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Abstract. We consider the particular case of the planar three body problem obtained when the masses
form an isosceles triangle for all time. Various authors [1, 2, 12, 8, 9, 13, 10] have contributed in the
knowledge of the triple collision and of several families of periodic orbits in this problem. We study the
flow on a fixed level of negative energy. First we obtain a topological representation of the energy
manifold including the triple collision and infinity as boundaries of that manifold. The existence of orbits
connecting the triple collision and infinity gives some homoclinic and heteroclinic orbits. Using these
orbits and the homothetic solutions of the problem we can characterize orbits which pass near triple
collision and near infinity by pairs of sequences. One of the sequences describes the regions visited by the
orbit, the other refers to the behaviour of the orbit between two consecutive passages by a suitable surface
of section. This symbolic dynamics which has a topological character is given in an abstract form and
after it 1s applied to the isosceles problem. We try to keep globality as far as possible. This strongly relies
on the fact that the intersection of some invariant manifolds with an equatorial plane (v =0) have nice
spiraling properties. This can be proved by analytical means in some local cases. Numerical simulations
given in Appendix A make clear that these properties hold globally.

1. Triple Collision Manifold

We consider, in the plane, three masses m;, m, and m; at the vertices of an isosceles
triangle. Let x, the distance between m, and m, and x, the (signed) distance
between the center of masses (c.o.m.) of m, ,m, and m; (see Fig.1.1). We fix the c.o.m.
of m,,m,,m5 at the origin and we take m; = m, and the suitable velocities of the
three masses in order to maintain the isosceles configuration. We introduce the
parameter of masses ¢ = m;/m, and after a suitable scaling we suppose m, = 1. The
equations of motion are

. 2 8ex;
Xy = ——5 — ,

' x7  (xf + 4x3)3?

(1.1)

. 8(2 + ¢)x,
X, = — :

2 (x1 + 4x3)3/2

The energy integral is given by the function
X3 5

H=T+2+EXZ+V(.X1,X2) (12)
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Fig. 1.1
where
1 4¢
V(xlaXZ) = - -

x; (x{+4x3)!/?

is the potential.

~If we fix a value h of the energy, the motion takes place in a 3-dimensional
manifold ¥. When the energy is positive or zero, it is known (see [4]) that for all the
initial conditions the three masses escape to infinity. We study the case where energy
h < 0. After a suitable scaling of variables and time we can restrict at the level

h = —1. Therefore from now on we suppose that ¥ is the manifold of constant
energy — 1.
The zero velocity curve (see Fig. 1.2) given by
—Vi(x{,x,)—1=0 (1.3)

is the boundary of the region where the motion takes place. The projection of this
region on the position plane is called Hill’s region and given by —V(x,,x,) — 1 =0.

The system (1.1) has two singularities: for x, = 0, which corresponds to double
collisions, and for x; = x, = 0, that is, at triple collision.

In order to study the behaviour of the orbits passing near triple collision we use
the blow up method due to McGehee [6]. The suitable transformations of the blow
up in the isosceles problem have been made by Devaney [2]. In the remaining part
of this section, we present a summary of known results about triple collision in the
isosceles case.

Let us introduce some notation: x' = (x,,x,), p = Ax, 4 = diag(1/2, 2¢/(2 + ¢)).

We define new variables r,s,v,u,0,u,w by

r=(x' Ax)'/?, ,
s=r 'x=(A""Y2(cos0, sin), Oe[—n/2, n/2],
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v =rl'2(s,p), (1.4)
u=r'2(A""p—(s,p)s) = u(4A " )""*(—sin 6,cos 0),
w = u cos 0 (W(0)) /2,

where

Vo) = — 1/(ﬁcos 0) — 4e3'% /(2e + 4 sin? 0)V/2, W(0) = — cos OV (0).
Scaling the time by dt/dt = r*/? and dt/d7 = cos 8/(W(6))'/2, we get from (1.1)
r' = rvcos O(W(0)) "1/,

J W(0) (1 —cosB(v? — 4rh)/2 W(0))),

W, (1.5)
=sin@(—1 + cos 6(v? — 2rh)/W(8)) — vwcos 8/(2./ W(0)) +

+ (cos 8 — w?/2) W'(0)/W(0).

I4

U
9/
wl

In (1.5) the prime ' means differentiation with respect to 7, except in W'(6) where
W'(6) denotes d W(6)/d6. We rename t = 7. After (1.4) the energy integral becomes

w? cos 6 v?
—-1= —— . :
2cos w(0) (rh 2 ) (1.6

The transformation (1.4) is analytic at r > 0 and defines a vector field which 1s
analytic at the points of the phase space with r > 0. This vector field can be
extended analytically at the points with r = 0, that is, at triple collision.
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We define the triple collision manifold 4 as the set of points (r,v,0,w)e
[0,00) x R x [—7n/2,7/2] x R with r =0 such that

w2 vZcosf

= 1. 1.7
2cos 0 M 2W(0) (1.7

% 1s a two dimensional invariant manifold, topologically equivalent to a sphere with
four holes (see Fig.1.3). The flow defined by putting r = 0 in (1.5) is gradient-like
with respect to v and it is easy to prove that there are six critical points, (v, 0,w) =

(j—_\/—ZV(H), 6,0) where 0 is one of the central configurations. In fact, these are the
unique critical points of the global system (1.5).

The Euler configuration corresponds to 6 = 0 which is a local minimum of V().
There are 2 configurations of Lagrange type for the local maximum of V(0),0 =
+ 0,(¢) = +arctan ((3¢/(2 + €))}'?). We put 0, = 0,(¢) if there is no confusion.

On 4, the Lagrange points L"5, M"* are saddles and the Euler points are sink (E®)
or source (E') with respect to the flow restricted to ¢, with complex eigenvalues for
¢ < 55/4 and real ones for ¢ 2 55/4. From now on we assume ¢ < 55/4. First of all
we recall some properties of the flow on €.

Let P be one of the Lagrange points. We denote by W4 with ae {s,u}, the stable
(a =s) or unstable (a =u) invariant manifold of P. We denote by W4 with
be{1,2} the branch which reaches or leaves P with w >0 (b =1) or w <0 (b = 2).
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We define WL(W?2) as the open set in 4 bounded by W32, W3, Wil and W'
(Ws.t, w2, W*? and W42 respectively). W1 and W2, are defined in a similar way.
The behaviour of W3 ! and W3:? is shown in Figure 1.3. We can obtain WY, W'

L%
and W}, using the symmetries of the flow in 4

LY: (r,v,0,w,t) > (r, —v,0, —w, — 1),
L?: (r,v,0,w,7) > (r, —v, — 0, w, — 7).

restricted to 4.

The intersection of W*!® (W$!?) with v = 0 will be called [“'?) (I>'*)). We use
m"'? and m*'@ for the corresponding intersections of W4!? and W3\?,
respectively.

Next proposition was proved by Simo in [10].

PROPOSITION 1.1. There exist two critical values of ¢, ¢,, and &, with ¢, < &, such
that:

(i) if e = &, (case II), then m"' = (n/2,0) and so W% ! = W32, and for € = &, (case
Iv), 1" = (0,—/2) and W' = WS},

(ii) for 0 < e < ¢, (case I) m"! =(0,w) with 6 >0, w >0 and I"' = (6,w) with
0>0,w<0,so Wl dies at E* and W*' escapes around the upper branch of
binary collision with 0 = — n/2;

(iii) for € > &, (case V), m"! = (6, w) with 6 > 0, w <0, and I"* = (0,w) with 0 <0,
w < 0. Then W%! ends at E* and W% escapes through the upper branch of
0= —mn/2;

(iv) for ¢, < e <¢g, (case III), I*' and m"' have coordinates 6 >0 and w <0.
Therefore W' and W*! turn around the upper branch of 6 = —n/2.

The values ¢, =0.378532 ... and &, =2.661993 ... are obtained numerically.
They determine the five different cases mentioned above.
Now we consider 4 in the total phase space. € is in the boundary of ¥ and

contains the critical points of the global system (1.5). We give the dimensions of W
on 4 and on ¥ U ¥ in the Table 1.1

TABLE 1.1
W;:s WSES W"E, WSE, WZS,MS WSLS,MS uLl,Mi Wil,Ml
€ 0 2 2 0 1 1 1 1
VUl 1 2 2 1 2 1 1 2

We refer to [2] for the computations.
The collision (ejection) orbits are the union of WS, W3 and W%y on v U§.
There are 3 homothetic solutions (see Fig. 1.4) corresponding to 6 = 0 (collinear),

0 = 0, and 6 = — 0, (equilateral triangle). They are contained in the plane w =0
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Fig. 1.4.

(see Fig. 1.3). We note that both W*%, and W3, coincide with the Euler homothetic
orbit for 6 = 0.

THEOREM 1.1. Wi, (W?,) cuts transversally to W3.(W3,) along the Lagrange
homothetic orbit for 6 = 6,(—0,).

Theorem 1.1 is proved in a more general form in [11].
We note that in the variables (1.4) the zero velocity curve is reduced to the

segment
v =1{rv,0we¥o=0,w=0, —n/2 <0 <mn/2}
We define

ST ={(r,v,0,w
S™ ={(r,v,6,w
S, ={(r,v,6,w
v, = {(r,v,0,w

e V0 = n/2),
eV0 = —n/2},
e¥0 =0},
e¥]0=0,v=0)

We can represent the points of S™ US™ by (r,v) because w =0 if 6 = +=/2.
We note that the points on S™ and S~ represent the binary collisions and S, is the
set of collinear configurations.

2. The Flow Near Infinity

Let pe ¥, (x,(t), x,(t), X,(t), x,(t)) or shortly ¢(t,p), will be the orbit which passes by

n nt + — N
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An orbit escapes at (arrives from) infinity if x,(z) tends to + o0 when ¢t tends to
+ o0(— 00). This is the only way to escape at (arrive from) infinity when the energy is
negative due to the existence of the zero velocity curve (1.3).

The escape (arrival) is parabolic if x,(t) tends to zero when ¢ tends to + oo(— o0).
If x,(t) tends to a constant different from zero when ¢ tends to 4+ o0 or — o0, we say
that the orbit 1s hyperbolic.

We use the transformations introduced by McGehee [7] in the collinear three
body problem.

Let be

X, =202+ ¢ x72,
')62 = (2 + 8)1/3ya

x, = &, (2.1)
)&1 = 2’75—1,
dr = £2dx and '=d/dk.

Inserting (2.1) in (1.2) we obtain the new expression for the energy integral
n? + &% + 4dé3(y? — x?) — deuflu) =1, (2.2)

where d = 42 + ¢)3)", u=dé¥x?/e and f(u) = (1 + u?) "2 -1,
Now we get the following system which is regular at infinity (x = 0)

x'= =& yx3/4,

Y = — E2x%(1 + glu))/4,

¢'=n, (2.3)
7 = é(—l + 4dx? f(u) — 4d(y? — x2) — Géﬁ’”)

where g(u) =1 + u?)7? — 1 =0®u?), G,(u) =4eu*(1 +u*)">? and for the last
equation we have used (2.2).

We use a Levi—Civita regularization (&, n) for the binary collision. If we take polar
coordinates (R, ¢) in the plane (&, ) given by £ =R cos @, # = R sin ¢, then, from
(2.2) we obtain

R? =1 + R(x, y,9),

where R is a function of order 2 in x, y and 2n-periodic in @.
The points x = 0 form an invariant manifold that we call the infinity manifold.

Let
4d 4d
X = , Y= , f=ny1-Y2
x\/1+4dx2 y\/1+4dy2 =

Inserting X,Y,n in (2.2) we have for X =0
N+ & +Y?=1

This 1s a sphere except two points (Y, &, 1) = (£1,0,0). Really the infinity manifold
1s the union of two spheres taking out the two poles in both of them. We call these
spheres I, and I_ depending on the sign of x,.
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As in the collinear three body problem [7], (2.3) has a 2#n-periodic solution for
(x,y)= (0,0) (P.O.;, inI, and P.O._ in I_). The flow near (x, y) = (0,0) is obtained
by rotation of Figure 2.1 around the y axis. In this way the Figure 2.2 is obtained.
The point (x, y) = (0,0) can be seen as a hyperbolic fixed point (despite the fact that
this is a degenerate case) for the Poincaré map; that is, there exist stable and
unstable invariant manifolds which are analytic in a neighbourhood of (0,0) (except,
perhaps, at (0,0), see [7]).

To compute the stable manifold we put

x=F(y,0)= ) a,@)y"

l€<n<ow

as the expression for such manifold. We rewrite (2.3) using @ as the independent
variable to get

N

0

Fig. 2.1.
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,dx_ade+8F
d¢ OJydo 09’

where in dx/d¢ and dy/d¢ we substitute x by F(y,¢). Equating the coefficients of
the different powers of y we obtain a sequence of differential equations for a,@),
n>1. We remark that the expressions da,(@)/d@, n > 1, contain cos*(p) as a factor.
In this way all the coefficients a,(¢) can be obtained by recurrence. For n < 10 the
only nonzero terms are a,(@) =1, as(@)=5/(512(2 + €)*"3), ag@)=3sin(2¢)((1/3)
sin” (2¢) — (3/2) (cos (20) + 1))/(2048(2 + £)*/°), as(@) = 43/(2'%(2 + )*).

The translation of symmetry L' to the new variables (2.1) gives

(X,y,(ﬁ, K) - (X, -V, -(:53 — K)‘ (24)

Using (2.4) we obtain for the unstable manifold x = F(—y, —¢). Furthermore,
from (2.3) it is clear that the equations remain unchanged if x changes sign.
Therefore the unstable manifold is given also by x = — F(y,@). From this it follows
that a,(@) is an odd function of @ for n even, and an even function for n odd.

The orbits of the invariant manifolds of P.O., and P.O._ are parabolic. We call
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P5_, and P% _,the manifolds of.parabolic orbits at I, _, when t tends to + o0 and
t tends to — oo, respectively (see Fig. 2.1).

Let B, and B_ two spheres near I, and I _ respectively (see Fig. 2.2). The circle
e, = P$ "B, determines on the northern hemisphere of B, two regions, c,
corresponding to hyperbolic orbits, and &, whose orbits are elliptic. In this context
an elliptic orbit means an orbit which enters in a neighbourhood of infinity but it
goes out after a positive time. In a similar way, the circles e, = PY nB,,
e; = P> nB_ and e, = P“ n B_ determine the regions ¢, and &,,c; and &5,¢,
and 6, in B,,B_ and B_, respectively.

The flow near infinity crosses the surface

S, =1{(x,»,EneV ]y =0}
Therefore we can define the following diffeomorphisms
it ) 613 =S 13-y 82 = 6,

obtained following the flow. Then we define i,: ;> &, and i_: &3> &, as

i, =i%i} and i_ =i%2il, respectively.

LEMMA 2.1. Let y be an arc in &, with an endpoint on e,,,. Then i (y) (i:1(y)) is
an arc spiraling towards e,,,, that is, if y = &,(,, is an arc which ends in a point of
€,01), then i, (y) cuts y' at infinite points in any neighbourhood of e, ).

An analogous result is true in &5 and &,.

Lemma 2.1 follows immediately from the next Lemma whose proof is essentially
inspired by [5], p. 170.

LEMMA 22. Let y be an arc in &, with an endpoint on e,. Then the image of y by

the forward flow until it cuts the plane y = 0 (the equatorial plane in Fig. 2.2) is an arc
spiraling towards P.O. ., .

Proof. From (2.3), again using ¢ as independent variable and = d/dt, we have
x = —yx>/4,
y=—x*1+ 04)/4, (2.5)

¢ =(—1+ 0;)/cos* @),
and, introducing a new variable b defined by

b = —cos? (@), (2.6)
we have b =1+ 0, and

@ + sin(@) cos(@) = —2b + constant. (2.7)
From (2.5) and (2.6) it follows
dx
T —yx>(1+ 0,)/4,
2.8
dy (2.8)
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Finally we introduce a new independent variable ¢ defined by dc/db = x3/4, and
hence, from (2.8), we obtain

dx

Eﬂ = _y(l + 02)’
C

2.9
dy (2.9)
- = '—X(l + 02)
dc

Now we change the dependent variables through u = x — F(y,¢) = x — y + O,
=x + F(y,¢) = x + y + Os. Hence u = 0 and v = 0 correspond to the stable and
unstable manifolds, respectively. The differential equation for u,v is

du_dx_aF dy OJF d¢o (140
dc ~dec oy de ap de v H02),

dv_dx+8de+0qu3__
dec dc 0Oy dc o¢ dc

(2.10)

—v(l + 0,),

where we have made use of (2.9), the remark about da,(¢)/d¢ and the fact that u =0
and v = 0 are invariant manifolds. It is not restrictive to consider the arc yon v = a
(simply using a diffeomorphism). The initial conditions on y can be taken as u, = az,
Vo =a, Po =@* + fz+ 0(z%), 0<z<z,, where a2+ =1 «>0 and z is a
parameter of the arc such that the end point corresponds to z = 0.

For any 0 >0 we can choose a and z, small enough such that the following
inequalities hold:

d
(1= d)u <—<(1+ 0,
dc
(2.11)

dv

—(I+drs—< —(1- 9.
dc

From (2.11) we obtain, in so far as u and v remain smaller than a,
Ug e(l ~d)c <y < uoe(l +6)C’ (212)

voe—(l + d)c <p < voé—(l —5)0,

We suppose that the origin of the new variables, b =0, ¢ =0 i1s taken when
Vo = a.

The plane y =0 can be written u —v=0. From (2.12) we have v—u =
voe 19 —yy et Hence v-—u remains non-negative for ¢ <c¢; =
(1/2)(1 + 6)  'In(vg/uy). Let b, be the minimum positive value of b for which
v — u = 0. The corresponding values of ¢ and x will be denoted by ¢, and x, . Then

¢

b, > 32J (uge T 4+ pge 17973 (¢

0
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¢

— 32(“000)—3/2 Je—?aé/c(ec—u +6)c1+e(1 +6)C1_C)_3d6'.
0

Introducing the new variable w = ¢, — ¢, one has

‘1

3 Ug 36(2 +8)/(2+29) s
b, > 32(ugvg) — (e +e ™) > dw.
0

[y
0

Let p > 0. Then for a and z, small enough we have
b1 > C(l — p)uo—(3/2)(1 —p),

where C = 320532 {7 (¢¥ + e~ ™)™ dw. Hence b, (and therefore @,) goes to infinity
when z goes to zero. This ends the proof of the Lemma. |

Remark 2.1 We should note that spiraling means here that the angle, @, of the
image point on y = 0 goes to infinity when z goes to zero. We do not claim for
monotonicity. However lots of numerical simulations (see Fig.A.1} make it ap-
parent, i.e., dp,/dz > 0 and dx,/dz > 0. Using the suitable inequalities we obtain
by < C(1+ p)ugBPU*” In fact, if we only keep the dominant terms in the
equations we can easily obtain ¢, = —2Cugy ®’® (1 + o(1)) and the value x; of x
when the image of a point in y reaches y = 0 is (ugvo)!/%. From this it follows that,
using only the dominant terms, lim,_,@, x; = constant. This is indeed observed in
the numerical computations (see Appendix A).

3. Blow Up of the Lines 0 = +r/2

The blow up of triple collision and infinity has the effect of glueing two boundaries
to ¥, one for r =0, the other for r = 0. We look for a good topological
representation of ¥ with the two boundaries.

We introduce some notation. Let c € R; we define

‘@C = {(r,U,H,W)E AV-IU - C},
:Bc = {(r’va 9,W)E‘€|v = C}.

If we fix ce R, B.1s a curve in the plane (6, w) defined by

c2cos
2=2cos0|1— . 3.1
e ( 2W(0)> D
Let o = {(r,v,0,w)e 2 |v' = 0}.
Using (1.5) and (1.6), we can see that w° is given by
c2cos0
2 = 1 — . 3.2
W cosH( W) > (3.2)
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The points of Z_, . and w°, will be represented by coordinates (6, w) when this
not leads to confusion.

Moving the real constant ¢ in (3.2) we obtain a surface which separates in ¥ two
components, one with v’ < 0, another near € with v’ > 0.

The curve w° given by w? = cos 0, defines in %, an inner region (containing the
origin) corresponding to maxima of r along the orbits, and an outer one, .4, (near 4)
whose points are minima of r.

We fix c e R. We take two constants wg, 6, such that wy, > 0 and n/2 — 6, > 0 are
sufficiently small. We define (see Fig. 3.1)

Qc = {(ravagaw)e'@cl |W| < W(),O() <0< 7[/2}

For a fixed value of w,|w| <w,, we can define r (6,c) as the function of 0
obtained from (1.6) with h = —1, that 1s

¢ WO _w W)
2 cosf 2cos?0

When w =0, ro(0,¢) = —(c?/2) — V(6) increases near § = n/2 and rq(6,c) tends to
infinity when 6 tends to n/2 (see Fig. 3.2). Therefore there is a discontinuity at this
point. The variables given by (1.4) are not good out of 46 in a neighbourhood of
binary collision. So we will make a blow up of the two lines 6 = +=n/2.

First we study the function r (6,c) for different values of w.

LEMMA 3.1. If w # 0,r,(0,0) has a maximum at 6,(w) < 0%, where (0", w) is a point
of ®° N Qp

r.(0,c) = — (3.3)

B |
C |
|
|
w |
m |
w -
(@] \\\ I
v FTTT =77 Rt Y. A
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1\
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0 A 8 m/2
O w
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Fig. 3.1a. Fig. 3.1b.
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Fig. 3.2.
Proof. By derivation of (3.3) we obtain
dr, w'(0) w? W(0)sin 0 w?
—(6,0) = 1 — 1 — . 34
dH( :0) cos 0 ( 20050>+ cos? 6 cos 6 34)

We fix w, 0 <w<w, (the case —wy <w <0 i1s symmetrical). The points
(0,w)e Q, with 0% <0< 0, where (0,,w)ef, are between B, and w° so
cos 0 < w? < 2cos6. Furthermore W(6) is a positive strictly decreasing function
near n/2. Then dr (6,0)/d8 <0if ¥ <0 < 0,,.

It is clear that dr,(6,0)/d@ < O for 6 = 6* and 6 = 6,,. This ends the proof. W

Now we consider values of ¢ that are different from zero and we define

Wy, = {(0, w) € Q, (ji—ré“i(ﬂ,c) = O}.

For ¢ #0 we have dr (6,c)/d8 =dr,(0,0)/d6. Then from (3.4) we obtain for w,,

W'(B)cosO + W(0)sin 0
2 = 0 3.5
w" = 2c0s (W’(())cos 0 + 2W(0)sin 9)’ (3:5)
where
4¢3/2 (2 + 4) si
W’(9)=dW(0)=— e>'“(2e+4)sin 0 (3.6)

do (2e + 4 sin? 0)3/2 °

Using W(6) = —cos 8 V(0) and (3.6), some computations give the following ex-
pression for w,, near m/2

8e3/%2 cos® 0 1
2 =cos 01— 3.7
€08 ( (8+2sin20)3/2><1+Cc050> G-
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where

_2e¥*(e—2+4sin’ 0)
(g4 2sin? )2

The curve w,, is independent of c.
From (3.7) next Lemma follows immediately.

LEMMA 32. (1) 0,,(w) tends to n/2 when w tends to zero.

(11) If w(B) is the function defined by (3.7), then dw(6)/d0 tends to + o0 when 0 tends
to m/2.

Figure 3.2 shows the evolution of r (6, ¢) in Q..

LEMMA 3.3. Let wy and 8, be real constants such that wo >0 and n/2 — 6y, >0 are
sufficiently small. Then, Int(Q,.) N w,, # @, for all ce R.

Proof. From (3.1) and (3.5) we obtain, after some computations, that for all values
of 0 near to n/2, w,, intersects B. and f_, where

B 2W?sin 0
"~ cos O(W'(H)cos O + 2 W(B)sin 0)

C2

(3.8)

Moreover W(6) tends to 1/./2 and W'(6) tends to —4&>?(2e+4)"'/2 when 6
tends to n/2. From (3.8) ¢? tends monotonically to + oo when 6 tends to n/2. Then,
for all ce R, w,, intersects to B, and B __ at points different from 7/2. N

The main 1dea in the blow up of the lines of binary collisions 8 = +n/2, 1s as
follows. We fix a constant level ¢ of v. We make a change of variables in a suitable
set Q. in order to blow up the point (n/2,0) to a segment [4,7/2] on w = 0. Over
this segment the momentum of inertia will go from zero to oco. After that, the
change can be extended to a neighbourhood of the line 8 = n/2. The blow up can be
made C™.

In the plane (0, w), the curve B, has two components diffeomorphic to circles when
|c| 1s sufficiently large. One component tends to the point (n/2,0) and the other tends
to (—n/2,0) if |c| grows to the infinity. Therefore it is necessary to modify Q. when v
goes to + o0o. Following Lemma 3.3, this can be done by taking suitable constants
wo and 6, which depend on [c|. It is easily computed that w, and n/2 — 6, can be
taken going to zero as 1/|c| and 1/c?, respectively, when [c| » c0. We define the set
Q = U r 0.. In the next construction we suppose that Q. is fixed.

Let A=20,(wo) (see Fig. 3.1b). We define a family of functions «,(0) for |w| <w,
(see Fig. 3.3) by

a,,(0) =0 if w=w,,
o= aby) =0,
o, (0. (W) = A if 0<|w|<w,, (3.9)

af - aw(ew) = Hw
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It is sufficient to take piecewise linear functions.

We have from (3.9) a new variable « which goes from «; to o for all 0 <|w| < wy.
The variable a will be used instead of 6. When w =0, « takes values only defined
between o; and A.

Let a°=arccotr,(0y,c) and a = (wqarccotr,(0,(w),c) —warccotr,(4,c))/
(Wwo —w). We remark that lim,,_,,, a=arc cot (r,, (4, ¢))-

We introduce ¢, («) as the family of piecewise linear functions defined for
0<w<w, by

a’® —a
a+a_A(oz—A) oySaS A,

@(0) = nl/2—a
— A A<asa,.
a+af_A(oc ) oS oy

Now we consider the following family of functions ¥, (x) with 0 <w < w, (for
negative values of w the construction is symmetrical)

r.(0(a), c) if w=w,,

Wo — W

Y (o) =< cot (i arccotr (0(a),c) +
Wo Wo

QDW(Q)> f O<w< Wo,

cotq,, (o) if w=0.
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Fig. 3.4.
Then
(pw(ai) = aOa
®.(A4)=a, (3.10)
@u(og)=m/2.

Using (3.10) we get for the family ¥, (2), 0 <w <w, (see Fig. 3.4)
V(o) = r,(00, ©),
Vu(A) = 1,(0m(W), ©),
W, (o) =0.

Using o instead of 6 and y instead of r, the state of the system is completely
determined in Q.

4. The Manifold ¥

The line of points in Q which have r unbounded can be blown up to a sphere I,
with 2 holes. The equator is the periodic orbit P.O.,. The parabolic orbits are
asymptotic to P.O.,so we can put this orbit on 2, \ Int(.#).This fact needs some
comments that will be made in section 7 showing the behaviour of the orbits near
infinity with respect to £,.

¥ can be represented as in Figure 4.1 if we think that the points with r >0 are
‘contained in’ 4. The pointed strips are the points of S* and S~ after the blow up of
binary collision lines. We define

V.=8S"n?, and y_=S n2P,. (4.1)

There is in Figure 4.1 a fictitious orbit s, which goes from triple collision to
infinity with infinite velocity. s,, s; and s, are the symmetrical orbits of s,. More
information about these orbits is given in Appendix B.
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LEMMA 4.1. If pe(STUS ™)\ (y,Uy_), the orbit ¢(t, p) has at p an inflexion point
of r. If pey, Vy_, o(t, p) has at p a minimum of r.
Proof. Differentiating the first equation of (1.5) we obtain

F=((—sin O)W 12 —dcos O W'W ~3/2) row
+rv2icos?OW 1 +rcosf—2rrcos?6 W1,

If =n/2 and w=0, F =7 =0. A new differentiation shows that ¥ =roW ~1/2 for
0 = /2. Then, if v # 0, we have'r'# 0. For v =0 and keeping 8 = n/2, w =0,r'=3r > 0.
H

The orbits can not reach a maximum of r in binary collision. Therefore, the curve
w° tends to infinity when 6 tends to n/2 or —mn/2 (see Fig. 4.1).
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5. Ejection — Parabolic Orbits

Some ejection orbits leave a neighbourhood of ¢ with arbitrarily large velocity. We
use this fact to show the existence of hyperbolic and parabolic orbits which begin at
triple collision.

The subsystem m,, m, has an energy h,,=(x%/4)—(1/x,;). We define
h,,3=h—hy,; h is the total energy that we suppose to be fixed and negative
(h = —1 after some scaling).

LEMMA 5.1. There exist ejection orbits which go out from triple collision with an
energy h,,5 arbitrarily large.

This is shown using ideas of McGehee [6].
Proof. From (1.4) we get

X =\/irc089,
3&1=ﬁr_”2<v(:059—w sin()\/w)

cos 6

Then, using (1.6) we obtain

2W JW

+rh sin? 0 0s 04 1 { 1
—C —_—— .
|44 COS 0 \/5

Let p=(r,v)eS*. Using W(n/2)=2"12 and the fact that (1/cos8) x
[1— (l/ﬁ W)] tends to 4¢3/%/,/2 + ¢ when 0 tends to n/2, we have at p

l[ v? 4¢3/ ]

hiy=~| ——=+ + h.

Yol 20 22 +e)

Let N be a constant such that N > |h|. If (r,v) 1s such that
832

v? > (5.1
212+ ¢)

Wl v?(cos?0—sin*6) vwsin 6
hy, =

and

2 4 3/2
r<<v - >(N+h)—1,
2 212 + ¢)

The orbit of W¥:! contained in 4 has an infinity of points in S* with v arbitrarily
large. We fix v =, as in (5.1). W*.! has dimension 2 and the flow is transversal to
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S™, so there exist orbits of W*.! which intersect S* with r arbitrarily small. At this
points we have h,, < —N. n

Let (x(t), x,(t), x,, (t), x,(t)) an ejection orbit given by Lemma 5.1. There exists ¢,
such that x,(t,) =0 and h,,; > M for some large M. We can write this inequality as

(alt))> 2+ ¢)
2 x,(to)
where B =(2 + ¢)M/2¢. The left side of (5.2) is the energy of a two body problem

with masses 1 and 2 + & The distance x, has a larger negative acceleration than the
corresponding 2-body problem because

> B, (5.2)

i _ 8(2 + &)x, S 2+ ¢
R T \

We conclude that for all values of the energy h there exist ejection orbits which
escape to infinity hyperbolically. By continuity we get the following Lemma.

LEMMA 5.2. There exists an orbit Q, = P W' which goes out from triple
collision in configuration 0, and escapes parabolically to infinity without crossing the
axis x, =0. (see Fig. 5.1)

It is clear that there exist the symmetrical orbits to Q,, that is, Q, < P N WsL’,z,

Q,cPS W42 and Q,c P*“nW$!. These orbits do not intersect #,; in the
position plane m; never cuts the axis x, =0.

, |
\
f/ ' )
!
\ | ,
\ Y]
\\ l ’,
“edae”
e <
s N
/ l \
l\ | /'
\\ | ’l’
~
\::-—l"'-':
- | \\
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6. Ejection — Collision Orbits

We are interested in the intersection of the invariant manifolds to equilibrium
points. These intersections will give orbits which tend to triple collision when ¢ tends
to — o0 and + o0. To do that we cut the invariant manifolds by a suitable plane.

First we consider #,. The flow is transversal to 2, except at the points
of ° Some computations show on ®° v'=wW Y2cosf (—=V'(0)), so
sgn (v) =sgn (—wV’'(0)) changes at 0 =0, 0 = + 60, and 0 = + /2. More precisely, if
we define |

X, ={(6,we a®|w<0, 0(—0;,0)0(0,, 7/2)},
X, ={(6, e |w>0, fe(—n/2, —6,)U0,0,)),
Xy ={(B.w)ew® |w<0,0e(—n/2 —0,)00,0,)
Xs={O6,wew’|w>00e(—0,,0)0(0,, n/2)},

then, v(t) has a local maximum at the points of X, U X, and a local minimum at
X;UX,. For the third derivative on ° we get

" =1W TU(—W Y (W) cos 0+ 2W" cos 0 — W' sin 0 + 2W cos 0).

Then, if 0=0, 0" = —=T1 +4¢) " 1/2214 <0 and  for 0= +0,,
v =9Q27*Q2 + ¢)*?)7! > 0. At the points of @®\ X, UX,UX;UX,, v(t) has in-
flexion points.

LEMMA 6.1. Let pe 2, \cl(A). If v(t) #0 or 6(t) = + /2 for all t >0, then @(t, p) is
a collision orbit, that is, r(t) tends to zero when t tends to 0.

Proof. r(t) has a maximum at p=¢(0, p), so for positive and small time, r(t)
decreases. Then we can assume v(t) <O for all t >0. r(t) should be a decreasing
function tending to a nonnegative constant r, when ¢ tends to + 0. If ry #0 then
v(t) will tend to zero when t tends to + oo, but this is impossible because ¢(t, p)
should tend to an equilibrium point out of the collision manifold.

From (14), x, = \/5 r cos 0. Along the orbits, x,(t) i1s a positive and bounded

function and x,(t) <k, where k= —2(1 +4¢)~? for all t. Then there exists t* such

that x,(t*) = 0. Therefore either t* is finite or t* = co. If t* should be finite we reach

binary collision, which is an absurdity. n
We define

o ={peP,nW=!lo(t,p) does not intersect #, for any t <0},
oL ={pe Pon W42 |p(t,p) does not intersect Z, for any t <0}.

Let U < 2, a neighbourhood of (0, 0). It is proved in [8] that ¢% N is a curve
spiraling to (0, 0) if A is sufficiently small. Of course, we suppose ¢ < 55/4. In this
case, ¢% 1s a continuous curve as shown in Lemma 6.2. In fact, numerical
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computations show that ¢* has, globally, nice spiralling properties (see Appendix
A).

LEMMA 6.2. We parametrize ¢“. by a parameter le€ [0, o0) such that ¢% (0)=
(—60.,0) and o (l) tends to (0,0) when | tends to oo. Then, ¢ is a continuous curve
and there exists an increasing sequence {l;};cn with 1, =0 such that, if
q; =0 ([,)=1(0,,0) then 6. n{w =0} 2 U;n {q;} and 0,> 0 for i even and 6, <0 for
i odd. A similar assertion holds for o* .

Proof. The homothetic orbit associated to configuration — 6, intersects # at the
point ¢*% (0). Therefore, for I >0 sufficiently small, ¢*% (/) is a continuous curve
contained in the semiplane w>0. This fact can be shown using variational
equations near the homothetic Lagrange solution (see [11] for details). % will be a
continuous arc if 6% <2, \cl(#) that is, ¢ has not intersection with o°.

Let I, =min{l/>0|c% (I)=(6;,0) with 6, >0}. This number exists because ¢%
is a spiral near the origin (use variational equations near the homothetic Euler
solution as in [8]. From (1.5 w>0 if w=0 and 6e(—0,,0). Therefore the
arc B={c% (I)|0<I<,} is contained in the semi-plane w > 0. In order to prove
that 64 Nnw® = Q it is sufficient to show that Bnw®= @) because ¢* and ¢ have
no intersection and ¢“ = L?°L"'(¢*%). The orbits of W% ! can not arrive, for the first
time, to a point of X, U X, so it is sufficient that B does not cut w® at a point (6, w)
with w>0 and — 0, <0<0.

If binary collision is not regularized, from (1.4) the curve »° is u?> = —V/(6) and for
—0,<0<0,u?=—-V(6) > —V(—86,). From (1.4) and (1.5) du/dt =34vu—V'(6). Then
du/d6 = —3v —V'(0)/u and du/d0 < —V'(6)/u if v > 0. Integrating

0
ui <2 J —V'(0)do=2(=V©O)+V(—0,)).

_eL

The values V(0)= —(l +48)/\/§ and V(—0,)= —(1+2¢3?Q2+¢) 2 prove
u?< —V(—0,). Hence Bnw’= Q.
The existence of a sequence {/;} in the conditions of the lemma follows from the

changes of sign (w) on w=0. The last equation of (1.5) gives, on w=0, w>0 if
e(—0,,0)u(0,,n/2)and w <0 if Be(—mn/2, —60,.) v (0, 0,). B

We define ¢% =L%¢%) and ¢° =L'(0c") (see Fig. 6.1), so ¢% < W$? and
o < W', In Figure 6.1 we have assumed nice global spiraling properties accord-
ing to the numerical computations (see Appendix A). For these properties we refer
to the Remark 2.1. However, in this case, the radius of the spiral is not necessarily a
monotone function but the numerical computations show that the curves ¢%, ot,
% and ¢* have only intersections on w=0 or 6 =0. If we do not consider the
numerical results this behaviour is only guaranted in a neighborhood of (0 0). Let
D < Z,\cl(A) the set bounded by arcs of ¢%, ¢, 6% and ¢° as in Figure 6.1.
After a positive time, the orbits passing through D near (—8,,0) escape from a
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neighbourhood of M' following W2L. We call D' the component of
D\ (¢% wos U{(0,0)}) which contains these kind of orbits. D* will be the other
component of D\ (¢% Uas U{(0,0)}). We define D> =L*D') and D*=L'(D"). D!
determines two families of segments {c;} and {dj} in y, and y, respectively as in
Figure 6.1. The corresponding families in D? are called {c?} and {d]}.

For positive integers j =2 we define Q} as the closed set in D' bounded by dj_,
and d;(see Fig. 6.1), and Q; =D'\\U,.,Q}. Let us define three more families of
sets { @7}, {Q7} and {Q}} in cl(D?), cI(D?) and cl(D*) respectively by Q? = L*L'(Qj),
Q; =L*Qj) and Qf =L'(Q}) for all je N.

Given peD, we define t,(p)=min{t>O0p(t,p)eSTUS™}, t_,(p)=max{t<
Olp(t,p)eSTUS ™ }. (We will use t, and r_, if there is not confusion). From Lemma
6.1 t, exists for every point pe D\(c% uc® U{(0,0)}) and t_, exists for pe D \
(6% waL U{(0,0)}).

We note that if pe Int(Qju Q%) (peInt(Q;uQ7)), je N, then {o(t, p)|t € Int <0,
ty—p)(p) >}, where ( , > is the convex closure, has j points in S,. The arcs of
D! n¢* and D! n 6% determine in D' a collection of closed sets that we number P;,
P}, P},... as in Figure 6.2. The symmetrical sets P? = L2L!(P}) are contained in D?.
Really the family {P}} is the intersection of families {Q}}, {Q?}, {Q7} and {Q}} as
follows: Pi; = Q' n @t and Py, =(Q} N Q1) V(Qjry n @) for j > 1. We restrict
P} to the set bounded by ¢; and the corresponding arcs of ¢% and ¢° . A similar
property restricts P3.

Therefore, if peInt (P}) or pelnt (P}), j =2, {o(t,p)lt-, <t <t,} has j points in
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|

Fig. 6.2.

S,. We note that points of open segments (d}} and {d?} are in the boundary of
families Q but they are in the same conditions of points in the interior of sets P.

PROPOSITION 6.1. For every positive integer n there exist two symmetrical
ejection-collision orbits (E — C) between Lagrange configurations such that ms crosses
n times the axis x, = 0 and there are not binary collisions. For n even the initial and
final configurations are equal, and they are different when n is odd. (See Fig. 6.3.).
Proof. The points of ¢*% ne®, and ¢“ No* correspond to E — C orbits with n
even. It i1s clear (see Fig. 6.3) that these orbits have a point on the zero velocity
curve. For n odd the orbits are obtained from ¢% n¢% and ¢* No?, . |

The orbits of Proposition 6.1 were given by Simo in [10].

Now we study the invariant branches attached to Lagrange points which turn
around some branch of binary collision. We consider the surface S, near infinity. In
variables (x, y,@, R) the periodic orbit P.O., has two points of y, for ¢ =0 and
¢ = n. The two points correspond to one real point because of the Levi—Civita
regularization. We will assume that the necessary identifications are done. Then, in
S, and near infinity, @ = 0 will be the zero velocity curve and by the same reason

¢ = n/2 will be the binary collisions.
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(a) (b)

Fig. 6.3.

We proved in Section 5 the existence of hyperbolic ejection orbits belonging to
W¥!. Then there is an arc y € W*'n &, in the hypothesis of Lemma 2.1. The arc

o2 = ii(yné&,) spirals around P.O., . We refer to the Remark 2.1 concerning the
spiraling properties of ¢3. So we obtain the following Lemma.

LEMMA 6.3. We parametrize ¢3 by a parameter 1€ [0, ) such that ¢ (I) tends to
P.O.. when | tends to + co. Then, there exists an increasing sequence {I;}in_ o) Such
that 675Ny 2Uienoioy 1P2i} and o550 S™ 2 U ey {Pai_ 1} where p,= o 55(1).

In the same way, there is an arc y =« W%2n &5 which gives by i3 an arc o,
spiraling towards P.O._. ¢ and o, will be the symmetrical arcs of ¢;; and o,
respectively by the symmetry L'. We define x;, for j = 0, as the open segment of y,
bounded by points p,; and p,;,, given by Lemma 6.3 (see Fig. 6.4). x’ for j = 0, will
be the open segment of binary collisions bounded by p,;-; and p,;+,. We define D ..
as the region of S, bounded by the arc {o5:(])|lp <I<1,}, xo and P.O.,. We call
{y;} and { y;} the families of open segments which are symmetrical by L? to {x;}
and {x;} respectively. If D, =L'(D,) we can define D_ = L*D,) and
D_ =L*D.,).

As we did before near (0,0)e#,,, we can now define in D, w D', a family of closed
sets {Q;"} as in Figure 6.4. We have a symmetrical picture in D_uD’_ for the
symmetrical sets {Q; } when j > 1. In Figure 6.4 (and the related Figures 11.1 and
11.4) we have assumed nice spiraling properties. This is supported by the numerical
evidence as stated before (see Appendix A).

Let pe¥. We define t_.(p)=max {t<O0lp(t,p)eS,;} and t.(p)= min
{t > O0lo(t,p)e S, }. We will use ¢ _ , and ¢, if there is not confusion. Then, t, exists for
every point pe(D, D, )N\o or pe(D_uD”_)\g% and t_, exists for pe(D, U
D',)N\¢} or pe(D_uD_)\gZ..

We note that if pelnt (Qj) (pelnt(Q;)) for some j =1, the arc
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Fig. 6.4.

a={pt,p)lt-, <t <t,} crosses j+ m! times S*(S”). m!' is a constant which
depends essentially on the size of the neighbourhood used near infinity. It is related
to a fixed number of binary collisions. In order to simplify we renumber the sets
{Q; } and {Q; } beginning in the constant m'. Then the subindex j of the set will
represent exactly the number of binary collisions of the arc a.

PROPOSITION 6.2. For every positive integer n large enough, there exist two
ejection — collision orbits with initial and final configurations of Lagrange type such

that my does not cross the axis x, =0 and m, has n binary collisions with m,. (See
Fig. 6.5).

n=1
n=2
n=3 n=4
(a) (b)
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Proof. These orbits are obtained from the intersections o Mo}’ and 6,,N 0oy,

respectively (see Fig. 6.4) N

7. The Surface of Section S,

We have used two surfaces of section 2, and S,. The surface S, (y =0) is not a
good global surface of section, but it is good for 6, < 0 < n/2. Any orbit cuts §,
except the hyperbolic and parabolic ones and the Euler homothetic orbit.

The surface Z is also a bad surface of section near infinity. This means that there
are orbits which cut 2 tangencially in any neighbourhood of infinity. To show this
we write v = 0 1n (x, y, & 1) coordinates. From (1.4)

v=r"12(4x,x; + (2¢/Q2 + £))x,X,),

and using (2.1)

v =(E*%*2 + 8e/(2 + &)3) ¥ (Enx + 4e(2 + &) "13y/x) (7.1)
Then, for v =0 and x +#0 we have
(2 + g)t/3
y=-—7 Enx?. (7.2)
€

The periodic orbit (x, y) = [0,0] is contained in Z,. Moreover, Z, cuts S, at the
zero velocity curve (n = 0) and at the binary collisions corresponding to ¢ = 0.
Using polar coordinates in the plane (&, 1) we can write &y = R? sin(2p)/2. For x, y
sufficiently small, R is near 1. Then, if we fix ¢, (7.2) is close to a parabola of second
degree in the plane (x, y), with positive coefficient if &y <0 and negative one if
&n > 0. Figure 7.1 shows 2 respect S, near P.O. . after Levi—Civita identifications.

Another way to make apparent that the variable v is not suitable near the infinity
is that the periodic orbit P.O., is contained in v =0 but the related invariant
manifolds have values of v going to +4&(8¢(2 + €)) " '/* (+ for the stable manifold
and — for the unstable one).

When the elliptic orbits close enough to the parabolic orbits enter into B, we
claim that they have a first intersection with 2 in the region &n < 0, that 1s, when
w > 0. To prove the claim it is enough to consider the Poincaré map F near the
infinity through ¢ =3n/4 (mod =n). F is given by F(x,y) =(x —4nx*(y + ry),
y —1nx3(x + r,)) where r, and r, are real analytical functions of third order in x, y
(see [6]). If the first intersection with 2 of an elliptic orbit takes place in the y <0
region (i.e. with &n > 0), this orbit should reach the Poincaré section with y < 0. It is
enough to prove that the preimage of the line y =0, in the given section has a
negative value of v. But the preimage is y = fnx3(x +r,) < (2 + &)’ R* x*/(8¢) if x
1s small enough.

Using

w = ucos O//W=r"12(e/2 + )V —x,%, + x,X;) cos 8/x/ W,
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Fig. 7.1.

we see that the first intersection takes place in the semiplane w > 0.

Let fi(x) be a C* function such that f;(x) =1 if x <, and fi(x) =0 if x = «,,
where 0 < a; < a, are two small real constants. Furthermore we suppose f7(x) <O if
xe(ay, o), fila; +2) <0 if 0 <z< (o, —0a;)/2 and fi(ot; +2) =1 — fi(a, — 2) if
0<z<(a, — a)2. We define

W(x, y, & n) = yfi(x) + (1 = fi(xX)w,

where v is the function of x, y, & 5 given by (7.1). The function y defines a surface

So = {(x, », & e ¥V |¥(x, y, & n) =0}.

We note that if o, is sufficiently small, for x < a, the flow is transversal to S,.

LEMMA 7.1. If a, is sufficiently small and satisfies o, < 2a,, for every value of x,

0 < a; < x < a,, the derivative of Y with respect to the physical time t equals zero at

exactly two points p,, p» € So. When x decreases to a, both points have the same limit.
Proof. If a; < x < a,, we have

v=—fi(1 _fl)—ly (7.3)
on S,. Then, if we recall that dt = £2dx (see section 2) on this region

dy . dy v f% dx

e RS R | 74

dx fldK+( fl)dK+y1—f1 dx (7.4)

From (7.1) and (7.3)

y i 4¢
T _€x2<1 —fi /2x+(2+8)”3>’ 7
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where 7= (£4x%/2 + 8¢/(2 + €)1/*)!/2. Using the energy integral (2.2) and (7.5)

2 (1 _'f‘l)2
y 4,

where A, =e2+¢) 131 —f1)?E*Xx*+(F2fix +4e + &) 131 —f,))? A, =
e2+ & 1P +u?)" 2 and u=4Q2 +¢3) 1 E2x2,

We can also compute from (7.5) and (7.6), dv/dx on S, when a;, < x < a, as a
function of £, n

ExH1 = & + 4,8%x?), (7.6)

o x  2x¢? 4el? x3
dx PP AR @A 162 + 97
f1&x7
— % (1— &%+ A4,&%x?). 7.7
2r3/2 Al 2 ( )

Inserting (7.7) in (7.4) and using (2.3) we have, after some computations
dy _
dx

where 7o = (8¢(2 + &) ~1/3)1/2,
We look for the solutions of dyy/dk = 0 or, equivalently,

(L= f)Fo 2 x(1 +0(1)) = (1 = f,)fg 12 x + f1 x*/4)£2(1 + o(1))

f,
1 =822+ ol x3 ) 1 7.8
é( o )( + o(1)) (78)
~1/2

It is enough to check that the expression 2+ f; 72 x3/4(1 — f,) decreases mo-
notonically from + o0 to some constant when x goes from «; to a,.
The derivative of f,(1 — f;) " 'x? is negative if

g(x) =3f,(1 - f;) — xf1 <0,

where f; =1 — f;. Using the symmetry of f| with respect to the point x = (a; +
a,)/2, it is sufficient to prove g(x) < 0 for a; < x < (a; + «,)/2. For these values of
x, by the mean value theorem and the hypothesis about f} we have

3fi(1 —f1) <31 (0)(x — ay).

Then, if x < 3«,/2, g(x) < 0. We conclude that if o, <2a, the solution &* of (7.8)
increases when x goes from «, to a,. Now we note that when x tends to a5, f;(x)
tends to O and there is only one value of 2 which satisfies (7.8). When x tends to «,,
this value of ¢? tends to zero. Therefore if we fix x = x*, a, < x* < a,, dy/dt has

two solutions + &*. Then if we recover y and # from (7.6) and (7.5), four points given
by

g =(* 5% —n%), g =K*8F —y*n*),
(7.9)
43 = (X*7 - 6*9)}*’ 7]*), CI4 = (x*a - é*, ")’*, - 7’*),

are obtained.
Recall that from (2.1), & n are the Levi—Civita variables, so we must identify g,
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with g3 and g, with q4. There are two real points in (7.9), one with x; > 0 and
X, <0 in the semiplane w<0, and the other with x; <0 and x,>0 in the
semiplane w > 0.

We note that dy/dt =0 has the same solutions that dy/dk =0 if a; <x <o,. l

Following Lemma 7.1 there exists in Sy a curve w* which separates two regions
where dy/dt >0 (the region .#*) and dy/dt <O respectively (see Fig. 7.2).
Let pe ¥. We define, if they exist

t;(p)=min {t > 0|o(t,p)€ S},
(7.10)

t,(p) =max {t <0|o(t,p)€ S, },

or briefly ¢,, t, if confusion can not occur.

If pe #* and t,, t, exist we define two maps ¢, ® by ¥(p)=e(t,;,p) and
® ' (p) =0(t,,p). In this case, the Poincaré map on #* is given by f=®oy.

These maps are diffeomorphisms.

We will use S, as surface of section. We suppose that the constants «; and a,
which define S, satisty the hypothesis of Lemma 7.1, and they will be such that §,
does not cut P% L P*% at any point of the annulus o, < x <.,. This 1s true for small
o, and a,. Now we fix the spheres B, and B_ as defined in Section 2, contained in
x<oy.

Now we are interested in the forward and backward intersections of the parabolic
manifold with S,. For certain values of the parameter ¢, we assert that these

Fig. 7.2.
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intersections are continuous curves with two end points on €. Some evidence,
analytical and numerical, for that assertion will be given in the next section. The
study of orbits passing through ®® will be useful to that goal. When the intersec-
tions of P%°_ with S, have been obtained, it will be easy to show the existence of
orbits which escape parabolically to infinity for t - + c0. These kind of orbits will be
essential to the establishment a theorem of symbolic dynamics.

8. The Manifold of Parabolic Orbits

We look for the first intersections (forward and backward) of S, and the manifolds
of parabolic orbits.

We define the maps i;
Section 2) as follows

ik—l(p) =(p(t29p) lf k = 1339
i(p) =olt,,p) if k=24,

where ¢,, t, are given by (7.10).

Orbits of P4 near Q; (see Lemma 5.2) cross a neighbourhood of L going back by
the flow. They escape from this neighbourhood following Ws$.' or W2 depending
on the side in P% where they are with respect to Q,. Then, i; '(e,) contains an arc &,
ending in /*' and I*%. It can exist more than one orbit in W¥%! NP3 as Q,. We do
not care about this type of orbits if W' does not cross PS.. They only produce
loops which start in /*' and end in /2. On the other hand, the number of orbits in
Wi:t nPs where W! crosses PS must be finite (due to analyticity and compact-
ness) and therefore it must be odd. Then i !(e;) will contain an odd number of arcs
between [*' and [*2. In this case we only consider the arc &, which is furthest from
wo. Recall that a; and o, were selected such that &, is contained in #*.

It 1s clear that &; can be discontinuous. In fact, it is so for small values of ¢ (see
Lemma 8.2). It means &; N w® # @ . The points of X, U X, (see Section 6) correspond
to local maxima of u(t) on the orbits. Therefore, in order to prove the continuity of
¢; 1t 1s enough to look for possible intersections of ¢; and X; U X,. But, using the
symmetries, £, will be continuous if the following assertions are true

Y, iy, i3, iy on &, &,, &5 and &, respectively, (see

Assertion 1. If p = (6,w)ew?, w >0, 0 < 0 < §,, then there exists t, <O such that
U(to) = 0.

Assertion 2. If p = (6,w)e 0, w > 0, 6, < 0 < 1/2, then there exists t, > 0 such that
U(to) = O

LEMMA 8.1. There is a critical value e* < 0.502 such that, if ec(e*, 55/4) for every
point p = (0,w)e w°,w >0, 6, < 0 < /2 there exists t, > 0 such that 6(t,) = 0.

Proof. From the energy integral (1.6), on w® we have r = —V(6)/2. Then the
projection on the position plane of w° is homothetical to the zero velocity curve and
given by V(x,,x,)= —2.
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Coordinates (x;,x,,X;,X,) of p can be computed as functions of 6:

w
X1, =—=,
1l,p \/5
2+¢ Wsinb
X2,p = y
2¢ 2 0
€ cos (8.1)
Xi,, = —2 sinb,
2+
x.Z,p = ¢ COS 0
€
Let us suppose x,(t) > 0 for all t > 0. From (1.1)
8(2
%, < — SR+ (82)

(b% + 4x32)>/?
if b 1s an upper bound of x,(t), that is, x,(t) <b for all t >0. From (8.2) we get

%2 212 + )

< + F
2 (b% +4x3)12

where

poXi, 20+
2 (b +4xE )

If F <O, x,(t) cannot be arbitrarily large and it must be equal to zero for some
to > 0. We will determine the values of ¢ such that F < 0. It is easy to see for initial
conditions (8.1), that F < 0 if and only if the function

F(0,¢) = 2eb? cos* 0+ (2 + e)W? sin? 0 cos? 0 — 32¢3

is negative.
We take b = z; where (z;,x, ,) 1s a point of the zero velocity curve, that is

1 4
- ¢ ~1 (8.3)

2 1/2
“1 <z% +( ;8) W2 tan? 0)
€

Using (8.3) we get F(6,¢) <O if and only if z, > 1/sin? 6.
If « 2 0 1s a constant, the function

( )_1+ 4¢
gL oz, (22 + )2

given by the zero velocity curve, is a decreasing function of z, . Then z, > 1/sin* 6 is
equivalent to g(z,) < g(1/sin? 6), that is
cos*f 2+c¢

G,(0,¢) = i + P W2 sin? 0 cos? 0 — 16&* < 0. (8.4)
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We note that W(6) and cos*6/sin* 0 are decreasing functions in the interval
[0,,7/2). Then we can use W(0,)= (1 + 2¢)27 12 and cos* 6, /sin* 6, as upper
bounds of these functions. Therefore, if 0€[0,,n/2)

2+e P (24 (1 +2e)?
G,(0,¢) < ° + ( o 2 — 16e* = G,(¢).
3¢ 16¢
Now the proof is finished because G,(¢e) < 0 for ¢ > 0.502. a

In particular, Lemma 8.1 implies that points p in the hypotheses of Assertion 2
cannot escape to I, without crossing the axis x, = 0.

In order to give more information about Assertions 1 and 2, we have made some
numerical computations for different values of ¢ in the range 0 < ¢ < 55/4. Before we
give these results we will make some comments.

We note that from (8.4) we have for 0 < ¢ < 55/4

cos* 0 1 1
< g2 Sy
G108 S e [82 sn* 6 [8 +2:|
2
[ . + 4COS.0 :| cos? 0 sin29—16]

- 82 Gz(e, 8).

For a fixed value of ¢ let p=(0,w)e w°® be, with 0e[0,(c), n/2), such that
G,(0, ¢) <0. Then, as in Lemma 8.1, there exists t, >0 such that 6(ty) =0.

If we fix 0<e<55/4, G,(0,¢) is a decreasing function of 6 if Oe[n/4, n/2).
Moreover if we fix 6 in that interval and G,(6, &) <O for some ¢, >0, then
G,(0,¢) <O for all g, <e<55/4.

Using the above reasoning and the computation G,(0.87,0.35) <0 we have that
for all £¢>0.35if p=(0, w)e w°® with 0€[0.87, n/2), the orbit ¢(t, p) cuts the x,-axis
for some positive time. We note that in that range of ¢ there are values of the
parameter in cases I, III and V. We have studied the three cases numerically.

In fact, it is enough to study the behavior of the points p € @° such that

r,<r,, (8.5)

where r, = (1 +4e)/\/§ is the value of the momentum r at the point of the zero

velocity curve with 6 =0, and r, the momentum at p. If r, > r, and the orbit ¢(t, p)

crosses the axis x, =0 for some positive time, then ¢(t, p) would go into the region

r < r, before the crossing. Therefore ¢(t, p) would have passed through the plane 7.
It 1s easy to see that if 6> 0,(¢), where

0.(¢) = arccos ( /2t >,
(2+8¢)/2+¢e—4s /¢

then, the point p =(0, w) e w° satisfies (8.5). 0,(¢) is an increasing function of ¢ and
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6.(0.35) = 1.33. That is, for all 0.35 <& < 55/4 and all 0,(¢) < 0 < ©/2, the orbit ¢(t, p)

of the corresponding point p = (6, w) € w° crosses the x,-axis. So @(t, p) crosses Z,,.
Some of the numerical results are given in Tables 8.1, 8.II, 8.III, 8.1V, 8.V and

8.VI. There, 6, is the coordinate 6 of pe w°, (0;, w;) is the cut number i of ¢(t, p) with

2, following the flow for positive time if i >0, and for negative time if i <O.

~ In Table 8.1a there is a discontinuity in w; between 0.7 and 0.72. This is due to the

existence of one point p =(6',w’) with 0.7 < 6’ <0.72 such that the first intersection

TABLE 8.1(b)

TABLE 81I(a) &=.35

6o 0, W,

0; 1.233732 0.280173
0.6 1.233541 0.279907
0.62 1.232199 0.278033
0.64 1.229658 0.274443
0.66 1.226029 0.269233
0.68 1.221439 0.262503
0.7 1.216021 0.254 359
0.72 1.294751 0477078
0.74 1.271515 0472045
0.76 1.252599 0465815
0.78 1.235823 0458724
0.8 1.220453 0.450939
0.82 1.206164 0.442578
0.84 1.192796 0.433739
0.86 1-180265 0.424511
0.88 1.168536 0.414975
09 1.157597 0.405209
0.92 1.147456 0.395288
0.94 1.138135 0.385285
0.96 1.129664 0.375270
0.98 1.122080 0.365310
1. 1.115431 0.355473
1.02 1.109767 0.345823
1.04 1.105146 0.336421
1.06 1.101631 0.327329
1.08 1.109929 0.318603
1.1 1.098199 0.310295
1.12 1.098434 0.302457
1.14 1.100081 0.295131
1.16 1.103229 0.288357
1.18 1.107971 0.282165
1.2 1.114405 0.276578
1.22 1.122630 0.271609
1.24 1.132748 0.267256
1.26 1.144861 0.263503
1.28 1.159066 0.260315
1.3 1.175454 0.257636
1.32 1.194104 0.255379
1.34 1.215076 0.253425
1.36 1.238400 0.251611

6o 6 Wi
0.72 1.209908 0.244910
0.74 1.203228 0234270
0.76 1.196104 0.222558
0.78 1.188 650 0.209893
0.8 1.180973 0.196402
0.82 1.173169 0.182212
0.84 1.165332 0.167455
0.86 1.157546 0.152266
0.88 1.149894 0.136782
0.9 1.142453 0.121145
0.92 1.135301 0.105500
0.94 1.128514 0.089996
0.96 1.122169 0.074782
0.98 1.116345 0.060015
1. 1.111122 0.045849
1.02 1.106584 0.032445
1.04 1.102819 0.019962
1.06 1.099917 0.008 561
1.08 1.097972 —0.001 602
1.1 1.097082 —0.010370
1.12 1.097348 —0.17594
1.14 1.098 869 —0.023132
1.16 1.101748 —0.026856
1.18 1.106085 —0.028 649
1.2 1.111982 —0.028416
1.22 1.119533 —0.026082
1.24 1.128834 —0.021603
1.26 1.139977 —0.014965
1.28 1.153051 —0.006193
1.3 1.168148 0.004 644
1.32 1.185359 0.017424
1.34 1.204775 0.031967
1.36 1.226491 0.048022
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TABLE 811 ¢=2 TABLE 8III &=5

0o 0, Wy 0, 6, Wy

0; 0.198417 —0.828670 0, —0.043385 —0.917901
0.9 0.198643 —0.828650 0.98 —0.043283 —0.917911
0.92 0.199819 —0.828539 1. —0.042192 —0.918009
0.94 0.202124 —0.828301 1.02 —0.039766 —0.918218
0.96 0.205706 —0.827895 1.04 —0.035804 —0.918536
0.98 0.210732 —0.827270 1.06 —0.030073 - —0.918956
1. 0.217382 —0.826362 1.08 —0.022296 —0.919461
1.02 0.225854 —0.825092 1.1 —0.012146 —0.920021
1.04 0.236364 —0.823358 1.12 0.000766 —0.920583
1.06 0.249143 —0.821037 1.14 0.016902 —0.921063
1.08 0.264435 —0.817975 1.16 0.036802 —0.921332
1.1 0.282492 —0.813990 1.18 0.061098 —0.921197
1.12 0.303572 —0.808861 1.2 0.090502 —0.920376
1.14 0.327923 —0.802333 1.22 0.125789 —0.918471
1.16 0.355775 —0.794119 1.24 0.167748 —0.914935
1.18 0.387327 —0.783902 1.26 0.217086 —0.909060
1.2 0.422736 —0.771348 1.28 0.274312 —0.899984
1.22 0462104 —0.756119 1.3 0.339600 —0.886749
1.24 0.505478 —0.737884 1.32 0.412711 —0.868392
1.26 0.552846 —0.716336 1.34 0.493015 —0.844059
1.28 0.604 146 —0.691200 1.36 0.579619 —0.813063
1.3 0.659272 —0.662236 1.38 0.671538 —0.774885
1.32 0.718082 —0.629238 14 0.767825 —0.729093
1.34 0.780404 —0.592022 1.42 0.867601 —0.675237
1.36 0.846028 —0.550419 1.44 0.970003 —0.612727
1.38 0.914698 —0.504259 1.46 1.074043 —0.540726
1.4 0.986083 —0.453363 1.48 1.178425 —0.458016
1.42 1.059748 —0.397539 1.5 1.281296 —0.362819
1.44 1.135105 —0.336598 1.52 1.379925 —0.252588
1.46 1.211357 —0.270410 1.54 1.470138 —0.124426
1.48 1.287426 —0.199048 1.56 1.544523 0.012741
1.5 1.361865 —0.123178

of p(t, p) with 2 is a point on w°. To see that, we append the Table 8.Ib. In Tables
8.1V, 8.V and &.VI there are also discontinuities of the same type.
On the other hand, we have the following result.

LEMMA 82. If 0 <e<e,=2./3/(16 —/3)~0.242789 ..., there are points of ®°
which escape to infinity without crossing 2.

Proof. Let p =(60, w) in the hypotheses of Assertion 2.

From (1.1) X,> —(2+¢)/x35, and, by integration, if x,=>0 then
X3/2—(2+¢)/x; =2F, where F=x3,/2—(2+¢)/x,,, is the energy of a 2-body
problem. Using (8.1) we can compute F for 6 =6,

24+¢ |2+¢ 4
F = — :
1+28 48 ﬁ
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TABLE 8.V ¢=2

0, 0, Wy
0.005 —0.010000 0.999960
0.1 —0.200182 0.984397
0.15 —0.300583 0.965511
0.2 —0.401296 0.940132
0.25 —0.502376 0.909128
0.3 —0.603944 0.873359
0.35 —0.706375 0.833494
0.4 —0.810730 0.789711
0.45 —0.920037 0.740963
0.5 —1.045568 0.681453
0.55 —0.438186 —0.763271
0.6 —0.457144 —0.749884
0.65 —0.474358 —0.737493
0.7 —0.489412 —0.726511
0.75 —0.501870 —0.717362
0.8 —0.511229 —0.710488
0.85 —0.516871 —0.706376

6; —0.518178 —0.705435

TABLE 8.1V £=0.35
0o 0, W,
0.05 —0.100467 0.992208
0.1 —0.203714 0.970765
0.12 —0.246405 0.959373
0.14 —0.290171 0.946882
0.16 —0.335233 0933616
0.18 —0.381867 0.919852
0.2 —0.430456 0.905804
0.22 —0.481570 0.891597
0.24 —0.536152 0.877230
0.26 —0.595958 0.862485
0.28 —0.664960 0.846637
0.3 —0.757255 0.826765
0.32 —1.189098 0.429368
0.34 —1.224086 0.449059
0.36 —1.269140 0.466952
0.38 —1.225481 0.261927
0.4 —1.246669 0.290974
0.41 —1.257390 0.304571
0.45 —1.301675 0.352264
0.47 —1.325439 0.371771
0.5 —1.368039 0.394770
0.52 —1.310158 0.251663
0.55 —1.321476 0.269300
0.58 —1.326895 0277242
TABLE 8.VI e=5
0o 0, W,
0.05 —0.099980 0.996881
0.1 —0.199837 0.987588
0.15 —0.299441 0.972312
0.2 —0.398645 0.951348
0.25 —0.497301 0.925060
0.3 —0.595275 0.893840
0.35 —0.692507 0.858036
0.4 —0.789118 0.817847
0.45 —0.885642 0.773143
0.5 —0.983633 0.722978
0.55 —1.087901 0.663868
0.6 —1.229597 0.572026
0.65 —0.298474 —0.892991
0.7 —0.316316 —0.886799
0.75 —0.332675 —0.880988
0.8 —0.347090 —0.875780
0.85 —0.359027 —0.871425
0.9 —0.367824 —0.868211
3 —0.373124 —0.866292
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Then F>0 at 0 =0, if £ <2./3/(16 —/3). n

Lemma 8.2 proves that &, is broken for small values of e.

The numerical computations show the existence of values &'’ e (0.2847, 0.2848)
and ¢ e (0.2733, 0.2734) such that the Assertions 1 and 2 are true for ¢’ < ¢ <55/4
and £® < ¢ < 55/4, respectively. These numerical results give evidence for formulate
the following conjecture.

Conjecture. There exists a critical value ¢ € (0.2847, 0.2848) such that the Assertions
1 and 2 are true for all ¢. <e < 55/4.

Using the conjecture for ¢€ (g, 55/4) the intersection between &, and «° is empty
In the following we will reduce the case I defined by Proposition 1.1, to values of ¢,
g, <e<é,.

In the same way, i,(e,), i; ‘(e;) and i, (e,) contain arcs &,, &5 and &4, respectively
such that &, = L1(&,), & = L3(&,) and &, = L(&;). Figure 8.1 shows the evolution of
these arcs as a function of &. In case I, &, cuts &5 at least in one point. So we have a
biparabolic orbit of type PP, _ (see Figure 8.2). It means that the orbit comes
parabolically from one infinity, I, in this case, and goes parabolically to the other
I_. ¢, n&, gives the symmetrical orbit of type PP _ .. In the case III a new type of
biparabolic orbits appears coming from, and going to, the same infinity.

We call them PP, ., (see Figure 8.3) and PP_ _. In Case V there are only the
latter type of biparabolic orbits.

Fig. 8.1.
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AN
%

Fig. 8.2. Fig. 8.3.
We define R, =y !(D,), R,=®(D",), Ry=y D_) and R,=d(D’_). We can
suppose R, = .# for i=1, 2, 3, 4 because &, = M, for i=1, 2, 3, 4.

LEMMA 9.1. Let y be an arc in #.

9. Some Properties of the Poincare Map

(1) If y < R,(R;3) has an endpoint in &,(&5), then Y(y) is a spiral in D (D _) which
tends to P.O..(P.O._). (See Fig. 64.)

(i) If y = Ry(R,) has an endpoint in E,(E,), @ '(y) is a spiral in D', (D’_) tending to
P.O..(P.O._).

Lemma 9.1 1s a consequence of Lemma 2.1.

We consider the family of segments {c¢j} defined in D' (see Section 6). Let
m? =min{je N| ®(d}) is a continuous arc in Sy} + 1. Then ®(P;) with k =2m? is
contained in ./ and it does not contain any point of w°. The arc of B, between [**
and m"!, and the boundary of ®(P}), k =2m?, determines in ®(D!) a region which
contains ®(P}) for all j>2m?*. We denote this region by 4'. For the sake of
simplicity we keep the letter D' for the region such that %' = ®(D"'). In the same
way we reduce the sets D3, D? and D* We can define in . the sets

U=y ~1D3),  WU*=y YD),
AU =dDY), U2 =d(D?).

It 1s clear that we can obtain pictures which are qualitatively different for the sets
a1-*3* depending on =.

LEMMA 92. Let y={(0,w)e M | 0=0(t), w=w(1), 0 < t <1} such that y(1) tends to
a point pe By when t tends to 0. If y(1)e y "1(c2) (®(c2)) and Y1) U3 (AU*') for
0 <t <1, then, there exists a sequence T,, T,,...T,,... which tends to O such that
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Case I
Al =3 Nnal 2, AS=WU1 a4+,
A2 =°>NR,, A6 =l *"R,,
(9.1)
A3 =R20R3, A7 =R4ﬂR1,
Ad=R;NnaU*, A8 =R, Nal 2.
Case 111
Al =R,NR,, A3 =R, NR;, 9.2)
A2=R3mR4, A4=R4ﬂR1.
Case V
A1=R1mR2, A5=R3mR4,
A2=R2ﬂoll3 A6=R4mé”4,
A3 =AU, AT = U* A2, (9.3)
A4 =AU N R;, A8 = U*NR,;.

Our goal is to characterize the orbits which cross the sets Ai defined above by
sequences of symbols. So first we give an abstract theorem of symbolic dynamics.
Then we apply this theorem to the cases I, III and V of the isosceles problem.

10. A Theorem of Symbolic Dynamics

We consider in the plane (x, y) n bounded, connected and pairwise disjoint sets that
we call A1, 42, ... An. Let A = U, Ai where I ={1,2, ..., n] and let f be an
homeomorphism from A to f(4) € R?. We associate to f an n X n transition
matrix &, = (&; ;) defined by

(10.1)

al,.’

1 if f(A)nAj#,
0 if f(A)nAj#Q,

Let us consider a set S of special symbols § = {N, L, M. n,l m] (we note that the
finite set S can be arbitrary and the full construction is carried away in a similar
way). We suppose that it is possible to associate to f a new matrix & of zeros and
ones so that

do A 1] (10.2)

ﬂz(ai,j)z[dz 0

We call it the transition matrix with respect to J =IuU S. In (10.2),0g1sa 6 x 6
matrix of zeros. &, is given by (10.1). &/, and &/, have orders n x 6 and 6 x n
respectively and they verify the following properties

n

(1) Y o0 if je{nlm}

i=1
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@) Y o #0 if je{N,L M),
i=1 (10.3)

(3) Y a;; =0 if je{N,L M},
i=1

(4) S o ;=0if je{n,lm].
i=1

Let £’ be the set of couples of sequences (a’, a) of the following types

(a) (@,a)=((...a_;;ap,ay,..),(...a_{; ag,ay,...),a;el and a;€ N for all
iel,

(bl) (a@,a)=(ay,a;41,...), (@, a,4+1,...)), k<O, aiel, a;e Nfor all ieZ, k <1
and q, =n,a, = 0,

(b2) (al7a)=((a;caa;c+la°“)a (akaak-i-la"'))’ k<0a aEEI lf k<i9a;c€{l,m}a
a;eN forallieZ, k <i,

(cl) (@,a)=((...a,_,ap), (...ay_,,a,_1)), h>0, a;,,€l, a;e N for all ieZ

i<h—1landa,=N,a,_, = ©.
€ (@) =(..G1,a), (..Gp-2.a1)) h>0, aiel if i<h, aye{L,M},
a;e NforallieZ,i<h—1,

or some of the 4 types of finite sequences on the left and on the right, which can be
obtained joining the types (b) and (c). We call them (d11), (d12), (d21) and (d22),
where the first figure means the type of the left ending and the second one the right
ending.

We define X as the subset of £’ such that the sequence a’ of each couple (a’,a)e X
is admissible with respect to the & matrix. That means, «, , = 1, where u = a;_, and-
v =a), for all ieZ for which a|_, and a; are defined.

For every ie I we define

I ={jel|a ; =1}, c(i) = card(l;),
I={jella;; =1}, g(i) = card(I}),
S; = {jeS|o; ; =1} \{N,n}, r(i) = card(S;),
S; = {jeS|a;; = 1} \{N, i}, z(i) = card(S)).

We need some hypotheses about the sets Ai and the behaviour of f on these sets.
These hypotheses have a topological character, not metric as in the case of Moser

(see [5]).
We fix a set Ai and we define families of curves of the type
y={(x,y)e R?* | x=x(1), y=p(1), 0 St <1} (10.4)
such that y(7) = (x(1), y(1)) € Int(A4i) for all 0 <t < 1, y(0)e dAi and y(1) € JA..

Hypothesis 1. There exist in 0Ai 4 different arcs I';, I',, I'; and I', such that
every curve 7 as in (104) with y(0)eI'; and y(1)eI', cuts at some innt (1),
0 <t <1, to any curve y’ such that y(0)e I'5 and y'(1)e I'y. Then, the arcs T';, j =1,
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2, 3, 4, define in Ai, two types of curves that we call horizontals (h.c.) and verticals
(v.c.) respectively.

Two h.c. y and 7y’ without intersection in a point y(7), 0 < 7 <1, define a horizontal
strip H (h.s.). The diameter of H (d(H)), will be the Hausdorff distance between y and
y'. The vertical strips (v.s.) are defined in the same way.

We say that 2 h.s. (v.s.) are disjoint when the points of intersection, if they exist,
are in OAi.

We note that some of the arcs I'; can be reduced to a point. From now on we
assume that in every Ai the arcs I';, j=1, 2, 3, 4 are fixed.

Hypothesis 2. For all i€ I, there exist in Ai g(i) countable families of h.s. {{Hji}}.
pairwise disjoint and c(i) families of v.s. {{VYmi}},., pairwise disjoint satisfying the
following properties:

(a) They are ordered and intercalated so that there exists a global numeration
{Hi(k)},cn of the hs. such that every g(i) strips, the picture of {Hi(k)},.n is like
Figure 10.1. There is a similar arrangement {Vi(k)},.n for the families of vs.
Furthermore we assume that it is possible to define limit strips as

Hi(owo) = {(x, y)e 0Ai| there exists a sequence of points (x, y),€ Hi(k) for
all ke N, such that (x, y), tends to (x, y) when k tends to oo},
Vi(oo) = {(x, y) € 0Ai| there exists a sequence of points (x, y), € Vi(k) for
all ke N, such that (x, ), tends to (x, y) when k tends to oo }.

(b) f maps homeomorphically v.s. into h.s., that is,
f (Vmi(k)) = Him(k). (10.5)

The horizontal (vertical) boundaries are mapped into horizontal (vertical) boun-
daries if f 1s defined on them.

Hi (k) =Hj T3

S
/ | (r+l1) .
4 Hi(k+1)=H
= ]

1

S

r+2)i

w114 (K +2) =05 .

~"‘—“Hi (k+B8-1)=Hj (r+f-1) iS

Hi(k+ﬁ)=Hj(r)iS+l

j(r) ,j(r+l),”.j(r+6-l)€ I;"L
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Hypothesis 3. For all i€ I, there exist z(i) families of h.c. {{Eji}};.s and r(i) families
of vs. {{Cji}};cs such that

(a) f ~! is not defined on the hc. and f is not defined on the vc.

(b) Let C be either a v.c. in Ai such that C = Vi(m) for some me N, or a v.c. in Ai
belonging to some of the above families.

Then f “}(C)nVij(k) is a v.c. in Aj for all j€ I; and for all ke N. In a similar way if
E is a h.c. in Ai and either E < Hi(m) for some me N, or E is a h.c. of some of the
above families, then f(E)nHij(k) is a h.c. in Aj for all je I; and for all ke N,

Families {Eji},s and {Cji},s can be contained in the families of hs. and vs.
of the Hypotheses 2. In this case, for every jeS;, there exists mel; such that
Eji(k) = Hmi(k) for all ke N, and for every jeS§;, there exists me I; such that
Cji(k) = Vmi(k) for all ke N,

We note that for all ke N Hypotheses 3 implies f ~}(V)"Vij(k) is a v.s. for all j € I;
and f(H)N Hij(k) is a hs. for all jeI,.

Let (@', a)€ . We associate to (a’, a) a family of v.s. and a family of h.s. depending
on the type of (a, a) as follows:

(a) We define

H.=Hd,_,d{a;,_,)forall ieZ,i<O0. (10.6)
(b) We define V; and H; as in (10.6) if i >k + 1 and

Vir1 =Vai42ai4 1@+ 1) Haj 4 1 (00), (10.7a)
Hy. = Haj . (c0),
if (a’, a) 1s of type (bl), and
Vier =Vai12 a1 1(a+1) 0 Eagag s 4(ay),
H,.,=Eaa;,. (a,), (10.7b)
if (a’, a) 1s of type (b2).
(c) V; and H; will be given by (10.6) if i<h —1 and
Vi1 =Va,_,(0), (10.8a)
for sequences of type (cl), and
V-1 =Capa,_ (ay_) (10.8b)

for type (c2).

If (a’, a) is of type (d) we will define V; and H; as in (10.6) for k+ 1 <i<h—1 and
Vis1, H oy, and V,,_, as in cases (b) or (c) depending on the type of (@', a).

We say that a point pe A fulfills the couple (a’,a)eX if f™p)eV,, for all meZ for
which V,, is defined.



222 CARLES SIMO AND REGINA MARTINEZ

THEOREM 10.1. Let A=\U,;Ai, I ={1,2,...n}, where for every i€l, Ai is a
bounded and connected set in the plane. Let f be a homeomorphism from A to f(A)
with a transition matrix & as in (10.2) satisfying the Hypotheses 1,2,3. Then for every
pair of sequences (a', a)€ X, there exists a point p which fulfils it.

Proof. We suppose that (a’, a)e X is an (a) type couple.

Let

B, ={peA|f"p)eV,,m=0,1,2,...}, and
B,={peA|f ™peV_,,m=12,.. 1}
We define in a recursive way
Voi1:. . n={peAdA|f™peV,, m=0,1,2,...n}
=Vonf YV nf Y. V,_ynf Y V). ..).

The Hypothesis 3 implies V,,_;~ f "*(V,)is a v.s. in Aa,_,. By recursion Vo ; , ..,
is a v.s. In Aay.

By definition V4 ;5  .+1<Vo 1., . .. are compact sets for all ne N. Then
Bi=M\,5V0.1.2...nF @ is a vs. (possibly a v.c.).

From (10.5), H_, ., = f(V_,). Therefore

B,={peA|f ™peH_,, m=0,1,2,...}.
We define
Hy | 5, .. _.={peA|f ™peH_,,m=0,12,...n}
=Honf(H_;n...H_,,;nf(H_))...).
Using the same argument as above B, =M, 5,H, -, ... _,is a h.s. (possibly a h.c.)
in Aag.
Hypothesis 1 implies B, "B, # Q.

Let us suppose that (a’,a)e X 1s a (bl) or (b2) type couple. We define a v.s. B, as
in the case (a). Let

B,={peA|f mp)eV_,,m=1,2,... —(k+1)}.
From (10.5), H_,, ., =f(V_,)if m < —(k + 1). Moreover by using (10.7) and (10.5)
if f**1(p)eV,,, then f**1(p)e H, ., and f**2(p)e H, . ,. Therefore
B,={peA|f ™p)eH_,,m=0,1,2,... —(k+ 1)}
=Honf(H_ (NN f(H N f(Heiy) ).

As above, H,,,nf(H,,,)isa hc.in H,,,. By recurrence B, isa hc. in H,. Then
B,nB,+Q.
The Theorem is proved in the same way when (a’, a) is a (c) or (d) type couple.
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Let us suppose that the curves and strips from the Hypotheses 2 and 3 verify the
following properties:

(a) Every h.c. in Ai cuts each v.c. in Ai only at one point.
(b) f Visa vs. VcVi, for some me N, then there exists a v, 0 < v <1 such that

d(f ' V)nVijk) < vd(V)

for all je I; and for all ke N. In the same way, if H is a h.s. H < Hi,, for some me N,
then

d(f (H)~ Hij(k)) < vd(H)

for all je I, and for all ke N,
Then it is clear that the point p given by the Theorem 10.1 is unique.

11. Symbolic Dynamics in the Isosceles Problem

Theorem 10.1 will give different types of behaviours in the isosceles problem. We
will prove Hypotheses 1, 2, and 3 for the case V. In the cases I and III only the
results will be given.

In the case V we take 4 =\U,Ai, [ ={1,2,3,4,5,6,7,8} where Ai sets are defined
in (9.3). The Table I1.I shows in each Ai, how the arcs I';, j =1,2,3,4 are selected in
order to satisfy Hypothesis 1. It can be seen that I'; is reduced to one point on f, in
some cases. (¥x) means the points of dAi which are not contained in any of the
defined arcs T

TABLE 11.1
Al A2 A3 A4 A5 A6 A7 A8
rl 61 li,l Ii,l 53 53 mi,z mi,z él
I, OR N\ ¢, 60113\[30 6@!3\130 (%) OR3\ ¢, OU*\ Bo 60114\,30 (%)
1—*3 62 62 mS 1 m* 1 64 64 ls, 2 ls, 2
T, 8R,N\¢& () U'NBy 0U'NB, ORN\E, («)  OUANB, U\,

For every Ai, an arc y as in (10.4) will be a hc. if y(0)e I'; and y(1)e I',. It will be
ave if y(O)el's and y(1)eI',.

Using Lemmas 9.1 and 9.2 we will define some families of horizontal and vertical
curves and strips. Y(A1l) and y(A48) are two spiral strips as in Figure 11.1. There is a
symmetrical picture in D _ for y(A4) and y/(AS). Moreover y(A42), Y(A3), Yy(A6) and
(A7) are spiral strips in D> U D* as Figure 11.2 shows. Then we can define the
following families of horizontal strips and curves
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¢ (A1)

Fig. 11.1.
Hij(k) = ®Cl(Y(A4i) N OF) N Aj i=1,8 j=1,2,
Hij(k) = ®(cl(y(Ai) N OF )N Aj i=4,5 j=5,6,
Hij(k) = Bl (W(Ai) " PL . )nAj]  i=23 j=34, (11.1a)
Hij(k) = ®(cl(Y(A4i)) ~ PL,) N Aj i=6,7 j=3,4,
Hij(k) = Dl (Y(Ai) A PL) N Aj i=2,3 j=1,8,

Hij(k) = ®(cl(Y(Ai)) NP3, )N Aj i=6,7 j=1,8,

for k>m!' ifi=1,4,5 or 8 and for k>m? if i=2,3,6 or 7, and
Elitk) = H8i(k)n®(o ), i=1,2,
Emi(k) = H4i(k)n®(03s), i=35,6,
(11.1b)
Eli(k) = H7i(k)n®(c*), 1=3,4,7,8,
Emi(k) = H3i(k)n ®(c%), i=3,4.7.8,

for k>m* f i=1,2,5, 0or 6 and for k>m? if i =3,4,7 or 8.

If p € Eli(k)(Emi(k)) for some k and some i, then f ~!(p) is not defined and ¢(t, p) is
an ejection orbit such that ¢(t, p) tends to L(M?*) when t tends to — co.

Using similar reasoning we can define the following vertical strips and curves

Vijl) =y U@ (AN Q) n 4, i=12, j=1,8,
Vijtk) =y~ Hcl(® ~L(Ai) A 07 ) A 4), i=56, j=4,5,
Vii(k) =Ll (® Y(AD) A PL, )NAj, i=3,4 j=2,3,
Vij(k) =y~ Hcl(® ™ (Ai) N P3,) N Aj, i=178 j=2,3,
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Fig. 11.2.
Vijk) =y~ Hcl(® "1 (AD)) NP3 ) N Aj, i=3,4, j=6,7, (1122)
Vij(k) = ¢ Y cl(® " Y(Ai))n P23, ,)nAj, i=178, j=6,7,
for k>m! ifi=1,2,50r 6 and for k >m? if i=3,4,7 or 8 and
CLi(k) =V2i(k)ny ~Y(o3), i=1,8,
CMik)=V6ilk)ny " (cZ), i=4,5,
(11.2b)

CLi(k) =V3i(k)ny (%), i=2.3,6,7,
CMi(k) =V7ik)ny (%),  i=2,3,6,7,

for k>m! if i=1,4,50r 8 and for k>m? if i=2,3,6 or 7.

The Poincare map f is not defined on the vertical curves. The orbits ¢(t, p) with
p € CLi(k)(CMi(k)) for some k, i, are collision orbits, that is, ¢(t, p) tends to L(M?)
when ¢ tends to + co.

The limit strips will be the following

Hl(o0) = &,n0Al, V1(oo)=E,N0AlL,
H2(o0) = &,M0A2, V2(o0)={I"1},
H4(0) = {m>1}, V4(oo) = E3N0A4,
(11.3)
H5(o0) =&, 0AS, V5(o0)=E3n0AS,
H6(o0) = £, 0A6, Vé6(o0) = {m"?},

H8(o0) = {I%?}, V8(o0)=E,MIAS,
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H3(o0) =V 3(o0) will be the arc of B, between ! and m"!, and H7(c0) =V 7(c0) the
arc of B, between [>? and m*?.
The transition matrix &/, associated to f according to (10.1) is

(11.4)

_ O O O O O O =
O = = OO = = O
(- Y Pt < o — p— (-]
O = = OO k= = O
lo b et 0 O (SN OI

I’—‘ S O O O O O P—‘I
S O O = = O O O
S O O = o= O O O

We extend &, to a matrix & with respect to IUS as in (10.2). S will be the set of
special symbols defined in section 10. Let i€ I, we define

1) o gl ;) =1, if there exists pecl(4i) such that f(p)(f ~'(p)) is not defined
and o(t, p) escapes to infinity when ¢ tends to + oo(— o0).

(i) a; (oq ;) =1, if there exists pe Ai such that f(p)(f ~'(p)) is not defined and
o(t, p) tends to LY(L*) when t tends to + oo(— o0).

(iii) o; wm(o, ;) =1, if there exists p e Ai such that f(p)(f ~'(p)) is not defined and
o(t, p) tends to M(M*) when t tends to + oo(— o0).

(1v) a; ;=0 1 other cases.

Therefore we can write

_ -
1 1 0l
011i
01 1]
|
04 101io 11.5
1—101i8"3 (11.5)
01 1]
|
0 1 1|
|
R
03><8
11001100
d,=11 1 11 0 0 1 1 (11.6)
0 01 11111
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where Og,3(05,5) 1s the 8 x 3 (3 x 8) matrix of zeros. There is a set X associated
with &/ as given in section 10 whose elements are couples of sequences.
The families of curves and strips defined by (11.1), (11.2) and (11.3) verify part (a)

of Hypothesis 2. For part (b), let us consider, for example, the v.s. V18(k) for some
k >m!. Using definition (11.2a)

fV18(k)) = ®[D (A1) QF ncl(Yy(A8))]
= AL N®[ Q] Ncl(y(A48))] = H81(k)

and (10.5) follows for m=1 and i=8. We denote by v, and v, (h; and h,) the
vertical (horizontal) boundaries of V18(k) as in Figure 11.3. In this case, h, i1s
reduced to [¥? and so f is not defined on it. From Figure 11.4 it is easy to see that f

preserves the boundaries v,, v, and h,. We can prove part (b) of Hypothesis 2 for
the rest of the strips in the same way.

LEMMA 11.1. Let E(V) be a h.c.(v.c) in Ai such that E < Hi(m) (V < Vi(m)) for some
me N. Then f(E)nHijk)(f ~'(V)nVijk)) is a hc.(v.c) in Aj for all je I,(jel;) and
for some k for which Hij(k)(Vij(k)) is defined.

Proof. y/(E)is a spiral curve in y(A4i)contained in D, ifi=1,8, m D_ifi=4,5,1in
D?if i=2,3,and in D*if i =6, 7. So, Y(E) cuts at infinite points to 6%, o0 if i=1, 8
and i =4,5, respectively. Y(E) cuts ¢% and ¢ in other cases. Then, for all jel; and

for all k € N such that Hij(k) is defined, Yy(E)n® ~*(Hij(k)) # @ . The proof is similar
for v.c. |

We have proved Hypotheses 1, 2, and 3. Then we conclude with the following
theorem.

THEOREM 11.1 Let ¢, <e<55/4, and let ¥ be the set formed by the couples of
sequences of elements belonging to 1uS=1{1,2,3,4,56,7,8} U{N,L,M,n,l,m}
which are of some of the types (a), (bi), ci), (dij), i=1,2,j=1,2, with respect to the

V18 (k)

s,2
£

Fig. 11.3.
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..1 Oool
e (A1) L
-~ 7 \\\ v(Vv18 (k))
" <23
4 ~ s
S A (V V¢ 1
/ lP(Vz) | " |
O H
| 7"
7,1
\ / :.:
\ 7 [
oo N ~ ~
0] s X -
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given by (11.4), (11.5) and (11.6).

Then for all couple (a',a)€ X such that a;>m*(¢) = max (m', m*), there exists a
point p € Aay which fulfils it.

The geometrical interpretation of the orbits given by Theorem 11.1 needs some
comments.

Let pe A the point that fulfils (@, a) e X.

If (@, a) 1s of (a) type, ¢(t, p) crosses S, infinite times for positive and negative time.
The sequence a’ gives the successive sets Ai which are visited by ¢(t, p) in each
passage by S,.

Let us suppose that (a’, a) 1s of (bl) type. Then, by the definition (10.7a),

fk+1(p)er/k+1 =Vay ;a4 (ag+)NHay 4 1(0)

for some k<O. From &, a;,, must be equal to 1, 2, 5 or 6. Then,
Ha, . (0) < é, U &, and @(t, p) comes parabolically from infinity. For a (b2) couple
(a’,a)eX, f**(p)e Ea,a; . (a,) for some k <0. Then ¢(t,p) is an ejection orbit from
L if g, =1 and from M*® when a, =m. Using same reasonings the (cl) couples
correspond to orbits which escape parabolically to infinity. The (c2) couples give
collision orbits at L' if a, =L and at M' if a, = M. The couples of (d) type are the
combination of parabolic, ejection and collision orbits. The Table 11.11 summarizes
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the behaviour of the orbits corresponding to the different types of couples. In this
Table we use P for parabolic orbits and E and C for ejection and collision
respectively.

TABLE 11.11
(@, a) (bl) (b2) (cl) (c2) (d11) (d12) (d21) (d22)
t <0 P E P P E E
t>0 P C P C P C

In order to represent, on the position plane, the orbits which pass through 4 we
remark some facts.

Let pe A2U A3 and suppose that f(p) exists. We denote by 7 the arc of ¢(¢, p)
between p and f(p). There exist t,,t, and t; such that ¢(t,, p)eS~, o(t,, p)€ D>,
@(t;,p)eS"UST and there is not any te(0,t,)u(t,,t,)U(t,,t3) such that
o(t,p)e S™US™. Moreover if f(p)e A3U A4 then ¢(t;,p)e ST and o(t5,p)e S~ if
f(p)e ATUA8. When pe A6 U A7 = AL * the result is the same but ¢(t,, p)eS™.

We consider pe A8. ¢(t, p) goes to ST near &,. If f(p)e A2, 7 has only binary
collision with 8 = /2. These binary collisions will be counted in the passage of 7 by
D.. If f(p)e Al, there is one passage by S~ near f(p) but this passage will be
considered when the orbit went out of Al.

We have summarized the behaviours of the orbits which pass by 4 in Table 11.11I.
The row t, tells us if the arc 7 has a first passage by ST US ™ or not. Row t5 refers to

TABLE 11.I11

P [ ) L3 f(p)
A2 St A3, A4 Al
a3 S~ S,
A3 S~ A7, A8 AU
A6 St A3, A4 U/
au* S* S,
A7 S~ A7, A8 U2
Al S~
R, s+ Al, A2 R,
A8
A4
R, S AS, A6 R,

AS St
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a possible last crossing by S™US~ immediately before f(p). The central row says
whether 9 passes near the Euler homothetic solution or near I, or I_. An element
a, of the sequence a will denote the number of binary collisions at 8 =n/2 (S¥) or
0 = —n/2 (S) or the number of complete revolutions around the Euler homothetic
solution depending on a, and a,,, ,. Recall that every one of these revolutions is one
oscillation of m; around the axis x, =0 on the position plane.

We give three examples

(1) (a@,a)=(...4,6;3,7,8,1,1,...),
(...a-,,a-y;aq,ay,a,,...)),

2) (@,a)=((,1;2,4,N), (a_,,a-; ao, ©)),

(3) (@,a)=(m,3;4,6,7, L), (a_,,a_y;ae, a,, a,)).

The Figures 11.5, 11.6 and 11.7 display the evolution of the corresponding orbits
on the position plane. In every case we assume that (a, a) is in the hypotheses of
Theorem 11.1 but to clarify the pictures we represent the orbits for small values of
the elements a,,.

In the case I, that is ¢. <e<g, we take 4=, 4i, 1={1,2,3,4,5,6,7, 8},
where the sets Ai are defined in (9.1). The transition matrix associated to f respect to
[US is given In the form (10.2) where

1 001100 1
1 001100 1
0000O0T1T10
g _|0000 011 of i
1 0011001
1 0011001
01100000
0110000 0
0 1 1 0 0 0]
011000 00000000 O]
1 0100 0 0000000 O
1 0100 0 00000000
A, = , A,=
011000 01100 1 1
011000 1 111100 1
1 1000 0 100 1 1111,
11000 0
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Fig. 11.5.
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Now X will be the set of couples of sequences with respect to the transition matrix
given by (11.7).

A similar study to case V can be done for ¢. <& <¢;. We obtain for all couples
(a’, a) € X such that a; >m™*(e), a point pe Aay, which fulfils it.

We only note that in this case appears a new type of transitions. For example, we
consider (a’,a) of (a) type with a, =S5 for all neZ. The corresponding orbit passes
infinite times by a neighbourhood of the Euler homothetic solution. It only has
binary collisions with 6 ==n/2. This kind of behaviour is not possible for
&, <e<55/4.

In the case III, the set A 1s the union of the four sets defined by (9.2); the
transition matrix in this case is the following

Pt —

1 010:110000

01011101000

0101'101000

1010i110000

___________ e ——
4=10 00 0

00 0 0

000 01 0

1 11 1

1 0 1 0 |

010 1| )

We note that in this case, we can not assure the existence of orbits which have a
large number of oscillations around the x,-axis without escape to infinity. In fact, if
that number is sufficiently large then, the orbit escapes.

12. Some Families of Symmetrical Periodic Orbits

In this section we classify some of the families of symmetrical periodic orbits. All
these families are included in the set of orbits given by the Theorem 10.1 in the
isosceles problem. To obtain these orbits we use the reversibility of the system (1.5)
respect to the symmetries L' and L2. We denote by Fix(L') (Fix(L?)) the set of
points which remain fixed by L! (L?). It is known (see [3]) that if p € Fix(L'), for
example, and t=min {t > 0|e(t, p)eFix(L')UFix(L*)} is different of zero, then
@(t,p) 1s a symmetrical periodic orbit. In fact, ¢(t, p) is symmetrical with respect to
L' and 2t-periodic if ¢(t,p)e Fix(L') and it is symmetrical with respect to L' and to
L? with period equal to 4t if ¢(z, p) € Fix(L?).

In the isosceles problem we have Fix(L!)=y,uy,uy_ and Fix(L?*)=7,. Recall
the segments y, and y_ defined by (4.1) correspond to points of binary collision
such that the momentum r has a local minimum. In order to obtain the symmetrical
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periodic orbits, we will follow y,, y,, v+ and y_ forward and backward by the flow
and we will look for the intersections of the obtained curves.

We consider the families of segments {x;}, {x’} defined in D, UD’, and { y;},{y}}
defined in D_UD_. Then, {®(x)}, (DD (¥ ')} (¥ i)
{O(y;)} (D(¥)}), (¥~ (y)} (¢ U»))}), are families of arcs in . between the
points [*! and [*?, [S! and 2, m"! and m"?, and m*! and m*>?, respectively. In a
similar way {c}}, {c?}, {d}} and {d?} for j > m? give in # the following families of
arcs, {®@(cj)}, {®(ci)}, {@d))}, {@@7)}, (¥ '(cj)}, (¥ i)} {¥ "))} and

{y "1(d?)}. The elements of these families are arcs which end in two points of f,.

PROPOSITION 12.1. Let ¢, <e<eg,. For all couples of positive integers n, m,
sufficiently large, there exists a periodic orbit symmetrical with respect to L' (see Fig.
12.1) such that it has n binary collisions with x, >0, m with x, <0 and two passages
by the axis x, =0 in one period. T he curves represented in Figure 12.1 are travelled
twice in one period.

Proof. The intersections ®(x;)Ny ~'(y,), j, k =0 give the periodic orbits when n
and m are even. For odd values of n and m, the orbits are obtained from
®(x;) Ny "' (¥i), j, k > 0. The intersections ®(x;) Ny~ (y;) and ®(x;) Ny~ (y;),j =0,
k 21 give the other orbits.

Moreover if n=m, the orbit is symmetrical with respect to L*. Then the

projection on the position plane is symmetrical with respect to the x,-axis (see Fig.
12.1¢). n

In order to clarify the following pictures as Fig. 12.1 we represent the orbits for
small values of n and m.

Ny
| 5/

(a) (b) (c)

Fig. 12.1.
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PROPOSITION 12.2. Let &, <& <55/4 and let n, m be two large positive integers. If
n =% m, there exist two periodic orbits symmetrical with respect to L' such that they
have n + m binary collisions with constant sgn(x,) and exactly one collision with the
opposite sign of x,, as in Figures 12.2a and 12.2b. If n =m they complete one period
after n binary collisions (see Figure 12.2c).

Proof. The intersections ®(x;)Ny ~*(x,) give the periodic orbits which have the
n + m binary collisions with x, >0 if » and m are even. For odd values of n and m
the orbits are obtained from ®(x})Ny ~(x;), and from ®(x;)Ny ~'(x;) in other
cases. The orbits with binary collisions in the semiplane x, <0 are symmetrical of
these. N

PROPOSITION 123. Let ¢<g, or &,<e<55/4 and n, m positive integers suf-
ficiently large.

(i) There exist two periodic orbits symmetrical with respect to L' such that during
one period of time, my crosses n + m times the axis x, =0 as in Figurel2.3a if
¢ <é&y and as in Figure 12.3b if ¢, <e < 55/4. If n =m and ¢ < &,, then the orbit
completes one period after n crossings of the axis x, =0 (see Figure 12.3c).

(1) There exist two periodic orbits symmetrical with respect to L' such that ms
crosses m times the axis x, =0 and n binary collisions take place with constant
sgn(x,) in one period (see Figure 12.4).

Proof. The orbits of (i) are given by ®(c})ny ~!(ci) and D(cF)ny (ci) if e <ey,
and by ®(cj)ny " (cy) and D(cf)Ny " Hcr) if ¢, < e < 55/4. The part (ii) is obtained
from ®(x;)N iy ~(cZ) and ®(y;)" Y~ (ci) for every value of ¢ in the hypotheses. B

(a) (b) (c)

Fig. 12.2.
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(a) € <¢ (b) e1<e< €2 (c) 52<e<55/4

Fig. 12.3.

PROPOSITION 124. Let e<¢; or ¢, <e<55/4 and n, m odd positive integers,
sufficiently large.

(i) There exists a periodic orbit symmetrical with respect to L* such that during a
period, ms crosses n + m times the axis x, =0 as in Figure 12.5a if ¢ <&, and
n+m+1 times as in Figure 12.5b if ¢, <& < 55/4. In the last case there are
only n + 1 crossings in one period, when n = m (see Figure 12.5d).

(i) There exists a periodic orbit symmetrical with respect to L* such that, in one

Fig. 12.4.
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/ V4
(a) s:<e1 (b) €2<€<55/4 (c) €<€1 (4a) 52<e<55/4
Fig. 12.5.

period, my crosses 2m times the axis x, =0 and it has n binary collisions with
X, >0 and n with x, <0 (see Figure 12.6).

Proof. Use ®(d))ny~1(d2) if & <e, and ®d)ny~1(d}) for &, <e<55/4 in (i)
For the orbits of (ii) consider ®(x})Ny ™1 (d}). |

PROPOSITION 12.5. Let e<g; or &, <e<55/4 and n, m positive integers with
different parity.

(i) There exists a periodic orbit symmetrical with respect to L' and to L?* such that
during one period, ms crosses 2(n + m) times the axis x, =0 as in Figure 12.7a if
€ <&y and as in Figure 12.7b in the other case.

Fig. 12.6.
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(a) € <e (b) €. <€ <55/4

1 2

Fig. 12.7.

(1) T here exist two periodic orbits symmetrical with respect to L' and to L* such
that my crosses m times the axis x, =0 and n binary collisions with constant
sgn(x,) take place in one period (see Figure 12.8).

Proof. The orbit of (i) is obtained from ®(c})ny '(d;) for e¢<e, and
O(dj)Ny~(cf) for e, <e<55/4. To get the orbits of (ii) it is necessary to consider
O(ci)N iy~ H(xi) and D(cj) Ny~ (i) _

Some of these periodic orbits were obtained before this work. The existence of the
orbits of (1) in Propositions 12.3 and 12.4 1s proved in [10].

Fig. 12.8.
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Fig. 12.9.

Finally we remark in the case ¢, <& <e¢,, the orbits which pass closely to the
Euler homothetic solution escape to infinity. It means that for k sufficiently large,
W ~ ' (ct) for example, is contained in the possible hyperbolic zone determined by ¢,
(see Figure 9.1b). It is possible that for small k, Y ~!(c}) cuts &,. Let us suppose it is
true for k=1. In this case, ¥~ '(c1) cuts the arcs of the family {®(x;)}. This
intersection gives a family of symmetrical periodic orbits as in Figure 12.9. In the
same way, if ¥~ '(d;) cuts the arcs of {®(x;)} we will obtain a new family of
symmetrical periodic orbits. Broucke ([1]) computed some orbits of the last family
for small number of binary collisions. This implies the existence of the family
corresponding to ‘1(c})m(D(xj) for all number of binary collisions.
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Appendix A: Some Numerical Computations Concerning Invariant Manifolds
of the Isosceles Problem

Some dynamical results given in the work rely on the relative position of curves
which are the intersection of the planes v =0 or y =0 (or some other suitable planes)
with several invariant manifolds of equilibrium points or periodic orbits. The results,
some of them known by other authors, which have been proved analytically have a
partial character and say nothing about the good spiraling properties of the curves.
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To give evidence enough about the nice global behaviour of several curves we have
done several numerical computations. In what follows we summarize the results and
we give a sample of pictures. First of all we have computed the intersection W4,
with the plane {y =0.5}. In W*%.! the motion going down is faster than the motion
along the triple collision manifold (compare the eigenvalues at L*). Hence, we have
computed first the intersection of W' with the triple collision manifold (i.e., an
orbit on r =0), and the variational solution associated to this orbit such that the
starting conditions are contained in (a linear approximation to) W% near L In
this way we obtain a narrow strip: If Pe W*! n{r =0} and Qis the corresponding

variational solution at this point we consider the segment PR where R =P + p, O,
po small. When P changes, the segment generates the strip. Then, starting at points
as R, forwards integration produces orbits which generate the full W*.'. Checks
with different values of p, are done to obtain an accurate enough description of
wul.

Now we are interested in the spiraling behavior of the curve obtained cutting
w*! with some plane y = y,, yo >0, and also in how this curve intersects the curve
obtained cutting P°. with the same plane. This last curve has been computed in a
similar way: Starting at y=y,, y, small, an approximation of P, restriced to
¥y =y,, can be obtained from the analytical expansion of the manifold. Then,
backwards integration allows to obtain the intersection with y =y,. Of course, we
have done checks, as before, using several values of y,. Usually the value y,=0.5
has been used. '

Figure Al shows a sample of results for e=1 and ¢ =30. In the range [0.1, 30],
covered by our computations, the qualitative behavior is the same: The curves show

0
Q0

)
ff

(@ =
)

Fig. Al. The intersections WI‘:'S‘ N{y =05} and P5 n{y=0.5} are drawn for (a) e=1; (b) ¢=30. In (a)
the coordinates are p = (x — 0.4) cos (2¢), g =(x — 0.4) sin (2¢) and the window is (—0.8, 0.8)(—0,6, 0.6).
In (b) 0.45 is used instead of 0.4. The window is (—0.2,0.2)(—0.3,0.3).
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good spiraling properties, they intersect only once P% and the spiral is compressed
when ¢ is increased. The region where the intersection with PS 1s produced is
displayed again suitably magnified in Fig. A2 for different values of &. Table Al gives
values of @ (mod n) for which the intersection with P%, is produced on {y=0.5}.

Table AII gives an estimation in radians of the angle o measuring the transversality
of W*! and P% on {y=0.5}.

TABLE Al
€ 0.3 1 3 10 30
@ —0.60295 —0.68913 —0.84888 —1.14580 —1.99100
TABLE All
€ 0.1 0.3 1 5 10 30
10°a 11.1 10.8 8.4 3.5 1.2 0.5

The intersection of W*.! with {y =0} is an infinite spiral as shown in Section 2.
Figure A3 shows a portion of this spiral for ¢ = 1. In this representation P.O., lies
on the origin. Furthermore, from the quantitative point of view it has been predicted
in Section 2, using only the dominant terms, that between the angle ¢ and the radius
x the relation @x> =constant should hold. Table AIIl gives some values of @
(measured in revolutions) and of x (measured in arbitrary units) and the product ¢ x>
for e=1.

TABLE AIlI
@ 1 2 3 4 5 6 7
X 0.916 0.722 0.647 0.598 0.563 0.536 0.513
ox> 0.769 0.753 0.813 0.855 0.892 0.924 0.945
@ 8 9 10 11 12 13 14
X 0.493 0477 0.464 0.452 0.440 0.429 0.420
@x> 0.959 0.977 0.999 1.016 1.022 1.026 1.037

This gives evidence about the fact that, for a fixed ¢ (mod n) the successive values
of x behave roughly as constant x n"!/3 ne N, going slowly to zero.

The next computation is that of W*? cut by the v =0 plane. Figure A4 shows the
results for ¢ =0.3 and ¢=3, but they are qualitatively the same throughout the
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u,l1

Fig. A3. The intersection W"L’S1 N{y =0} is given for ¢ = 1. The variables are p = x cos(29), g = x sin(2¢).
Window: (—1.28, 1.28)(—0.96,0.96).

range of our computations [0.1,10]. To detect the nice spiraling behavior we have
drawn also the symmetrical curves. As it should be the spiral has a geometric
behaviour and it compresses faster the greater the value of &. As we know, for ¢=
55/4 there is no spiral and the curve enters directly to the origin. For the sake of
completeness in the case e=3 we have included the intersection with v =0 of
W*! and the symmetrical curves. As stated in Section 7 these curves are broken
and they are made of an infinity of arcs. The successive arcs get strongly compressed
because they are related to Table AIIl. Furthermore the starting point of each
one of the arcs (which end on the curve ¢ =0) is only in the region w <0 for a finite
number of arcs.

The last set of computations refers to the real behaviour of the regions given in
Figure 9.1 entering in the symbolic dynamics description. In this figure there appear
the arcs &;,i =1, 2, 3, 4, as defined in Section 8 and four more arcs joining the points
I“1 and m"!, I*? and m"2, I>? and m®2, ! and m>!. We have taken the last four
arcs as ®(c7), O(c7), ® " '(c;) and @~ *(c?) (respectively) and are denoted by #,, 15, 13
and 7, (respectively). These curves are suitable for our purposes because they are
already continuous. Hence, using the terminology of Section 9 we have m* = 2. The
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=0
v=0
v,
Wuél wiil
M
fw a
r=0
u, 2 v=0
WLS

Wu,l

fw b

Fig. A4. (a) Intersection with the plane v =0 of the branch Wz;z and the symmetrical ones for ¢ = 0.3; (b)
Idem for ¢ =3, including the branch W“L;‘ and the symmetrical ones.
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r=0
mS’l v=0 Kl'l
21,2
52 53 32
/) N P
\ y/
£ .
1 4 ml,l
2s,l
mi,2 25,2
g a
52
b
q c

Fig. A5. The curves &;and n;,i=1,2, 3, 4 in the plane v =0 for ¢ = 0.3. Relative position with respect to

the curves r =0 and ¢ = 0. Small marks denote the points *'* and m*'*. The coordinates used are p = p

cos(¥), g = p sin(y), where p=1—n"" arctan(2.5r), ¥ = arctan(w/6). (a) The full figure; (b) and (c) two
magnifications with windows (0.9, 1.01)(—0.045, 0.045) and (—0.5, 0.5)(0.325, 0.7), respectively.
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extreme points of the arcs &, n;,i =1, 2, 3, 4 are the points of the type I*** and m**.
Table AIV gives some values of [*! and [ for different values of ¢. The other points
are obtained by symmetry.

TABLE AIV

€ 0.1 0.3 1 3 10 30

.1 6 —15707462 —1.5707796 —1.5673631 —1.4897127 —1.2822462 —1.1529981
w 0.0100106 0.0057763  —0.0828644 —0.4024794  —0.7544038 —0.9008319

[s.2 0 1.5006676 1.2365198 0.5099078  —0.0528583  —0.4864930  —0.7408949
w 0.3743560 0.8100443 1.3212062 1.4132256 1.3296450 1.2147961

Figures AS to A7 show the curves &, n;,, i=1, 2, 3, 4 as well as the curves r =0
and v =0 all of them in the v=0 plane, for e=0.3, 1 and 3, showing the three
different cases. In Fig. A5 we see that the &; curves are near the v =0 curve, but they
are already continuous, in agreement with the Conjecture in Section 8. In Fig. A6 it
is seen that the curves &, and 7, intersect in two points (and a similar thing is true
for the symmetrical pairs). Using only continuity reasons it is not strictly true that
they should intersect as displayed in Fig. 9.1, but this does not affect the definition of
regions A;. In a similar way, in Fig. A7 the curves £; and 7, intersect in three points.
For continuity reasons they should intersect at least in one point. However, the
number of extra intersections depends on ¢ and the two extra points dissappear for ¢
shghtly greater than 3.

a

Fig. A6. (a) Same as Figure A5(a) for e =1; (b) A magnification with window (0.96, 1.02) (—0.06, 0.06).
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Ei'l

VCD

Fig. A7. (a) Same as Figure AS(@) for &=3; (b) A magnification with window
(—0.05,0.05)(0.996, 1.0015).
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Appendix B: The Fictitious Orbits s;, j=1, 2, 3, 4.

The global flow of the planar isosceles three-body problem gives rise, after adding
the boundaries at triple collision and at infinity, to a 3-dimensional closed ball
taking out two open 3-dimensional balls and four lines s;, j =1, 2, 3, 4, as displayed
in Fig. 4.1. The line s, goes from one of the points deleted from the 2-dimensional
sphere corresponding to triple collision, a point related to an infinitely close binary,
to one of the points deleted from one of the 2-dimensional spheres at infinity, a point
related to hyperbolic motion of the binary with respect to the third body with
infinite escape velocity. The lines s;, j =2, 3, 4, are obtained by symmetry.

The purpose of this Appendix is to explain the behaviour of the flow near those
lines and to see that they are natural boundaries that can be added to the global
flow to get, as fully compactified phase space, a 3-dimensional closed ball minus two
2-dimensional open balls. Physically those lines can be seen as orbits between
infinity and triple collision travelled at infinite velocity. The two equal masses are at
distance zero. Hence the energy of the binary formed by them is — o0 and therefore
the energy of the system formed by the binary and the third body i1s + oo.

Before going into the details we make a remark on the limiting case. Let —h,
h >0, be the energy of the binary —h = x3/4 — 1/x,. Then the period of the binary is
(n/2)h "3/, The remaining energy gives (¢/(2 + ¢))x3 —4e (x2 +4x32) "2 =h—1 and
hence, when x, goes to infinity x, ., =((2 + &)(h — 1)/e)'/2.

In one oscillation of the binary, i.e., between two consecutive binary collisions, the
distance between the binary and the third body, for big values of x,, increases by an
amount O(h~!). To slow down the motion in order to detect the oscillations of the
binary, for instance, scaling time to reach a finite limiting period, implies that the
escape of the binary from the third particle is stopped when h goes to infinity.

As we are Interested in motion near a rather close binary we introduce suitable
variables in a neighborhood of the collision which can be used both in the regions
near infinity and near triple collision.

Let x, y, &, n be the variables introduced in (2.1) to describe the motion near
infinity and « the independent variable used there. We also use the variable r as
defined in (1.4) and the constant d = &(4(2 + ¢)*/3) L.

We define the variables X, Y, & by

¥ = 4dr
- 1 +r+ 4drx?’
4dr
y - B.1
y\/1+r+4dry2’ (B-1)

R 1+r
ézé\/ru—m’
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and the independent variable k¥ by dk = (r(1 —Y?)/(1 +r))!/?dx. We denote again
by ’ the differentiation with respect to k. Then the following equations of motion
are obtained

X = (2+8)1/2 X3Y(1 = Y2)£2 X7(1 = X2W(1 =Y2)2¢E3n+
VSR (—)5+2—p’5 (1-X*)(1-=Y")*L 'y
26312 S - s
X°1-X°)’Y(1-Y
+(2+8)1/2p3 ( )°Y( )¢*,
9 1/2 X
Y' = _( 4_::;)2 X4(1 _Xz)—z (1 —Y2)3£2(1 +u2)——3/2+
+LX"Y(1—Y2)3E3n+ 2o X4(1— X231 —Y?)?E2
2p° (2 + )12 p? ’
(B.2)
5 2+ ¢)'? A
_é';—n_ 2372 X4(1—-X2)—2Y(1—Y2)2é3(1 +u2)—3/2_
€
26312

1 -
. X6 1_Y2 324

M= —E[Y?+(1— X?/p)(1 —Y?) ]+ X2(1 = X?) 71 (1 = Y& +u?) 272,

XH1—X)Y(1-Y?)? 2,

where

p?=1XH(1— Y2284+ (82%/Q + &) (1 — X2)?
and

1 2 1 2\ 22
u= X1 -X) - Y)E

The variable r is obtained from
1+r)?=3E* 1 —-YH2+Be3/2+e) X 41 — X ?)? (B.3)
and the energy relation i1s written as
7+ &Y +(1-X?/p)(1-Y?)] =
14+ X3(1 — X2) (1 —Y?)£2 (B.4)
[1+ 7 X4 — X721 -Y?)2E4] 712
If X <X, <1 then the equations (B.2) are regular. The condition X < X, is
equivalent to the condition that the variable 6, defined in (1.4), is bounded from
below by some positive constant. We make the hypothesis X < X, <1 from now on.
Later on we shall see that in the region considered this is satisfied. We are interested

in very fast escape motions, i.., big values of y and therefore, according to (B.1), in
values of Y close to 1. Let Y =1 —Y. From (B.4) we obtain that ||, || are bounded
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by expressions of the type 1+ O(Y). It is easely seen that the equations of motion
can be rewritten in the form

1 1/2
X“=Q+w)mxﬂY3[—1+<2+8> XWI—X7Y1+001}

2632 8¢3
_ 2+ ¢ R _
Y = — X411 —X?%)7%Y2%¢2(1 + 0(Y)), B.5
2V5§ ( ) ¢ (L +0(Y)) (B.5)
¢'=n+0(Y?),
n=—E&+0@).

The triple collision manifold is obtained putting r=0 in (B.3). If furthermore
Y =1 then a value X = X, is obtained and for this value one has ({2 + €)/(8¢3))'/?
X?(1 — X?)7! =1. The region of interest is contained between X close to X, (triple
collision manifold) and X =0 (infinity). Hence, as said before, there is X, <1 such

that X < X,. Let y the argument of £ + ./ — 1 and define a radius R as Y ~!. Figure

t.c.m.(C)
¢ .............. =~
/,‘ Z
-
S
infinity

Fig. Bl.
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B.1 displays the phase space for Y close to 1, where R and y have been used as polar
coordinates and X as a vertical one.

For Y=0one has X'=Y' =0, £’ =5, n=—¢ and we obtain a cylinder foliated
by periodic orbits each one for a different value of X. If X =0 one also has
X'=Y=0¢= n,n = — £ but now the value of X remains O for all the orbits and
Y takes any value in a neighbourhood of 1. We obtain an annulus foliated again by
periodic orbits.

The fact that Y’ is non positive for X close to X and in fact it is negative unless
£ =0 (it is zero for £ =0 due to the unavoidable scaling of time to regularize binary
collisions) shows a spiraling behavior on the triple collision manifold towards X = X,
Y = 1. This i1s a way of rewritting the spiraling along the horns in Fig. 1.3.

The cylindrical annulus limited by the triple colliston manifold and infinity with
vertical walls Y =0 and Y =Y, Y, small enough, is positively invariant according to
the equations (B.5). If X < X, — O(Y) we have X’ <0 and the flow approaches the
cylinder Y =1 going downwards. Only in a thin neighbourhood of the triple
collision manifold the variable X goes up and down following closely the form of the
triple collision manifold in these variables. We claim that any orbit entering the
cylindrical annulus goes down to infinity ending in one of the periodic orbits of the
bottom annulus. To prove the claim it is enough to remark that this orbit can not
go to one of the periodic orbits which foliate the cylinder Y = 1. This would imply
that a physical orbit (i.e. coming from some finite values of x,, x,, x;, x,) would
reach a finite value of x, #0 with an infinite value of x, which is an absurdity.

Further information is given by the Poincaré map through = m/2 (recall that
due to the regularization this means to consider the values of X, Y after two
successive collisions). Let X, Y be the initial point and let X ,, Y, be the image under
the Poincaré map. We can easily obtain from (B.5) the expression

2 1/2 _ ) 1/2 _
X,,=X—7r( t¢) X3Y[1—< +8> XZ(I—XZ)‘1+O(Y)],

2e3/? 8¢3
(B.6)
SO ; 2+¢e _, 2N —272 S
=Y —T X*(1=X%)"“Y*(1 + O(Y)).
2./2&

The map (B.6) can be seen as the time one flow of a vector field in the X, Y
variables. Figure B.2 shows the orbits of that vector field.

Finally we can shrink the cylinder Y =1 to a line. In fact, going back to the
variable £ or x; we get { =x; =0 because Y = 1. This is precisely the line s,. Using
again as independent variable the physical time ¢ it is obvious that the line is
travelled at an infinite velocity because

dX (2+¢)'?
dt  4¢32

1/
[-1 ¥ (28;8> X1 -x7) om}

p3(p2 _ X2)-3/2X3(1 _ YZ)—I/Z
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