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Abstract. In previous studies, Lissajous trajectories associated with the collinear libration points in the 
restricted three-body problem have been successfully computed analytically to at least third-order. Those 
approximations are utilized to determine such trajectories numerically for an arbitrary, predetermined 
number of revolutions in the rotating frame, for the case of circular primary motion. The numerical 
approach first identifies target positions at specified intervals along the trajectory and locates a 
continuous path through those points with velocity discontinuities. Then the A~'s are simultaneously 
reduced in an iterative process. Such trajectories have been constructed in various primary systems, for a 
wide range of orbit sizes and a large number of revolutions. 

1. Introduction 

In the restricted three-body problem a particular type of bounded, three- 
dimensional solution has been recently studied by a number of authors. These 
trajectories are generally quasi-periodic and associated with each of the collinear 
libration points. Farquhar and Kamel [1] used the method of Linstedt-Poincar6 to 
produce a third-order analytic solution for such orbits near the translunar libration 
point (L2) in the Earth-Moon system. Richardson and Cary [2] also developed a 
series solution truncated to fourth order. The Lindstedt method has also been used 
successfully to investigate three-dimensional orbits in other dynamical systems [3]. 
These analytic approaches show that the linearized motion near any collinear point 
includes a periodic path in the plane of primary motion, and an uncoupled periodic 
out-of-plane motion. The two frequencies are generally unequal. For small ampli- 
tudes, the orbital path traces out a Lissajous figure, and thus, the orbits will 
subsequently be called Lissajous trajectories. When the amplitude is sufficiently large, 
so that nonlinear terms are significant, certain combinations of in-plane and out-of- 
plane amplitudes exist such that the corresponding frequencies are equal and a 
perfectly periodic three-dimensional motion results. Members of this subset of 
general Lissajous trajectories are sometimes called halo orbits. 

Halo orbits have been computed analytically using the series solutions mentioned 
above [4]. In addition, they have been calculated numerically from the exact 
nonlinear equations of motion using differential corrections schemes, the results of 
which appear in references [5] through [8] among others. Lissajous trajectories 
have been computed analytically from the series solutions but numeric calculation 
has been limited because of their nonperiodicity. The objective of this work was to 
produce a continuous, bounded, 'Lissajous' solution numerically from the nonlinear 
differential equations. The original motivation for this study was actually to 
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determine a nominal Lissajous trajectory to be associated with the interior collinear 
libration point (L1) in the Sun-Earth  system. Therefore, the constants correspond- 
ing to that problem were used primarily. The results, however, are easily generalized 
to other systems. 

In this initial effort, it was assumed that the primaries move in circular orbits. 
Also, in development of a technique to meet the objective, certain abilities of the 
resulting method were defined as desirable. Lissajous trajectories exhibit a far 
greater variety of orbit sizes than halo orbits. The numeric approach should 
accommodate as much of that range as possible. The approach also needed to be 
able to find a solution for a possibly predetermined but arbitrary number of 
revolutions in the rotating frame. At the same time, numerical problems inherent 
with long integration times had to be minimized. 

2. A n a l y s i s  

2.1. EQUATIONS OF M O T I O N  

The equations governing motion in this problem are written in the form associated 
with the restricted three-body problem_ In the usual rotating coordinate system, the 
x-axis is always directed from the larger toward the smaller primary. The y-axis is 
90 ~ from the x-axis in the primary plane of motion. The z-axis completes the right 
handed system, defining the out-of-plane direction. The associated unit vectors are 
~, )3, s respectively. The problem is nondimensionalized such that the following 
quantities are equal to unity: the sum of the masses of the primaries, the mean 
distance between them, the mean angular velocity of the coordinate frame, and the 
gravitational constant. The nondimensional smaller primary mass is represented as 
p. 

Let the vector r describe the position of the infinitesimal mass from the center of 
mass of the primaries such that /~ has components x, y and z. In the standard 
formulation of the circular restricted three-body problem, then, the equations of 
motion can be written 

OU 
X -  2 ~ ' - - -  

c3x 

OU 
y + 2 x - - -  

c3y 
(1) 

c3U ~ =  
t~z ' 

where 

U = (x 2 + y2 ) /2  + (1 - #)/d + #/r 

d = [(x + ]./)2 + y2 + Z2]1/2 

r --  [ ( x  --  1 + / l ) 2  + y2 + Z211/2. 
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Dots denote differentiation with respect to nondimensional time. The equations are 
known to yield Jacobi's constant of integration, C, given by 

C = 2 U  __(~2  .~_ 5,,2 + ~2). (2) 

Also needed is the 

8X(t)/c3X(to), where X 

Here ~(to, to)= I, the 

6 • 6 transition matrix, ~ (t, to), of partial derivatives, 
is defined as a column vector with elements x, y, z, ~t, ~,, ~. 
identity matrix and 

d 

dt 
- - O ( t ,  to ) = A(t)O(t,  to), (3) 

where 

'ifi] 0 J I 
A(t)= tfXX ] , 

I 

0 1 0 

- 1  0 0 

0 0 0 

and Uxx is the symmetric matrix of second partial derivatives of U with respect to x, 
y, z evaluated along the orbit 

2.2. APPROXIMATE ANALYTIC SOLUTION 

The equations of motion in (1) can be expanded about the collinear libration point 
of interest. Define position components x, y, z relative to Li such that 

x = x - (1 -/~ +7) 

y = y  (4) 

Z = Z  

where ), is the distance between the libration point and smaller primary and ~, is 
positive when referring to L2, negative for L1. The linearized form of the differential 
equations contains constant coefficients and appears as 

k ' -  29 - ( 1  + 2c)x = 0  

y + 2 ~  + ( c -  1)y = 0 (5) 
k'+ cz =0.  

The solution to the equations in (5) for the out-of plane z motion is simple 
harmonic. The characteristic equation for the in-plane x - y  motion has two real and 
two imaginary roots. If only the nondivergent mode is excited, the solution is 
bounded and can be written in the form 

x = - k A y  cos (2t + ~ )  

y = Ay sin (2t + q~) (6) 

z = Az sin (vt + d/). 

The linearized solution is then characterized by the two amplitudes Ar and Az, and 
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the two phase angles ~b and ~. When the frequencies 2 and v are equal, a halo orbit 
results which repeats with every revolution. The more general case of unequal 
frequencies yield Lissajous trajectories which do not quite repeat after each 

revolution. 
The higher order approximations utilize Equation (5) as the first term and are 

written as functions of 4~, ~, Ay and Az. Farquhar  and Kamel developed a third- 
order analytic solution for small amplitude orbits about L2 in the Ear th -Moon  
system. Their series included corrections due to solar gravity and lunar eccentricity. 
The original goal in this study was to determine a Lissajous path near L1 in the 
Sun-Earth  system. Because of the system similarity, the algorithm originally dev- 
eloped by Richardson and Cary is utilized whenever an analytic result is desired. 
Richardson and Cary actually seek a solution in the lunar-perturbed Sun-Earth 
system. The primaries in the 'three-body' system are the Sun and Earth/Moon 
barycenter. The methods of dual time scales and successive approximations are 
employed to develop a fourth-order expansion including corrections for the eccen- 
tricity of the Earth/Moon barycenter path about the Sun, and the Ear th-Moon 
mass ratio. The result is applicable to orbits associated with L2 or with the interior 
point Lx. In the recent work, the algorithm in [2] was fairly easily modified to apply 
to any system of primaries. Development of the higher order terms is given in detail 

in the reference. 
Figure 1 contains three planar projections of a Lissajous trajectory. It is as- 

sociated with L1 in the Sun-Earth/Moon barycenter system as computed from the 
third-order approximation. In the figure the origin is located at L~. As usual, ~b, ~, 
Ay and Az are the input required for the analytic results. Since the third-order 
solution is plotted in the figure, the maximum amplitudes at each revolution will not 
necessarily coincide with the input values. The input values merely provide a basis 
for reference in selecting orbit parameters. In Figure 1, the input phase angles 
~b = 180 ~ and ~ = 90 ~ are the values used consistently in all the later examples. 
Those values insure a starting position in the first quadrant of the x - z  plane which 
was chosen for convenience. The input amplitudes are Ay = A z = 200 000 km, which 
were also arbitrarily selected for illustration. 

2.3. NUMERICAL SOLUTION 

2.3.1. General Approach 

The focus of this work is the determination of a continuous, bounded path as a 
result of the integration of the exact equations of motion. If the third-order analytic 
approximation is used to locate initial conditions in a numerical integration, the 
solution will generally diverge quite rapidly. The method developed provides 
improved initial conditions as well as required values of all six elements in the state 
vector at specified intervals along the path, such that integrated trajectories can be 
'patched' together for a continuous, bounded motion. In most cases, the intervals are 
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Fig .  1. T h i r d - o r d e r  Lx L i s s a j o u s  s o l u t i o n  (A r = Az = 2 0 0 0 0 0 k m ) .  
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designated as approximately half of a revolution, although use of quarter re- 
volutions was examined as well. The state vectors at the beginning and end of each 
interval are defined as six-dimensional target points. An integrated path between 
target points is defined as a trajectory segment. 

The procedure is a two level iterative process. Initially all target points are 
identified. Trajectory segments between target positions are determined by iterating 
utilizing differential corrections. The segments are patched together such that an 
orbit results which is continuous in position but that contains a finite number of 
velocity discontinuities (Ae's). Then, a linear correction is made to all target 
positions as well as segment times, with the objective of a simultaneous reduction of 
the Ae's. New trajectory segments are determined and patched together at the new 
target positions resulting in smaller Ae's. The process continues until the Ae's are all 
below some acceptable level, such that the trajectory is essentially continuous in 
velocity as well as position. Below, a one revolution example is presented first, then 
the more general equations are discussed. 

2.3.2. Determination of a Path Continuous in Position 

As an example, the method is summarized for the case of a one revolution Lissajous 
trajectory, i.e. the patching of two trajectory segments. The solid line in Figure 2 
represents the two segments. Target point 'o' is the point of origin of the first 
segment Point 'p' is the endpoint of the first segment and initial point of the second 
segment. It is also the patch point (or maneuver point) between the segments. The 
endpoint of segment two is point 'f', also the final point of the one revolution 
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Fig. 2. One revolution trajectory: initial path and adjustment to reduce Af. 
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trajectory. Note that since a Lissajous trajectory does not repeat after a revolution, 
points 'o' and ~f' will not coincide. 

The segments are then constructed in the following three steps: (i) A first guess is 
required for the state vector at each of the target points, and the analytic approxi- 
mations can be used. There appears to be no advantage in using any approximation 
beyond third-order in this problem. As will be noted later lower-order expansions 
also provided suitable guesses in some cases. In regions far beyond the range of 
applicability of the analytic solution, a continuation method was successfully 
employed to obtain first guesses for the target point state vectors. In the example, 
the first guess for the initial point state vector is Xo = {Xo, Y0, Zo, 20, ,90, ~o } T, and 
vector states associated with the other target points are Xp and X I .  It tj is defined as 
time of arrival at position 'j', the segment times tp - to and t I - tp are also obtained. 
(ii) The first segment is computed by numerically integrating Xo, along with the 
transition matrix, for the time tp - to to the point 'p*'. In general, the state values at 
'p*' will not equal the target values at 'p' since a Lissajous trajectory does not 
actually exist through all the states at 'o' and 'p'. It is temporarily assumed, however, 
that at least the positions Xo, Y0, z0 and Xp, yp,  Zp are accurate. 
corrections process is used to change the velocity at 'o' to meet 
requirement at 'p'. The vector relationship can be written 

A differential 
the position 

(SXp, ~ l~(tp, , to)(SX 0 -[- ~-  P* to), (7) 

where c~X/Ot is being evaluated at 'p*'. The first three scalar equations contain four 
unknown: changes in the velocity components 62o, 63)o, 6~0 and change in the 
segment time 6 ( t p , -  to). There are, of course, infinitely many solutions. However, 
the scalar equations can be rearranged into the linear form 

L =b, (8) 

where 

L 

--(I) 14 (I) 15 (I) 16 2 

(I)24 (I)25 (I)26 .]) 

( I ) 3 4  (I)35 (I)36 _7"__ 

f) = {6x v, 6yp, 6Zp } r, 

and where ~ij is an element of ~( tp , ,  to). The last three scalar equations in (7) are 
not used. Assuming that all the unknowns in a have equal importance, a result from 
linear algebra states that the solution to Equation (8) with the smallest Euclidean 
norm is given by 

ff = L T(LLT)- I[~ .  (9) 
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The integration is restarted at to with the new initial state 'o' and proceeds for the 
new time interval. The process is repeated until the position 'p*' is equal to the 
position 'p' within some small tolerance. (Note that the velocities 2p, )~p, ~/p are never 
used in computing segment one.) (iii) The second segment is computed in an 
identical manner, using Xp as the initial condition and Xf as the target. Assuming 
no change in xp, Yv, Zp and tp, the velocity components 2p, )~v, gv and the arrival time 
t I are adjusted to guarantee passage through the predetermined target position x l ,  

y f ,  zf.  
The two segments are now patched together. In calculation of both segments, 

initial and endpoint positions are fixed, and the process corrects velocity so that the 
resulting path is continuous in position (within the tolerance used) as indicated by 
the solid line in Figure 2. 

2.3.3. A~ Reduction at the Maneuver Point 

In determining position continuity, no provision was made for velocity and, thus, a 
Ae will exist at point 'p'. So attention is now focused on reducing the Ae. The 
procedure in general varies the positions of the target points to minimize the A~'s 
that will exist at each of these maneuver positions. The method has some similarities 
with one which has been used in determining interplanetary trajectories with 
multiple flybys [9]. 

Again examine the one revolution trajectory from 'o' to f ' .  If the change in Ae can 
be expressed as a function of the change in positions of 'o', 'p', ' f '  and changes in the 
segment times, then these changes may be computed to drive the Aft to zero. Begin 
with the second segment and consider integration backwards from point f '  to point 
'p'. Let the symbol p+ indicate conditions at 'p' on segment two and p- the 
conditions at the same point but on segment one. The state Xv+ is a function of Xf 
and a relationship between them can be written in vector form as 

,~X 
•Xp+ ~_ t~(tp, tf )t~X f -k c3t 

+ P 
- t I ) .  (10) 

It is convenient to define the following three-dimensional vectors 

F= {x ,y ,x}  r 

= y, e} 

Also, divide the transition matrix into four submatrices, each 3 • 3, such that 

o ( t , , , t : )  = I hpf Bpf I " 
Cpf Dpf 

Equation (10)can then be rewritten in the form 

(~Up + L Cpf Dvf 6~y @ + 

(6 tp .  - 6 t I ). (11) 
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Solving the first vector equation for 6t7 I 

(~ U f "--" B p f  1 t~ Pp + --  B p f  1 A  p f t~ F f - B p f  1 ffp+ ( t~ t p + - 6 t f ). 

Substitution of Equation (12) into the second vector equation of (11) yields 

t~Up + - -  ( C p f  - -  D p f  B p f  1 A p f ) ( ~ f f  n t- O p f  B p f  1 (}fp + - 

- ( D p y  B p f l  gp + - ap + ) ( 6 t p  + - f i t  I ). 

(12) 

(13) 

A similar expression can be written for the trajectory segment from 'o' to 'p' as 

(14) 6Fp- = (Cvo - Dvo Bpo 1 Avo)fifo + Dvo Bpo I ~fp- - -  

- ( D v o  B p o  1 f fp-  - a p -  ) ( f i t  v -  - 6 t o  ). 

Subtracting Equation (14) from Equation (13) and constraining position and time at 
point 'p' to be the same for both segments, i.e. ~p + = ~p- and tp+ - tp- produces 

6to 

6AFp = [mo M, o mp Mt My m,s ] I 6tp 

~ 6 t l  

(15) 

where the M matrices are defined as 

Mo = Dpo Bpo I Apo - Cpo 

Mto = dp- - Dpo B;o 1 Fp- 

Mp = Dvf B~f I - Dpo B~-01 

Mt; = Dvo Bpo I v p -  - DpI B ; f  gp + + av+ - 

M f --" C p f  - D p f  B p f  1 A p f  

Mtl = Dpf B p f  1 ffp + - ap +. 

Since it is desired to drive Agp to zero, 6Ar = -ACp. 
The vector equation in (15) contains three scalar equations and twelve unknowns. 

The system then has many solutions. But again, a conservative choice is that 
solution with the smallest norm which can be computed as previously discussed in 
Equations (8) and (9). The solution is essentially an updated guess for the state 
vectors at all the target points. The entire procedure is now repeated. With new 
target states, a continuous path is sought between the target positions by con- 
struction of the required segments. The updated trajectory for the example is 
represented by the dashed line in Figure 2. Once the new trajectory is computed, it 
will also have a Ag at point 'p'; however, because of the corrections made to the 
target positions, the Ar will be substantially smaller. The entire process may be 
repeated for as many iterations as necessary to bring the velocity discontinuity to 
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within some acceptable tolerance. The 

continuous in position and velocity. 
result is a Lissajous trajectory essentially 

2.3.4. Trajectory Determination for NR Revolutions 

From a single trajectory, the method can be generalized for an arbitrary number of 

revolutions.~,Using the analytic approximation or a previous numerical result, target 
states and times are established at defined intervals (usually a half revolution) for NR 
revolutions. The first target point is synonymous with the ini t ia lpoint  and denoted 

as 'o'. Subsequent points are labelled as '1', '2', . . '  ' �9 n ,  so that n trajectory segments 

are defined. As ~n the single revolution case, the n target points plus point 'o' are 

used to construct trajectory segments which pass through the appropriate target 

positions with Af's between each pair of segments. The changes in the target 
positions and times are then related to the Ag's in a generalized form of Equation 

(15) as 

[M]{a~ =} = { -Ats} ,  (16) 

where 

{ae} = 

6to 

6fl 

~tl  

6e2 

6t2 

6~3 

~t3 

6t. 

{ -zXe} = 

: - A / ~  1 

--ALT 2 

- - A / ~  3 

- A15,,_ 1 

and 

[M] = 

m 

Mol Mr01 Mpl Mtp,  M:, Mr:, 0 0 0 0 ... 0 

0 0 M02 Mr02 Mp2 Mtp2 M:,z Mr& 0 0 ... 0 

0 0 0 0 M03 Mr03 Mp3 Mtp 3 M:3 Mr:3 ... 0 

0 0 0 0 ... Mo._, M,o. Mr._ , M% M:._ Mr:._ 
- 1  - 1  1 1 

M is of dimension (3n - 3) x (4n + 4), 6/= is a column vector of length (4n + 4) and 
A~ a column vector with (3n - 3) elements for n >/2. The solution which minimizes 
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116 11 is 

6 f  = - M T " ( M M r ) - I A ~  (17) 

With these new positions and times, the process is repeated, and the A~'s will again 
be simultaneously reduced. In the numerous cases examined, five iterations were 
usually sufficient to bring all the ArT's to an acceptably small magnitude. 

3. Results 

A large number of Lissajous trajectories have 
procedure was coded and run on a Cyber 205 
University. Representative trajectories have been 

been determined to date. The 
computing machine at Purdue 
calculated which are associated 

with libration points at both L~ and L2; in both the Sun-Earth and Earth-Moon 
systems; at a wide range of in-plane and out-of-plane amplitude combinations; and 
in regions where the approximate analytic solution breaks down. Some examples are 
discussed below. 

CASE 1: S M A L L  T R A J E C T O R Y  ABOUT L1 

BARYCENTER SYSTEM 

IN T H E  S U N - E A R T H / M O O N  

The three planar projections of this path, calculated in the Sun-Earth/Moon 
barycenter system, are shown in Figure 3. Recall that the origin is located at L1. It is 
computed for 5 revolutions, or approximately 2.4 years, although any length could 
have been chosen. The initial point on the trajectory is at the maximum value of z in 
the x - z  plane. Some of the numerical details are presented in Table I. 

Small trajectory about L 1 

TABLE I 

in the Sun-Earth/Moon barycenter 
10 - 6  ) 

system (# = 3.04 x 

Initial conditions 

Analytic (3rd Order): ~b = 180 ~ 

= 90 ~ 

A r = 300 000 km 

Az = 150000km 

5 Revolution Trajectory (10 Segments) 

Target 
P oint (fi) 
i 

Initial Velocity 
Discontinuity (m/s) 

IA~li 

Position 
Difference (km) 

Velocity 
Difference (m/s) 

i Y- ?i 

0 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

3.67 

3.85 

3.33 

3.40 

2.73 

2.73 

2.01 

1.99 

1.34 

697.89 

862.83 

697.38 

432.23 

463.12 

196.48 

566.97 

325.24 

703.43 

507.45 

397.12 

0.82 

0.46 

0.39 

0.45 

0.41 

0.44 

0.44 

0.46 

0.49 

0.47 

0.59 
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The input indicates that the initial guess is obtained from a third-order analytic 
solution and that an orbit is sought with an in-plane y amplitude of approximately 

300000km and an out-of plane z amplitude of approximately 150000km. The 
target points are identified at Fo and approximately at each subsequent half 
revolution. From an initial guess for the state (position and velocity) at each target 
point, a continuous path through those positions is found that contains velocity 
discontinuities (or required maneuvers) of magnitude ]AfJ at each Fi, shown in the 

second column of the table. The A~'s are iteratively reduced until each JA~YJ < 
1 x 10-7 m/s, considered here to be zero. Actually, all the values in this case are less 

than 0.01 m/s after one iteration. Thus, the total JA~YJ for the entire trajectory, 
25.06m/s, was successfully reduced to 'zero' for the 5 revolutions considered. The 
result is the path plotted in Figure 3. This trajectory is small and the analytic 
solution (A) could be expected to produce a good approximation. On the scale 
shown in the figure, the differences in the initial (F A) and final, numerically 
determined (FN), target positions are not obvious. However, a comparison of the 

values shows that the locations still differ by hundreds of kilometers, over 850 km at 

one point. The velocity differences are all less than 1 m/s. Recall that the time is also 
varied in the reduction process. The resulting differences in the times at each target 
only changed on the order of a few seconds. If total trajectory time is constrained, a 
solution is still obtained with small differences in segment times and states. 

CASE 2: LARGE TRAJECTORY ABOUT L 1 

Shown in Figure 4 is a 5 revolution Lissajous path which is much larger than that 
contained in the previous case at the same value of/~. The input in Table II indicates' 

that the initial guess is again obtained from an analytic third-order solution. The 
reference amplitudes are Ar = 700000km and Az = 900000km, considered to be 
large. For the numerical solution, the target points are identified at quarter 
revolutions, dividing the trajectory into 20 segments. The analytic solution is not 
expected to be a good approximation at this orbit size, and the results in Table II 
confirm that view. Because the approximation is poor, the larger number of 
segments was required to assure convergence of the inner level iterations. The 
magnitudes of the velocity discontinuities average 46m/s, also because of a poor 

initial guess for the states. After two iterations the Af's are all cut to less than 1 m/s. 
When all the A~Y's have been driven to zero, the position variations of the targets is 
significant. As may be seen in the table, many positions are adjusted by more than 
100000km. The times to reach these new Fi are adjusted only on the order of 
minutes. The resulting path is plotted as the solid line in Figure 4. Note that the 
primary/u is located approximately 1.5 • 10 6 km from L 1 o n  the positive x-axis. The 
first obvious fact in the figure is that the maximum y and z distances from L 1 vary 
significantly from one revolution to the next to a much greater extent than in the 

smaller orbit in Case 1. The Ay value of 700000km is closer to an 'average' 
maximum value of y. Also plotted in Figure 4 are points calculated directly from the 
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T A B L E  II 
Large trajectory about L1 (kt = 3.04 • 10 - 6 )  

Initial Conditions 

Analytic (3rd) Order: ~ - -  180 ~ 

= 90 ~ 

A r = 700 000 km 

Az = 900 000 km 

5 Revolution Trajectory (20 segments) 

Target Initial Velocity Position 
Point (ri) Discontinuity (m/s) Difference (km) 

Velocity 
Difference (m/s) 

0 178677 115.1 

1 57.2 250317 60.4 

2 74.2 104366 90.3 
3 23.1 252027 34.7 

4 90.9 79033 115.4 

5 64.5 157663 46.0 

6 50.5 77400 63.3 
7 26.1 115331 '!.'t..4 

8 47.3 38532 79.0 

9 72.0 95207 54.9 

10 46.0 120616 47.0 
11 27.1 70658 54.9 

12 32.5 51589 45.4 
13 59.3 88985 54.8 
14 36.3 133187 50.2 

15 31.4 96482 56.7 

16 30.6 94539 23.3 

17 47.5 112061 41.3 

18 19.3 113095 64.2 

19 38.9 132975 50.0 

20 65217 57.3 

anlaytic expression. The inaccurate approximation was, however, used successfully 
in this case for a numeric solution. 

Some observations are apparent from this and other large trajectories that have 
been determined. There are an infinite number and variety of Lissajous trajectories. 
As size increases, the nearly periodic nature seen in the x - y  planar views of smaller 
orbits is degraded as the nonlinear effects become increasingly significant at larger 
amplitudes, as seen in Figure 4. The degradation might be less severe in a different 
trajectory. Interestingly, such a case was located utilizing a different initial guess, i.e. 
the second-order analytic result, and is plotted in Figure 5. This solution is also 
obtained by using 20 segments. The initial values of [Af[ averaged 32.5 m/s, lower 
than the third-order guess. The second-order expression did predict a slightly 
smaller orbit size, perhaps contributing to the tighter integrated result. The smaller 
AtY's are somewhat misleading however. In reducing the Af's to zero to obtain the 
path in Figure 5, the positions shift by larger a m o u n t s -  almost half the target points 
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Fig. 4. Large Lx trajectory computed from a 
third-order initial guess (Ay - 700000 km, 

A= - 900 000 km). 

Fig. 5. Large L1 trajectory computed from a 
second-order initial guess (Ay = 700000km, 

A= - 900 000 km). 

are adjusted by 200000km or more. It is also of interest that the total trajectory 
time in Figure 5 is approximately 8 days less than the solution in Figure 4. In both 
of these solutions, it is apparent in the figures that the trajectory endpoints are not 
constrained. That possibility is expected to be pursued. 
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Any Lissajous trajectory determined numerically is more predictable, of course, 
by using better initial guesses. A continuation method could be employed to update 
target positions and velocities from a previous solution. It does afford some 
identification and selection of characteristics, such as maximum and minimum 
amplitudes over a given number of revolutions. Large orbits have been successfully 
produced with such a procedure. Using a reasonable step beyond a previous 
solution, a new solution is found, frequently requiring only half the number of 
segments that is needed in the example above, and not surprisingly, the initial Af's 
may be smaller. Solutions are also continued into regions where the analytic 
approximation has totally lost its usefulness. A major disadvantage, of course, of an 
approach which steps along solutions is that a large number of trajectories must be 
determined before the desired orbit size is achieved. 

CASE 3: TRAJECTORY ABOUT L 2 IN THE EARTH-MOON SYSTEM 

The final example is a large trajectory associated with a different collinear point, L2 ,  

in the Ear th-Moon system. To vary NR, this trajectory is calculated for 18 
revolutions, or about 264 days. The resulting 72 integrated segments are shown in 
Figure 6, where the origin is n o w  L 2. Table III contains numerical information for 
some of the target points. The orbit size is represented by the input amplitudes 
Ay = A~ = 30000km. This is the only example shown in which the input seeks a 
trajectory with approximately equal in-plane and out-of-plane amplitudes although 
numerous other such cases have been run. The Moon is located approximately 
65 000 km from L 2 in the - ~  direction. The initial states are approximated from the 
third-order analytic expression. All of the Af's are reduced simultaneously and are 
below 1 m/s after two iterations, but a total of ten iterations is required to reduce all 
71 magnitudes below 10 -7 m/s. In that reduction process, the target positions are 
shifted by thousands of kilometers which is quite a significant amount for an orbit of 

3 0 0 0 0 k m  amplitude. The time associated with each segment is adjusted up to 36 
minutes, as well, and includes both increases and decreases. 

The larger value of/~ in this system did not cause any particular difficulties in 
obtaining a solution, nor did the increased number of revolutions. Large values of 
NR have been used with the smaller/~ value as well. 

4. Concluding Remarks 

Numerical determination of Lissajous trajectories is accomplished with an iterative 
scheme which reduces position and velocity discontinuities to zero. The examples 
shown here were computed for two specific values of #, however, the approach is 
quite general and will apply in a wide range of primary systems. It is intended to 
extend the calculation of these trajectories to the elliptic restricted problem and 
include additional perturbations. 
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TABLE III 
Large trajectory about L 2 in the earth-moon system (/~ =0.012) 

I n i t i a l  C o n d i t i o n s  

Analytic (3rd order): ~b - 1 8 0  ~ 
0 = 900 

A r = 30 000 km 
A z = 30 000 km 

18 Revolution Trajectory (72 segments) 

Target Initial Velocity Position 
Point (ri) Discontinuity (m/s) Difference (km) 
i IAf l i  I f~  - rA[ 

Velocity 
Difference (m/s) 
I~/U- ~AI 

0 5716 21.0 
8 16.1 3547 22.1 

16 8.9 3173 25.6 
24 2.1 2311 25.5 
32 9.2 4609 18.3 
40 15.7 5198 10.7 
48 21.5 5304 6.3 
56 16.1 7727 1.4 
64 8.9 8101 16.8 
72 6397 31.8 
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