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Abstract. We discuss the perturbation of continuum eigenvalues without 
analyticity assumptions. Among our results, we show that generally a small 
perturbation removes these eigenvalues in accordance with Fermi's Golden 
Rule. Thus, generically (in a Baire category sense), the Schr6dinger operator 
has no embedded non-threshold eigenvatues. 

I. Introduction 

It is well known [R -S1] that a one-body Schr6dinger operator - A + V(x), where 
V is sufficiently well behaved at infinity, cannot have eigenvalues 2 embedded in 
the continuous spectrum (except possibly at threshold, 2 = 0). The situation is quite 
different in the N-body problem where continuum eigenvalues not only can 
exist, but do indeed exist in important physical situations: The operator H o = 
-A1-Az-2/lx11-2/lx21 in L2(~ 6) (describing the Helium atom without 
electronic repulsion) has eigenvalues embedded in the continuous spectrum. While 
this example has an obvious symmetry, such symmetry is not necessary for the 
existence of embedded eigenvalues. An example in [ F - H - H O - H O ]  can be 
modified to produce an embedded eigenvalue where no symmetry is apparent. 

In [Howl,2] and [$1], analyticity assumptions are made which allow the 
treatment of embedded eigenvalues using the perturbation theory developed for 
use with isolated eigenvalues. The major idea in this theory is that when a small 
perturbation fl W is added to the Schr6dinger operator H, the continuum eigenvalue 
E0 turns into a "resonance," Eo(fi), which, while not necessarily an eigenvalue of 
H + flW, is a pole in the analytic continuation of certain matrix elements 
((p,(H + flW-z)-lcp) of the resolvent. The function Eo(fl) is analytic in fl for Ifl[ 
small. Eo(fl) has an imaginary part which appears first to second order in fi: 

I m ~  = 2x--~(WOo,P(E)WOo)]e=Eo, (1.1) 
, : o  
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where (H - Eo)Oo = 0, P(E) = EH( ( -  o% E)\{Eo} ) and H = ~ 2dEu(2). Here we have 
assumed that ~'o is non-degenerate and normalized. The formula (1.1) is called 
Fermi's Golden Rule. The situation is reviewed more thoroughly in [R-S1]. 

The purpose of this paper is to examine the perturbation of embedded 
eigenvalues in the generalized N-body problem introduced by Agmon [Ag] (see 
also IF-H1,  2, 3]) without making any analyticity assumptions. While resonance 
poles have no meaning without some kind of analyticity, one would think that if 
Fermi's Golden Rule predicts the disappearance of an eigenvalue from the real 
axis (by producing a positive expression in (1.t)), then that eigenvalue should 
disappear (for small fl). We show that this is indeed the case. 

From what has just been said, it appears that embedded eigenvalues are very 
unstable, for one need only find W such that (1.1) is nonzero, and then for all small 
fl, H + flW wilt not have an eigenvalue near E o. The major stumbling block to 
making this into a theorem is to show that the operator (d/dE)P(E)lw=Eo (which 
makes sense between certain weighted spaces) is not identically zero. This is 
accomplished only after a rather involved argument. But this argument produces 
as a bonus some information about the existence of generalized eigenfunctions and 
some new estimates for N-body Schr6dinger operators between exponentially 
weighted Hilbert spaces. 

In Sect. II, we introduce our notation and main assumptions and prove that 
embedded eigenvalues cannot suddenly appear under a small perturbation 
(Theorem 2.5). (See [K1] for general information about the perturbation of spectra.) 

In Sect. Ill, certain estimates are proved for Schr6dinger operators between 
exponentially weighted spaces. These estimates can be used to simplify the 
arguments of IF-H1, 2] considerably, although we do not do this here. We use the 
estimates in Sect. IV to show that for P(E) as in (t.t), (d/dE)P(E)IE=Wo 4= O. 

In Sect.V, it is shown that embedded eigenvalues are unstable and thus 
generically absent (Proposition 5.10 and Theorem 5.11), and in the last section we 
discuss open problems. 

We remark that analogous results have been proved for perturbations of the 
hyperbolic Laplacian on a finite volume Riemann surface (see IV] and [Ph-Sa]). 

We would like to thank Ulrich Wfiller for pointing our an error in a previous 
version of this paper. 

II. Semicontinuity of the Point Spectrum of H 

X u Let us begin by setting our notation. We assume we are given a family { i}i= 1 of 
subspaces of R n with associated orthogonal projection operators ~i, Ran ~i = X~. 
With each space X i is associated a real-valued function vi on X~. Our generalized 
N-body Schr6dinger operator is given by 

where 

H = - z l  + V(x), 

M 
V(x) = Y. vi(~ix). 

i=1 
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We will always assume that the potentials satisfy 

for all l, v l ( - -Az+ I) -1 and ( - A z +  1)- lxz 'Vtv~(-At+ 1) - I  

are compact operators on LZ(xz), (2.1) 

and sometimes it will be necessary to also assume that for each 1 

( - A  l + 1)-l/2xt-Vtvz(--At + 1) -1 is bounded 
and 

( - A  l + 1)-l(xl.Vl)Zvt(--Az + 1) -1 is bounded. (2.2) 

It is convenient to introduce the family of subspaces, ~ ,  consisting of {0} and 
all subspaces of the form 

span Xi, w ... w Xi,, 

where {ia,..., i,} c {1,..., M}. Given X e 5  °, let 

Vx(x)= ~ v,(~,x), 
i:Xi~X 

A x = Laplace operator for the subspace X, 

Hx = - Ax + Vx, in L 2(X). 

By convention, H~o ~ = 0 on C. Any #~ ~ which is an eigenvalue of H x for some 
XeSP, X # ~" is called a threshold of H. The set of all thresholds of H is denoted 
J (H) .  

The basic theorems about the spectrum of H were proved in [P-S-S]:  

Theorem 2.1. Suppose (2.1) holds. Then •(H) is a closed countable set. All 
eigenvalues, 2, of H which are not in J ( H )  have finite multiplicity. The only possible 
accumulation points of eigenvalues of H lie in J (H) .  

The weighted spaces L2(~ ") = (x) -~L2(~ ") will play a role in our discussion. 

Here ( x )  = , j l  + txl ~ and the norm in L 2 is IlflIc~ = (~i(x)+~f(x)12dx) 1/2. 

Theorem 2.2 [P-S S]. Suppose (2.1) and (2.2) hold. Then for any 2 which is neither 
a threshold nor an eigenvalue of H, the strong limits 

lira (H - 2 ~ ie)- 1 = (H - 2 T iO)- i 
~40 

exist as maps from L 2 to L2_~ for any s > 1/2. The operators (H - 2 T- iO)- 1 are 
(norm) H61der continuous in the variable 2. 

The proofs of these two theorems are based on a crucial estimate first proved 
by Mourre [M1] and used by him to prove theorems similar to Theorems 2.1 and 
2.2 for the 3-body problem. The "Mourre estimate" which follows was proved in 
general in [P S-S]. See also [F-H1].  In the following, A = (x.D + D.x)/2, where 
D is the gradient operator. 

Theorem 2.3. Suppose (2.1) holds and 2~J(H) .  Then there is a compact operator 
K and an open interval I containin 9 2 so that for some c o > O, 

E~(I)[H, A]Eu( I  ) > coEu(I) + g .  (2.3) 



414 S. Agmon, I. Herbst, E. Skibsted 

Note that in (2.3), the operator family {En(fl):fl a Borel set of R} consists of 
the spectral projections of H. 

We will need a slight generalization of this result which basically states that 
(2.3) is stable under the addition of a small perturbation to H. 

Denote by ~ the set of all real-valued functions W such that 

[WI~ = { [ W ( - A +  1) -Ill + [ I ( - A +  1)-I[A, W ] ( - A +  1)-tl1 < co. 

Lemma 2.4. Suppose (2.1) holds and that Zq~Y(H). Then 

(a) there is an ~o>0 and open interval J containing 2 so that for any W e N ~  
with [W[1 < to, we have 

c o 
EH+W(J~)EH + W, A]En+w(J ) >=-~EH+w(J ) + En+w(J)K1En+w(J), 

where c o is as in (2.3) and K 1 is a compact operator independent of  ~ I l K  = 0 
in (2.3), then K~ = 0 in (2.4). 

(b) I f  W is a symmetric operator with W ( - A + I )  -1 and ( - A + I ) - I [ A , W ]  
( - A  + 1)- ~ compact, there is an open interval J containing 2 and a compact 
operator Kw so that 

E H + w(J) [H + W, A]  E. + w(J) >= c o EH+ w(J )+  K W. (2.4) 
Proof. Assuming that (2.3) holds, let eo be small enough so that H + W is 
self-adjoint. Let H' = / 4  + W and suppose f e C ~ ( ~ )  is one in a neighbourhood of 
2 and zero outside I. Then by (2.3) 

f(H)EH, A] f (H)  > cof(H) 2 + K 1, (2.5) 

where K~ = f (H)Kf (H) .  Let (9 H be the left side of (2.5). Then clearly 

(9 w >__ Cof(H') 2 + K 1 + 8, 
where 

g = (gn ' -  (Pn + Co(f (H) 2 -f(H')2)" (2.6) 

We need to show that [Igjt-~0 as IW[~--+0. Note that H ( H + W + i ) - ' -  
(/4 + i)- 1 [[ -+ 0, so that any polynomial in (H + W + A)- 1 converges to the same 
polynomial with argument (H + A)- ~ (if A is sufficiently large). This implies that 
I] f (H)  - f ( H  + W) II --+ O. All other terms in g can be controlled by this estimate 
alone. We omit the details. To prove (b), we need only show that g in (2.6) is 
compact. The fact that for any C~ function g, g(H + W) - g(H) is compact, easily 
follows from the same result for polynomials. This in turn follows from the fact 
that the difference in resolvents is compact. All other terms in g are easily handled 
with this information. • 

Theorem 2.5. Suppose ZoCJ(H ) and that (2.1) holds. Then there is an open interval 
J containing 2 o and a number 3 > 0 so that 

(a) /f 2 o is not an eigenvalue of H and WeM~ with ]W[~ <6,  then H +  W has no 
eigenvalues in J. 
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(b) I f 2  o is an eigenvalue of H with multiplicity m and W e N  i with ]W[1 < 6, then 
H + W has, at most, m eigenvalues in J of total multiplicity m. 

Proof. Let Po = Ei~({2o}) and define 

Hi = H  +Po .  

Then H i has no eigenvalues at 2o and J - ( H ) = J ( H i ) .  Note that APo= 
cA(H + i) - i Po = cA(H + i)- ~ ( x > - 1 ( x > Po. Since non-threshold eigenfunctions 
of H decay exponentially (IF--H2]),  ( x ) P  o is compact. Thus AP o will be shown 
to be compact if we can show t l A ( H + i ) - l ( x ) - t ] l < o e .  Because of (2.1), 
[A, (H + i)- 1] is bounded so that we must only show l] (H + i)- 1A(x>- 111 < oe. 
This is obvious from the explicit form of A. It follows from these considerations 
that [A, Po] is compact, and thus by Lemma 2.4(b), 

E m (J) [H~, A] EH~ (J) > Co EH, (J) + g 

for some compact/~ and some open interval J containing 2o. By shrinking J we 
can assume []Em(J)KEIh(J)[[ < Co/2 so that 

EH,(J)[H1, A]Em(J  ) >= ~ E~(J)  

for some open interval J containing 20. As in the proof of Lemma 2.4(a), we can 
then find 6 >0  and an open interval I centered at 2 o so that for any operator 
WeNa with IWll <6  we have 

w(I) [Hi + W, A]E m + w(I) >= 4 Em+ w(I). (2.7) Em + 

Now suppose H + W  has one or more eigenvalues in r c I  with 
7 =  (2o-7,,~o +~) of total multiplicity ml >m. Choose an orthonormal set 
{0i . . . .  ,0,,+ i} such that 

(H + W)0t = 2z0 z l =  1 , . . . , m +  1 

m + l  
and 2leI. Choose a linear combination 0 = ~ aj0~ with norm 1 such that 

j = l  
Po 0 = 0. (We treat the case where 2o is not an eigenvalue of H by taking m = 0.) 
Then 

(Hi + W -  20) 0 = (H + W -  20)0 = ~ aj(2i - 2o)0j, 
J 

so that [I (Hi + W -  20)0 II < 7- Then, 

2 Re ((H1 + W -  20)0, A0) < 2 II A0 II 7. 

It thus follows from (2.7) that 

2 Jl A0 II 7 > (0, [Hi + W - 2 o, A] 0) > (0, (1 - E)CEO) 

+ (O, c(1 - ~)0) + -~  II ~0 II 2, (2.8) 
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where 
E=Enl+w(I )  and C = [ H I  + W,A]. 

Since I1 (Ha + W + i)- 1 C(H1 _]_ W q- i) - 1 II is bounded independently of W for t Wla 
small, and since 

I1(1 - -E)~ / I I  = I!(HI --~ W -  )~0)-1(1 - E ) ( H t  -}- W - - ) . o ) l / ]  II =< 2[II-1~ ,, 

we conclude from (2.8) that 

2 l[ A,P ll T > c---° - ky, 

where k is a constant independent of W for I WI1 small. Note that 

m+l  m+l  
IIA~I] < ~ ]IAffjN < ~ ] ] A ( n + W - 2 j + i ) - l ( x ) - a ] l  H(x)~till 

j=1  j = l  

m+l  
=c y II(x)~jll. 

j = l  

Thus assuming tl (x)0 i / I  can be bounded independently of W for t WI1 small 
enough, the theorem follows by taking 7 > 0 and small enough. Thus our theorem 
can be deduced from the lemma which follows. • 

Lemma 2.6. Suppose (2.1) is satisfied, H = - A + V, and 2o¢Y(H). Then there is a 
6 > 0 and y > 0 such that if W is in ,~a with ]WI1 < ~, and ~ is an eigenfunction of 
H + W with eigenvalue 2E(2 o - 7 ,  2o+~), we have 

II(x)011 < kll,Pll, 

where k is independent of W. 
This lemma is proved in Appendix A. The proof uses certain uniform estimates 

to be given in the next section. These estimates will also be useful in showing that 
the expression in (1.1) is not always zero. 

We give the following corollary of the proof of Theorem 2.5 which will be of 
later use: 

Corollary 2.7. In the situation of  part (b) of Theorem 2.5, let Pw be the projection 
onto the span of all eigenvectors of H + W with eigenvaIue in J. Then, i fO~Ran Pw 
and En({2o})~b = 0, we have ~ = O. 

The proof is essentially contained in the proof of Theorem 2.5. 

III. Estimates 

M 
We assume at the outset that H = - A + V in L 2 ( ~ n ) ,  where V(x) = Y" vi(nix) and 

i = l  
(2.1) holds for the real potentials vi. Define 

41 = ( ( x ) ( 1  + ( x ) / tO-1 )  ' 

42 = (1 + 7(x)/,u)~'e ~<x> 

for a, y, t > 0 and # > 0. The purpose of this section is to prove estimates of the form 

k II ( x ) % ( n  + W -  ;0~o II _-> II ~ j~  II - II g~j~o II (3.1) 
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under  certain conditions. Here W~N1 and K is compact.  We will later take # ~ go 
so that 411" ( x )  ~ and ( 4 2 ) 1  "e(~+r)<~>. Thus our  estimates need to be uniform in #. 
We have the following result: 

Theorem 3.1. Fix t and c~ non-negative. Suppose 2 o + c d C J ( H ) .  Then there exist 
positive constants 8, 6, k and a compact operator K so that if We.N1, t WIa + ]2 - 2o1 < 
e,~ <-_ 5, and # > 1, then (3.1) holds for all (0~C~(~") if either 

(i) s = l , c ~ = 0 ,  a n d j = l  or 2, or 
(ii) s = 1/2, c~ > 0, and j = 2. 

Proof. Our  proof  of (3.1) is based on the ideas of I F - H 2 ] .  
According to Lemma 2.4, there is an el > 0, and open interval I centered at 

20 + e2, a function f e C ~ ( R )  which is 1 on I, and a compact  opera tor  K~ so that  
if W is a symmetric opera tor  in N1 with [ WIx < el, we have 

f ( H  + W)[H + W, A ] f ( H  + W) > Cof(H + W) 2 + f ( H  + W)K~f (H  + W). (3.2) 

Denote  ~l or 42 by 4 and define F = In 4. In addition, let 

= [ H  + w,  A] ,  

VF = xg, 

G = ( x . V ) 2  g - (x.V) lVVl 2. 

We use the following computat ions  from [ F - H 2 ]  for q ~ C ~ :  

2 Re (A4(0, ~(H + W -  2)(0) = (~0, cg~(0) + 4 II f/2A~(0 II 2 _ (~(0, G4(0), (3.3) 

(H + W -  2 - tVFt2 )4 (0=~(H + W -  ;~.)(0-(D.VF + VF.D)((0, (3.4) 

D.VF + VF.D = 2gA + x.Vg. (3.5) 

We now insert (3.2) into (3.3) and find 

2 Re (A4(0, ~(H + W - 2)(0) _-_ Co tl 4(0 ]12 

+ 4 II g~/= A&o iI z __ (4(0, G~(0) - 8 + (4(0, K ~ ( W ) ~ o )  (3.6) 

where 

g = Co(¢(0,(1 - f ( H  + W)2)~(0) 

- (4(0, (1 - f ( H  + W))Cgf(H + W)4(0) - (4(0, ~(1 - f ( H  + W))~(0) 
(3.7) 

[8[ < c [] (H + W + 04(0 [1'11 (H + W + i)(1 - f ( H  + W))40 [1. 

We now demand that  I; ,- ,~ol < e2, where e2 is less than ¼1II- This leads to the 
estimate 

tl(t - f ( H +  W))~(0 [I = II(H+ W -  2 -  ~2)-1(1 - f ( H +  W))(H+ W - 2 - a : ) 4 ( 0  ]1 

< 41II- 111(1 - f ( H  + W))(H + W -  2 - ~2)~0 [I 
c ]I ( H  -}- W - ;. - 0~2)4(/9 I1. 

and K I ( W  ) = f ( H  + W ) K l f ( H  + W). 
Consider the quanti ty g. Since for small el,  II (H + W +  i ) - l~ (H  + W + 0-1II 

is bounded  uniformly in W, we have 
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This kind of analysis leads to the estimate, 

I#] < c( II (H + W - ,1 - 82) ~cp l] + [I ~q' ]l)" II ( g  + W - ,1 - ~2) ~o II 

< ¼Co II ~(# II 2 + c [I ( g  + W - '1 - c~2)~cp I12. (3.8) 

Inserting (3.8) into (3.6) gives 

2 Re (A~cp, ~(H + W - 2)q~) > ¼% 11 ~cp l] 2 + 4 II gl/2A~fP It 2 

-c t I (H + W-'1-ccz)~qollz-(~q),G~q~)q-(~q~,K:t(W)~(p). (3.9) 

If ~ = 31, we have 

IVFIZ=t2(1  -- ( X ) - 2 ) ( X ) - 2 ( 1  + / ~ - l ( X ) ) - 2  =< t 2 ( X ) - 2 .  (3.10) 

G < = c ( x )  -2, Ix'Vgl<=c(x) -2, g ' ~ c ( x )  -2, (3.11) 

while if ~ = 32 ,  

so that 

In addition, for ~ < 1, 

VF= x ( x ) - l ( ~  + 7(1 + 7(x)/lz) -1) 

~lxl ( x 5  -1 =< IVFI N c~ + 7- (3.12) 

We thus have 

tl (H + W -  ,~ - cd)~q~ II _-< II ~(H + W -  ,~)q~ II + c II zNV(~q~)II 
+ c N -  1/2 II ~]I/2A~fP II + C tl ( x 5 -  i ~o II + 7c II ~o II. 

(3.16) 

If h is a bounded  function with h(x) ~ 0 as I xl --, oo, then 

llh~q~lt < l lh f (n+ W)~q)ll + t l h ( 1 - f ( n +  W))~q~ll. 

Choose f e  C~ (~) so that f = 1 on an interval of length 2L + 1 centered at ,1o + ~2. 

g = ZNg + (1 - zN)g <= c(zN(x) -1 + N-1/2gl /2)  • 

G < c ( x )  -1 + 7(c¢ + 7)/2, (3.13) 

c o ( x ) -  1 < g < (e + Y ) ( x )  -1, (3.14) 

Ix'Vgl < c ( x S -  1. (3.15) 

We now use (3.4) and (3.5) to bound II (H + W - , l -  ~2)~q~ II: 

I I ( n+  W - , 1 - a 2 ) ~ q ~ l J  </I ~(H + W-2)~o  fl + 2light,oil 

+ II (x.Vg)~o II + II (~2 _ (VF)2)~(p II. 

Fo r  the sake of efficiency, we treat the cases { = ~1 and ~ = 42 together. Let Zs be 
the characteristic function of the ball ( x )  < N. We have 

I(~ 2 - l V F l 2 ) l < c y + c ( x 5  -2, ] x ' V g l < e ( x )  -1 

In addition 
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Then, if e2 is small enough 

1t(1 - f ( n +  W))¢~o II = I I (n+ W - 2 -  ~2)-1(1 - f ( n +  W))(H + W -  2 -  ~2)~o II 

<L-ill(H+ W--  2 -  ~2)~¢p II, 
so that  

llh~q~ll < Ilhf(n + W)~q~ll +cZ -111(n+ W -  2 -  ~2)¢~o11. (3.17) 

Note that  the map w ~ f ( H  + W) is continuous in the sense that  for j 141011 
small, as I W - Wotl --* 0, we have II f ( n  + W) - f ( n  + Wo)II --' 0. Thus the compact  
operator hf(H + W) is also continuous in the variable W. 

Let us bound the term 11 zs(V(¢q~))It in (3.16): If )~N is a smooth function with 
Z~,, < )~s < )~N + i, we have 

J 
= Re ( ~  ego, - A ( ~ p ) )  ÷ II h~go I[ 2 

where h¢C~(R') .  Thus, 

II zsV(~0)II 2 < c(ll zN÷ 1 ~0 II II A~0 It + 11 h~o II 2) 

< c( H ZN + 1 ~q~ I1"( II (H + W -- 2 -- c~ 2) ~¢p II + II ¢¢P II ) -1- II hCq~ tl 2) 

~½Z -1 II ¢~oll z + CLIIZN÷I~OII 2 +½Z -1 I I (n+ W - 2 -  ~2)¢~o II 2 + II h¢~0 [I 2 

~L-111¢~olI2+L-~II(H+W-,~--~2)~olI2+IIK2(W)~q~II =, (3.18) 

where we have used (3.17). The operator  K2(W ) is compact  and continuous in W. 
Putt ing together (3.16), (3.17), and (3.18), we have 

ll(H + W -  ,~ - ~2)¢q~ II _-< 21[ ~(n + W -  2)¢p II + cN- 1/2 IIal/2A~cp II 

+ c7 II ~q~ II + II Ks(W)¢rP II, (3.19) 

where K3(" ) is continuous and compact. Using (3.17) again, we find from (3.9), 
(3.11), and (3.13), 

2 Re (A¢cp, ~(H + W -  2)q~) > 3c o II rp II ~ + 4 II glz2 Z¢cp I[ 2 

- c7 tl ~o [I 2 - c [I ( n  + W - 2 - ez)~tp ii 2 + (~q~, K,,(W)¢q~), 

where K~(-) is continuous and compact. Using (3.19) with N large enough, we have 

2 Re (acrp, ¢ (n  + W - 2)0 ) ~ (¼c o - c7)II ~¢P II = + 2 il f / 2  Z~o  II 2 

- c l1 ¢ (n  + W -  2)~0 [I 2 + (¢¢p,K~(W)¢cp), (3.20) 

where again Ks( ' ) i s  continuous and compact. 
We now consider two cases. If e = 0, we have 

2 Re (A~q), ~(H + W - 2)q)) < 2 II ( x ) -  1 a ~ o  I1"11 ( x  5 ¢ (n  + W -  2) ¢p II 

__< c( II V(~q,) 11 + II ¢~o II)" II ( x ) ~(~ + w - X)~o 11. 

An easy estimate gives 

It V(~o)i] 2 < c( II ~ 1t 2 + II ¢(H + W - 2)~o 1t2), 
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so that  

2 Re (A~(0, ~(H + W -  2)(0) < c( 1t ( n  + W -  2)(0 I] + l[ ~(0 It )" ][ ( x ) ~ ( H  + W -  2)q~ 1] 

< c l l ( x ) ~ ( H +  W--  2)(0tl2 + ¼Co ItCq~ll 2. 

Combining this with (3.20) gives the result that  for some c > 0, 

c l i ( x ) ~ ( H  + W--2)(0II2~(~Co--C~)ll¢(0112 +(¢(0,Ks(W)¢qg). (3.21) 

If 7 > 0, we estimate differently: 

2 Re (A~(0, ¢(H + W - 2)(0) < 211 gX/2hCq ~ t1"11 g -  1/2 ~(H + W - 2)9 I] 

<-- It g l / z Z ~  o [[2 + [I g -  1/2~(H + W -  2)(0 II 2. 

But from (3.14), # -1/2 < O~- l/2 ( X ) 1/2, SO that  

2 Re (A~(0, ~(H + W -  2)0 ) < [l gl/ZA~(0 II 2 + o~- 1 II ( x ) t / 2  ~(n  + W -- 2)(0 II 2. 

Combining this with (3.20) gives 

c l l ( x ) X / 2 ~ ( n  + w-k)q~Ha>(½Co-CT)]l¢(0Jl2 +(¢~o, gs(w)¢(0) .  (3.22) 

Choose ~1 small enough so that  I I K s ( W ) -  gs(0)fI <¼Co, and note that  from the 
inequality 

2x >__ - 32 x 2 - 3 -  2 
we have 

Ks(O ) >= _ (Ks(O))2 f12 _ fl-  2 = _ K 2 _ [3-2. 

We choose ~ < 6. Then 

(½Co -- c?)II ~(0 IJ 2 + (¢(0, K5 049 4(0) _-> (¼% - c6) jJ ~(0 lJ 2 _ [3- 2 Jl ~(0 IJ 2 _ il K¢(0 lJ 2 

->__ ~Co II ~o II 2 _ II K~9  II 2, 

if 6 > 0 is small enough and [3 is large enough. Combining this with (3.21) and 
(3.22) gives the desired estimates. • 

We will need the following corollary of Theorem 3.1 in the next section: 

Corollary 3.2. Let Q be a finite-dimensional orthooonal projection and [3~ R. Suppose 
II e~°l~IQ II < go for some % > O. F ix  t and ~ non-negative with 2 o + ~26~-(H ) and 

< %.  Then there exist positive constants e and 6 so that for each W ~ I  with 
I Wl~ < ~ and 2 o not an eigenvalue o f H  + W +  [3Q, the estimate 

k II ( x ) ~ ( i ( n  + W + [3Q - 20)(0 tt > II ~s~p It (3.23) 

holds for all q~ ~ C~ (~") !f either 

(i) s = l , ~ = 0 ,  a n d j = l  or 2, or 
(ii) s = 1/2, ~ > 0, and j = 2. 

Here 0 < 7 < 6, # > 1, and k is a constant depending on W and ft. 

Proof. We first show that  given e > 0 there is a compact  operator K~ such that  

II ( x Y C s a ( 0  II < ~ II ~s~ o II + [I g ~ s ( 0  I[, (3.24) 
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where K,  is independent  of # and ?. It is enough to assume Q is one dimensional 
so that  Q(p = (~, ~o)~. Then 

II <x  >S~jQq~ Ii = II <x>~jO 11 I(~', q~)l < cl(~,, q~)l, 

if ~ is small enough so that c~ + ? < Co. Let H o = - A, and suppose f~C~(N).  Then 

[B ( x  >~jQq)II < c 11 (1 - f(Ho))O I] I} qo 1[ + c[(f(Ho)O, q~)l- 

Now 

( f ( n  o) ~, ~o) = ((H o + 1) ( x > ~j-1 f(Ho) ~k, (H o + 1)-a < x ) -1 Cj q~). 

It is easy to see that  It(H o + 1)(x)¢]- l f (Ho)~ II is bounded  independent  of # > 1 
and ? ~ cS (say by M) so that  

[I <x>'~jaq~ [I < c [1 (1 - f(no))t)It'll q~ II + cM 11K~i~o II 

< c' II (1 - f(Ho))O ll'li ~iq ~ II + cM It g~jq~ 11. 

We obtain (3.24) by choosing f so that c' I[ (1 - f(Ho))O II < ~. 
F r o m  (3.1), we now obtain 

k II <x>'~j(n + W + pQ - &)9  I1 _-> II ~j~0 II - II K~ /p  II (3.25) 

under the stated conditions. Now suppose that  for some sequence ~omeC~, 
0 < ?m < 3, and #m => t, we have It ~ T q ) m  II -- 1 and 

II < x >' ¢ 7 ( H  + W + / ~ O  - 20) (Pm II --' 0. (3.26) 

Here ~ '  corresponds to #m and 7m- We can assume that  ~m ~ ~ and #,, ~ #, where 
rn ....> possibly # = o% in which case ~j ~j uniformly on compact  sets. Since 20 is not  

an eigenvalue of H + W +/~Q, and since (3.26) implies (H + W +/~Q - 2o)~O m ~ 0, 
we learn that  q)~ ~ 0  weakly. Since for each ~osC; °, 

(~o, ~7~o.)-  (¢jq,, ~o~)--.0, 
m --9, we see that  (~o, ~p,,,)--* 0, and since II ~'q~m It ---- 1, we learn that  ~j ~p,, 0 weakly. 

But, since K is compact ,  K~'q~m ~ 0  in no rm which contradicts (3.25) and (3.26). 
This implies the result. [] 

IV. t f (H- -  •) # 0 

In this section we will always assume that  (2.1) and (2.2) are satisfied and that  
H = - A + V in Lz(Rn). We also suppose 2o6~-(H) but  that  2o~ae~s(H ). 

If 2o is an eigenvalue of H, we will want  to s tudy the cont inuous spectrum in 
which 20 is embedded.  Let  Po = En({2o})- The  o p e r a t o r / 7  = H + Po has only 
continuous spectrum in a ne ighbourhood of 20 and is therefore a convenient  object 
to analyze. 

Lemma 4.1. For some ~o > 0, exp (aolxl)Po is bounded and the operators [A, Po]  
and [A, [A, P o ] ]  are compact. 

Proof. The first s tatement follows from [F -H2]  which gives the addit ional  result 
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that eo 2 can be any number less than the distance from 4 o to the next highest 
threshold. 

If OeRanPo,  we claim that ~ is in the domain of A 2. Note that 

(A + 1)20 = B(x )2 (H  + i)~, B = (A + 1)2(H + i) -1 ( x ) - 2 ,  

so we need only show that B is bounded. We can compute 

B = [A, [A, (H + i)-113 <x>-2 + 2[A,(H + i)-1](A + 1)<x>-2 

+ (H + i)-~(A + 1)~ <x> -2 

Using (2.1) and (2.2), it is not difficult to show that the first two terms above are 
bounded. The third term can be handled by elementary means. This implies that 
AP o, Po A, A2po,  APoA, and Po A2 are all bounded. These operators are compact 
because they are finite rank. • 

From the estimate (2.7) and the proof of Theorem 2.2 ([P-S-S])  we learn that 
the strong limits 

tim (H -- 2o -T- i0 -  ~ = (/4 - 2o -T- i0)- ~ 

exist as maps from L 2 to L2_~ for any s > 1/2. 
Let 

! 

5 ( / ~ -  4 ° )  - 2 ~ / { ( n  - 40  - io)  - 1  - ( / ~ -  40  + i o ) -  1 }. 

The operator 6(/q - 4o) is a bounded operator from L 2 to L2_~ for any s > 1/2. In 
order to understand the perturbation of the eigenvalue 4o, it is important to know 
that this operator is not identically zero. For  this purpose, we introduce the 
following condition: 

For  each i = 1 . . . .  , M, v~ has the decomposition 

vi=vT+vl(,  ( y ) l / Z v ~ ( y ) ( - A i +  1) -1 is compact, and 

vI(~CI(X~) with lim ([@(Y)I + [y['[V@(y)])=O. (4.1) 
lyl~oo 

Theorem 4.2. Suppose, in addition to the assumptions at the beginnin9 of  this section, 
that (4.1) holds. Then 6(H - 4o) ~ 0. 

Remark. This result will be needed in Sect.V. As an aside, we note here 
the fact that 6 ( H - 4 o ) # 0  implies the existence of nonzero solutions u of 
( - A + V - 4o)U = 0 with ueL2~(E"), s > 1/2. Just set u = 6(H - 4o)q~ for suitable 
~o. (From Eq. (5.18), we see that Po6(I7I - 4o)q~ = 0.) For  the existence of generalized 
eigenfunctions for a.e. value of the spectral parameter, see [$2, Ki, J -Ki] .  

Pro@ According to [M2] and [P -S -S] ,  the operators 

PT (fl  - 4o -Y- i0)- 1 ( x )  -~ 

are bounded. Here P+ is the spectral projection, Zto,~)(- iA), P_ = 1 - P+, and 
s > 1. Suppose 6(/-7/- 4o)=  0. Then 

g = ( B  - 4o - i 0 ) -  1 = ( B  - 4o  + i 0 ) -  i.  
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Formally R ( x >  -~ = (P_ + P+)R(x>  -~ is also bounded ifs > 1. We prove this in 
Appendix B. Suppose q)~L z. Then, if 4'~C~, 

((/7 -- 2o)4', R (x)-~(p)  =lim ( ( /7 -  2o)~, ( / 7 -  2o-/~)  -1 (x)-~q))  =(~,  ( x  >-~o). 
e+0 

since C~ ° is a core for/ t ,  R ( x >- ~¢p is in the domain of/7 - 20 and ( / 7 -  2o)R ( x  >-~ ~o = 
(x>-~p .  Thus ( x > - ~ o  is in the domain of ( / 7 - 2 o )  -1 and 

R ( x ) - ~ q ) = ( / 7 -  2o)-l  (x>-*q~. 

We thus learn that (/7 - 4o)- 1 ( x ) - '  is a bounded operator if s > 1. 
Let ¢ = ( (x  >(1 + # - l ( x ) ) - 1 ) t  with t > 0 and # positive. We will estimate 

II 4(/7 - 20)- 1 ( x > -  ~ -  1(1 + ~ -  ~(x>)-  111 - N(~). 

Note that N(#)<  oo because ¢ and ¢ - i  are bounded. Suppose 4'~C~(R"), and 
~o = (/7 - 2 o ) - I ( x )  - i~-  1(1 + / l - i ( x ) ) - i f f .  We have 

114(/7- 2o)-1 < x > - l U l ( 1  + Iz-X<x>)-x4' {l/l{ 4' II 

= l{ Cq~ 11/11(1 + / z - l ( x > ) ¢ ( x  >(/7 - 2o),p }l 

--< II ¢cp tl/1f ~ (x>(/7  - 2o),p 11- (4.2) 

According to Corollary 3.2, we have 

/~ il ¢ < x > ( / 7 -  2o),~ 1I ~ tl ¢,~ 11 (4.3) 

for all 0 ~C~°(R~) • Equation (4.3) easily extends to (~ in ~(/7) with compact support, 
so ifr/¢C~(~ ~) with r/(x) = t for txl < 1, define ~/,,(x) = ~l(x/m) and let (o,, = r/,,qx Then 

k 11 ¢ ( x )  (/7 - 20)(o m 1[ > l[ ~q),. l[. (4.4) 

We have 

( x ) (/t -- 2o)~pm = t/,, ( x ) (/7 -- 2o)q9 -- ( x > [A, nm](p + fl ( x ) I f  0, t/m](p. (4.5) 

Now, [A, rh,] = 2Vq,,.D + A~I,, so that the middle term is given by 

- (2/m) ( x  >Vrl(x/m)'Vq) - ~2A~l(x/m)qx 

Clearly this is bounded uniformly in m by an L 2 function and converges pointwise 
to zero. Thus we get L z convergence by Lebesgue's dominated convergence theorem. 
The last term in (4.5) is easily seen to converge to zero. Since 4'~C~, (x>(/7  - 2o)q~ 
has compact support, and thus the first term in (4.5) converges. We conclude that 

~ < x > (B - 2o)q)m-~ ¢ < x >(g - ;.o)q,, 

and thus by (4.4), 

k I1 ~ < x > (/7 - 2o)Cp II ~ 1t ~q~ II. 

From (4.2), it follows that N(#)<  k. For 4'1, ~J2~Co °, we thus have 

1(¢4'2, (/7 - 20) - i  ( x > - i ¢ -  1(1 + # - l (x>) -14 ' t ) l  < kll 4'1 II" II 4'2 II. 
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Taking the limit #]" o% we thus have 

This implies 

I(< x > % ,  (~  - &)-*<x  >- 1 - '0,)I  _--- k II g', 11" 1t g,e 11. 

< x S ' ( / ? -  &) -~<x5  -~ - '  (4.6) 

is a bounded operator  for t > 0. We now use Corol lary 3.2 again to show that  for 
some small 7o > 0, 

e~o<~>(/~ _ 20 ) -  1 ( x ) - le-Vo<x> 

is bounded by repeating the argument  above with ~ = 42, e = O. 
Let  

F(z) = ( x  }ZteO- ~1~o<~>(/~ _ 20 ) -  le-(1- ~),o<~>(x } - 1 ( x  } - , t  

(4.7) 

for R e z s [ 0 , 1 ] .  Matr ix elements of F between vectors in C~ ° are analytic in a 
ne ighborhood of {z :Reze[0 ,  1]}. Thus, by interpolat ion using the boundedness 
of (4.6) and (4.7), we find F(1/2) is bounded.  Thus  for all t > 0 and e = 7o/2, 

(x)~e~<~> (/7 - 2o)- le-"<~>(x ) - 1-t (4.8) 

is bounded. We now improve (4.8) by using Corol lary 3.2 with 4 2 =  
e~<~>(1 + # -  17 (x ) ) "  for small enough e and 7- We find that  for some 71 > 0, 

e~ <~> (/~ - 2o)- le-'~"<x>( x ) -  1/2 (4.9) 

is bounded. Let 

Again, by interpolation, we find G(1/2) is bounded  so that  

II ( x )  - 1/4(/~ _ 2o ) -  t ( x  ) - 114 II < oo. (4.10) 

We claim that  if 2 o < 0, then there is an X ~ 2 '  with X # R" such that  Hx 
has an eigenvalue #o < 20 with #o < info-~(Hx). Assume the contrary.  Since 
inf¢o~(H)eY-(H), there is a subspace Y~e~ ,  I71 # N", so that  infae~jH) is 
an eigenvalue of Hy~. Since infCe~(Hy~)eY-(Hy~), there is a subspace Y 2 ~ e ,  
Y2 c Y1, I12 ¢- Y~ such that  inf¢¢~(Hy~) is an eigenvalue of Hy~. Continuing in this 
way, we have a chain of subspaces 

r l ~  Y ~ " ' ,  

no two of which are equal. This chain can only terminate if Yj = {0} for some j, 
but  this is impossible, for then 2 o > info-~(/-/yj_ ~) = 0. 

Assuming 2 o < 0 ,  we will show that  (4.10) is false, thereby obtaining a 
contradiction. 

Applying the opera tor  ( x )  - 1/4(H - 2o)- 1 ( x )  - 1/4 to f =  ( x )  1 t4(/~ _ 2o)U with 
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u e C ~ ( R " )  and using (4.10), we find the estimate 

JI < x ) -  1/~u II _-< c II ( x ) l / * (  n -- 4o)U II + II K ( x ) - 1 1 4 u  II (4.11) 
for some compact operator K and all u e C ~ ( N ' ) .  Let X' be a subspace in £,a with 
X'  # N" such that Hx,  has an eigenvalue #o < 4o with #o < infa~(Hx,). Fixing X'  
we set Y = (X ' )  ±. We denote generic points in X' and Y by x' and y respectively. 
Note that X~ ¢ X' means that Y c~ X~ is a proper subspace of Y. It follows that 
there is a point yoe Y with l Yol= 1 such that 

7ziy o 7 k 0 for all i with X~ ¢ X'. 

Thus there is an open cone F containing Yo and a 5 > 0 so that for all i with X~ ¢ X', 

I~xl ~ ~lxl, x~_r. (4.12) 

Define 

and 

W~(x) = [ ~7(-,~) 
X~¢X' 

/ 'R = { x e r :  Ixt > R}. 

Let Xn be the characteristic function of the set B. Using (4.11) we obtain 

II < x ) 1/4u II < c II < x > -  1/*(H - W s - 4o)U II + II K < x >- 1/4u II 

+ c [I g l  <x> - l / 4 ( n  - W s - 4 0 + i)u It (4.t3) 

for all u e C g ( F ) ,  where 

K 1 = < x > l / 4 W ' x r ( H -  W ~ _  4 o + i)-l<x>l/4. 

It is easily seen from (4.1) and (4.12) that K 1 is compact. For any compact operator 
/~ we have 

lim Jl KXrR II = 0, 
R~cc) 

and thus we obtain for R sufficiently large 

11 ( X )  - 1/4/2 H ~ D 1t (x)1/4(  H - -  w ~  - -  ).o) u 11 (4 .14)  

for all u e C ~ ( F R ) .  
Let O ~ L z ( X  ') be a normalized eigenfunction of Hx,  with eigenvalue #o. Define 

W~(x)= Y, ~f(~,x), 
XiCX' 

and fix to > 0 so that 

I WL(x) I < ~(40 -- #0) 

for x e F t o .  For  each t > to choose theY such that 

I~tl 2 = ,~0 - ~o - wL(tYo),  
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and define 

(p,(x) = ~k(x') exp (it/,.y), x = (x', y). 

It is readily checked that q)~ satisfies the equat ion 

( - A  + V ( x ) -  W~(x ) -  2o)(pt(x)= ( W r ( x ) -  WZ(tyo))CPt(x). 

Choose ~EC~(N") so that  ~(x)= 1 if Ixl _-< 1/2 and ~ ( x ) = 0  if lxl _>- 1. Set 

~,(x) = ((r f l(x -- tyo)), u, = (P,Zt, 

where r t will be chosen later. Fo r  now we only specify that  

(i) lira rt/t = O, 
t - ~ e O  

(ii) lim r t = oo. 
t *-~ rio 

F rom (4.15) we obtain 

(-- A + V(x) -- WS(x) -- 2o)Ut(X ) = (WL(x) - Wr(tYo))U,(X) 

- 2V¢ , (x ) 'V~ t (x ) -  ~o~a~,, 

so that with m = dim Y 

II ( x ) l / ' (  - A  + v -  w ~ -  ,~o)U, II 

< ( i  S ( x )1/21VWL(2x + ( 1 -  R)tyo)'(x -tyo)u,(x)lZdxd2) ~/2 
% 

+ c(r[-'r~/z + r~-2r~/Z)P/4 

<= cP/4(rt/(t -- r0) sup { I x l ' lV WL(x) l:Ixl > t - r,} r'2/2 + cr;- : rr~/2 t 1/4. 

Let 
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(4.15) 

o r  

t -  1/4rt/2 <= crt/2tu4(etrt t-  1 q_ r7 2) 

1 <= + ,fi/r ) (4.16) 

F rom (4. t4) 

6 = sup {IxI'IVWL(x)I:Ixl >½t}. 

Then for large t, 

[I (x)1/4(  H -- W ~ - 2o)Ut [1 < cr~/2P/4(6rtt- 1 + r;- 1). 

On the other  hand, given any R, for large enough t we have supp ut c F R. It is 
thus easy to see that  we can use (4.14) with u = u~ for sufficiently large t. We have 

c [ [ ( x ) - t / ' u ,  t l z > t - 1 / 2 (  S lO(x')[2dx'dy- S IO(x')[ zdx 'dy)  
k lyl < rt/4 lyl < rt/4,tx'l > rt/4 

> t -  1/2(cor ~ - c'e-P"r?) 

for some Co > 0 and/3  > 0. Thus for large t 

ell (x)-X/%,tl >= t- l l4r~/2.  
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Set 
fit = Max(et, t -  liE), r, : (t/flt) 112. 

Then (i) and (ii) above are satisfied while (4.16) implies 

1 < 2c x/~t,  

which is a contradiction for large t. 
The proof in case 2o > 0 is even simpler. Here we get a contradiction to the 

estimate (4.10) by using u = u, with 

ut(x) = exp (it h. x)~t(x) 

in (4.14), where t/,~ ~", It hI2= 2 0 - WL(tyo). We omit the details. • 

V. Instability of Embedded Eigenvalues 

In this section we assume (2.1) and (2.2) are in force and H = - A  + V in L2(~"). 
We also assume that 2o¢J-(H ) but that 2 o is an eigenvalue of H in o-~ss(H). 

Let ~2 be the space of all real-valued functions, W, such that 

IWJ2 = II W ( - A  + 1) -111 + It( - A  + t)-1/2[A, W ] ( - A  + 1) -1 It 

+ H(-A + 1)-l[Z, [h, W ] ] ( - A  + 1) -1 II < oo.  

Lemma 5.1. Let Po=En({2o}), and / t = H + P  o. There is a 5 > 0  so that if 
12 - 2oi + I WJ2 < 6, then the strong limits 

lim (/7 + W - 2 T- ie)- 1 = (/-7 + W - 2 T- i0)- 1 (5.1) 
e+0 

exist as maps from LZ~ to L2_~ for any s > 1/2. The operators (ffI + W - 2 4- iO)- t 
are norm HSlder continuous in the variables (2, W) for 12 - 2ol +IWI2 < 5. I f  
12-2o] +]WI2<•,  and 2 is not an eigenvalue of H +  W, (5.1) also holds with 

replaced by H. The H61der continuity is also valid for the operators 
(H+W-)o+iO) -1. 

Proof As in the proof of Theorem 2.5, we find for some Co > 0, 

E~+ w(I) [H + W, A]Ea+ w(I) > coE~+ w(I) (5.2) 

for some open interval I containing 2o and all W with I Wtl < 5a ifbt  is sufficiently 
small. The proof of [P-S-SJ  then shows that the limits (5.1) exist and are H61der 
continuous in 2 if W e ~ 2 .  The H61der continuity in W (in the norm I" [z) is proved 
by exactly the same technique. We do not repeat the argument here. The Mourre 
estimate also holds for H + W (see Lemma 2.4) so that if 2 is not an eigenvalue 
of H + W, the proof of [P-S-S]  again shows that boundary values exist as maps 
from L 2 into L2_s (s > 1/2) and that they are H61der continuous in (2, W). • 

We now present a result using a formalism which has proved very useful in 
the study of eigenvalues [K2, Howl, 2]: 

Proposition 5.2. There is an open interval J containing 2o and a 5 > 0 so that the 
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following holds: Define Po = En({)oo}) and/7 = H + Po. For 2~J and t wt2 < 0, (5.1) 
holds. Define 

Q+()~, W) = Po(/7 + W - 2 - i0) 1P o. 

Then 2eJ  is an eigenvalue of H + W if and only if the operator 1 - Q +(2, W) is not 
invertible. (Note that Q+ is well defined since all functions in Ran P o decay 
exponentially.) 

The proof  of this result is very similar to that  of similar results found in the 
literature. We sketch it mainly to establish notat ion:  For  Im z > 0, we have 

(H + W - z)-  1 = (/7 + W - z)-  1 + (H + W - z)-  1Po(/7 + W - z)-  1. (5.3) 

Multiplying by Po, we find 

(H+ W - z ) - l P o ( 1  - P o ( / 7 +  W - z ) - ~ P o ) : ( / 7 +  W - z ) - l P o  . (5.4) 

Letting z = 2 + ie and taking e+0 gives (for 2 no t  an eigenvalue of  H + W) 

(H+ W - 2 - i O ) - l P o ( 1  - Q+(2, W ) ) = ( / 7  + W - 2 - i O ) - l P o  . (5.5) 

Suppose @~Ran Po and (1 - Q+(2, W))qJ = 0. Then from (5.5), 
(/7 + W - 2 - i0)- 14 = 0, which implies ~J = 0, so that since on 
Ran Po, t - Q +(2, W) is just a finite dimensional matrix, 1 - Q +(2, W) is invertible. 
Conversely, suppose 1 - Q+(2, W) is invertible. Let  

O(z, W) = Po(/7 + W - z)-  ~eo 

for Im z > 0. It  is easy to see from (5.4) that  1 - Q(z, W) is invertible, and thus from 
(5.4), 

(H + W - z)-  1P 0 = (/7 + W - z)-  1Po(1 - Q(z, W)) -  1. (5.6) 

Substituting (5.6) into (5.3) gives 

( I 4 +  W - z )  - ~ =(/7+ W - z )  - ~ 

+ (I7 + w - z ) -  1Po(1 - Q(z, w ) ) -  ZPo(/7 + w - z)-  t. (5.7) 

F rom (5.7), it follows that the limit 

lim (H + W - 2 - ie)- 

exists strongly as maps from L~ into LE_s for s > 1/2. Thus the projection 

En+w({2}) = s - lim - ie(H + W - 2 - i~) -1 = O, 
do 

and 2 is not  an eigenvalue of  H + W. • 

Lemma 5.3. There is an open interval J containing 20, an r />  0, and a ~ > 0 such 
that if W is in ~2 with IW12<~,  and 2~J ,  then with 7(2)=) .0+  1 - 2  

Q + (2, W) = ~-  1Po - y -  2Po WPo - ~;- 2Po W(/7 - 2 - i0)- 1Wp ° 

+ 0(I Wl~ +"). (5.8) 
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Proof. We use the resolvent formulae 

(H-J- W - z )  -1 ~ - - ( / ~ - z )  - 1  - ( / I -  z ) - I W ( / ~  q t- W - z )  -1 

= ( / q  - z )  - 1 _ ( / ~  + W - z ) - i  W ( / ~  - z ) -  1. (5 .9 )  

Thus 
Q(z, W) = y(z)-1P o - y(z)- ZPoWPo 

+ 7(z)-ZPoW(H + W - z)- 1WPo. (5.10) 

We have 

P o W [ ( H  + W - it - i0)- 1 _ (/~ _ it -- i0)- a ]WP o 

= PoW(x)S{  (x ) -~[ ( /~  + W - 2 - i0)- 1 _ ( ~  _ 2 - i0)-1] ( x ) - s }  ( x ) ' W P o  . 

If 1 > s > i/2, the expression in curly brackets is bounded  in no rm by cl WJ~ for 
some 11 > 0, while 

II ( x )~WPo II < I] W(H + i)- 1 I1" II ( n  + 0<x>~Po I1 < cl W h .  

Taking z = 2 + ie and e~0 in (5.10) thus gives (5.8). • 

Lemma 5.4. Let J be as in Lemma 5.3. Suppose W e ~ 2  and { # / : j =  1, 2, ~..} is the 
set of eigenvalues of PoWPo . Then, i t e J  is an eigenvalue of H +  W, 

i t=i to+#j+O(IWl~)  for somej .  

Proof. Let ¢ = 7(it)(2 - 20). Then we calculate using (5.8), 

Q+(it, w ) - P o = y ( i t ) - Z P o { ~ - P o W P o + O ( l W I 2 ) } .  (5.11) 

Now II(~-PoWPo)-lll = n l ~ - / ~ j l  s o  that  

-- Po WPo + O(IWI ~) = (~ - Po WPo)(1 + (~ - Po WPo)-I  0(1WI 2)) 

is invertible if 

( M i n ,  ~ -  ~ j l ) - a  110(1WlzZ) ,, <1 /2 .  

or, in other  words, for some c > 0 

t ~ - # j l > c l W t ~ ,  all j. (5.12) 

There exists a constant  cl > 0 so that  if 

1~ - ito - #~1 >= c~lWl~ for all j, (5.13) 

then (5.12) is satisfied. Thus, in view of Proposi t ion 5.2, if 2 is an eigenvalue of 
H +  W, we must  have I 2 - 2 o - / ~ / 1  <cllWI~ for somej .  • 

Lemma 5.5. Suppose dim Ran Po = m. Then there is a real-valued function WEC~(~ ~) 
such that Po WPo has m distinct eigenvalues as an operator on Ran Po- 

Proof, We first show that  i fm > 1, we can find WI~C ~ such that  PoW1Po is not  
a multiple of Po. Let {~}7'-- ~ be an o r thonormal  basis for Ran Po- If (~b~, q~92) = 0 
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for all ~oeCg, clearly ~ 2 = 0  a.e. If  (~b,,~o~b~) = (Oz, q~O2 ) for all ¢psCg,  then 
I~112 = fOzt 2 a.e. These two s ta tements  imply  ~1 = ~2 = 0 a.e. and  we have proved  
our  claim. 

Suppose we have found a real W2eC'~ such that  PoW2P 0 has m2 < m distinct 
eigenvalues. We will show how to construct  a real W3eC ~ with at least m2 + 1 
distinct eigenvalues. This will complete  the proof.  

Suppose {~}7~=~ is an o r thonorma l  basis for Ran  Po so tha t  

(~ ,W2~j )=#6~ ,  l < i , j < l ,  

where l > 2. Find a real q ~ C ~  such that  {(~O~, q~Oj)), =<~,jz~ is not  a mult iple of  the 
identity. By mak ing  a uni tary  change of basis we can assume 

(~i, W2~llj)=].,~6ij, l < i ,  j < l ,  
(¢,~, ~o~) = ~ , ~ ,  1 <__ i, j <__ ~, 

w h e r e / q  ¢ [22 . Let 

and let IYV(~) - l~ 2 + ~ .  The  project ion onto  the eigenspace of eigenvalues for W(e) 
near  # is for small e 

1 
P(~) = ~ / i z - ! ,  =~(z - ~ (e ) ) -  ldz. 

e m is the s tandard  If  the eigenvalues near  # were all equal, we would have ({ i}i= 1 
basis in W") 

(el,  ff(e)P(e)eO/(el, P(e)eO = (e2, ~'V(e)P(e)e2)/(e2, P(e)e2). 

But a simple calculation gives for j - -  1, 2, 

(e~, fe(~)P(~)e)/(ej, P(~)e~) = ~ + ~ j  + 0(~2). 

Thus  the eigenvalue # splits into at  least 2 eigenvalues. If  e is small enough, the 
number  of  other  distinct eigenvalues cannot  decrease. Thus,  for small enough e > 0, 
the number  of distinct eigenvalues of l~(e) is at least m 2 + 1. • 

L e m m a  5.6. Let Po, J, and 5 be as in Proposition 5.2 and suppose m = rank  (Po)- 
Then there exists a real WeC~(I~") and a t o > 0 such that 

rank (1 - Q+(2, tW)) _>_ m - 1 

for all 2eJ  and all t with 0 < It[ < to. 

Proof Let W be as in L e m m a  5.5. Then  according to L e m m a  5.3, 

Q +(),, tw )  = 7-1Po  - 7- 2tPoWPo + O(t2), 

and with ~ = ~(2)(2 - 20) 

1 - -  Q+Oo, t W )  = - otOo)- 2Po(~ - t~-¥ + O(t2)),  

where t~ z = PoWPo . Choose  a basis so that  we can write (with some abuse of 
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notation) 

0 

If  ¢ = t#l - tff, where I CI < Cl[t[, then 

[¢ ,] (~ --  tI,V + O(t2))  = - -  t e 0 I ,q "'. 0 + O ( t  . 

/am -- #a 

Since the #~ are distinct, the matrix in brackets clearly has rank _>_ m - 1 for small 
t. This conclusion also holds if ~ = t # j - t ~  for any j if [~I < cl[tl. According to 
Lemma 5.4, unless ¢ = t/a s + O(t2), the opera tor  1 - Q+(2, tW) is invertible for 2~Y 
and thus has rank m. This proves the result. []  

Lemma 5.7. With W as in Lemma 5.6, any eigenvalue of H + t W  in Y has multiplicity 
one for 0 < I t l < to. 

Proof Multiplying (5.4) by Po and defining 

Qt(z) = Po(H + t W  - z)-  iP  o, 
we obtain 

Q,(z)(1 - Q(z, tW)) = Q(z, tW). (5.14) 

Suppose ;~eJ is an eigenvalue of H + tW. Set z = 2 + i~ in (5.14) and note  that  

s - l i r a  (H + t W - 2 - i e ) - i ( - ie )  = E~ +tw({2}) - P1. 
~1o 

We obtain from (5.14), 

PoPiPo(1 - Q +(), tW)) = 0. (5.15) 

Since rank (1 - Q +(2, tW)) > m - 1, dear ly  (5.15) implies 

rank (PoPIPo) _-< 1. (5.16) 

F r o m  (5.16), it follows that  P~(PoP1Po)P~ = (PtPoP1) 2 has at mos t  rank 1, and thus 

rank (P1PoPO __< 1. (5.17) 

Suppose (0~ and q)2 are two linearly independent  vectors in Ran  P1. We can find 
a non-zero vector q~ = axtp 1 + a2q?2 with PxPoPl(o = 0. But this implies ]1PoPltp [I 2 = 
(q~,P1PoPxq~)=O, or Poq~=0. This contradicts  Corol lary  2.7 so that  r a n k P  1 < 1. 

[] 

We are, of  course, heading toward  a result which says that  not  only can one 
split a degenerate eigenvalue, but  remove it completely. Before we prove this, we 
need to know a bit more  about  5(/4 - 20) in addit ion to the fact that  it is no t  the 
zero operator.  

Lemma 5.8. 

PoS(H - 20) = O. (5.18) 
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Proof With convergence in norm as maps from L 2 to L~.~, s > 1/2, we have 

6(/7/-- 20) = lim ( 1 ~  [(/7 -- 20 -- i~) -1 -- (t7 -- 20 + i~)- ~] 

= lira 6~(/~ - 2o), 
dO 

where 
8 1 

6~(~q - 20) = e2. ( t 7  - ,~o) 2 + 

B u t / t  = H + Po so that 

(5.19) 

8 1 
P°8~(B -- 2o) = ~ 1 Po- + g 2 

This proves (5.18). • 

At this point, in order to learn more about the eigenfunctions of H we need 
to make further regularity assumptions about the potentials % in addition to (2.1) 
and (2.2). 

Assumption R: 
(a) The potentials vj belong to the Kato class t,-loc [A-S, S2], where dj = dim Xj. -tXdj 

(b) If <x)~ '~O~(A)  for some s and if ( - A +  V +  W - 2 ) O  =0,  where W is 
a real function in C~(N"), and ~ vanishes in an open set, then ~, = 0. 

It has been conjectured [$2] and proved for low dimension [Saw], that (a) ~(b). 
At this point, however, theorems guaranteeing (b) are not optimal for N-body type 
potentials (see, for example, [ J -K]  and [G]). 

Lemma 5.9. Suppose, in addition to the assumptions (2.1) and (2.2) in force in this 
section, that assumptions R and (4.1) hold. Then if ~2 is an open set in ~" and t~ is 
a (non-zero) eigenfunction of H with eigenvalue 20, there is a real function W~ C~ (~2) 
such that 

(W~,, 6(B - 2o) W~) # O. 

Proof. If (W~, 6 ( /4 -  2o)W~)= 0 for all real W¢C~(~2), the Schwarz inequality 
for non-negative quadratic forms implies that 

(W1 ~,, 6(/7 - 2o) W2 ~ ) = 0 (5.20) 

for all W1 and W2eC~°(.Q). Let 

¢' = a ( ~ -  & ) w ~ .  

According to (5.18), 

( -  A + V - )~o)~' = 0. (5.21) 

From assumption R(a) and [A-S], we can assume that ~, and ~' are continuous. 
Thus, from (5.20) we obtain 

~(~)0'(x) = 0, x ~ a  

From R(b), it follows that { x s ~ : 0 ( x ) # 0 }  is dense in 62 so that 0 ' ( x ) = 0  for 
xeD. From (5.21) and assumption R(b), it then follows that ~' = 0. 
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Choosing qeC~°(R'). We have 

(,1, a ( f l  - ;oo) w2  ~,) = 0 

for all ~ e C~ (12). Thus, repeating the arguments above, we obtain that 

~" = 6(I7 - 2o)q - O. 

Since this holds for all t/eC~°(R'), we have a contradiction to Theorem 4.2. • 

Remark. The unique continuation property R(b) does not guarantee that 
{x:¢(x) = 0} has measure zero. Thus {W~h: We Cy } is not known to be dense in 
L~ (for any s). For this reason the proof of Lemma 5.9 is somewhat involved. 

Proposition 5.10. Suppose the assumptions of Lemma 5.9 are satisfied. There is an 
open interval ,1 containing 2 o so that, given any ~ > O, we can find a real C~ function 
W with III will < ~ such that H + W has no eioenvalues in d. Here Ill'ill is any norm 
on C~. 

Proof. Choose W1 as in Lemma 5.7 so that any eigenvalue of H + tW1 in J(J is 
the closure of J, an open interval containing 2o) has multiplicity one for 0 < I tl < to. 
Choose tl ~(0, to) so that t][ tl W1 Ill < ~/2. We can assume (by shrinking J if necessary) 
that Jc~ Y-(H) = ~ .  We will now remove the eigenvalues of H1 = H + tl W1 which 
are in J, one at a time. For  simplicity of exposition, suppose there are just two 
such eigenvalues, 21 and 22. Suppose then that  (Hi - 21)~1 = 0 where 11 ffl II = 1. 
Note that the results of this section apply equally well to HI(Y-(H1)= Y-(H) so 
216J (H1)  ). Choose a real function W2eC~ so that 

(W2~91,6(/71 - 21 ) W z ~ )  = cq > 0. (5.22) 

Here H1 = Ha + P~,P1 = (~91, .)~b~. If 

Q1 ()o, W) = P,  ( /~  + W -  2 - i0)- 1P1, 

it follows from Lemma 5.3 and Proposition 5.2 that for 2 in some open interval 
J1 containing 21, 

ImQ~+(2, tW2)=rc71(2)-2p1w26(/71-2)W2Plt2 +O(t2+" ). (5.23) 

and for small enough Itl, H1 + tW2 has no eigenvalues in J1 if and only if 
1 - QI+ (2, tW2) is invertible. Here ])1(~) = ~ ~- 1 - 21. Since P114126(/71 - 2) W2P 1 
is continuous in 2, we can assume (by virtue of (5.22) and (5.23) that for small 
I tl > 0 ,  1 - QI+ (2, tW2) is invertible for all 2 e J  a (we may have to shrink J1 again). 
Thus H~ + t W  z has no eigenvalues in J1 for small non-zero t, say 0 < Itl < f.  For  
each 2 e f \ J  1 there is an open interval J(2) containing 2 such that (by Theorem 
2.5) if Itl < t(2) (t(2)> 0), the following is true: If 22eJ0J,  there is at most one 
eigenvalue of H1 + tW2 in J0 J  and this eigenvalue has multiplicity one, while if 
)~2 CJ()~), then H i + t W 2 has no eigenvalues in J(2). A finite family {J(2i):i = 1 . . . .  , N} 
covers J \J1-  We can assume that only J(21) contains 22. Let 

t~ = Min (t', t(21) . . . . .  t(2N)). 

Then if 0 <  Itl < t'2, H1 + tW2 has no eigenvalues in J, except perhaps one, of 
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multiplicity one, in J(21). Choose t2 in (0,t~) so that llt2W2tt <e/4. Then the 
operator Hz = H +  t l W  1 + tzWz has at most one eigenvalue in J, and this 
eigenvalue has multiplicity one. If this eigenvalue indeed exists, denote it by #2. 

Choose W 3 e C~ ° such that 

Pz  W36(/-I2 --  ]./2) W3P2 =0~2P2, O~ 2 > 0 ,  

where P2 is the orthogonal projection on the eigenfunction associated with #2- 
We proceed to remove this eigenvalue in the same way we removed the previous 
eigenvalue of H1. If t is non-zero and small enough, H2 + tW3 will have no 
eigenvalues in J. We choose such a non-zero t, t3, such that l[ t3 W3 I] < e/4. Then 
the proposition holds with 

W-~tlWI-I-t2W2-1- t3W 3. • 

This proposition and Theorem 2.5 are the main ingredients in the genericity 
result to follow. 

Let N be the closure of the set of all real WeC~(~")  in the nora 1"11. 

Theorem 5.11. Suppose, in addition to the assumptions (2.1) and (2.2) in force in this 
section, that assumptions R and (4.1) hold. Then the set of all W e N  such that H + W 
has no eigenvalues in aess(H)kY(H) is a dense Go. 

Proof. Let A be a compact subset of aes~(H)kJ-(H). If WeN and H + W has no 
eigenvalues in A, then by Theorem 2.5 (and a compactness argument) there is an 
open ball B (in N) with center at 0 such that if 17VeB, H + W + W has no eigenvalues 
in A. Hence 

D A :- {WeN:H + W has no eigenvalues in A} 

is open. If WsCg,  according to Proposition 5.10, we can find WneC~ with 
Iwmtl-,0 so that H +  W +  Wm has no eigenvalues in A. Since C~ is dense in N 
in the norm i'll, it follows that D A is also dense. Choose a sequence of compact 
sets Am with A~Taess(H)kJ'(H). We see that if 

W~(~ D A~ ~ G, 
m 

then H + W has no eigenvalues in ae~(H)\Y-(H). G is a G o and is dense by the 
Baire category theorem. • 

Remark. Suppose that the potentials v~ satisfy (2.1) and (2.2). Then our discussion 
shows that the following weak form of Theorem 5.11 holds. 

Theorem 5.12. The set of all W e N  such that H + W has only simple eigenvalues in 
ae~(H)k,~-(H) is a dense G~. 

This theorem should be compared with results for the Dirichlet problem in [U]. 
To emphasize the local nature of our results, we will state another theorem. 
For a compact set K c IR" with non-empty interior, we denote by NK the set 

of all real functions in C;°(R ") with support in K. Equipped with the family of 
seminorms 

sup {ID=~o(x)l:xe~ ", I~1 =< m}; m = 0, 1,.. . ,  
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@K is a Frechet space. We then have 

Theorem 5.11'. With the same assumptions as in Theorem 5.I1 and with ~K as above, 
the set of all W 6 ~  k such that H + W has no eigenvalues in ae~s(H)\~'(H) is a dense G~. 

Proof. The proof of Theorem 5.11' is almost exactly the same as that of Theorem 
5.11 if one observes that under the additional assumption R, Lemma 5.5 through 
5.7 and Proposition 5.10 hold for some WsC~(12), where 12 c interior (K). • 

We end this section by giving a simple set of potentials for which all of our 
results are valid: 

Suppose that for each i = 1, 2 . . . . .  M, 

vi~LPgc(Xi) with Pi > 2 and p~ > ~dim X i 

and for all e with l el < 2, 

limlylf'l.D'v~(y)=O as y ~ c o  inXi,  

then (2.1), (2.2), (4.1), and the condition R all hold. The unique continuation result 
implicit here is given in [G]. 

VI. Concluding Remarks 

We would like to mention two open problems not considered in this paper. 
The first problem involves the treatment of more general perturbations of H. 

The perturbations treated here are not completely natural for the N-body problem 
(but are quite natural for the generalized N-body Schr6dinger operator). A more 
natural class of perturbing potentials in the N-body problem would involve only 
a sum of two-body potentials. One would still believe that, generically, embedded 
eigenvalues are absent. But, in this case, the set of vectors W~, where W is the 
perturbation and ~ is an eigenvector of H may not be sufficiently large to achieve 
(W~,6( /7-2o)W~b)~0 with our present state of knowledge of the operator 
6(I7 - 2o). Thus, either one needs further knowledge about the operator 6(/7 - 2o), 
or a different method is required to show that eigenvalues disappear under small 
perturbations. 

The second problem involves the determination of the set of potentials which 
do produce embedded eigenvalues. There are indications that given a negative 
embedded eigenvalue 2o of - A + V, there may be curves W(t, .) with W(0, x) = 0 
such that H~ = - A + V + W(t, ") has an eigenvalue 2t near 2o for t small. It would 
be quite interesting to see if this were true in a general context. 

Appendix A: Proof of Lemma 2.6 

Suppose [W[ 1 < e, i2-20[ < e, and ? < 6 are so small that Theorem 3.1 applies with 
a = 0. By Lemma 2.4, we can assume that the Mourre estimate holds for each 2 
with [2-2o[ < e. Suppose by the way of contradiction that 

( U +  W m - ~ m ) ~ = 0 ,  IlOmIT = 1, 



436 S. Agmon, I. Herbst, E. Skibsted 

where I W,,,I1 <= e, 12~ - 2o[ < e and II ~ x ) Om II -~ oo. According to [ F - H 2 ] ,  for each 
m, eB<~>O,,,~L2 for some f l > 0 .  Given this fact, it is easy to see that  the estimate 
(3.1) applies to (p = 0,~ so that  with c~ = 0, ~ = ~z, # = 1, 7 = 70 < 6, we have 

II~0mll =< IIg~0~ll. (A.1) 

But 7~,, = ~ , , / I [  ~qtm II converges weakly to zero because, for any bounded  set B, 
II ;g~ ~m ]1 ~ 0. This contradicts (A.1). [] 

Appendix B: Boundedness of R ( x )  *, s > 1 

Under  the assumptions (2.1) and (2.2) and 2o~J-(H),  we will show that  if 
6(/t  -- 20) = 0, then R ( x }  -~ is bounded  for s > 1. 

According to [M2]  and [ P - S - S ] ,  the norm limits 

lim ( A  } -s(/~ _ 2o _+ ie)- t ( A } -~, (B. 1) 
~0 

and 
lim P-v- (Jq - 20 -T- i~)- 1 ( A  } - 2~ (B.2) 

exist in Lz(N ") for any s > 1/2. Here ( A }  =(1  + [A[2) 1/z. It easily follows from 
3(/7 - 20) = 0 that the limits in (B.1) are equal. (Note that  5(/-7 - 2o) is an opera tor  
from L~ to L2~ so that  this is not  immediate from the definition.) 

We will show that  for s > 1/2, 

[(q), R(x)-Zs~t ) l  <= c II e I1114' II (B.3) 

for all (occJ(N"), the Schwartz space of  rapidly decreasing functions. This will 
prove the result. 

Using the resolvent equat ion we find 

] ( q ) , / ( x ) - 2 ~ 0 )  [ 

= lim ]((p, { (/4 - i)-~ + (2 0 + ie - i)(H - 2 o - ie)- 1 (/7 - i)-~ } ( x  } -  2~0)1 

<cl l  (P I1" II ~ II + cl im [(~o, (/~ - A o - ie ) -*(A)-2*O') l ,  
elO 

where 
0'  = ( A  52~(/7 - 0 -1  ( x ) - 2 " ~  '. 

By the proof  of Lemma 4.1 and interpolat ion (0 =< s =< 1), one easily proves that 
[[0' I[ =< c [[ 0 If. Thus, to prove (B.3), we need only show that  for all (peS~(~n) and 
all 0, 

tim I(q~, (H - 20 - i e ) (  A 5-2sO)l < c II q)II'll 0 II. 
e+0 

We have 

lim [(q~, (/~ - 2 o - i¢)- 1 ( A  } - 2~)[  
~.LO 

= ( ( A)s(p' l im ( A ) - s ( ~ -  ) ' ° - i S ) -  l 
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<= ( P-(A)scp'lim(A)-s(~-2°-ie)-l(A)-a~O)~o 

= q)'limP-(H-2°-ie)-l(A)-2sO).;o 
+ _-< ll ll'ti0ll. 
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