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Distance funct ion and c u t  loci on a complete  Riemannian manifo ld  

By 

FRA~z-E~mn WOLTER 

1. Introduction. The results of this note are a characterisation of cut loci (Theo- 
rem 1) and the fact tha t  a complete n-dimensional Riemannian maul/old M is neces- 
sarily di//eomor19hic to R n i/there is a point 19 e M/or  which the square o~ the distance 
/unction dZ(p, .) is everywhere directional-di//erentiable (Theorem 2). 

By "directional-differentiable" at a point we mean that  the directional derivative 
exists for all directions through tha t  point. This is weaker than the existence of the 
gradient at tha t  point. The proof of Theorem 2 makes use of considerations con- 
cerning the cut locus Cu(2) of an arbi t rary  point 19 on a complete Riemannian 
manifold M which we assume to be of C ~ differentiabflity class for convenience 
throughout the paper though far less is necessary. By definition, a point q of M 
lies on Cu (19) if and only if there is a distance-minimal geodesic joining 19 to q whose 
every extension beyond q is no longer minimal. We prove here (Lemma 2) tha t  
Cu (2) is the closure of all points in M which have at  least two minimal geodesic 
connections with 19. Since we also show (Lemma 1) tha t  d2(2, .) is not directional- 
differentiable at  any point which lies on at  least two minimal geodesics from 19, 
it follows tha t  there is a dense subset of points on the cut locus Cu(19) in which 
d2 (2, .) is not differentiable. This explains Theorem 2 in view of the fact that  expv 
is a diffeomorphism of TpM onto M in case Cu(2) is empty.  

The author wishes to thank D. Koutroufiotis for introducing him to the topic of 
this paper, as well as D. •erus and H. Kareher  for helpful discussions. Theorem 1 is 
essentially due to a telephon conversation between D. Ferus and the author. We also 
wish to thank  the referee whose suggestions considerably shortened the original proof 
of Lemma 1. 

R e m a r k .  Recently it has been pointed out to us by  R. L. Bishop tha t  our con- 
struction in the proof of Lemma 2 is very similar to the one used by  H. Karcher  
in [1] for a quite different purpose. In  [1] p. 116 is shown tha t  an open geodesieally 
convex set K does not meet its cut locus i.e. for all 19 e K is Cu (p) n K ----- O. (Geo- 
desically convex means here tha t  any  two points of K have within K a unique 
minimal geodesic connection. A priori it is here not excluded tha t  outside of K 
exists another minimal geodesic connection for the given points.) Without  much 
change in both proofs it certainly would be possible to ~ v e  a combined proof of 
those results. 
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2. Statement of results. The main result follows immediately from the following 
two lemmas which we prove in section 3. 

Lemma 1. Suppose two minimal geodesics exist joining p to q on a Riemannian 
mani/old M. Then d2(p, .) has no directional derivative at q /or  vectors in direction o/ 
those two minimal geodesics. 

R e m a r k .  The weaker claim tha t  a t  the point q in Lemma 1 the gradient p f d  2 
(p, .) is not continuous, was observed by  R. L. Bishop [2] proposition. 

Lemma 2. Let Cu (p) be the cut locus o / a n  arbitrary point p on a complete Rieman- 
nian mani/old M. The subset Se (p) o /Cu  (p) de/ined by those points where at least two 
minimal geodesics ]romp intersect (or meet so as to/orm a closed geodesic lOOT) is dense 
in Cu(p). 

R e m a r k .  We show in the proof of Lemma 2 that  the tangent cut-points cor- 
responding to Se (p) are dense in the tangent  cut locus of p. So our Lemma 2 con- 
stitutes the main theorem of [2]. Bishop uses strong results of Warner [3] in order 
to prove it. Our proof seems conceptionally and technically simpler, as well as being 
self-contained. 

Because Cu (p) is a closed subset of M, we have from Lemma 2 the following 
characterisation of the cut locus. 

Theorem 1. The cut locus Cu (p) on a complete Riemannian mani/old is the closure 
o] the set o/al l  points in M which have at least two minimal geodesic connections to P. 

I f  d2(p, .) is directional-differentiable on all M the combination of both lemmas 
shows tha t  the cut locus Cu(T) must  be empty.  Thus the exponential map 
expv: Tp--> M becomes a diffeomorphism between the tangent space T~M and M. 
Hence we have our main result. 

Theorem 2. Assume there exists on the complete n-dimensional Riemannian mani/old 
M a point p with the property that d2(p, .) is directional-di//erentiable on all M; then 
M is di//eomorphie to 1~ n. 

R e m a r k .  An incomplete Riemannian manifold possessing an everywhere direc- 
tional-differentiable (even real-analytic) d2(., .) need not be diffeomorphic to Rn; 
the punctered euclidean plane yields a counter example. 

8. Proof of the lemmas. In  the proofs which follows all geodesics are parametrized 
by  arc len~h.  

P r o o f  o f  L e m m a  1. Let  g~: [0, t ] - - > M  i ---- 1, 2 be two distinct geodesics with 
g l ( 0 ) ~ - g 2 ( 0 ) = P ,  gl(1) ----- g2(1) ---- q, l----d(p,  ff) and 0 < l < i .  At t - ~ l  the de- 
rivative of d(p, g~(t)) in direction toward p is clearly 1. (We consider here the left 
hand derivative i.e. the limit is taken with t - -  l < 0.) How ff o~ e (0, ~r] is the angle 
between gl and g2 at  q then for t ~ 1 one has an upper  bound for d(p, g~(t)). The 
upper bound equals at  t ~ l and its right hand derivative is bounded away from 1 
at t = l. Therefore d2(p, .) does not have derivatives along g~ at  q. l~amely: Using 
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the triangle inequality we can define an upper bound 

u (t) :=  d (p, gl (l --  ~)) q- d (gl (l -- ~), g2 (t)) 

for d(p, gl(t)) here i = 2 (analogues for i -= 1). Using Fermi-coordinates one has 
with T = t - - l ~ _ O  

d ( g l (1 -  s), g2(l + T)) = ~/~2 ._~ z2 + 2 s z  cos co(1 + O(z2)). 

Hence we get for u(t) at t = 1 the right hand derivative u+ (1) ----- cos o0 < 1. 

The proof of Lemma 2 will use the following two well-known facts. 

(A) Let  {gj} be a sequence of minimal geodesics in a complete Riemannian manifold 
and suppose each gt joins p to a point qj. I f  {qi} converges to q, then a subsequence 
of {gj} converges to a minimal geodesic from/9 to q. (See [4], p. 24.) 

(B) Let Sn-l(p) be the unit sphere in the tangent space T~0M of a complete 
n-dimensional Riemannian manifold M. For x in S n-1 (2) let ~(x) denote the su- 
premum of those t-values for which the geodesic g defined by  g(t) .-~ exp~(tx) is 
minimal. Then the function s: Sn-1(2)--+ [0, oo] is continuous, where [0, oo] de- 
notes the Alexandrov one-point compactification of [0, co). (See [5], p. 169.) 

P r o o f  of  L e m m a  2. Let /~(x0,  8) denote the closed ball with center Xo e Sn-l(p) 
and radius (~ > 0 in the tangent space T~M. I f  s(xo) -~ r < o% then for small 
enough 8-values, (B) easily implies tha t  s restricted to /~(x0,  6) (~ Sn-l(p) is a con- 
tinous real-valued function. Consider the cone 

Co(xo, 6) = {txlO <_t < 1, xe_~(zo, 8) n s ~ - l ( p ) }  

in T~M. For small enough 6, it follows from the continuity of s that  both Co(x0, 8) 
and 

Co*(~o,~)= {x'lx'=~(x/il~il)x, O=~x~Co(xo, O)}u{o} 0 = 0  

are homeomorphic to a closed euclidean n-ball. 
Suppose now that  expv(s(xo)xo ) -= q is a point with only one minimal geodesic 

connection g to p, so that  q is in Cu (2) but  not in Se (2). We wish to show that  in 
each neighborhood of q there is a point of Se (p). Suppose otherwise. Then for some 
fixed small ~ > 0, the restriction of expp to Co* (x0, 5) is a homeomorphism o n t o  
its image (being a continuous univalent mapping on a compact set). Now ff ~ (q, e) 
is the open ball in M centered at q with arbitrary radius e > 0, then ~ (q, e) con- 
tains points lying in the complement of exp~(Co*(xo, 6)) in M, because s(xo)xo 
has in Co*(x0, 6) a neighborhood homeomorphic to a closed n-dimensional eu- 
clidean half space. Thus we can take a sequence {qj} of points with qy in X(q ,  1/]) 
but  not in expp(Co*(x0, (~)). Each qj has a minimal geodesic connection gj- to p 
(perhaps several, but  one can be choosen) since M is complete. By (A) a subsequence 
of {gj} converges to a minimal geodesic ~ from i~ to q, so that  the unit tangents of 
the gj at p converge to the unit tangent a~ to ~ at ~p. l~ote tha t  any sequence from 
S n-l(p) which converges to x0 must lie in Co (x0, (~) from some point on, because 
x0 is an interior point of the set 2~ (xo, (5) n S n-1 (2). But  the unit tangents to the 
g~ a t /o  all lie outside of Co(x0, (5) since qj is not in exp~(Co*(x0, (3)). Thus ~ ~= x0 
and ~ @ g contradicting the assumption t h a t q  is not in Se(2). 
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R e m a r k .  We have just proved that  for any given neighborhood U(s(xo)xo) in 
T~ M, exp~ cannot be injektive on 

V (s (xo) xo) ~ {s (x) z/z  e S~-1 (p)} 

if exp~(s(xo)xo) is not in Se(:p). 
This means that  the points corresponding to Se(p) are dense in the tangent cut 

locus {s(x) x/x e Sn-1 (p)} of p. 

4. Further considerations. 

Remark on Lemma 2. I f  we denote by Se (p) the points with several minimal 
geodesic connections to a point p in a complete Riemannian manifold M it is in 
general certainly not true that  S e ~ )  is open in the cut locus CuCp) of p. (Several 
here means more than one.) At least if the dimension of M is two i t  is true that  
Se (p) is open in Cu (p) ff M is real analytic. I f  M is only of C ~ differentiability class 
it can however be shown that  Cu(p)\Se(p)  is nowhere dense in Cu(p). This means 
Se@) is a residual subset of Cu(p). 

Examples. On a complete Riemannian manifold differentiability of de(. ,.) on all 
M is equivalent to the condition that  any two points of M have a unique minimal 
geodesic connection and this is by Lemma 2 equivalent to the condition "points 
have a unique geodesic connection". Examples for manifolds of this type are simply 
connected complete Riemannian manifolds with non positive sectional curvature, 
the so called Hadamard manifolds. But  it is not true that  all manifolds with unique 
geodesic connection for any two given points are Hadamard manifolds. There exist 
examples of complete manifolds with unique geodesic connection for any two given 
points where the sectional curvature changes sign. All universal coverings of Rie- 
ma,nnian manifolds without conjugate points and small regions of positive sectional 
curvature provide examples by t tadamard's  theorem that  the exponential map for 
a point p is a covering map if the conjugate locus of T is empty. 1~. Gulliver in [6] 
gives examples of the requested type. 

Generalisations of Theorem 2. A Riemannian manifold is called nonextendable if it  
cannot be isometrically embedded in a larger l~iemannian manifold of equal dimen- 
sion. The nonextendable Riemannian manifolds include the complete ones, however 
Theorem 2 cannot be generalised to this class. The two sheeted Riemannian covering 
of the punctered Euclidean plane is nonextendable and its squared distance function 
is everywhere real analytic but  this manifold is not diffeomorphic to R 2. I t  is how- 
ever true that  certain forms of generalisation of Theorem 2 do hold for manifolds 
with boundary which are complete as a metric space. 

This problem in relation to other questions will be discussed in a further note. 

Remark. After submitting our manuskript to the redaction we learned by T. Sakai 
tha t  this note could be applied in a joint article of M. Buchner, K. Fritzsche und 
T. Sakai about cohomology and cut-loci in submanifolds of complex projective spa- 
ces. This joint article of M. Buchner, K. Fritzsehe and T. Sakai is still in preparation. 
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