r/v/1 _ y2.  

This is a sphere except two points (Y, ~, f/) = ( +__ 1,0, 0). Really the infinity manifold 

is the union of two spheres taking out the two poles in both of them. We call these 

spheres I+ and I_  depending on the sign of x2. 



As in the collinear three body problem [7], (2.3) has a 2rt-periodic solution for 

(x, y) = (0, 0) (P.O. + in I + and P.O._ in 1 _ ). The flow near (x, y) = (0, 0) is obtained 

by rotation of Figure 2.1 around the y axis. In this way the Figure 2.2 is obtained. 
The point (x, y) = (0, 0)can be seen as a hyperbolic fixed point (despite the fact that 

this is a degenerate case) for the Poincar~ map; that is, there exist stable and 
unstable invariant manifolds which are analytic in a neighbourhood of (0, 0) (except, 

perhaps, at (0, 0), see [7]). 

To compute the stable manifold we put 

x = F( y,O) = ~ a,,(~) y", 
l ~ n < ~  

as the expression for such manifold. 

variable to get 
We rewrite 

d x  

(2.3) using q~ as the independent 

dy  

= --�88 2 (qS)yx3(1 + 02), 

f 

- - � 88  2 (q~)x4(1 + 02), 

where O, means terms of order n in x, y. We should have 

S 
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Fig. 2.1. 
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Fig. 2.2. 

,d x cGF dy  0F 

dO 8y dO 8q5' 

where in d x / d o  and dy /d~  we substitute x by F(y,40). Equating the coefficients of 

the different powers of y we obtain a sequence of differential equations for a.(~), 
n >f 1. We remark that the expressions da,(q$)/dq$, n >i 1, contain cos/(q$) as a factor. 

In this way all the coefficients a.(q$)can be obtained by recurrence. For n --< 10 the 
only nonzero terms are a l (O)= 1, a5(~) = 5/(512 (2 + s)2/3), aa(q$)=3sin(2~)((1/3) 
sinZ (2q5) - (3/2)(cos(2q$)+ 1))/(2048(2 + s)213),a9(~)=43/(za8(2 + 04/3). 

The translation of symmetry L x to the new variables (2.1) gives 

(x, y ,~,  K) > (x, - y, -(~, - ~). (2.4) 

Using (2.4) we obtain for the unstable manifold x = F ( - y , - 4 o ) .  Furthermore, 

from (2.3) it is clear that the equations remain unchanged if x changes sign. 

Therefore the unstable manifold is given also by x = - F ( y , O ) .  From this it follows 

that a.(q$) is an odd function of q$ for n even, and an even function for n odd. 
The orbits of the invariant manifolds of P.O.+ and P.O._ are parabolic. We call 
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P~_(_) and P~'_(_)the manifolds of.parabolic orbits at I +(_) when t tends to + oo and 

t tends to - o o ,  respectively (see Fig. 2.1). 
Let B+ and B_ two spheres near I + and I_  respectively (see Fig. 2.2). The circle 

e l -  P~ c~B+ determines on the northern hemisphere of B+ two regions, C l 
corresponding to hyperbolic orbits, and 81 whose orbits are elliptic. In this context 

an elliptic orbit means an orbit which enters in a ne ighbourhood of infinity but it 

goes out after a positive time. In a similar way, the circles e 2 --P~ ~B+, 
e 3 - - P L  ~ B_ and e4 = PL ~ B_ determine the regions c 2 and ,~2,C3 and ,~3,C4 

and ~4 in B + , B _  and B_ ,  respectively. 

The flow near infinity crosses the surface 

$2 = {(x, y, ~, r/)e ~ IY = 0 }. 

Therefore we can define the following diffeomorphisms 

i I ,E +(-)~ 1(3) ' $2;  i2( "$2 ~ '~2(4) --) 

obtained following the flow. Then we 
i+ = i 2 i~+ and i_ = i 2 i 1, respectively. 

define i+" '~1 ~ (~~ and i_" '~'~ 3 ) ~4 as 

-1 L E M M A  2.1. Let 7 be an arc in '~1(2) with an endpoint on e1(2). Then i+(7) (i+ (y)) is 

an arc spiraling towards e2(1), that i s , / f  7' c '~2(1)is an arc which ends in a point o f  

e2(1), then i+(7) cuts 7' at infinite points in any neighbourhood of  e2(1). 

An analogous result is true in ~3 and 84. 
Lemma 2.1 follows immediately from the next Lemma 

inspired by [5], p. 170. 

whose proof is essentially 

L E M M A  2.2. Let 7 be an arc in E 1 with an endpoint on e I . Then the image of  7 by 

the forward flow until it cuts the plane y = 0 (the equatorial plane in Fig. 2.2) is an arc 

spiraling towards P.O. +. 
Proof  From (2.3), again using t as independent variable and = d/d t ,  we have 

2 = - - y x 3 / 4 ,  

.1) -- -- X4(1 + 04 ) /4 ,  

q~ = ( - 1  + 02)/cos2(qS), 

(2.5) 

and, introducing a new variable b defined by 

b = - c o s  (2.6) 

we have b = 1 + 02 and 

q5 + sin(qS) cos(@) = - 2 b  + constant. (2.7) 

F rom (2.5) and (2.6) it follows 

dx 

db 

dy 

db 

yx3(1  + 0 2 ) /4 ,  

X4(1 + 02)//4. 

(2.8) 
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Final ly we in t roduce  a new independent  variable c defined by d c / d b  = x 

hence, f rom (2.8), we obta in  

d x  

de 
= - y ( 1  + O2), 

dy 

dc 
-" - - X ( 1  -'~ 0 2 ) .  

3/4, and  

(2.9) 

N o w  we change  the dependen t  variables t h rough  u = x - F ( y , 0 )  = x - y  + Os, 

v -- x + F ( y , ~ )  = x + y + Os.  Hence u -- 0 and v = 0 co r re spond  to the stable and  

unstable  manifolds,  respectively. The differential equa t ion  for u , v  is 

du dx  c3F dy c3F d~ 

dc dc c~y dc c~O dc 

dv dx  0F dy c3F d0  
- ~ 

dc dc c3y dc c~0 dc 

- -  U(1 -It- 0 2 )  , 

- - v ( 1  + O 2 )  , 

(2.10) 

where we have made  use of (2.9), the remark  abou t  d a , ( 0 ) / d 0  and the fact that  u = 0 

and v = 0 are invar ian t  manifolds.  It is not  restrictive to consider  the arc 7 on v = a 

(simply using a diffeomorphism).  The initial condi t ions  on 7 can be taken as Uo = ~z, 

Vo = a ,  0o = 0 " +  flz + O(z2), 0 ~< z ~< z0, where ~ 2 +  f12= 1 ~ > 0 and z is a 

pa rame te r  of the arc such that  the end point  co r re sponds  to z - -0 .  

For  any 6 > 0 we can choose a and Zo small  enough  such tha t  the following 

inequali t ies hold: 

(1 - b ) u  

- ( 1  + 6)v ~ < -  

d u  

dc 
-.<(1 + 

d v  
--< - ( 1 -  6)v. 

dc 

(2.11) 

F r o m  (2.1_1) we obtain,  in so far as u and v remain  smaller than  a, 

uoe(1-6)c % u ~< Uo e(1 +6)c, 

v o e - ( l  +6)c ~< v ~< Vo e-(1 -6)c, 
(2.12) 

We suppose tha t  the origin of the new variables, b = 0, c = 0 is t aken  when 

v o = a .  

The plane y = 0 can 
_ e ( 1  + ,~)c roe- (1  + ,~)c Uo 

(1/2)(1 + 6 ) - l l n ( v o / U o ) .  

v - u = 0. The  co r re spond ing  values of 0 and x will be deno ted  by 01 

be written u -  v = 0. F r o m  (2.12) we have v -  u >/ 

Hence v - u remains  non-nega t ive  for c ~< c l = 

Let b I be the m i n i m u m  positive value of b for which 

and x l .  Then  

r 
1 

f e(1 + ~)c bx >/32 (Uo + r o e  

0 

-(1 -6)c)-3 dc 
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C. 
1 

= 32(UoVo) -3/2 f e-3'~/C(eC-(x +,~/c I + e t l  +'~lc,-c)-3dc" 
0 

Introducing the new variable w -  C l - c ,  one has 

bl > 32(UoUo)-3/2 (U_~oo ) 3~(2 +'~t/(2 +2'~t 
r 

1 

.I (ew + e-W)-3 dw. 

0 

Let p > 0. Then for a and Zo small 

-(3/2t(1 -01 bl > C ( 1 -  p)uo 

enough we have 

where C = 32Vo 3/2 ~o ( ew + e-W) -3 dw. Hence b 1 (and therefore q31) goes to infinity 

when z goes to zero. This ends the proof of the Lemma. m 

Remark 2.1 We should note that spiraling means here that  the angle, q3 x, of the 

image point on y -  0 goes to infinity when z goes to zero. We do not claim for 

monotonici ty.  However lots of numerical simulations (see Fig. A.l~ make it ap- 

parent,  i.e., d~l/dz > 0 and dxl /dz  > 0. Using the suitable inequalities we obtain 
-(3/2)(1 +p) In fact, if we only keep the dominan t  terms in the b I < C(1 -t- p)u 0 

equations we can easily obtain q51 = - 2 C u o  ~3/2t (1 + 0 (1) )and  the value Xl of x 

when the image of a point in 7 reaches y = 0 is (Uo Vo) 1/2 F rom this it follows that, 

using only the dominan t  terms, limz_~0qS~ x 3 = constant.  This is indeed observed in 

the numerical  computa t ions  (see Appendix A). 

3. Blow Up of  the Lines 0 = + re/2 

The blow up of triple collision and infinity has the effect 

to ~V, one for r -  0, the other for r = oc. We look for a good 

representat ion of ~/" with the two boundaries. 

We introduce some notation.  Let c ~ R; we define 

~ - {(r, v, 0, w)e  r  v = c} ,  

tic - {(r, v, O, w)e , lv - c}. 

If we fix c e R,/3~ is a curve in the plane (0, w) defined by 

C 2 COS 0 ) 
w 2 =  2 c o s 0  1 -  2 ~ i  " 

Let of  = {(r, v, 0, w)e ~clv'  = 0}. 

Using (1.5) and (1.6), we can see that ~o c is given by 

c 2 cos 0 ) 
w z - -  cos0  1 -  2W-(0) " 

of glueing two boundaries 
topological 

(3.1) 

(3.2) 
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The points of ~<, fl< and o9<, will be represented by coordinates  (0,w) when this 

not leads to confusion. 

Moving the real constant  c in (3.2) we obtain a surface which separates in ~/" two 

components ,  one with v' < 0, another  near ~ with v' > 0. 

The curve o9 o given by w 2 = cos 0, defines in ~0 an inner region (containing the 

origin) corresponding to maxima of r along the orbits, and an outer one, ~r (near ~) 

whose points are minima of r. 

We fix c �9 ~. We take two constants  Wo, 0o such that  Wo > 0 and rt/2 - 0o > 0 are 

sufficiently small. We define (see Fig. 3.1) 

Q< = {(r ,v ,O,w)e~<l  Iwl < wo, Oo < 0 < rt/2}. 

For  a fixed value of w, lwl ~< Wo, we can define rw(O,c) as the 

obtained from (1.6) with h = - 1 ,  that is 

function of 0 

c ~ w(o)  w ~ w(o)  
rw(O,c)= 2 f (3.3) 

cos 0 2 cos 2 0 

When w = 0, ro(O,c) = - ( c 2 / 2 )  - V(O) increases near 0 = rt/2 and ro(O,c) tends to 

infinity when 0 tends to rt/2 (see Fig. 3.2). Therefore there is a discontinuity at this 

point. The variables given by (1.4) are not  good out of c~ in a ne ighbourhood of 

binary collision. So we will make  a blow up of the two lines 0 = + r  t/2. 

First we study the function rw(O,c) for different values of w. 

L E M M A  3.1. f f w  

of  o~ ~ ~ Qo 

O, rw(O,O) has a maximum at O,.(w) < 0 w, where (0 TM, w) is a point 

W 

! 
- 

w o 

Qo ' ~ w Qc 

- ~ 0 

e 
0 

- -W 
0 

o 

," I . /  I 

I - w  . - "  I 
" I o I 

/ , / : m ~ i . , ~  Imil i , o  

0 

~/2 

~o ~ -  I 

Ct 

Fig. 3.1a. Fig. 3.1b. 
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Fig. 3.2. 

Proof By der iva t ion  of (3.3) we obta in  

d r  w 
= 

W'(O) ( w 2 ) 
cosO 1 2cosO + 

W(0)sin 0 ( 
COS 2 0 1 

w2) 
cos 0 " (3.4) 

We fix 
(O, w)e Qo 
c o s  0 < w e 

w, 0 < w < Wo (the case - W o  < w < 0 is 

with 0 ~ < 0 < 0~ where (0~,w)e/~o are 

< 2 c o s  0. F u r t h e r m o r e  W(O) is a positive 

near  rt/2. T h e n  drw(O, 0) /d0 < 0 if 0 w < 0 < Ow. 

It is clear tha t  dr~(O,O)/dO < 0 

symmetrical) .  The  points  

between flo and o9 ~ so 

strictly decreas ing  funct ion 

for 0 = 0 w and 0 = Ow. This  ends the proof. 

N o w  we consider  values of c that  are different f rom zero and we define 

09 m 
Idrw 

= ( o ,  =0} 
For  c q=0 we have drw(O,c)/dO = drw(O,O)/dO. Then  f rom (3.4) we obta in  for 0%, 

where  

W 2 = 2COS 0 (  
W'(0) cos 0 + W(0) sin 0 '~ 

W'(0)cos  0 + 2W(0)s in  0 / '  
(3.5) 

dW(0) 4~3 3/2 (2e + 4) sin 0 
W'(O) = dO - (2e + 4 sin z 0 )  3/2  " (3.6) 

Us ing  W(O) = - c o s  0 V(O) and (3.6), 

press ion for 09,. near  ~z/2 

some c o m p u t a t i o n s  give the following ex- 

w 2 = cos 0 (1 - 
893/2COS3 0 ) (  1 .  ) 

(e + 2 sin 2 0) 3/2 1 + C cos 0 
(3.7) 
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where 

C 
2e3/2(t3- 2 + 4 sin 2 O) 

(e + 2 sin 2 0) 3/2 

The curve co" is independent of c. 

F rom (3.7) next Lemma follows immediately. 

L E M M A  3.2. (i) O"(w) tends to re~2 when w tends to zero. 
(ii) I f  w(O) is the function defined by (3.7), then dw(O)/dO tends to +_ oo when 0 tends 

to rt/2. 

Figure 3.2 shows the evolution of rw(O, c) in Qc- 

L E M M A  3.3. Let Wo and Oo be real constants such that Wo > 0 and zc/2- Oo > 0 are 
sufficiently small. Then, Int(Qc) c~ co" ~ G,  for all c e ~. 

Proof From (3.1) and (3.5) we obtain, after some computat ions,  that  for all values 

of 0 near to re/2, 09" intersects /3 c and /3-c where 

2 W2 sin 0 
c 2 = (3.8) 

cos O(W'(O)cos 0 + 2 W(0)sin 0) 

Moreover  W(O) tends to 1/x/~ and W'(O) tends to -4~3/2(2~ +4)  -1/2 when 0 

tends to n/2. From (3.8) c 2 tends monotonical ly  to + ~ when 0 tends to n/2. Then, 

for all c e ~, 09,. intersects to/3c and fl-c at points different from n/2. II 

The main idea in the blow up of the lines of binary collisions 0 = +_n/2, is as 

follows. We fix a constant  level c of v. We make a change of variables in a suitable 

set Qc in order to blow up the point (n/2,0) to a segment [A, n/2] on w = 0. Over 

this segment the m o m e n t u m  of inertia will go from zero to ~ .  After that, the 

change can be extended to a neighbourhood of the line 0 = n/2. The blow up can be 
made C o~ 

In the plane (0, w), the curve tic has two components  diffeomorphic to circles when 

Icl is sufficiently large. One component  tends to the point (re/2,0) and the other tends 

to ( -  re~2, 0) if Icl grows to the infinity. Therefore it is necessary to modify Qc when v 

goes to +_ oo. Fol lowing Lemma 3.3, this can be done by taking suitable constants 

Wo and 0o which depend on Ici. It is easily computed that w0 and n /2 -O o  can be 

taken going to zero as 1/Icl and 1/C 2, respectively, when Icl ' oo. We define the set 

Q = ~Yc~, Qc. In the next construction we suppose that Qc is fixed. 

Let A = O"(Wo) (see Fig. 3.1b). We define a family of functions Ctw(0) for Iwl ~< Wo 

(see Fig. 3.3) by 

Ctw(O) = 0 if w = Wo, 

= 0o ) = Oo 

A 

= Ow t if 0 < Iwl < Wo, (3.9) 
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Fig. 3.3. 

~o(0) = 
lim aw(O) if 04: rt/2, 
w--*O 

A if 0 = re/2. 

It is sufficient to take  piecewise linear functions. 

We have from (3.9) a new variable a which goes from ai to a I for all 0 < Iwl ~< Wo. 

The variable a will be used instead 

between ai and A. 

Let a~ = arc cot  rw(0o,C) and 

( W o -  w). We r e m a r k  that  limw_~ 

We in t roduce  q~w(a) as the 

0 ~ w < w  o by 

of O. When w = O, a takes  values only defined 

a = (Wo arc cot  rw(O,,(w),c) - w arc cot  rw(A,c))/ 

wo a = arc cot (rwo(A, c)). 
family of piecewise l inear funct ions defined for 

a O - a  
a +  ( a - A )  

a i -  A 

re~2 - a 
a +  ( a - A )  

a r - A  

a~ ~< a ~< A, 

A <a~af. 

N o w  we cons ider  the following family of functions 

negative values of w the cons t ruc t ion  is symmetr ical)  

Cw(a) with 0 --< w --< Wo (for 

rrw(O(a), c) 

0~(~) = cot  w o a r c c ~  r~(O(~),c)-~ 

,cot~Ow (a) 

WOwo - w ~~ ~(~) ) 

if  W = W o ,  

if 0 < W < W o ,  

if w - O .  
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Fig. 3.4. 

Then 

q~w(~i) = a ~ , 

qgw(A) =a ,  (3.10) 

qgw(~s ) = rt/2. 

Using (3.10) we get for the family q/w(c0, 0 < w < Wo (see Fig. 3.4) 

~w(oti) = rw(Oo, c), 

q/w( A ) -- r w( O,,(w), c), 

=0. 

Using ~ instead of 0 and q/ instead of r, the state of the system is completely 

determined in Q. 

4. The Manifold 

The line of points in Q which have r unbounded can be blown up to a sphere 1+ 
with 2 holes. The equator is the periodic orbit P.O.+. The parabolic orbits are 

asymptotic to P.O.+,so we can put this orbit on ~oNInt( , / / ) .This  fact needs some 
comments that will be made in section 7 showing the behaviour of the orbits near 

infinity with respect to ~o- 
~V can be represented as in Figure 4.1 if we think that the points with r > 0 are 

'contained in' N. The pointed strips are the points of S + and S-  after the blow up of 

binary collision lines. We define 

7+ = S +  ~ 0  and Y - = S - : ~ o .  (4.1) 

There is in Figure 4.1 a fictitious orbit sl which goes from triple collision to 

infinity with infinite velocity, s2, s3 and s4 are the symmetrical orbits of Sl. More 

information about these orbits is given in Appendix B. 
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Fig. 4.1. 

L E M M A  4.1. l f  p e ( S  + w S - ) \ ( 7 +  w 7 - ) ,  the orbit qg(t, p) has at p an 

of r. If  p e 7 + w 7 - ,  qg(t, p) has at p a minimum of r. 

Proof  Different iat ing  the first equat ion  of (1.5) we obta in  

inflexion point 

/-=((-sin O)W -1/2 - - l c o s  0 W ' W  -3/2) r v w  

+ rv 2 �89 COS 20W-1  + r c o s  0 -  2 r  2 COS20 W-  1 

If 0 = rt/2 and w = 0, i = k = 0. A new differentiat ion s h o w s  tha t '? '=  rvW-112 for 

0 = rt/2. Then ,  if v 4: 0, we have'?':/: 0. For  v = 0 and keep ing  0 = rt/2, w = 0,'i;'= 3r > 0. 

T h e  orbits  can  not  reach a m a x i m u m  of r in binary co l l i s ion .  Therefore ,  the curve 

co o tends  to  infinity when  0 tends  to rt/2 or - z t / 2  (see Fig.  4.1). 
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5. Ejection- Parabolic Orbits 

Some ejection orbits leave a neighbourhood of N with arbitrari ly large velocity. We 

use this fact to show the existence of hyperbolic and parabolic orbits which begin at 
triple collision. 

The subsystem mx, m2 has an 

h12 3 --h-hx2 ; h is the total energy 
( h - -  1 after some scaling). 

energy 

that we 
h12=(.~2/4)-(l/x1). We define 

suppose to be fixed and negative 

L E M M A  5.1. There exist ejection orbits which 90 out from triple collision'with an 
energy h123 arbitrarily large. 

This is shown using ideas of McGehee [6]. 

Proof From (1.4) we get 

xl = x/~ r cos O, 

fCl = x ~  r-ll2 (vcos O-- w 
sin 0 ) 
cos 0 x / ~  " 

Then, using (1.6)we obtain 

W IV 2 (cos 2 0 - sin 2 O) vw sin 0 

,/-w 

rh sin2 0 
+ - cos 0 q 

W 
1( 1)1 

cos 0 1 x/~ W " 

Let p=(r , v )eS  +. Using W(~/2)-2 -1/2 and the fact that  ( 1 / c o s 0 ) •  

[1 - (1/x/~ W)] tends to 4e3/2/~,/2 + e when 0 tends to n/2, we have at p 

II  V2 493/2 1 
hi2 = ; 5 ~ d 2 ~ - ~ ; g )  + h .  

and 

Let N be a constant  such that  N > [hi. If (r, v) is such that  

8E3/2 
v 2 > (5.1) 

x//2(2 + e) 

493/2 ) 
~//2-~ + e ) ( U  + h)-X' 

then h12 < - N .  
The orbit of WL ;1 contained in (g has an infinity of points in S § with v arbitrarily 

large. We fix v = Vo as in (5.1). wu,1 ,, Ls has dimension 2 and the flow is transversal to 
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S +, so there exist orbits of WL'S 1 which intersect S + 

points we have ha 2 < - N. 

with r arbitrarily small. At this 

Let (Xl(t), x2(t), -~1, (t), x2(t)) an ejection orbit given by Lemma 5.1. There exists to 

such that Xl ( to)=0  and h12 3 > M for some large M. We can write this inequality as 

( x 2 ( t 0 ) )  2 (2 + e) 

2 Xz(to) 
> B, (5.2) 

where B = (2 + e)M/2e. The left side of (5.2) is the energy of a two body problem 

with masses 1 and 2 + e. The distance x2 has a larger negative acceleration than the 

corresponding 2-body problem because 

Jr - -  
8 ( 2  + g)X 2 

--(X 2 + 4X2) 3/2 > 
(2 + e) 

2 
X2 

We conclude that for all values of the energy h there exist ejection orbits which 

escape to infinity hyperbolically. By continuity we get the following Lemma. 

LEMMA 5.2. There exists an orbit ~"~1 ~ P~ ~W"'a which goes out from triple L s 

collision in configuration OL and escapes parabolically to infinity without crossing the 

axis x2 = 0. (see Fig. 5.1) 

It is clear that there exist the symmetrical orbits to ~"~1 that is, ~"~2 C pu+ (.~ WS,2 
.. t ~ 

f~3 C P~ ~ W~ 2 and f~4 ~ P"-- ~ ws, l , ,  M' �9 These orbits do not intersect ~0", in the 

position plane ma never cuts the axis x 2 - 0 .  

A " ! " �9 % 

~ % 

f I t 
I m 

', I l 

p - "  I " %  
I [ " 

! 
1 [ 0 

~%% I �9 

" - 2  ~ .  [ ,,~n, ,,,, " "  ~ 1 7 6  "mb ~ qm~, 

- I 

I 
I 

Fig. 5.1. 
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6. E j e c t i o n -  Collision Orbits 

We are interested in the intersection of the invariant manifolds to equil ibrium 

points. These intersections will give orbits which tend to triple collision when t tends 

t o  - -  

First 

of o~ ~ Some computa t ions  show on 

sgn (v") = sgn ( -  w V'(O)) changes at 0 = 0, 0 

we define 

and + ~ .  To do that  we cut the invariant manifolds by a suitable plane. 

we consider ~ o -  The flow is transversal to ~ o  except at the points 
(.D O , U ' t = w W - 1 / 2 c o s O  ( - V ' ( O ) ) ,  s o  

-- +_ 0L and 0 = + g/2. More precisely, if 

= { ( 0 ,  o ~ <0,  0 ~z/2)}, 

X2 = {(0, w)~ co~ > 0 ,  0~ (-~z/2, --OL)W(O, 0L)}, 

X3 = {(0,w)e o~ ~ I w < 0 ,  06  (-~z/2,  --OL)W(O, 0L)}, 

X4 = {(0, w)~ o~~ > 0 ,  O~(--OL, O)W(OL, g/2)}, 

then, v(t) has a local max imum at the points of X lw  X 2 and a local min imum at 

X3 w X4. For  the third derivative on o~ ~ we get 

u , , , _ l W - 1 / 2  -1 W,)2 W" ' - -  2 ( - -  W ( cos 0 + 2 cos 0 - W sin 0 + 2W cos 0). 

Then, if 0 = 0, 
v'" = 9(27/4(2 + ~)~/2)- ~ > 0. 

flexion points. 

v'" = - 7(1 + 4e) - 1/22 1/4 < 0 and for 

At the points of ( . I )~  

O= +_OL, 
v(t) has in- 

L E M M A  6.1. Let p 6 ~oNcl (~#) .  l f  v(t)@O or O(t)@ +g/2 for all t > 0 ,  thenq~(t,p) is 
a collision orbit, that is, r(t) tends to zero when t tends to ~ .  

Proof r(t) has a max imum at p=~0(0, p), so for positive and small time, r(t) 
decreases. Then we can assume v( t )<0 for all t > 0 .  r(t) should be a decreasing 

function tending to a nonnegat ive constant  ro when t tends to + ~ .  If ro 4:0 then 

v(t) will tend to zero when t tends to + ~ ,  but this is impossible because ~;o(t, p) 

should tend to an equil ibrium point out of the collision manifold. 

F rom (1.4), X l = x/~ r cos 0. Along the orbits, X l(t) is a positive and bounded 

function and Y l ( t ) < k ,  where k = - 2 ( 1  -k- 4e)  - 2  for all t. Then there exists t* such 

that X l ( t * ) = 0 .  Therefore either t* is finite or t* = ~ .  If t* should be finite we reach 

binary collision, which is an absurdity. I 

We define 

= {p Y'o  w"h  I  o(t, p) 

a"_ = { p c  I  o(t, p) 

does not intersect ~o  for any t < 0}, 

does not intersect Y'o for any t < 0}. 

Let 0 / / c  ~'o a ne ighbourhood of (0, 0). It is proved in [8] that a~ ~ 5 / / i s  a curve 

spiraling to (0, 0) if ~/ is sufficiently small. Of course, we suppose e < 55/4. In this 

case, a~ is a cont inuous  curve as shown in Lemma 6.2. In fact, numerical  
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computa t ions  show that a~_ has, globally, nice spiralling properties (see Appendix 

A). 

L E M M A  6.2. We parametrize a~+ by a parameter l e [0, ~ )  such that a~_(0)= 

( -OL,  O) and a"+ (1) tends to (0, O) when l tends to ~ .  Then, a~+ is a continuous curve 

and there exists an increasing sequence {li}i~n with 11=0  such that, if 

qi - a"+ (li) = (0 i, O) then a~_ c~ {w = 0} ~_ w i ~  {q~} and O~ > 0 for i even and O~ < 0 for 
i odd. A similar assertion holds for a~ .  

Proof The homothet ic  orbit associated to configuration - 0 L  intersects ~0  at the 

point a~ (0). Therefore, for l > 0  sufficiently small, a~ (l) is a cont inuous curve 

contained in the semiplane w > 0 .  This fact can be shown using variational 

equat ions near the homothetic  Lagrange solution (see [-11] for details), a~. will be a 

cont inuous  arc if a~_ C ~ o  Ncl(~g) that is, a~_ has not intersection with o~ ~ 

Let 12=min{ l>Ola~+( l )=(O~,O)wi th  0~>0} .  This number  exists because au+ 
is a spiral near the origin (use variational equations near the homothetic  Euler 

solution as in [8]. F rom (1.5) k > 0  if w = 0  and O e( - -OL,O ). Therefore the 
arc B = {a~ (l) l0 < l < 12 } is contained in the semi-plane w > 0. In order to prove 
that a ~ 0 = + c~ o~ = Q it is sufficient to show that B ~  o~ ~ Q because a~ and a+ have 
no intersection and a"_ = L 2 ~ L ~(a~). The orbits of W"~) can not arrive, for the first 

time, to a point of X a w X2 so it is sufficient that B does not  cut co ~ at a point (0, w) 

with w > 0 and - O t < 0 < O. 
If binary collision is not regularized, from (1.4) the curve co ~ is u 2 = -V(O)  and for 

- - 0  t < 0 < 0 ,  U 2 = --V(O) > - -V( - -OL) .  From (1.4) and (1 .5)du/dr  =~2vu-V'(O). Then 

du/dO= - 1 2 v -  V'(O)/u and du/dO < -V'(O)/u if v >0 .  Integrating 

0 

u 2 < 2 _!, - V'(O) dO = 2 ( -  V(0) + V ( -  0L)). 

The values V(0)= - ( 1  + 4e)/x/~ and V ( - O L ) =  - ( 1  + 2g)3/2(2 -k- g)-1/2 prove 

u 2 < - V ( - 0 L ) .  Hence B ~ m  ~  Q .  

The existence of a sequence {li} in the condit ions of the lemma follows from the 

changes of sign (if) on w =0 .  The last equation of (1.5) gives, on w = 0 ,  ~b > 0  if 
O~(--OL,O)w(OL, n /2 )and  ~ < 0  if O~(--n/2 ,  -- 0L)W(0, 0L). m 

We define aS+=Ll(au+) and as_--Ll(au__) (see Fig. 6.1), so a \  c w s'2 and 
�9 , M l 

a ~_ c W s, 1 In Figure 6.1 we have assumed nice global spiraling properties accord- . . L I �9 

ing to the numerical  computa t ions  (see Appendix A). For  these properties we refer 

to the Remark 2.1. However, in this case, the radius of the spiral is not  necessarily a 

monotone  function but the numerical computa t ions  show that  the curves aS+, aL,  

a~ and a~ have only intersections on w - 0  or 0 = 0 .  If we do not consider the 

numerical results this behaviour is only guaranted in a ne ighborhood of (0 0). Let 
D c ~ o N c l  ( ~ )  the set bounded by arcs of as+, a~_, au+ and a ~_ as in Figure 6.1. 

After a positive time, the orbits passing through D near (--Ot, 0) escape from a 
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neighbourhood of M i following W1 We call D 1 the component of 
E z. 

D\(a~+ w a r  w{(0, 0)}) which contains these kind of orbits. D 2 will be the other 
component of D\(a~+ w a r  w{(0, 0)}). We define D 3 = L2(D 1) and D 4 =  LI(D1).  V 1 

1 1 determines two families of segments {cj } and {dr} in 71 and 72 respectively as in 
2 Figure 6.1. The corresponding families in /92 are called {cj} and {d 2}. 

For positive integers j >~ 2 we define QI as the closed set in D 1 bounded by d1_1 
and dl(see Fig. 6.1), and Q1 = /91N Uj>~2Q 1. Let us define three more families of 
sets { Q~j }, { Q3 } and { Q~j } in c1(/92), c1(/9 3) and c1(/9 4) respectively by Q~ = L2L 1(Q1), 
Q3 = L 2(Q~.) and Q~j = L 1( Q~. ) for all j c N. 

J J 3 

Given poD,  we define t b ( p ) = m i n { t > O k o ( t , p ) c S + u S - } ,  t_b(P)=max{ t< 
O[~;o(t,p)cS + w S - } .  (We will use tb and t-b if there is not confusion). From Lemma 
6.1 t b exists for every point p c D N ( a ~ _ u o s w { ( 0 , 0 ) } )  and t_ b exists for p c V N  

u u {(o, o)}). 
2) (p c Int(Q 3 We note that if p c Int(Q J u Q j  j uQ4)), j c N, then { ~o(t, p)lt c Int < 0, 

tb(-b)(P)> }, where ( , ) is the convex closure, has j points in S 1. The arcs of 
D 1 ~ a ~_ and D 1 ~ a~+ determine in D 1 a collection of closed sets that we number p1, 
P~, P~ , . . .  as in Figure 6.2. The symmetrical sets Py = L2LI(PJ) are contained in D 2. 
Really the family {PJ } is the intersection of families { QJ }, { Q~j }, { @ } and { Q~} as 
follows: p 1  = Qj ~ Q~ and p 1  § = (Q1 ~ Q~+I) w (QJ+I ~ @) for j >/1. We restrict 

P~ to the set bounded by c~ and the corresponding arcs of a% and aL. A similar 
property restricts p2 2" 

Therefore, if pc Int (PJ) or pc Int (P~), j >/2, {~0(t, p)lt_ b < t < t b } has j points in 
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S 1 . We note that points of open segments (d) } and {d 2 } are in the boundary of 
families Q but they are in the same conditions of points in the interior of sets P. 

P R O P O S I T I O N  6.1. For every positive integer n there exist two symmetrical 

ejection-collision orbits (E - C) between Lagrange configurations such that m 3 crosses 

n times the axis x2 = 0 and there are not binary collisions. For n even the initial and 

final configurations are equal, and they are different when n is odd. (See Fig. 6.3.). 
Proof. The points of a~+ ~a~+ and t~  c~aL correspond to E -  C orbits with n 

even. It is clear (see Fig. 6.3) that these orbits have a point on the zero velocity 
curve. For n odd the orbits are obtained from a~_ c~ as_ and a"_ c~ a~.  II 

The orbits of Proposition 6.1 were given by Sim6 in [10]. 

Now we study the invariant branches attached to Lagrange points which turn 

around some branch of binary collision. We consider the surface $2 near infinity. In 
variables ( x , y , O , R )  the periodic orbit P.O.+ has two points of 71 for 0 -  0 and 

0 = n. The two points correspond to one real point because of the Levi-Civita 
regularization. We will assume that the necessary identifications are done. Then, in 

$2 and near infinity, 0 = 0 will be the zero velocity curve and by the same reason 
0 = n/2 will be the binary collisions. 
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We proved in Section 5 the existence of hyperbolic ejection orbits belonging to 
W[; 1 . Then there is an arc 7 e Wu'lLs ~ 6~ in the hypothesis of Lemma 2.1. The arc 
cr ~ = i~+(7~ .Ex) spirals around P.O.+ We refer to the Remark 2.1 concerning the L s 

spiraling properties of ~r/~. So we obtain the following Lemma. 

LEMMA 6.3. We parametrize ai~ by a parameter l e [0, oo) such that CrL~ (l) tends to 
P.O.+ when l tends to + oo. Then, there exists an increasin9 sequence { l i} i~lol  such 

oO that GLs(h)~ ~k'Ji-- ~ { 0 }  {P2i } and a~sc~S + ~t..)~_ {P2~ _ ~} where p~ = aL~(l~). 
oO In the same way, there is an arc 7 ~ wu'2 c ~ "  M, Sa which gives by i~ an arc aM~ 

spiraling towards P.O._. a~ and a M, will be the symmetrical arcs of a~ and aMS 
respectively by the symmetry L 1. We define x~, for j >/0, as the open segment of ','1 

bounded by points P2~ and P2i+ 2 given by Lemma 6.3 (see Fig. 6.4). x) for j >~ 0, will 
be the open segment of binary collisions bounded by P2~- 1 and P2~+ 1. We define D + 
as the region of $2 bounded by the arc {a~s(/)l/o --< l --< lz }, xo and P.O.+. We call 

{y~} and {yj} thle families of open segments which are symmetrical by L 2 to {x~} 
and {x}} respectively. If D'+ = L I ( D + )  we can define D_ =L~(D'+) and 
D'_ - L 2 ( D  + ). 

As we did before near (0, 0)e~@ 0, we can now define in D + w D'+ a family of closed 
sets {Q.+ } as in Figure 6.4. We have a symmetrical picture in D w D' for the J - -  _ _  

symmetrical sets { Q]-} when j >~ 1. In Figure 6.4 (and the related Figures 11.1 and 
11.4) we have assumed nice spiraling properties. This is supported by the numerical 

evidence as stated before (see Appendix A). 
Let pe  ~U. We define t -x(p)  = max {t < 0[q~(t,p)eS1} and tx(p) = min 

{t > 0[(p(t, p)e $1 }. We will use t - x  and tx if there is not confusion. Then, tx exists for 
every point p e ( D + w D ' + ) \ t ~  or p e ( D _ w D ' _ ) \ ~ r ~ ,  and 

t oO oo  D+)Xtrfs or p e ( D _ w D ' ) N a M s .  
We note that if pe In t  (QJ-) (peInt(Q]-)) for 

t -x  exists for pc(D+ w 

some j >~ 1, the arc 
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a = {qg(t,p)lt_x < t < tx} crosses j + m 1 times S +(S-) .  m ~ is a constant  which 

depends essentially on the size of the neighbourhood used near infinity. It is related 

to a fixed number  of binary collisions. In order to simplify we renumber  the sets 

{Q~+ } and {Q T} beginning in the constant  m ~. Then the subindex j of the set will 

represent exactly the number  of binary collisions of the arc a. 

P R O P O S I T I O N  6.2. For every positive integer n large enough, there exist two 

e jec t ion-  collision orbits with initial and final configurations of Lagrange type such 

that m3 does not cross the axis x2 = 0 and ml has n binary collisions with m 2. (See 

Fig. 6.5). 

n=3 
n--2 

n=4 

(a) (b) 

Fig.6.5 
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Proof These orbits are 
respectively (see Fig. 6.4) 

obtained from the intersections ~ ~ and ~ m 
~ L s 0"12 f f  M s G M , , 

7. The  Sur face  of  Sec t i on  So 

We have used two surfaces of section Y'o and 8 2. The surface 8 2 (y = 0) is not a 
good global surface of section, but it is good for 0L--< 0 ~< n/2. Any orbit cuts $2 

except the hyperbolic and parabolic ones and the Euler homothetic orbit. 

The surface ~o  is also a bad surface of section near infinity. This means that there 

are orbits which cut Y'o tangencially in any neighbourhood of infinity. To show this 
we write v = 0 in (x, y, ~, r/) coordinates. From (1.4) 

v - r-a/2(�89 1 "~ 1 + (2e/(2 + e))x222), 

and using (2.1) 

V = (~4X4/2 -F 8e/(2 + f , ) l / 3 ) - l / 4 ( ~ x  - { - 4 e ( 2  + g ) - l / 3 y / x )  (7.1) 

Then, for v = 0 and x ~ 0 we have 

(2 + E) 1/3 
y = - Cr/x 2. (7.2) 

4e 

The periodic orbit (x, y) = [0,0] is contained in ~ o .  Moreover, ~o  cuts 8 2 at the 
zero velocity curve ( r /=  0) and at the binary collisions corresponding to ~ = 0. 
Using polar coordinates in the plane (r r/) we can write Cr/= R 2 sin(2qS)/2. For x, y 

sufficiently small, R is near 1. Then, if we fix q~, (7.2) is close to a parabola of second 

degree in the plane (x,y), with positive coefficient if ~ r /<0  and negative one if 

Cr/> 0. Figure 7.1 shows ~o  respect $2 near P.O. + after Levi-Civita identifications. 

Another way to make apparent that the variable v is not suitable near the infinity 

is that the periodic orbit P.O.+ is contained in v = 0 but the related invariant 
manifolds have values of v going to +_4e(8e(2 + e))-1/4 (+  for the stable manifold 

and - for the unstable one). 
When the elliptic orbits close enough to the parabolic orbits enter into B+ we 

claim that they have a first intersection with Y'o in the region Cr/< 0, that is, when 

w > 0. To prove the claim it is enough to consider the Poincar6 map F near the 
infinity through q3 = 3n/4 (mod n). /v is given by F(x,y)= (x -�88 + rl), 

!TtX3(X -F r2)  ) where rl and r 2 are real analytical functions of third order in x, y Y - - 4  
(see [6]). If the first intersection with ~o  of an elliptic orbit takes place in the y < 0 
region (i.e. with ~r/> 0), this orbit should reach the Poincar6 section with y < 0. It is 

enough to prove that the preimage of the line y = 0, in the given section has a 
negative value of v. But the preimage is y = �88 + r2) < (2 + E ) l / 3 R 2 x 2 / ( g E )  if x 

is small enough. 

Using 

W -- u c o s O / x / / W  = r-1/z(e, /(2 -Jr- E))1/2(--X2.~ 1 -'[- X1.~2)COS 0 / N / @ ,  



206 CARLES SIM0 AND REGINA MART~NEZ 

pS 
+ 

~p 
= 

S 2 

P 

Y O o 
o 

B 
O r 

41' 

l ~ o o o ~ ~  ~ ~ o ~ 

t 
I 

S 
I 

# 

o / 

~ e ~  o 4 D O  o o ~  O f  

I X ,  

P 
0 

$2 

p __ 

+ 

Fig. 7.1. 

we see that the first intersection takes place in the semiplane w > 0. 
Let f~ (x) be a C o0 function such that fl  (x) - 1 if x ~< ~ and f l (x)  - 0 if x >/~2, 

where 0 < ~1 < 0~2 are two small real constants. Furthermore we suppose f'~ (x) < 0 if 

~1)/2 and f1(~1 + z ) =  1 - f 1 ( ~ 2 -  z ) i f  X E(O~I ,  0~2) , f'l(C~a + z) < 0 if 0 < z < (0~ 2 - 

0 < Z < (0~ 2 - -  O~ 1 ) /2 .  We define 

~(X, y, r rl) = Y f  l (X) + ( 1 - f l  (x))v, 

where v is the function of x, y, ~, ~/given by (7.1). The 

So = {(x, y, {, t/)e ~F]~(x, y, {, r/)= 0}. 

function ~ defines a surface 

We note that  if 0C 1 is sufficiently small, for x ~< 0~ 1 the flow is transversal to So. 

L E M M A  7.1. I f  c~2 is sufficiently small and satisfies 0~ 2 ~ 20Cl, for every value of  x, 

0 < ~1 < x < ~2, the derivative of  (b with respect to the physical time t equals zero at 

exactly two points Pl, P2 E So. When x decreases to ~1 both points have the same limit. 

Proof  If ~1 < x < ~2, we have 

v = --fl(1 - - A ) - l y  

on So. Then, if we recall that dt = ~edK (see section 2) 

d ~  dy dv f l  dx 
~ - - f l~  + (1 -f~)d--~x + Yl 7 f ~  d~" 

(7.3) 

on this region 

(7.4) 

F rom (7.1) and (7.3) 

A 
Y 1 fl  r / =  - ~-~2 -- ) rl/2x + (2 +  )1/3 ' (7.5) 
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where f = ( ~ 4 x 4 / 2  + 8e/(2 +/3)1/3)1/2. Using the energy integral (2 .2)and (7.5) 

(1 - - f l )  2 
y2 _. ~2X4(1 __ ~2 + A2~2x2), (7.6) 

A1 

where A1 =/3(2 +/3)-1/3(1 - - f l )  2 r -'~- (F1 /2 f1X + 4/3(2 +/3)-1/3(1 - f l ) )  2, A2-- 
/3(2 + /3)-1/3(1 "+- 112) -1/2 and u - -  ( 4 ( 2  +/3)1/3) -1 ~ 2 x 2 .  

We can a lso  c o m p u t e  from (7.5) and (7 .6 ) ,  dv/dK o n  So when  ~1 < x < ~2 as a 

funct ion  of ~, r/ 

6V X 2X~ 2 4/3~2X 3 
= t dx ?~1/2 /71/2 r1/2(~4X4 + 16(2 +/3)2/3)  1/2 

f ~ ' x  7 
- (1 - ~2 + A 2  ~2 X2). 

2r  3/2 A 1 
(7.7) 

Inserting (7.7) in (7.4) and using (2.3) we have, after some computa t ions  

d~c 
= (1 - - f 1 ) ro l / 2x (1  -+- o(1))- (2(1  - - f l  )tZo 1/2 X + f l  x4/4)~2( 1 + o(1)) 

where ro = (8/3(2 +/3) - 1/3)1/2. 

We look for the solutions of d ~ / d x  = 0  or, equivalently, 

A X 3 )(1 + o(1)). (7.8) 1 = r 2 + 4(1-f ) 

It is enough to check that  the expression 2 +f l r~) /2x3/4(  1 - - f l )  decreases mo- 
notonical ly from + oo to some constant  when x goes from ~1 to ~2- 

The derivative of fl(1 - f l )  - i x3 is negative if 

O(x) = 3 L ( 1 - f ~ ) -  xf'~ <0,  

where f l  = 1 - f l -  Using the symmetry  of f ' l  with respect to the point x = (el + 

ot2)/2, it is sufficient to prove O(x) < 0 for el < x ~< (~1 + ot2)/2. For  these values of 

x, by the mean value theorem and the hypothesis about  f'l '  we have 

3f~(1 - L )  < 3f '~(x)(x-al) .  

Then, if x ~< 30Cl/2, (t(x) < 0. We conclude that  if 0~ 2 ~ 2~1 the solution ~2 of (7.8) 

increases when x goes from el to e2- Now we note that  when x tends to ~2, f l (x)  
tends to 0 and there is only one value of r which satisfies (7.8). When x tends to 0~1, 

this value of ~2 tends to zero. Therefore if we fix x = x*, ~1 < x* < ~2, d(k/dt has 

two solutions + ~*. Then if we recover y and r/from (7.6) and (7.5), four points given 

by 

ql = ( x * ,  ~*,y*, - r/*), 

q3 -- (X*, -- ~*,y*,r/*), 

q2 = ( x * , ~ * , -  y*, r/*), 

q4 = ( x * ,  - ~* ,  - y * ,  - r/*), 

(7.9) 

are obtained. 

Recall that  from (2.1), ~, r /a re  the Levi-Civi ta  variables, so we must  identify q l 
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with q3 and q2 with 

X2 < 0  in the semiplane w < 0 ,  and the other 
semi plane w > 0. 

We note that d~/dt = 0  has the same solutions 

q4. There are two real points in (7.9), one with "~1 > 0 and 

with s < 0  and s > 0  in the 

that d~/dk--0 if 0~ 1 < X < 0~ 2. 

Following Lemma 7.1 there exists in So a curve co* which separates two regions 
where d~/dt > 0 (the region J r  d~/dt < 0  respectively (see Fig. 7.2). 

Let pc f ' .  We define, if they exist 

t l ( p )  = min {t > 0 [qg(t,p)~ So}, 

t 2 (p )  = max {t < 0 I~o(t,p) e So }, 

(7.10) 

or briefly t l ,  t 2 if confusion can not occur. 

If p e J g *  and tl ,  t2 exist we define two maps ~k, �9 by ~(p)=qg(tl,p) and 
O - l ( p )  =qg(t2,p). In this case, the Poincar6 map on J//* is given by f =  ~o qj. 

These maps are diffeomorphisms. 

We will use So as surface of section. We suppose that the constants ~1 and ~2 
which define So satisfy the hypothesis of Lemma 7.1, and they will be such that So 

does not cut P~+ w P~ at any point of the annulus c~ 1 ~< x ~ . c z  2. This is true for small 

c~1 and c~2. Now we fix the spheres B+ and B_ as defined in Section 2, contained in 

X < O ~  1 . 

Now we are interested in the forward and backward intersections of the parabolic 

manifold with So. For certain values of the parameter e, we assert that these 

3' 1 

c2 

. , \ 
" ~ ' -  "3 \ \ c o  , 

\ / /  / 

Fig. 7.2. 
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intersections are continuous curves with two end points on ~ .  Some evidence, 

analytical and numerical, for that assertion will be given in the next section. The 

study of orbits passing through o~ ~ will be useful to that goal. When the intersec- 

tions of -+_Pu'~ with So have been obtained, it will be easy to show the existence of 

orbits which escape parabolically to infinity for t ---, _+ ~ .  These kind of orbits will be 
essential to the establishment a theorem of symbolic dynamics. 

8. The Manifold of Parabolic Orbits 

We look for the first intersections (forward and backward) of So and the manifolds 
of parabolic orbits. 

-1  i2 i~-I in, on '~1 ~2 .6 3 and g4 respectively, (see We define the maps i l , , , , , , 
Section 2) as follows 

ik- l(p) = ~O(t2, p) if 

ik(P) = qg(t a , p) if 

k = 1,3, 

k = 2 , 4 ,  

where t~, t 2 are given by (7.10). 

Orbits of P~ near ~1 (see Lemma 5.2)cross a neighbourhood of L ~ going back by 
WS,2 the flow. They escape from this neighbourhood following W s'lLs or ,, Ls depending 

- l(e ) contains an arc ~1 on the side in P% where they are with respect to ~1- Then, ix 1 

ending in I s'l and I s'2 It can exist more than one orbit in W u'l ~ P% as f~l We do 
�9 L s . 

not care about this type of orbits if W~; 1 does not cross P%. They only produce 

loops which start in l ~'1 and end in I s'2. On the other hand, the number of orbits in 

W~;lc~ P~ where W~; 1 crosses P~_ must be finite (due to analyticity and compact- 

- l (e  )will contain an odd number of arcs ness) and therefore it must be odd. Then ix 1 

between l ~'1 and I s'2. In this case we only consider the arc ~ which is furthest from 

COo. Recall that el and e2 were selected such that ~1 is contained in ~g*. 

It is clear that ~1 can be discontinuous. In fact, it is so for small values of e (see 

Lemma 8.2). It means ~1 ~co~ 4 : Q .  The points of X I  w X 2  (see Section 6) correspond 
to local maxima of v(t) on the orbits. Therefore, in order to prove the continuity of 

~a it is enough to look for possible intersections of ~1 and X3 w X4. But, using the 

symmetries, ~ will be continuous if the following assertions are true 

Assertion 1. 

V(to)  = O. 

If p = (0, w)e o~ ~ w > 0, 0 < 0 --< 0L, then there exists to < 0 such that 

Assert ion 2. 

V(to)  = O. 
If p = (0, w)e ~o ~ w > 0, 0L ~< 0 < n/2,  then there exists to > 0 such that 

LEMMA 8.1. There  is a critical value e* < 0.502 such that, if ee(e*, 55 /4 ) for  every 

point p = (0, w)e  o) ~ w > 0, OL ~< 0 < n/2 there exists to > 0 such that O(to) = 0. 

Proof. From the energy integral (1.6), on o~ ~ we have r = - V ( O ) / 2 .  Then the 

projection on the position plane of e) ~ is homothetical to the zero velocity curve and 
given by V ( X l , X 2 ) = - 2 .  
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Coordinates  (X 1 ,X2,)C 1 ,9~2) of p can be computed as functions of O: 

X1 ,p 
W 

X2 ,p 
X/2 + e W sin 0 

= 5c O' 
(8.1) 

) ~ l , p  --" - 2  sin O, 

-~2 ,p X/2+e -- - COS O. 

Let us suppose x2(t) > 0 for all t > 0. From (1.1) 

"X2 ~ -- 
8(2 + e)X 2 

(b 2 q- 4X2) 3/2 

if b is an upper bound of Xl(t), that is, x l ( t ) < b  

22 2(2 + e) 2 < 
2 (b 2 -k- 4 x 2 )  1/2 

+ F  

where 

for all 

(8.2) 

t > 0. F rom (8.2) we get 

f .__ 

22 2(2 + e) 2,p 

2 (b 2 -F 4x22,p) 1/2" 

If F ~< 0, x2(t  ) cannot  be arbitrarily large and it must be equal to zero for some 

to > 0. We will determine the values of e such that F < 0. It is easy to see for initial 

conditions (8.1), that F < 0 if and only if the function 

F(O, e,) = 2e, b 2 c o s  4 0 + (2 + I~)W 2 sin 2 0 COS 2 0 -  3283 

is negative. 
We take b = Zl where (zl ,X2,p)  is a point of the zero velocity curve, that is 

1 

Zl (z 2 -t 
4~ 

(2 + e) 

2e 
W 2 t a n  z 0 )  1/2 

= 1. (8.3) 

U sing (8.3) we get F(0, 8) < 0 if and only if zl > 1/sin20. 

If ~ >~ 0 is a constant,  the function 

1 4e 
g(zl) = 

Z 1 (Z 2 q- 00 1/2 

given by the zero velocity curve, is a decreasing function of Z l.  Then Z 1 > 1/sin20 is 

equivalent to g(zl) < g(1/sin2 0), that is 

cos40  2 + e 
Ga(O, e) = sin40 § 2e W 2  s i n 2 0  COS 2 0 -- 16e 2 < 0. (8.4) 
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We note that W(O) and cos 40/s in40 are decreasing functions in the interval 

[OL,n/2). Then we can use W(0L) = (1 + 2e)2 -1/2 and COS40L/sin40L as upper 

bounds of these functions. Therefore, if 0 � 9  n/2) 

..< F 2 + GI(0, 8) / 3e 

2 + (2 + e)(1 + 2g) 2 

16e 
- -  1 6 e  2 = G l ( e  ). 

Now the proof is finished because Gl(e) < 0 for e > 0.502. 

In particular, Lemma 8.1 implies that points p in the hypotheses of Assertion 2 

cannot escape to I+ without crossing the axis x2 = 0. 

In order to give more information about Assertions 1 and 2, we have made some 

numerical computations for different values of e in the range 0 < e < 55/4. Before we 

give these results we will make some comments. 

We note that from (8.4) we have for 0 < e < 55/4 

~2 si----n i 0 + + 

[1 4cos0 1 
ex/~ + v/2 + i6 sin 2 0/55 cos 2 0 sin 2 0 -  16 

-" e2 G2(0,~3). 

For a fixed value of e, let that p = (0, w) �9 o9 ~ be, with 0 �9 [0L(e), n/2), such 

G2(O, e.)<0. Then, as in l_emma 8.1, there exists to > 0  such that 0(to) =0 .  

If we fix 0 <  e < 55/4, G2(O, e) is a decreasing function of 0 if O e In~4, n/2). 
Moreover if we fix 0 in that interval and G2(O, e o ) < 0  for some eo>0 ,  then 

G2(O , e) ( 0 for all eo ~< e < 55/4. 
Using the above reasoning and the computation G2(0.87, 0.35)< 0 we have that 

for all e >--0.35 if p =(0, w) �9  09 o with 0 � 9  [0.87, n/2), the orbit ~0(t, p) cuts the xl-axis 

for some positive time. We note that in that range of e there are values of the 

parameter in cases I, III and V. We have studied the three cases numerically. 

In fact, it is enough to study the behavior of the points p �9 o9 ~ such that 

(8.5) lep ~ r z ,  

where r z = (1 + 4 e ) / ~  is the value of the m o m e n t u m  r at the point  of the zero 

velocity curve with 0 = 0, and rp the momentum at p. If rp > rz and the orbit q)(t, p) 

crosses the axis x2 = 0 for some positive time, then ~o(t, p) would go into the region 

r < rz before the crossing. Therefore q~(t, p)would have passed through the plane ~o. 

It is easy to see that if 0 > Oz(e), where 

Oz(e) = arccos 
12 

V / 2 + e  ) 

+ 8e)x//2 + e  - 4ex/~ ' 

then, the point p = (0, w) �9  o9 ~ satisfies (8.5). Oz(e) is an increasing function of e and 
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TABLE 8.II e = 2  TABLE 8.III e = 5  

0o 01 wl 0o 01 wl 

0/~ 0.198417 -0.828670 0/. -0.043 385 
0.9 0.198 643 - 0.828 650 0.98 - 0.043 283 
0.92 0.199 819 -0.828 539 1. -0.042192 
0.94 0.202 124 -0.828 301 1.02 -0.039 766 
0.96 0.205 706 -0.827 895 1.04 -0.035 804 
0.98 0.210 732 -0.827 270 1 . 0 6  -0.030073 
1. 0.217 382 -0.82,6 362 1.08 -0.022 296 
1.02 0.225 854 -0.825092 1.1 -0.012146 

i 

1.04 0.236 364 -0.823 358 1.12 0.000 766 
1.06 0.249 143 -0.821037 1.14 0.016902 
1.08 0.264435 -0.817975 1.16 0.036802 
1.1 0.282 492 -0.813 990 1.18 0.061 098 
1.12 0.303 572 - 0. 808 861 1.2 0.090 502 
1.14 0.327 923 -0.802 333 1.22 0.125 789 
1.16 0.355775 -0.794 119 1.24 0.167748 
1.18 0.387 327 -0.783 902 1.26 0.217 086 
1.2 0.422 736 -0.771348 1.28 0.274 312 
1.22 0.462104 -0.756 119 1.3 0.339600 
1.24 0.505478 -0.737 884 1.32 0.412 711 
1.26 0.552846 -0.716336 1.34 0.493015 
1.28 0.604146 -0.691 200 1.36 0.579 619 
1.3 0.659272 -0.662236 1.38 0.671 538 
1.32 0.718082 -0.629 238 1.4 0.767825 
1.34 0.780404 -0.592022 1.42 0.867 601 
1.36 0.846028 -0.550419 1.44 0.970003 
1.38 0.914698 -0.504 259 1.46 1.074043 
1.4 0.986083 -0.453 363 1.48 1.178425 
1.42 1.059 748 -0.397 539 1.5 1.281 296 
1.44 1.135 105 -0.336598 1.52 1.379925 
1.46 1.211 357 - 0.270 410 1.54 1.470138 
1.48 1.287 426 -0.199048 1.56 1.544 523 
1.5 1.361 865 -0.123 178 

-0.917901 
-0.917911 
-0.918009 
-0.918218 
-0.918536 
-0.918956 
-0.919461 
-0.920021 
-0.920583 
-0.921063 
-0.921332 
-0.921 197 
-0.920376 
-0.918471 
-0.914935 
-0.909060 
-0.899984 
-0.886749 
-0.868392 
-0.844059 
-0.813063 
-0.774885 
-0.729093 
-0.675237 
-0.612727 
-0.540726 
-0.458016 
-0.362819 
-0.252588 
-0.124426 

0.012741 

ofqg(t, p) with ~ o  is a point on co ~ To see that, we append the Table 
8.IV, 8.V and 8.VI there are also discontinuities of the same type. 

On the other hand, we have the following result. 

L E M M A  8.2. If 0 < e  < 8e = 2x/~/ (16  - x/~)  ~ 0 . 2 4 2 7 8 9 . . . ,  

which escape to infinity without crossin9 ~o. 
Proof. Let p = (0, w) in the hypotheses of Assertion 2. 
From (1.1) 5/2 > / - ( 2  + e)/x 2, and, by integration, if 

22/2 - (2 + I?,)/X 2 >t F where F = 9~2 p / 2  - -  (2 + e)/x is the energy , 2 ,  2 , p  

problem. Using (8.1) we can compute F for 0 = 0L" 

there are 

F _._. 41 
1 + 2e 4e x/~ " 

8.Ib. In Tables 

points of co~ 

22 >t0 then 
of a 2-body 
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TABLE 8.IV e=0.35 TABLE 8.V e=2  

0o 01 W1 0o 01 W1 

0.05 
0.1 
0.12 
0.14 
0.16 
0.18 
0.2 
0.22 
0.24 
0.26 
0.28 
0.3 
0.32 
0.34 
0.36 
0.38 
0.4 
0.41 
0.45 
0.47 
0.5 
0.52 
0.55 
O.58 

--0.100467 
--0.203714 
--0.246405 
--0.290171 
--0.335233 
--0.381867 
--0.430456 
--0.481570 
--0.536152 
--0.595958 
--0.664960 
--0.757255 
- -  1.189098 
- -  1.224086 
- -  1.269140 
-- 1.225481 
- -  1.246669 
-- 1.257390 
-- 1.301675 
--1.325439 
- -  1.368039 
--1.310158 
--1.321476 
- -  1.326895 

0.992208 
0.970765 
0.959373 
0.946882 
0.933616 
0.919852 
0.905804 
0.891597 
0.877230 
0.862485 
0.846637 
0.826765 
0.429368 
0.449059 
0.466952 
0.261927 
0.290974 
0.304571 
0.352264 
0.371771 
0.394770 
0.251663 
0.269300 
0.277242 

0.005 
0.1 
0.15 
0.2 
0.25 
0.3 
0.35 
0.4 
0.45 
0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0.8 
0.85 

OL 

-0.010000 
-0.200182 
-0.300583 
-0.401296 
-0.502376 
-0.603944 
-0.706375 
-0.810730 
-0.920037 
- 1.045568 
-0.438186 
-0.457144 
-0.474358 
-0.489412 
-0.501870 
- 0.511229 
-0.516871 
-0.518178 

0.999960 
0.984397 
0.965511 
0.940132 
0.909128 
0.873359 
0.833494 
0.789711 
0.740963 
0.681453 

-0.763271 
-0.749884 
-0.737493 
-0.726511 
-0.717362 
-0.710488 
-0.706376 
-0.705435 

TABLE 8.VI e=5  

0o 01 W1 

0.05 
0.1 
0.15 
0.2 
0.25 
0.3 
0.35 
0.4 
0.45 
0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0.8 
0.85 
0.9 

OL 

-0.099980 
-0.199837 
- 0.299441 
-0.398645 
-0.497301 
-0.595275 
-0.692507 
-0.789118 
-0.885642 
-0.983633 
- 1.087901 
- 1.229597 
-0.298474 
-0.316316 
-0.332675 
-0.347090 
-0.359027 
-0.367824 
-0.373124 

0.996881 
0.987588 
0.972312 
0.951348 
0.925060 
0.893840 
0.858036 
0.817847 
0.773143 
0.722978 
0.663868 
0.572026 

-0.892991 
-0.886799 
-0.880988 
-0.875780 
-0.871425 
-0.868211 
-0.866292 
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Then F > 0 at 0 = 0L if e < 2 x ~ / ( 1 6  - x/~). 

Lemma 8.2 proves that ~ is broken for small values of e. 
The numerical computations show the existence of values ~ e  (0.2847, 0.2848) 

and g2~e (0.2733, 0.2734) such that the Assertions 1 and 2 are true for s ~) < e < 55/4 
and e (2) < e < 5 5 / 4 ,  respectively. These numerical results give evidence for formulate 
the following conjecture. 

Conjecture.  There exists a critical value Sc e (0.2847, 0.2848) such that the Assertions 
1 and 2 are true for all ec < ~ < 55/4. 

Using the conjecture for ~ e (~c, 55/4) the intersection between r and co ~ is empty. 
In the following we will reduce the case I defined by Proposition 1.1, to values of e, 

~3c</3<~31. 
In the same way, i2(e2), i 3 l ( e3)  and i 4 ( e 4 ) c o n t a i n  arcs ~2, ~3 and ~4, respectively 

such that ~1 = L~(r ~3 - L 2 ( ~ 2 )  and ~4 = L1(~3). Figure 8.1 shows the evolution of 
these arcs as a function of ~. In case I, r cuts ~3 at least in one point. So we have a 
biparabolic orbit of type P P + _  (see Figure 8.2). It means that the orbit comes 
parabolically from one infinity, I+ in this case, and goes parabolically to the other 
I_.  ~1 ~ ~4 gives the symmetrical orbit of type P P _  +. In the case III a new type of 
biparabolic orbits appears coming from, and going to, the same infinity. 

We call them P P +  + (see Figure 8.3) and P P _  _. In Case V there are only the 
latter type of biparabolic orbits. 

i,I S,1 I oi,I 

0 

m 'w ~ ml,Z[ ~s,2 mi,2 
W W 

I. e <e< s C I 

-2 ~ m S t 

II. s = c I III. e I < C < c 2 

i,I S,I 
l =m 

ks, ~ m  i , I 
0 

~ mS'2 

i,2 s,2 
m =~_ 

i,I i 

S,11~/'-~ 
s ~ / ' ~ 2  ~ _ 

s S,2 
s 

S,I 
m i,I 

~4~mS'2 

i,2 
m 

W 

IV. E=E 
2 

V. e <'~ < 55/4 
2 

Fig. 8.1. 
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/ 
) 
) 

P, 
Fig. 8.2. Fig. 8.3. 

9. Some Properties of the Poincar6 Map 

We define R1---I//-I(D+), R2--(I)(D+) , R 3 = ~ - I ( D _ )  and R4=(I)(D'_). We can 
suppose Ri ~ ~r i =  1, 2, 3, 4 because Cg c ~fl, for i =  1, 2, 3, 4. 

L E M M A  9.1. Let 3/be an arc in Jg. 

(i) / f  7 c  RI (R3)  has an endpoint in ~X(~3), then ~t(7 ) is a spiral in D+(D_)  which 

tends to P.O. + (P.O._). (See Fig. 6.4.) 

(ii) I f  T c  R2(R4) has an endpoint in ~2(~4), (I)-1(7)is a spiral in D'+(D'_) tendin 9 to 

P.O. + (P.O._). 

Lemma 9.1 is a consequence of Lemma 2.1. 
We consider the family of segments {c j } defined in D 1 (see Section 6). Let 

m2 = m i n { j e  ~ ] ~ ( d ) ) i s  a cont inuous arc in So} + 1. Then ~(P~) with k = 2 m  2 is 
contained in ~f /and it does not contain any point of co ~ The arc of/3o between I i'x 

and m i'1, and the boundary  of ~(P~), k = 2m 2, determines in ~(D 1) a region which 

contains ~ ( P ) )  for all j >~2m 2. We denote this region by ~ x. For  the sake of 
simplicity we keep the letter D 1 for the region such that q / x =  ~(D 1). In the same 
way we reduce the sets D 3, O 2, and D 4. We can define in Jr  the sets 

0"//3 --- I / / -  1 (D 3), 

01 / a __ ~(D1), 

0"//4 - -  I / / -  1 (D4) ,  

o~ 2 = (I)(D 2). 

It is clear that we can obtain pictures which are qualitatively different for the sets 
0//1,2,3,4 depending on ~. 

L E M M A  9.2. Let  7 = {(0, w)6 ~r 0 = 0(z), w = w(z), 0 < z ~< 1 } such that 7(z) tends to 

a point p e  flo when r tends to O. I f  7(1)~ ~ -1 (c2) (~ (c2) )  and 7(z)= ~ 3 (011 1 ) for  

0 < z ~< 1, then, there exists a sequence rl ,  z 2 , . . ,  z , , . . ,  which tends to 0 such that 
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Case I 

Case I I I  

A1 = 0"// 3 (-~ ~g 2 

A2 = 0"//3 t'~ R 2 ,  

A 3 = R g ~ R  3, 

A 4  = R3 ~ 0//1 , 

A5 = og 1 ~  o'g 4 

A6 = Oll 4 ~R4,  

A7 =R4~R1,  

A 8 = R I ~ O g 2 .  

(9.1) 

A1 = R I ~ R 2 ,  

A2 = R3 ~ R4 , 

A3 = R 2 ~ R 3 ,  

A4 = R4 ~ R1. 

(9.2) 

Case V 

A1 = R 1 ~ R 2 ,  

A2 -- R2 ~ 0~/3 

A3 = 0//3 ~ 0"//1 

A5 = R3 ('~ R4, 

A6 = R4 ~ 0"//4, 

A7 = 0"//4 ("~ 0~/2, (9.3) 

A4 = 071 1 ~ R 3 ,  A8 = ~ / 2  ~ R 1 .  

Our goal is to characterize the orbits which cross the sets Ai defined above by 

sequences of symbols. So first we give an abstract theorem of symbolic dynamics. 

Then we apply this theorem to the cases I, III and V of the isosceles problem. 

10. A Theorem of Symbolic Dynamics 

We consider in the plane (x, y )n  bounded, connected and pairwise disjoint sets that 
we call A1, A2, ... An. Let 

homeomorphism from A to 

matrix d o  = (~i,j)defined by 

A = Wi~tAi where I = {1,2, . . . ,  n] 

f (A )  c R 2. We associate to f an 

and let f be an 
n x n transition 

_ { ~ i f f ( A i ) ~ A j # ( 7 ) ,  (10.1) 
(Zi'J = if f (A i )  ~ Aj • (2), 

Let us consider a set S of special symbols S = {.N, L, M, ri, l, m] (we note that the 

finite set S can be arbitrary and the full construction is carried away in a similar 

way). We suppose that it is possible to associate to f a new matrix d of zeros and 

ones so that 

do 
- -  ,5 2 0 6 

(10.2) 

We call it the transition matrix with respect to J - -  I w S. In (10.2), 0 6 is a 6 • 6 

matrix of zeros, d o  is given by (10.1). d l  and ,57~' 2 have orders n • 6 and 6 x n 

respectively and they verify the following properties 
n 

(1) ~ ~j,,~ 0 
i = 1  

if j ~  {ri, l,m}, 
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2, 3, 4, define in Ai, two types of curves that we call horizontals (h.c.) and verticals 
(v.c.) respectively. 

Two h.c. 7 and 7' without intersection in a point 7(0, 0 < r < 1, define a horizontal 
strip H (h.s.). The diameter of H (d(H)), will be the Hausdorff distance between 7 and 

7'. The vertical strips (v.s.) are defined in the same way. 
We say that 2 h.s. (v.s.) are disjoint when the points of intersection, if they exist, 

are in c3Ai. 
We note that some of the arcs Fj can be reduced to a point. From now on we 

assume that in every Ai the arcs Fj, j = 1, 2, 3, 4 are fixed. 

Hypothesis 2. For all i e I, there exist in Ai g0)countable  families of h.s. {{Hji}}jel: 
pairwise disjoint and c(i)families of v.s. {{Vmi}}m~i, pairwise disjoint satisfying the 
following properties: 

(a) They are ordered and intercalated so that there exists a global numeration 

{Hi(k)}k~ of the h.s. such that every g(i) strips, the picture of {Hi(k)}k~ is like 
Figure 10.1. There is a similar arrangement {Vi(k)}k~ for the families of v.s. 
Furthermore we assume that it is possible to define limit strips as 

Hi(oo) : 

Vi( oo) = 

{(x, y)e 8Ai[ there exists a sequence of points (x, y)ke Hi(k) for 

all k e N, such that (x, Y)k tends to (x, y) when k tends to oo }, 

{(x, y)e 8Ail there exists a sequence of points (x, Y)R e Vi(k) for 

all k e r~, such that (x, Y)k tends to (x, y) when k tends to oo }. 

(b) f maps homeomorphically v.s. into h.s., that is, 

f (Vmi(k)) = Him(k). (10.5) 

The horizontal (vertical) boundaries are mapped into horizontal (vertical) boun- 

daries if f is defined on them. 

Hi (k)=Hj (r) 

/ 

Ili (k ~2)=Hj 

i 
S 

(r+l) 

(r+2) 

i 
S 

i 
S 

(r+fl-l) ~Hi (k+~-l) =Hj 

Hi (k+fl)=Hj (r) 
s+l 

i 
S 

(r) (r+l) 
J ,j ,...j 

fl:g(i) 

(r+fl-l) C 
I ! 

3_ 

Fig. 10.1. 
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T H E O R E M  10.1. Let 
bounded and connected 
with a transition matrix 

pair of sequences (a', a) 

Proof We suppose t 
Let 

A =k.Jg~tAi , I = {1 ,2 , . . .n} ,  where for every i c I, Ai is a 
set in the plane. Let f be a homeomorphism from A to f (A) 
d as in (10.2) satisfying the Hypotheses 1,2,3. Then for every 

c Z, there exists a point p which fulfils it. 
hat (a', a )c  Z is an (a) type couple. 

B l = { p c A  [f ' (p)c[/m,  m = O ,  1,2, . . . } ,  and 

B2 = {pc  A [ f - " ( p )  c [/_,., m = 1,2, . . .} .  

We define in a recursive way 

[ / 0 , 1 , 2 , . . . n  = {pc A I f " ( p ) c  J-/,., m = 0 ,  1 ,2 , . . .  n} 

= ~ / o ~  f -1(~/1 ~ f -  1(... ~/n-1 ~ f -  l(~/n))... )" 

The 
is a v.s. in Aa'o. 

[/ [/ By definition o,1,2,...,+1 c o,1,2,..., are 

B1 = O,~0~'o, 1,2,..., :/: (3 is a v.s. (possibly a 

F rom (10.5), /z/_,.+ 1 = f ( ~ ,  ,.)" Therefore 

Hypothesis 3 implies ~/,_ l ~ f - 1 ( [ / )  is a v.s. in Aa'._ 1" By recursion ~"0, 1 

compact  sets for 

V .C.). 

,2 . . . .  n 

all n c N. Then 

B2 = {pc  A [f -=(p)  c/=/_,,, m = 0 ,  1, 2 , . . . } .  

We define 

t 7 " / 0 , _ 1 , _ 2 , . . .  _ n  - -  {pc A [ f - " ( p )  c M_,,, m = 0 ,  1 ,2 , . . .n}  

= BoC~f(B_a ~ . . .  H_.+ 1 ~ f ( H _ . ) ) . . .  ). 

Using the same argument  as above B 2 - (")n ~0/'=/0,_ 1 , . . . - n  is a h.s. 
t 

in Aao. 
Hypothesis 1 implies B I c~B2 4: (3. 

Let us suppose that (a', a )c  Z is a (b l) or (b2) type couple. 
in the case (a). Let 

(possibly a h.c.) 

We define a v.s. B1 as 

if 

B 2 = {pc  A [ f - " ( p )  c [/_,,, m =  1 , 2 , . . . - ( k  + 1)}. 

F rom (10.5),/z/_,. + 1 = f ( f / - , , ) i f m  < - ( k  + 1). Moreover  by using 
f k  + l (p)  C ~/'k + 1 then f k  + 1(10) C B k + 1 and f k  + 2(p) C F /k  + 2. Therefore 

(10.7)  a n d  (10.5) 

B2 = {pc  A I f - " ( p )  c/z/_,,,  m = 0 ,  1 ,2 , . . .  - ( k  + 1)} 

= / 7 / o  ~ f ( / z / _  1 c~ " " " ~ f( /r/k + 2 ~ f( /z/k + 1 ) ) . - - ) .  

As above,/7/k + 2 t'-h f(/z/k + 1 ) is a h.c. in Mk + 2. By r e c u r r e n c e  B 2 is a h.c. in/7/o- Then 

B x ~ B z :/= (Z) . 

The Theorem is proved in the same way when (a', a) is a (c) or (d) type couple. 
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Let us suppose that the curves and strips from the Hypotheses 2 and 3 verify the 

following properties: 

(a) Every h.c. in Ai cuts each v.c. in Ai only at one point. 
(b) If V is a v.s. V ~ Vim for some m 6 ~, then there exists a v, 0 < v < 1 such that 

d ( f  - l(V)("3 Vi j (k) )  ~ v d ( V )  

for all j e l'i and for all k ~ ~. In the same way, if H is a h.s. 

then 

d(f  (H)~ Hij(k)) ~< vd(H) 

H c H i  m for some m 6 ~, 

for all j ~ I i and for all k ~ ~. 

Then it is clear that the point p given by the Theorem 10.1 is unique. 

11. Symbolic Dynamics in the Isosceles Problem 

Theorem 10.1 will give different types of behaviours in the isosceles problem. We 

will prove Hypotheses 1, 2, and 3 for the case V. In the cases I and III only the 

results will be given. 

In the case V we take A = LYi~iAi, I = {1,2,3,4,5,6,7,8} where Ai sets are defined 

in (9.3). The Table II.I shows in each Ai, how the arcs Fj, j - 1,2,3,4 are selected in 

order to satisfy Hypothesis 1. It can be seen that Fj is reduced to one point on/3o in 
some cases. (,) means the points of c~Ai which are not contained in any of the 

defined arcs F~ 

TABLE 11.I 

A1 A2 A3 A4 A5 A6 A7 A8 

I-'l ~1 Ii'1 li'l ~3 ~3 rrli'2 mi'2 ~1 
I"2 OR1 ~ ~1 ~0~ 3 ~ ~0 oO-lg 3 ~ ~0 (*) ~R3 ~ ~3 ~0~1 " 4. ~ ~0 ~ 4 ~ ~0 (*) 
['3 ~2 ~2 rrls'l mS'l ~4 ~4 ls'2 Is'2 
I-'4 a R2 ~ ~2 (*) (~O'll 1X  ~o •o'l[ " I X ~o t3 R4 X ~4 (*) (~O'll g X ~0 ~O'll 2 X ~0 

For every Ai, an arc 7 as in (10.4) will be a h.c. if 7(0)e F1 and 7(1)e ['2- It will be 

a v.c. if 7(0)e F3 and 7(1)e F4. 
Using Lemmas 9.1 and 9.2 we will define some families of horizontal and vertical 

curves and strips, qs(A1) and qJ(A8) are two spiral strips as in Figure 11.1. There is a 

symmetrical picture in D_ for qs(A4) and qs(A5). Moreover qs(A2), qs(A3), qs(A6) and 
qs(A7) are spiral strips in D3wD 4 as Figure 11.2 shows. Then we can define the 

following families of horizontal strips and curves 
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where 0 8 x 3 ( 0 3 x 8 )  is the 8 x 3 (3 x 8) matrix of zeros. There is a set E associated 

with M' as given in section 10 whose elements are couples of sequences. 

The families of curves and strips defined by (11.1), (11.2) and (11.3) verify part  (a) 

of Hypothesis 2. For  part  (b), let us consider, for example, the v.s. V18(k) for some 
k > m 1. Using definition (11.2a) 

f(Vl8(k)) = (I)[(I)-'(A1)c~ O~- ~cl(q,(A8))] 

= A1 c~(I)[Q; c~cl(~,(A8))] = H81 (k) 

and (10.5) follows for m = 1 and i - - 8 .  We denote by /')1 and U 2 (h I and h2) the 

vertical (horizontal) boundaries of V18(k) as in Figure 11.3. In this case, h 2 is 

reduced to I s '2 and so f is not defined on it. F rom Figure 11.4 it is easy to see that f 

preserves the boundaries Vl, v2 and hi. We can prove part (b) of Hypothesis 2 for 
the rest of the strips in the same way. 

L E M M A  11.1. Let E(V) be a h.c.(v.c) in Ai such that E c Hi(m) (V c Vi(m)) for some 
m e  ~. Then f ( E ) ~ H i j ( k ) ( f  - l (V)~Vij(k))  is a h.c.(v.c) in Aj for all j e  l i ( je  I'i) and 
for some k for which Hij(k)(Vij(k)) is defined. 

Proof. $(E) is a spiral curve in $(Ai) contained in D + if i - 1, 8, in D_ if i = 4, 5, in 
oO oo D 3 if i = 2, 3, and in D* if i = 6, 7. So, $(E) cuts at infinite points to aL,, a M, if i = 1, 8 

and i =4 ,5 ,  respectively. $(E) cuts a~_ and a ~_ in other cases. Then, for all j e l i  and 

for all k e ~ such that Hij(k) is defined, $ ( E ) c ~ - l ( H i j ( k ) )  @ O.  The proof is similar 
for v.c. II 

We have proved Hypotheses 1, 2, 

theorem. 
and 3. Then we conclude with the following 

T H E O R E M  11.1 Let e 2 < • < 5 5 / 4 ,  and let E be the set formed by the couples of 
sequences of elements belonging to I w S = {1, 2, 3, 4, 5, 6, 7, 8 } w { lV, L, M, fi, l, m } 
which are of some of the types (a), (bi), ci), (d/j), i =  1, 2 , j  = 1, 2, with respect to the 

h 

v 2 

VI8 (k) 

V 
I 

I 

~'S,2 
f 

Fig. 11.3. 
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(3O 

-1 o i 
(A1) L 

/ 
. �9 ~, 

/ I b \', 

/ { / qj (v2) \ / ,, 

(VI 8 (k) ) 

) 
I 

b 

(I 

(A8) 

Fig. 11.4 

transition matrix 

"~2 06 

given by (11.4), (11.5) and (11.6). 

Then for all couple (a', a)e Z such that aj > m*(e) = max (m 1, mZ), 
point p e Aa'o which fulfils it. 

there exists a 

The geometrical interpretation of the orbits given by Theorem 11.1 needs some 
comments. 

Let p e A the point that fulfils (a', a)e Z. 

If (a', a) is of (a) type, q,(t, p)crosses So infinite times for positive and negative time. 
The sequence a' gives the successive sets Ai which are visited by <o(t, p) in each 

passage by So. 
Let us suppose that (a', a) is  of (bl) type. Then, by the definition (10.7a), 

fk+ '(p)e l/k+, = Va'k+ 2a'k+ l(ak+ ,)C'~ Hal, + 1 (oo) 

for some k <0.  From d 2  a;,+l must be equal to 1, 2, 5 or 6. Then, 

Ha'k + ~ (oo) c ~2 w ~4 and <0(t, p) comes parabolically from infinity. For a (b2) couple 
(a ' ,a)eE, fk+l(p)eEa'ka'k+ ~(a,) for some k <0.  Then qg(t,p) is an ejection orbit from 
L s if a;, = l and from M s when a;, = m. Using same reasonings the (cl) couples 

correspond to orbits which escape parabolically to infinity. The (c2)couples give 
collision orbits at L i if ah = L and at M i if a~, = M. The couples of (d) type are the 
combination of parabolic, ejection and collision orbits. The Table 11.II summarizes 
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the behaviour of the orbits corresponding to the different types of couples. In this 
Table we use P for parabolic orbits and E and C for ejection and collision 
respectively. 

TABLE 11.II 

(a', a) (bl) (b2) (cl) (c2) (d l l )  (d12) (d21) (d22) 

t < 0  P E P P E E 

t > 0  P C P C P C 

In order to represent, on the position plane, the orbits which pass through A we 
remark some facts. 

Let p ~ A2wA3  and suppose that f(p)  exists. We denote by ~ the arc of ~0(t, p) 
between p and f(p). There exist tl, t 2 and t 3 such that q~(tl, p)~ S - ,  qg(t2, p) E D 3, 
qg(t3,p)~S-wS + and there is not any t~(O, t l )~( ta , t2)~(t2 , t3)  such that 
q~(t, p) ~ S -  w S +. Moreover if f(p) ~ A3 w A4 then ~0(t3, p) ~ S + and q~(t3, p) ~ S -  if 
f ( p ) ~ A 7 w A 8 .  When p ~ A 6 w A 7  cOll 4 the result is the same but q~(tl,p)~S +. 

We consider pc  A8. ~o(t,p) goes to S + near r If f (p)~ A2, ~ has only binary 
collision with 0 = 7t/2. These binary collisions will be counted in the passage of ~7 by 
D+. If f (p)~ A1, there is one passage by S -  near f(p) but this passage will be 
considered when the orbit went out of A1. 

We have summarized the behaviours of the orbits which pass by A in Table 11.III. 
The row tl tells us if the arc ~ has a first passage by S + w S -  or not. Row t3 refers to 

TABLE 11.II1 

P t 1 t2 t3 f ( p )  

A2 S + A3, A4 q/1 
~l 3 S -  S 1 

A3 S -  A7, A8 ~ 2 

A6 S + A3, A4 ~ 1 

01/4 S + $1 
A7 S-  A7, A8 q/2 

A1 S-  
S + A1 A2 R 2 R1 

A8 

A4 

R 2 S -  A5, A6 R4 

A5 S + 
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a possible last crossing by S + wS-  immediately before f(p). The central row says 
whether 9 passes near the Euler homothetic solution or near I + or I_ .  An element 

a, of the sequence a will denote the number of binary collisions at 0 = rt/2 (S +) or 
0 = -~t/2 (S-)  or the number of complete revolutions around the Euler homothetic 

t t solution depending on a,  and a,+ 1. Recall that every one of these revolutions is one 

oscillation of m3 around the axis x 2 - 0  on the position plane. 

We give three examples 

(1) (a', a ) =  ((... 4, 6; 3, 7, 8, 1, 1 , . . . ) ,  

( . . .a-z ,a-1;ao,  al,a2,...)), 

(2) (a',a)=((l, 1; 2, 4, ]V), (a-z,a-1;ao, ~)), 

(3) (a',a)=((m, 3;4,6,7, L), (a-z,a-1;ao, al,a2)). 

The Figures 11.5, 11.6 and 11.7 display the evolution of the corresponding orbits 

on the position plane. In every case we assume that (a', a) is in the hypotheses of 

Theorem 11.1 but to clarify the pictures we represent the orbits for small values of 
the elements a,. 

In the case I, that is ec < e < el we take A = k_)i~iAi, I = {1, 2, 3, 4, 5, 6, 7, 8}, 
where the sets Ai are defined in (9.1). The transition matrix associated to f respect to 
IwS  is given in the form (10.2) where 

J O  = 

m 

1 0 0 1 1 0 0 1 

1 0 0 1 1 0 0 1 

0 0 0 0 0 1 1 0 

0 0 0 0 0 1 1 0 

1 0 0 1 1 0 0 1 

1 0 0 1 1 0 0 1 

0 1 1 0 0 0 0 0 

0 1 1 0 0 0 0 0 

(11.7) 

" ~ 1  --" 

m 

0 1 1 0 0 0 

0 1 1 0 0 0 

1 0 1 0 0 0 

1 0 1 0 0 0 

0 1 1 0 0 0 

0 1 1 0 0 0 

1 1 0 0 0 0 

1 1 0 0 0 0 

0 

0 

0 
J 2  = 

0 

1 

1 
i 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

0 

0 

0 

1 

0 

1 

0 

0 

0 

1 

0 

1 

J 

0 

0 

0 

0 

1 

1 
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/ 

a _  2 

) 
2a 2 a  

2ai+I 

a 3 

) 
) a4 
) 

Fig. 11.5. 

t 
-2 -I 

a +1 
o 

Fig. 11.6. 

2a_2+I 2a +I 
-I 

o 

2a +1 
I 

Fig. 11.7. 
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Now Y: will be the set of couples of sequences with respect to the transition matrix 

given by (11.7). 

A similar study to case V can be done for ec < e < ea. We obtain for all couples 

(a', a)~ E such that aj > m*(e), a point pc Aa'o which fulfils it. 
We only note that in this case appears a new type of transitions. For example, we 

consider (a',a) of (a) type with a ' , -  5 for all n~Y. The corresponding orbit passes 

infinite times by a neighbourhood of the Euler homothetic solution. It on)y has 
0 = r  t/2. This kind of behaviour is not possible for binary collisions with 

s < ~" < 55/4. 
In the case III, the set A is the union of the four sets defined by (9.2); the 

transition matrix in this case is the following 

m 

1 0 1 0 I I 
I 

0 1 0 1 I 
I 

0 1 0 1 I 
I 

1 0 1 0 I I 
I 

I 

0 0 0 0 I I 

0 0 0 0 i 
I 

0 0 0 0 I 
I 

1 1 1 1 I I 

1 0 1 0 I I 
I 

0 1 0 1 I 
I 

m 

1 1 0 0 0 0 

1 0 1 0 0 0 

1 0 1 0 0 0 

1 1 0 0 0 0 

0 

We note that in this case, we can not assure the existence of orbits which have a 
large number of oscillations around the x 1-axis without escape to infinity. In fact, if 

that number is sufficiently large then, the orbit escapes. 

12. S o m e  F a m i l i e s  of  S y m m e t r i c a l  Per iod ic  Orbi ts  

In this section we classify some of the families of symmetrical periodic orbits. All 

these families are included in the set of orbits given by the Theorem 10.1 in the 

isosceles problem. To obtain these orbits we use the reversibility of the system (1.5) 
respect to the symmetries L 1 and L 2. We denote by Fix(L 1) (Fix(L2)) the set of 
po;nts which remain fixed by L 1 (L2). It is known (see [3]) that if p ~ Fix(L1), for 

example, and z = m i n  {t>Ol~o(t,p)eFix(L~)wFix(L2)} is different of zero, then 

qg(t,p) is a symmetrical periodic orbit. In fact, ~o(t,p) is symmetrical with respect to 
L 1 and 2z-periodic if qg(z,p)e Fix(L 1) and it is symmetrical with respect to L 1 and to 
L 2 with period equal to 4z if qg(z, p)e Fix(L2). 

In the isosceles problem we have Fix(L~)= 7~ WT+ wT-  and F i x ( L 2 ) =  ~'2 . Recall 
the segments 7+ and 7- defined by (4.1)correspond to points of binary collision 

such that the momentum r has a local minimum. In order to obtain the symmetrical 
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PROPOSITION 12.2. Let el.< e < 55/4 and let n, m be two large positive integers. I f  

n ~ m, there exist two periodic orbits symmetrical with respect to L 1 such that they 

have n + m binary collisions with constant sgn(x2) and exactly one collision with the 

opposite sign of x2, as in Figures 12.2a and 12.2b. I f  n = m they complete one period 

after n binary collisions (see Figure 12.2c). 

Proof The intersections O(xj)~t[J-l(xk) give the periodic orbits which have the 

n + m binary collisions with x2 > 0 if n and m are even. For odd values of n and m 
the orbits are obtained from O(x))~qJ-~(x'k), and from O(xj)~qJ-l(x~,)in other 

cases. The orbits with binary collisions in the semiplane x2 < 0 are symmetrical of 
these. II 

PROPOSITION 

ficiently large. 

12.3. Let e < e I or 82 < 8 < 55/4 and n, m positive integers suJ- 

(i) 

(ii) 

There exist two periodic orbits symmetrical with respect to L 1 such that during 

one period of time, m 3 crosses n + m times the axis x2 = 0  as in Figure12.3a if 

e <e l  and as in Figure 12.3b/fe2 < e  <55/4. I f n = m  and e < e l ,  then the orbit 

completes one period after n crossings of  the axis x2 = 0 (see Figure 12.3c). 

There exist two periodic orbits symmetrical with respect to L 1 such that m 3 

crosses m times the axis x2 = 0 and n binary collisions take place with constant 

sgn(x2) in one period (see Figure 12.4). 

Proof The orbits of (i) are given by O(c))~t /J- ' (c  1) and (I)(c2)(-'~l/J-l(c 2) if c < el, 

and by O ( c l ) ~ J - l ( c ~ )  and O(c~)~J- l (c~)  if < < 55/4. The part (ii)is obtained 

from O ( x j ) ~ j - l ( c ~ )  and O ( y j ) ~ J - l ( c ~ )  for every value of ~ in the hypotheses. II 

"!I -> 
) 

(a) (b) (c) 

Fig. 12.2. 
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(a) E<s <e< e (c) e (b) e I 2 2 

Fig. 12.3. 

< E: < 55/4 

P R O P O S I T I O N  
sufficiently large. 

12.4. Let  e < e I or e2 < e < 55/4 and n, m odd positive integers, 

(i) 

(ii) 

There  exists  a periodic orbit symmetrical  with respect to L 2 such that during a 

period, m 3 crosses n + m times the axis x2 = 0 as in Figure 12.5a if e < el ,  and 

n + m + 1 times as in Figure 12.5b /f e 2 < e < 55/4.  In the last case there are 

only n + 1 crossings in one period, when n = m (see Figure 12.5d). 

There  exists  a periodic orbit symmetrical  with respect to L 2 such that, in one 

Fig. 12.4. 
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A 
/ 

(a) e < e I (b) e 2 < e < 55/4 (c) e < s (d) e: 2 < E: < 55/4 

Fig. 12.5. 

period, m 3 crosses 2m times the axis x 2 =0 and it has n binary collisions with 

x2 > 0 and n with x2 < 0 (see Figure 12.6). 

Proof  Use O(d ) )~ f f - l ( dk  z) if e < e l  and ~ ( d ) ) ~ - l ( d ~ )  for e2 < e < 5 5 / 4  in (i). 
For  the orbits of (ii)consider O(x~)c~qJ-~(d],). II  

P R O P O S I T I O N  12.5. Let ~ < ~  or z 2 < ~  < 5 5 / 4  and n, m positive integers with 

different parity. 

(i) There exists a periodic orbit symmetrical with respect to L ~ and to L 2 such that 

during one period, m3 crosses 2(n + m) times the axis x2 = 0 as in Figure 12.7a if  

e < el and as in Figure 12.7b in the other case. 

Fig. 12.6. 
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(a) E < el (b) s < c < 55/4 

Fig. 12.7. 

(ii) There exist two periodic orbits symmetrical with respect to L 1 and to L 2 such 

that m3 crosses m times the axis x2 = 0  and n binary collisions with constant 

sgn(x2) take place in one period (see Figure 12.8). 

Proof The orbit of ( i ) i s  obtained from O(c~)~q,-l(d 2) for e<E 1 and 
~I , (d ) )~ , - l (c  2) for 82 < 8 < 5 5 / 4 .  TO get the orbits of (ii) it is necessary to consider 
~(c2)~q,- l(x; , )  and ~(c))~q,-l(y; ,) .  II 

Some of these periodic orbits were obtained before this work. The existence of the 
orbits of (i) in Propositions 12.3 and 12.4 is proved in [10]. 

Fig. 12.8. 
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Fig. 12.9. 

Finally we remark in the case e 1 < e < e2, the orbits which pass closely to the 

Euler homothetic solution escape to infinity. It means that for k sufficiently large, 
q;-l(c~) for example, is contained in the possible hyperbolic zone determined by ~1 
(see Figure 9.1b). It is possible that for small k, q;-1(c~) cuts ~1. Let us suppose it is 
true for k =  1. In this case, ~-1(c~) cuts the arcs of the family {~(xj)}. This 
intersection gives a family of symmetrical periodic orbits as in Figure 12.9. In the 
same way, if q;-~(d 2) cuts the arcs of {~(xj)} we will obtain a new family of 

symmetrical periodic orbits. Broucke ([1]) computed some orbits of the last family 
for small number of binary collisions. This implies the existence of the family 
corresponding to ip - ~ (c ~) n ~ ( x j )  for all number of binary collisions. 
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Appendix A: Some Numerical Computations Concerning Invariant Manifolds 
of the Isosceles Problem 

Some dynamical results given in the work rely on the relative position of curves 
which are the intersection of the planes v = 0 or y = 0 (or some other suitable planes) 
with several invariant manifolds of equilibrium points or periodic orbits. The results, 
some of them known by other authors, which have been proved analytically have a 
partial character and say nothing about the good spiraling properties of the curves. 
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To give evidence enough about  the nice global behaviour of several curves we have 

done several numerical computations. In what follows we summarize the results and 

we give a sample of pictures. First of all we have computed the intersection wu, x , ,  t s 

with the plane {y = 0.5}. In W u' 1 the motion going down is faster than the motion L s 

along the triple collision manifold (compare the eigenvalues at LS). Hence, we have 

computed first the intersection of W "'1 with the triple collision manifold (i.e. an t s 

orbit on r =0),  and the variational solution associated to this orbit such that the 

starting conditions are contained in (a linear approximation to) W "'1 near L s. In L s 

this way we obtain a narrow strip: If P ~ W "' 1 ~ {r = 0} and Q is the corresponding L s 

variational solution at this point we consider the segment PR where R = P + Po Q, 

po small. When P changes, the segment generates the strip. Then, starting at points 

as R, forwards integration produces orbits which generate the full wu, l Checks �9 , Z s �9 

with different values of Po are done to obtain an accurate enough description of 

W"i~ 1 . 
Now we are interested in the spiraling behavior of the curve obtained cutting 

W '''a with some plane y = Y0 Yo > 0, and also in how this curve intersects the curve L s 

obtained cutting P% with the same plane. This last curve has been computed in a 

similar way: Starting at y = y l ,  Yl small, an approximation of P%, restriced to 

Y =Y l, can be obtained from the analytical expansion of the manifold. Then, 

backwards integration allows to obtain the intersection with y - Y o .  Of course, we 

have done checks, as before, using several values of y~. Usually the value Yo =0.5  

has been used. 

Figure A1 shows a sample of results for e = 1 and e = 30. In the range [0.1, 30], 

covered by our computations,  the qualitative behavior is the same: The curves show 

U 
W 

q 

S 
P+ 

P 

q 

W u , 1 P+ 
L s 

P 

a I b 

Fig. A1. The intersections W,,I,,L s ~ { y = 0 . 5 }  and P % ~ { y = 0 . 5 }  are drawn for (a) e = l ; ( b ) e = 3 0 ,  in(a)  
the coordinates are p = ( x -  0.4) cos (20), q = ( x - 0 . 4 )  sin (20) and the window is ( -0 .8 ,  0 .8)(-0 ,6 ,  0.6). 

In (b) 0.45 is used instead of 0.4. The window is ( -0 .2 ,  0 .2)(-0 .3 ,  0.3). 
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good spiraling properties, they intersect only once P~+ and the spiral is compressed 
when e is increased. The region where the intersection with P~+ is produced is 
displayed again suitably magnified in Fig. A2 for different values of e. Table AI gives 
values of q5 (mod re) for which the intersection with P~+ is produced on {y =0.5}. 

Table AII gives an estimation in radians of the angle ~ measuring the transversality 
U'sl and ps+ on {y = 0.5}. of W L 

T A B L E  AI 

0.3 1 3 10 30 

q3 -0 .60295  -0 .68913 -0 .84888 - 1.14580 - 1.99100 

TABLE AII 

e 0.1 0.3 1 5 10 30 

103~ 11.1 10.8 8.4 3.5 1.2 0.5 

The intersection of W u' 1 with {y = 0} is an infinite spiral as shown in Section 2. L s 

Figure A3 shows a portion of this spiral for e = 1. In this representation P.O.+ lies 
on the origin. Furthermore, from the quantitative point of view it has been predicted 
in Section 2, using only the dominant terms, that between the angle q3 and the radius 
x the relation qSx 3 =constant  should hold. Table AIII gives some values of 
(measured in revolutions)and of x (measured in arbitrary units)and the product Ox 3 
for e = l .  

T A B L E  AIII 

q5 1 2 3 4 5 6 7 
II  

x 0.916 0.722 0.647 0.598 0.563 0.536 0.513 

~x 3 0.769 0.753 0.813 0.855 0.892 0.924 0.945 

q5 8 9 10 11 12 13 14 

x 0.493 0.477 0.464 0.452 0.440 0.429 0.420 

q3x 3 0.959 0.977 0.999 1.016 1.022 1.026 1.037 

This gives evidence about the fact that, for a fixed q5 (mod n) the successive values 
of x behave roughly as constant • n -1/3 n ~ N ,  going slowly to zero 

The next computation is that of W~; 2 cut by the v = 0 plane. Figure A4 shows the 

results for e =0.3 and e = 3, but they are qualitatively the same throughout the 
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q 

W u , 1 
S 

L , 

Fig.  A3. W u, 1 The  in tersect ion  ,, L ~ c~{y = 0} is given for e =  1. The  var iables  are p =  x cos(2qS), q = x sin(2q3). 

Window:  ( -  1.28, 1 . 2 8 ) ( - 0 . 9 6 ,  0.96). 

range of our computat ions [0.1, 10]. To detect the nice spiraling behavior we have 

drawn also the symmetrical curves. As it should be the spiral has a geometric 

behaviour and it compresses faster the greater the value of e. As we know, for e = 
55/4 there is no spiral and the curve enters directly to the origin. For the sake of 
completeness in the case e =  3 we have included the intersection with v - 0  of 
W~; 1 and the symmetrical curves. As stated in Section 7 these curves are broken 

and they are made of an infinity of arcs. The successive arcs get strongly compressed 

because they are related to Table AIII. Furthermore the starting point of each 

one of the arcs (which end on the curve t3 = 0) is only in the region w < 0 for a finite 

number of arcs. 

The last set of computations refers to the real behaviour of the regions given in 

Figure 9.1 entering in the symbolic dynamics description. In this figure there appear 

the arcs ~/, i = 1, 2, 3, 4, as defined in Section 8 and four more arcs joining the points 
1 ~'1, and m i'1, I i '2 and m i '2,  I s'2 and m s'z, I s 'x and m s ' l .  We have taken the last four 

arcs as r r r  and (I)-~(c 2) (respectively) and are denoted by r/l, r/z, ;73 

and q4 (respectively). These curves are suitable for our purposes because they are 
already continuous. Hence, using the terminology of Section 9 we have m 2 =  2. The 



PLANAR ISOSCELES THREE-BODY PROBLEM 243 

"=0 

-0 

W s , 2 W u , 2 
M i ~  s 

L 
0 
L 

v=O 

0 

W u , 1 ~ W s , 1 
M s L i 

w a 

r=O 

W u, 2 v=O 

L s 

W u r 

L s 

Fig.  A4. 

W b 

(a) In te rsec t ion  with the plane v = 0 of the b ranch  w , , 2  , ,  L s and  the symmet r i ca l  ones  for e = 0.3; (b) 
I d e m  for e = 3, inc lud ing  the branch  w" ,  1 ,, L s and  the symmet r i ca l  ones. 
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r=O 

S F 
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s ,2 4 

2 
s,2 
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/s,l 

iP 
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7"/2 
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s,2 

i,l 
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q a 
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r=O 

b 

/ 

/ 

s,2 
m 

i,l 
m 

P 

+=0 

q C 

Fig. A5. T h e  curves  ~i and rh, i = 1, 2, 3, 4 in the plane v = 0 for e = 0.3. Relat ive  pos i t i on  with respect  to  
the curves  r - 0 and t; = 0. Smal l  marks  d e n o t e  the p o i n t s / * ' *  and m*'*. The  c o o r d i n a t e s  used are p = p 
cos(@), q = p sin(@), where  p = 1 - rc -1 arctan(2.5r),  @ = arctan(w/O). (a) T h e  full figure; (b) and (c) t w o  

m a g n i f i c a t i o n s  wi th  w i n d o w s  (0.9, 1 . 0 1 ) ( - 0 . 0 4 5 ,  0.045) and ( - 0 . 5 ,  0 .5) (0 .325,  0.7), respectively.  
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extreme points of the arcs ~i, r/i, i = 1, 2, 3, 4 are the points of the type 1"* and m*'*. 
Table AIV gives some values of I s'~ and I s'2 for different values of e. The other points 
are obtained by symmetry. 

T A B L E  AIV 

e 0.1 0.3 1 3 10 30 

0 - 1.5707462 - 1.5707796 - 1.5673631 - 1.4897127 - 1.2822462 - 1.1529981 s ,  1 

w 0.0100106 0.0057763 - 0 . 0 8 2 8 6 4 4  - 0 . 4 0 2 4 7 9 4  -0.75'!,/!,038 - 0 . 9 0 0 8 3 1 9  

0 1.5006676 1.2365198 0.5099078 - 0 . 0 5 2 8 5 8 3  - 0 . 4 8 6 4 9 3 0  - 0 . 7 4 0 8 9 4 9  / s ,  2 

w 0.3743560 0.8100443 1.3212062 1.4132256 1.3296450 1.2147961 

Figures A5 to A7 show the curves ~i, r/i, i -  1, 2, 3, 4 as well as the curves r = 0 
and t~ = 0  all of them in the v = 0  plane, for e =0 .3 ,  1 and 3, showing the three 
different cases. In Fig. A5 we see that the ~i curves are near the 6 = 0 curve, but they 
are already continuous, in agreement with the Conjecture in Section 8. In Fig. A6 it 
is seen that the curves r and r#2 intersect in two points (and a similar thing is true 
for the symmetrical pairs). Using only continuity reasons it is not strictly true that 
they should intersect as displayed in Fig. 9.1, but this does not affect the definition of 
regions Aj. In a similar way, in Fig. A7 the curves r and 172 intersect in three points. 
For continuity reasons they should intersect at least in one point. However, the 
number of extra intersections depends on e and the two extra points dissappear for 
slightly greater than 3. 

. . . . .  
m # 

774 ~ I 

+=o 

r = O  

l m ' 
~ { // / 

S , 2  
/ m 

zi'2 ~i ~4 

mi,~~~~/is, 2 
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r7 1 
\ i 1 

\ 
'i 

~ 3 1 r=O 

/ 
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~4 / 
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77 3 

0 

Fig. A6. (a) Same as Figure A5(a) for e =  1; (b) A magnification with window (0.96, 1 .02 ) ( -0 .06 ,0 .06 ) .  
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/i,l m s,l 

r=O 

/s,l i,l 
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0 
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/i,2 s,2 
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lS,-2 w mi'2 a 

r = 0  

4 1 

b w 

Fig. A7. (a) Same as Figure A5(a) for e = 3; (b) A 
( -0 .05 ,  0.05)(0.996, 1.0015). 

magnification with window 
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Appendix B: The Fictit ious Orbits  s t, j = 1, 2, 3, 4. 

The global flow of the planar isosceles three-body problem gives rise, after adding 
the boundaries at triple collision and at infinity, to a 3-dimensional closed ball 

taking out two open 3-dimensional balls and four lines s t, j = 1, 2, 3, 4, as displayed 

in Fig. 4.1. The line sl goes from one of the points deleted from the 2-dimensional 

sphere corresponding to triple collision, a point related to an infinitely close binary, 
to one of the points deleted from one of the 2-dimensional spheres at infinity, a point 
related to hyperbolic motion of the binary with respect to the third body with 

infinite escape velocity. The lines s t, j = 2, 3, 4, are obtained by symmetry. 
The purpose of this Appendix is to explain the behaviour of the flow near those 

lines and to see that  they are natural boundaries that can be added to the global 

flow to get, as fully compactified phase space, a 3-dimensional closed ball minus two 

2-dimensional open balls. Physically those lines can be seen as orbits between 

infinity and triple collision travelled at infinite velocity. The two equal masses are at 
distance zero. Hence the energy of the binary formed by them is - o e  and therefore 

the energy of the system formed by the binary and the third body is + oo. 
Before going into the details we make a remark on the limiting case. Let - h ,  

h > 0 ,  be the energy of the binary - h  = . / 2 / 4 -  l/x1. Then the period of the binary is 
(g/2)h -3/2. The remaining energy gives (e/(2 + e))~22 - 4 e  (x21 + 4x2)  -1/2 = h - 1 and 

hence, when x2 goes to infinity x2,o~ =((2 + e ) ( h -  l)/g) 1/2. 

In one oscillation of the binary, i.e., between two consecutive binary collisions, the 
distance between the binary and the third body, for big values of x2, increases by an 
amount  O(h-~). To slow down the motion in order to detect the oscillations of the 

binary, for instance, scaling time to reach a finite limiting period, implies that the 

escape of the binary from the third particle is stopped when h goes to infinity. 

As we are interested in motion near a rather close binary we introduce suitable 

variables in a neighborhood of the collision which can be used both in the regions 
near infinity and near triple collision. 

Let x, y, ~, r/ be the variables introduced in (2.1) to describe the motion near 
infinity and x the independent variable used there. We also use the variable r as 
defined in (1.4) and the constant d = e(4(2 + g ) l / 3 )  - 1. 

We define the variables X, Y, ~ by 

~ 4dr 
X = x 1 + r + 4 d r x  2' 

•/ 4dr 
Y - Y 1 + r + - 4 d r y  2 '  (B.1) 

~r l+r 
(i 
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and the independent  variable k by dk = ( r ( 1 -  Y2)/(1 + r)) 1/2 dx. We denote again 

b y '  the differentiation with respect to ~. Then the following equat ions of mot ion  

are obtained 

+ 

(2 + ~)1/2 1 
X 3 y ( 1 -  y2)~2 + - 

4e 3/2 2p 3 

2~3/2 

(2 + e)l/2 p3 

X 7 ( 1  --  X 2 ) ( 1  --  y 2 ) 2 ~ 3 r / +  

Xs(1 _ X 2 ) 2 y ( 1  _ y 2 ) ~ 2 ,  

(2 -k- ~3) 1/2 
g '  ~ _ . . . _  

4~3/2 
X4(1 - X2) -2 (1 - y2)3~2(1 + U2) -3/2 + 

1 + ~  
2p 3 

~ ' =  r / -  

X6y(1  --  y 2 ) 3 ~ 3 r ]  + 

(2 + ~)1/2 

493/2 

2~3/2 
(2 -+- ~)1/2p3 X4(1  - X2)y2(1 - y2)2 ~2, 

(B.2) 

X4(1 - X 2 ) - 2 y ( 1  _ y 2 ) 2 ~ 3 ( 1  + u2) -3 /2  _ 

1 2g 3/2 
X6(1 __ y 2 ) 3 ~ 4 7 ~  _ 

2p 3 (2 + ~)1/2 p3 
X4(1 _ X2)y(1 _ y2)2~3, 

_ ~[y2  + (1 - X 2 / p ) ( 1  - y2)]  + X2(1 _ X2)-1  (1 - Y2)~(1 + u 2) -3 /2 ,  

where 

p2 _ ~X4(1 _ y2)2 ~4 + (8e3/(2 + e))(1 - X2) 2 

and 

U --  
1 

4e 
X2(1 - X2) - z(1 - y2)~-2. 

The variable r is obtained from 

1 ~'4(1 y2)2 (1 + r) 2 - 2 - + (8e3/(2 + e) )X-4(1  - X2) 2 (B.3)  

and the energy relation is written as 

n + + (1 - x /p)(1 - y 2 ) ]  = 

1 + X2(1 - X2) - 1(1 - y2)~2 (B.4) 

[1 + Tt6X4(1 -- X E ) - E ( 1 -  y2)2~4]-1/2. 

If X < X 1 < 1 then the equations (B.2) are regular. The condit ion X < X1 is 

equivalent to the condit ion that the variable 0, defined in (1.4), is bounded from 

below by some positive constant.  We make the hypothesis X < X1 < 1 from now on. 

Later on we shall see that in the region considered this is satisfied. We are interested 

in very fast escape motions,  i.e., big values of y and therefore, according to (B.1), in 

values of Y close to 1. Let i z = 1 - Y .  F rom (B.4) we obtain that It/I, 1~1 are bounded 
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by expressions of the type 1 + O(~'). 
can be rewritten in the form 

It is easely seen that the equations of motion 

X, ( 2 + 0  '/2 [ ( 2 + e )  '/z 
= 5~3-~ x3~'~  ~ - 1  + \8~-3 X2(1 _ X 2 )  -1 .qt_ O ( ~ / ) ]  

2 + e  
i~'= - X4(1 - X2)-2Y 2 ~2(1 + O(Y)), (B.5) 

2 ~  3 

~' =,7 + o(}':),  

,7'= -~ +o(~) 
The triple collision manifold is obtained putting r - 0  in (B.3). If furthermore 

Y = 1 then a value X = Xo is obtained and for this value one has ((2 + 0/(8~3)) 1/2 
X 2 ( 1  - X 2 )  - 1  - -  1. The region of interest is contained between X close to Xo (triple 
collision manifold) and X - 0  (infinity). Hence, as said before, there is X1 < 1 such 

that X < X I. Let ~ the argument of ~" + x / / -  1 r/and define a radius R as Y-1. Figure 

Y=I  

. O ~ m *  

~  * * * �9 ~ 

t "  
�9 ~ �9 . *  o a ~ 1 7 6  t *  ~  

8 I t u  8 1 m  Q Q Q  �9 

. o 6 " *  

9 o  ~ 

~ P 

~ i b o �9 Q I Q B e o 

B . .  i ~ * ' *  

* * * *  

. ~ *  9 :  Q~ 
. . . . .  . . . . - -  . . . .  

6era e e e o c  ~ e e  
~ 6 o  4 j ~ 1 7 6  

e *  �9 ~ 

~  ** 
n o o v 6 o e i t  e ~ ~ 1 7 6 1 7 6 1 7 6  

~ 1 7 6 1 7 6  

R 

t .c .m 

i n f i n i t y  

.(c) 

Fig. B 1. 
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B.1 displays the phase space for Y close to 1, where R and ~ have been used as polar 
coordinates and X as a vertical one. 

For i z = 0  one has X ' =  i z' =0 ,  ~ ' =  r/, r / '= - ~  and we obtain a cylinder foliated 

by periodic orbits each one for a different value of X. If X = 0  one also has 
X ' =  i z ' =  0, ~ ' =  q, r / '= - ~  but now the value of X remains 0 for all the orbits and 

Y takes any value in a neighbourhood of 1. We obtain an annulus foliated again by 

periodic orbits. 
The fact that i z' is non positive for X close to Xo and in fact it is negative unless 

~'= 0 (it is zero for ~" = 0 due to the unavoidable scaling of time to regularize binary 

collisions) shows a spiraling behavior on the triple collision manifold towards X = X0, 
Y = 1. This is a way of rewritting the spiraling along the horns in Fig. 1.3. 

The cylindrical annulus limited by the triple collision manifold and infinity with 

vertical walls Y = 0 and )" = ~fo, iZo small enough, is positively invariant according to 

the equations (B.5). If X < X o - O ( ~  we have X' < 0 and the flow approaches the 
cylinder Y = 1 going downwards. Only in a thin neighbourhood of the triple 

collision manifold the variable X goes up and down following closely the form of the 

triple collision manifold in these variables. We claim that any orbit entering the 

cylindrical annulus goes down to infinity ending in one of the periodic orbits of the 
bot tom annulus. To prove the claim it is enough to remark that this orbit can not 
go to one of the periodic orbits which foliate the cylinder Y = 1. This would imply 

that a physical orbit (i.e. coming from some finite values of Xl, x2, 21, 22) would 

reach a finite value of x2 ~ 0  with an infinite value of 22 which is an absurdity. 
Further information is given by the Poincard map through ~ = r:/2 (recall that 

due to the regularization this means to consider the values of X, i z after two 

successive collisions). Let X, i z be the initial point and let X,, ~Y, be the image under 

the Poincar6 map. We can easily obtain from (B.5) the expression 

,2+ ,1j2 i 
X n - - X - - T r "  2~3-~ X 3 y  1 - - 8 - a -  3 X2(1 - X2) -1 ..{_ O(]()J ,  

2 + e  
iz. = i I -  rc 

2 ~ e  3 
X4(1 - X 2 ) - 2 y 2 ( 1  -+- O(]')). 

(B.6) 

The map (B.6)can be seen as the time one flow of a vector field in the X, i z 
variables. Figure B.2 shows the orbits of that vector field. 

Finally we can shrink the cylinder Y - 1  to a line. In fact, going back to the 

variable ~ or Xl we get ~ = Xl = 0  because Y = 1. This is precisely the line Sl. Using 
again as independent variable the physical time t it is obvious that the line is 
travelled at an infinite velocity because 

dX (2 + ~)1/2 
. - - -  

dt 4~ 3/2 
/93(/92 __ X2) -3 /2X3(1  __ y 2 ) - 1 / 2  

I (2+  )1j2 1 - 1  + k  8e3 X2(1- X 2 ) - I  -~- O(](') . 
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