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Abstract. We discuss the perturbation of continuum eigenvalues without
analyticity assumptions. Among our results, we show that generally a small
perturbation removes these eigenvalues in accordance with Fermi’s Golden
Rule. Thus, generically (in a Baire category sense), the Schrodinger operator
has no embedded non-threshold eigenvalues.

1. Introduction

It is well known [R~S1] that a one-body Schrédinger operator — A + V(x), where
V is sufficiently well behaved at infinity, cannot have eigenvalues A embedded in
the continuous spectrum (except possibly at threshold, A = 0). The situation is quite
different in the N-body problem where continuum eigenvalues not only can
exist, but do indeed exist in important physical situations: The operator Hy =
— A, —A,—2/x|—2/Ix,] iIn IXR® (describing the Helium atom without
electronic repulsion) has eigenvalues embedded in the continuous spectrum. While
this example has an obvious symmetry, such symmetry is not necessary for the
existence of embedded ecigenvalues. An example in [F-H-HO-HO] can be
modified to produce an embedded eigenvalue where no symmetry is apparent.
In [Howl,2] and [S1], analyticity assumptions are made which allow the
treatment of embedded eigenvalues using the perturbation theory developed for
use with isolated eigenvalues. The major idea in this theory is that when a small
perturbation W is added to the Schrodinger operator H, the continuum eigenvalue
E, turns into a “resonance,” Ey(f), which, while not necessarily an eigenvalue of
H+pBW, is a pole in the analytic continuation of certain matrix elements
(¢, (H + BW — 2)"19) of the resolvent. The function Ey(p) is analytic in f for |f]
small. Ey(f) has an imaginary part which appears first to second order in f:
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where (H — Eq)o =0, P(E) = Ey((— o0, E\{E,}) and H = | AdE4(4). Here we have
assumed that ¥, is non-degenerate and normalized. The formula (1.1) is called
Fermi’s Golden Rule. The situation is reviewed more thoroughly in [R-S1].

The purpose of this paper is to examine the perturbation of embedded
eigenvalues in the generalized N-body problem introduced by Agmon [Ag] (see
also [F-H1,2,3]) without making any analyticity assumptions. While resonance
poles have no meaning without some kind of analyticity, one would think that if
Fermi’s Golden Rule predicts the disappearance of an cigenvalue from the real
axis {by producing a positive expression in (1.1)}, then that ecigenvalue should
disappear (for small ). We show that this is indeed the case.

From what has just been said, it appears that embedded eigenvalues are very
unstable, for one need only find W such that (1.1) is nonzero, and then for all small
B, H + BW will not have an eigenvalue near E,. The major stumbling block to
making this into a theorem is to show that the operator (d/dE)P(E)|; - g, (which
makes sense between certain weighted spaces) is not identically zero. This is
accomplished only after a rather involved argument. But this argument produces
as a bonus some information about the existence of generalized eigenfunctions and
some new estimates for N-body Schrédinger operators between exponentially
weighted Hilbert spaces.

In Sect. II, we introduce our notation and main assumptions and prove that
embedded eigenvalues cannot suddenly appear under a small perturbation
(Theorem 2.5). (See [K 1] for general information about the perturbation of spectra.)

In Sect. III, certain estimates are proved for Schrédinger operators between
exponentially weighted spaces. These estimates can be used to simplify the
arguments of [F~H1, 2] considerably, although we do not do this here. We use the
estimates in Sect. IV to show that for P(E) as in (1.1), (d/dE)P(E}|g-5, # 0.

In Sect.V, it is shown that embedded eigenvalues are unstable and thus
generically absent (Proposition 5.10 and Theorem 5.11), and in the last section we
discuss open problems.

We remark that analogous results have been proved for perturbations of the
hyperbolic Laplacian on a finite volume Riemann surface (see [V] and [Ph-Sal).

We would like to thank Ulrich Willer for pointing our an error in a previous
version of this paper.

H. Semicontinuity of the Point Spectrum of H

Let us begin by setting our notation. We assume we are given a family {X}}£, of
subspaces of R* with associated orthogonal projection operators r;, Rann, = X;.
With each space X is associated a real-valued function v; on X;. Our generalized
N-body Schrodinger operator is given by

H=—-A4+7V(x),
where

M
Vix)= .Zl v{mx).



Perturbation of Embedded Eigenvalues 413

We will always assume that the potentials satisfy
foral Lu(—A,+ 17! and (—4,+ 1) %,V (—A4,+ 1)}
are compact operators on L*(X)), 2.1

and sometimes it will be necessary to also assume that for each /

(—A,+ 1) Y2x, Vu(—A,+ 1)~ is bounded
and
(—A;+ 1) Hx, V)20 (—A,+ )™ is bounded. (2.2)

It is convenient to introduce the family of subspaces, %, consisting of {0} and
all subspaces of the form

span X; - uX,,
where {iy,....ij} = {1,...,M}. Given Xe.%, let
Vy(x) = Z (1),
iX;eX
Ay = Laplace operator for the subspace X,
Hy=—Ay+Vy, inI*X).

By convention, H;, =0 on C. Any ueR which is an eigenvalue of Hy for some
Xe¥, X #R"is called a threshold of H. The set of all thresholds of H is denoted
T (H).

The basic theorems about the spectrum of H were proved in [P-S-S1:

Theorem 2.1. Suppose (2.1} holds. Then F(H) is a closed countable set. All
eigenvalues, A, of H which are not in 7 (H) have finite multiplicity. The only possible
accumulation points of eigenvalues of H lie in 7 (H).

The weighted spaces LZ(R") = (x> ~*I*(R") will play a role in our discussion.

Here (x}=./1+[x|* and the norm in L{ is | /] 2 = (JI<x) **f (x)|*dx)"/2.

Theorem 2.2 [P-S-S71. Suppose (2.1} and (2.2) hold. Then for any A which is neither
a threshold nor an eigenvalue of H, the strong limits

im(H—AFig ' =(H-AFi0O)*

elo
exist as maps from L% to L? for any s> 1/2. The operators (H— AFi0)"* are
(norm) Holder continuous in the variable J.

The proofs of these two theorems are based on a crucial estimate first proved
by Mourre [M1] and used by him to prove theorems similar to Theorems 2.1 and
2.2 for the 3-body problem. The “Mourre estimate” which follows was proved in
general in [P-S-87]. See also [F-H1]. In the following, 4 = (x-D + Dx)/2, where
D is the gradient operator.

Theorem 2.3. Suppose (2.1) holds and A¢.7 (H). Then there is a compact operator
K and an open interval I containing A so that for some cy >0,

Eg(DLH, A]JEg(l) 2 ¢o Ex(D) + K. 2.3)
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Note that in (2.3), the operator family {E4(f):f a Borel set of R} consists of
the spectral projections of H.

We will need a slight generalization of this result which basically states that
(2.3) is stable under the addition of a small perturbation to H.

Denote by #, the set of all real-valued functions W such that

Wi =IW(=A+ )" |+ I(=4+ D [AWI(-A+ )7} < 0.
Lemma 2.4. Suppose (2.1) holds and that A¢7 (H). Then

(a) there is an &,>0 and open interval J containing A so that for any We %,
with |W|, £ ¢&,, we have

C
Eysw(D[H + W, A1Eg , w(J) ;EOEH+W(J) + Egow()K  Eg o w(J),

where ¢ is as in (2.3) and K is a compact operator independent of W. If K =0
in (2.3), then K, =0 in (2.4).

(b) If W is a symmetric operator with W(—A+1)""! and (—4+1)" 1[4, W]
(—A+1)"" compact, there is an open interval J containing }. and a compact
operator Ky so that

Egiw()[H+ W, A]Eg,w(J) 2 coEgsw(J) + Ky (24)

Proof. Assuming that (2.3) holds, let g, be small enough so that H+ W is
self-adjoint. Let H' = H + W and suppose feCT(R) is one in a neighbourhood of
A and zero outside I. Then by (2.3)

SUDH, A]f(H) Z co f(H + K4, 2.5)
where K = f(H)K f(H). Let Oy be the left side of (2.5). Then clearly

Oy Zcof (HY + K +6,

where

&=0g — Oy +co(f(H)? —f(H)). (2.6)
We need to show that ||£] -0 as |W]|,—0. Note that j(H+ W +i) ' —
(H +1)" || -0, so that any polynomial in (H + W + A)~* converges to the same
polynomial with argument (H + A)™* (if A is sufficiently large). This implies that
| f(H)— f(H + W)| - 0. All other terms in & can be controlled by this estimate
alone. We omit the details. To prove (b), we need only show that & in (2.6) is
compact. The fact that for any C¥ function g, g(H + W) — g(H) is compact, easily
follows from the same result for polynomials. This in turn follows from the fact
that the difference in resolvents is compact. All other terms in & are easily handled
with this information. W

Theorem 2.5. Suppose A,¢7 (H) and that {2.1) holds. Then there is an open interval
J containing i, and a number 6 > 0 so that

(@) if Ag is not an eigenvalue of H and We%, with |W|, <9, then H+ W has no
eigenvalues in J.
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(b) If Ay is an eigenvalue of H with multiplicity m and We4, with |W|, <9, then
H + W has, at most, m eigenvalues in J of total multiplicity m.
Proof. Let Py =Egz({A,}) and define
H,=H+P,.

Then H,; has no ecigenvalues at 1, and 7 (H)=Z7 (H;). Note that AP,=
cA(H+ i) 'Py=cA(H + i) '{x>"1{(x)P,. Since non-threshold eigenfunctions
of H decay exponentially ([F —H2]), {x) P, is compact. Thus AP, will be shown
to be compact if we can show [A(H+i)”'{x)>7!|<oo. Because of (2.1),
[A,(H+i)"'] is bounded so that we must only show ||(H +i)™ 1 A{x> ™| < 0.
This is obvious from the explicit form of A. It follows from these considerations
that [ 4, P,] is compact, and thus by Lemma 2.4(b),

Ey,()[H,, A1Eg,(J) Z ¢oEn, () + K
for some compact E~and some open interval J containing Ay. By shrinking J we
can assume || Ey (JYKEg, (J)]| £c¢o/2 so that
¢
En,()[Hy, A1Eg,()) 25 By, ()

for some open interval J containing A,. As in the proof of Lemma 2.4(a), we can
then find 6>0 and an open interval I centered at J, so that for any operator
We %, with |W|, £0 we have

En,sw(D[H, + W, A1Eg, (D) 22 EHH—W(I) (2.7)

Now suppose H+ W has one or more ecigenvalues in TcI with
= (Ao — Vs Ao +7) of total multiplicity m, >m. Choose an orthonormal set
{¥y....,Wpy} such that

(H+Wy, =iy, I=1... m+1

- m+1
and 1,el. Choose a linear combination i = Z a;y; with norm 1 such that

Py =0. (We treat the case where 4, is not an elgenvalue of H by taking m = (.)
Then

(Hy+ W Aoy =(H + W o) =Y a4 = Jo)¥,
so that [(H, + W — A3 | =7v. Then,
2Re((Hy + W —Ao), AY) < 2[| A || 7.
It thus follows from {2.7) that
2| Aglly 2 W [H, + W — 4o, A1) 2 (4, (1 — E)CEY)

+ (0, C(1— ) + 2 H Ey|?, (28)
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where
E=Ey .w() and C=[H,+ W,A].

Since |(H, + W+ i)~ 'C(H, + W + i)™ *|| is bounded independently of W for | W/,
small, and since

NA—EW | =(H +W—d) (1 = E)(H + W — A <2017 1y,
we conclude from (2.8) that

20 Ay 22—k,

where k is a constant independent of W for |W|,; small. Note that

LAGIS"Y, 1AW IS S, A+ W=+ o7 IGO|
m+1

e 3 Il

Thus assuming | {x)>¥;| can be bounded independently of W for |W|; small
enough, the theorem follows by taking y > 0 and small enough. Thus our theorem
can be deduced from the lemma which follows. W

Lemma 2.6. Suppose (2.1) is satisfied, H = — A+ V, and Ay,¢9 (H). Then there is a
6> 0 and y > 0 such that if W is in %, with |W|, <0, and y is an eigenfunction of
H + W with eigenvalue ie(iy — 7, Ag+7), we have

<x>¢ =kl

where k is independent of W.

This lemma is proved in Appendix A. The proof uses certain uniform estimates
to be given in the next section. These estimates will also be useful in showing that
the expression in (1.1) is not always zero.

We give the following corollary of the proof of Theorem 2.5 which will be of
later use:

Corollary 2.7. In the situation of part (b} of Theorem 2.5, let Py be the projection
onto the span of all eigenvectors of H + W with eigenvalue in J. Then, if ycRan Py,
and Eg({A,} )¢ =0, we have y =0.

The proof is essentially contained in the proof of Theorem 2.5.

IT1. Estimates

We assume at the outset that H = — A+ V in L*(R"), where V(x) = f v;(m;x) and
(2.1) holds for the real potentials v;. Define -

&= (U +HLxH/m) )

&= (1 +yCx)/ppe ™
for a,7,t = 0 and g > 0. The purpose of this section is to prove estimates of the form

kI<x>*EH+W—Rol z el — 1Kol (3.1
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under certain conditions. Here We#, and K is compact. We will later take p— oo
so that &, 1{x )" and {&,> 1€ Thus our estimates need to be uniform in u.
We have the following result:

Theorem 3.1. Fix t and « non-negative. Suppose ), + a>¢J (H). Then there exist
positive constants g, 6, k and a compact operator K so that if We R, | Wi, +11— Ao} <
&y < 90, and = 1, then (3.1} holds for all peCZ(R") if either

(i s=1,a=0,and j=1 or 2, or
{#l) s=1/2, >0, and j=2.

Proof. Our proof of (3.1) is based on the ideas of [F-H2].

According to Lemma 2.4, there is an ¢, >0, and open interval I centered at
Ao+ @, a function feCF(R) which is 1 on I, and a compact operator K, so that
if W is a symmetric operator in %, with |W]; <g,, we have

SH+WH+W,AIfH+W)Zco f(H+ WY+ fH+W)K, f(H+W). (32
Denote &, or £, by ¢ and define F =In &. In addition, let
¢=[H+ WAL
VF=xg,
G =(x-V)?g — (x*V)|VF|%.
We use the following computations from [F-H2] for ¢eCg:
2Re(Alp,E(H + W — Do) = (o, 6L0) +4] g2 Alo|* — (o, GEp),  (3.3)
(H+W—A—|VF»o=EH+W—J3)o —(D'VF+VF-D){p, (34
D-VF +VF-D =2gA + x-Vg. (3.5)
We now insert (3.2) into (3.3} and find

2Re (AL, S(H+W — Do) Z coll o |?
+4|lg'? Ao |? — (Lo, Glo) — & + (Lo, K (W)lo) (3.6)
where
& =collo,(1— f(H+ W))lo)

— o (1 —f(H+W)Ef(H+ W)l)— (Lo, ¢ (1 - f(H+ W))iyp)

(3.7)
and K, (W)= f(H + W)K, f(H + W).

Consider the quantity &. Since for small &, |[(H+ W +i) *"GH+ W +i)~ |
is bounded uniformly in W, we have

el =cll(H+W+ico|-|(H+ W+ —f(H+W)ce|.

We now demand that |1 — A,| < &,, where ¢, is less than %|I|. This leads to the
estimate

I =fH+W)ep | =H+W—L—o®)" (1~ f(H+W)H+W—i—a*) o]

SAITHI( - fH+WHH+W -4 —a?)o]
sSclH+W—2—o*)el|.
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This kind of analysis leads to the estimate,

€l c(l(H+W—21—o®) ol + e l) |(H+W—1-a*)lo]
sicolllol* +ell(H+W—A—a?)ie]?. (3.8)

Inserting (3.8) into (3.6) gives
2Re(Aép,&(H + W — Do) Z3colllo|* + 4] g * Alo |I?

—c|(H+W—1—a*)o|? — (Lo, GEp) + (o, K (W)o). (3.9)

If ¢ = ¢,, we have
IVFI? =221 — (7)< 21+ 7 1)) 2<% 72 (3.10)
G=ex)72 |xVglsedx)™?, g=edx>7? (3.11)

while if £ =¢,,
VF =x{x)> Mo+ (L +y<{x>/w™ 1)

so that
alx|[(x) " S |VF|Sa+y. (3.12)
In addition, for y <1,
G=<edx) ™ty +9)/2, (3.13)
(x> Sg =@+ )<Y (3.14)
[x-Vg|£cd{x>~" (3.15)

We now use (3.4) and (3.5) to bound [(H+ W — 4 —o?)ép|:
I(H+W—2—a?) ol S [|EH+W— Dol +2|gAie]
+ (- Vg)lo| + (& — (VF)*)eo].

For the sake of efficiency, we treat the cases ¢ = ¢, and ¢ = ¢, together. Let yy be
the characteristic function of the ball (x> < N. We have

l@® = |VF)) Sy +edx>72 |xVglSedx)™
In addition

g=ang+ (1 —xn)g Sclan{x>~ ' + N~12g41/2),
We thus have

IH+W=—i—o*) | S| EH+W—De| +clnV(Eo)]

+eNT2 g2 Ao || + ClI<x)> 7 o | + yc| o).
(3.16)

If I is a bounded function with h(x)— 0 as |x|-> co, then

Ihéo || S IRF(H + W)ée | + k(1 — J(H + W))ép).
Choose feCZ(R) so that f = 1 on an interval of length 2L + 1 centered at Ao + 02,
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Then, if ¢, is small enough

(L= FH+W)eoll = |(H+W—i—a?) (1= f(H+W)H+W—1—a?)ép||
SLYH+W—Ai—a)el,
so that
Ihép | S IIAf(H + W)éo|| + L |(H+ W —A—a®)épl.  (3.17)

Note that the map Wi— f(H + W) is continuous in the sense that for | W,
small, as | W — Wy, — 0, we have || f(H + W) — f(H + W,)|| = 0. Thus the compact
operator hf(H + W) is also continuous in the variable W.

Let us bound the term || xx(V{Ep)) || in (3.16): If 7 is a smooth function with
In= IS Xn+1> We have

lx V@) 2 < (Do), TR D;(E0))

=Re (730, — Ao) + [ Ko |?
where he C§(R"). Thus,
lxnVER)IZ = clllaw+ 1 Lol 1ALo | + 1 RE@|1?)
Sclllaw+1Eol-(IH+W—2a—a?)oll + e |) + 1Ko |)
SELTM Lo +epllaw a1 Co 1P+ LT HIH+ W —A~a?) ol + | Ao |12
SLYEel> + L7THI(H+ W —A—a?)lo|* + | K, (W)Ep 2, (3.18)

where we have used (3.17). The operator K,(W} is compact and continuous in W.
Putting together (3.16), (3.17), and (3.18), we have

I(H +W—A~a*)o| S21EH +W— Al + N2 g2 Alo]|
+eyléel + 1 Ks(W)coll, (3.19)

where K;(-) is continuous and compact. Using (3.17) again, we find from (3.9),
(3.11), and (3.13),

2Re (Ao, {H+ W — o) Z5collo|® +4)g" ALo |
—cyléol> —cll(H+W—A—a*)lo|* + (o, Ka(W)Eo),
where K ()} is continuous and compact. Using (3.19) with N large enough, we have
2Re(Alop, E(H + W — o)z Geo— e épl? + 2] g' 2 Alo |12
—cl[&(H +W—No|? + (o, Ks(W)lp), (3.20)

where again K(} is continuous and compact.
We now consider two cases. If o =0, we have

2Re(Alg,E(H + W = Do) S2|[<x> ™ Alo |- | {xHEH+ W — Do |
SV + IS ) I<x5S(H + W — el

An easy estimate gives

IV S c(liéoll® + 1EH + W — Do |?),
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so that
2Re(Alp,S(H+ W —Ao)Sc([(H+ W=Dl + Lol I<{x>EH+W—J)o]
Scll<xYEH+ W —Do | +ico [ S ll*
Combining this with (3.20) gives the result that for some ¢ > 0,
cl<x>EH+W—Dol* 2Geo— Nl ol® + (Lo, Ks(W)p).  (321)
If « > 0, we estimate differently:
2Re(Alp,S(H+ W — D) S2lig' 2 Ao |g 7 2EH + W — Do
<lg"?Alo)? + g™ PUH + W~ o>
But from (3.14), g~ 12 < ¢~ 12 {x )12, s0 that
2Re(Alp, SH+ W 1)) < [|g'2 Ao |I* + a7 H[Kx )2 UH + W~ Do |2
Combining this with (3.20) gives
I COV2EH + W — Do > 2 Geo — enliée | + Co, Ks(W)Ep).  (322)

Choose &, small enough so that || Ks(W) — K5(0)|| <1c,, and note that from the
inequality

2X§ __Bzxz __ﬂ—-z
we have

Ks(0) = —(KS(O))ZﬁZ _ﬁ_z = —K? "ﬁ_z-
We choose y < . Then
Geo—eNliéel? + (Co, Ks(W)Ep) 2 (Geo — cd) | Lo 1 — B2 L0 — | KEo |
3¢l Cel® ~ | Kép|?,

if § >0 is small enough and g is large enough. Combining this with (3.21) and
(3.22) gives the desired estimates. W

We will need the following corollary of Theorem 3.1 in the next section:

Corollary 3.2. Let Q be a finite-dimensional orthogonal projection and peR. Suppose
e®!¥1Q|| < oo for some ay > 0. Fix t and o non-negative with A, + o>¢ 7 (H) and
o < ty. Then there exist positive constants ¢ and & so that for each We%, with
|W|, <e and A, not an eigenvalue of H + W + Q, the estimate

kI <xY EH+W+ O —Ao)ell 21 ¢0l (3.23)
holds for all peCF(R*) if either

(i) s=1La=0,and j=1o0r2, or
@) s=1/2,a>0,and j=2.

Here 0y <4, u=1, and k is a constant depending on W and p.

Proof. We first show that given ¢ > 0 there is a compact operator K, such that
IKx>*¢; 00l el &oll + 1 K0l (3:24)
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where K, is independent of u and y. It is enough to assume @ is one dimensional
so that Q¢ = (i, ¢)¥. Then

1 <x>*¢;Q 0| = [ <x>* ¢y 1, @) = cl(¥, )],
if § is small enough so that o + y < ay. Let Hy = — A, and suppose feCZ(R). Then

I<x>*¢; Qe ll S el = fHN | ol + cl(f(Ho )Y, )l

Now

(FHo). ) = ((Ho + D<x D& f(H ), (Ho + 1)1 x> 1 E;0).
It is easy to see that ||(Hy + 1)<{x)&; ! f(HoW | is bounded independent of u 2 1
and y < § (say by M) so that
1<{x>*¢ 00 Scll(X = fHMW ol + cM | KE;0|
s = fHDI el + MK ).
We obtain (3.24) by choosing f so that ¢'||(1 —~ f(H )¢ | <e.
From (3.1), we now obtain
kiI<x > E(H+ W+ O — Aol 2 110l — 1 KE0] (3.25)

under the stated conditions. Now suppose that for some sequence ¢,eCy,
0<y,=9, and u, 21, we have || {7¢,| =1 and

I<x>*EF(H + W+ BQ — Ao) @l 0. (3.26)

Here £ corresponds to p,, and y,,. We can assume that y,—y and y,,— u, where
possibly p = oo, in which case £ — &; uniformly on compact sets. Since 4, is not
an eigenvalue of H + W + B0, and since (3.26) implies (H + W + Q — 43)¢,,—0,
we learn that ¢,, — 0 weakly. Since for each @eCg,

((P’ f;’;(pm) - (‘qu)’ (Pm)_)o’

we see that (¢, {7@,,)—0, and since [|{]'¢, | = 1, we learn that {T'¢,, -0 weakly.
But, since K is compact, K¢T'¢,,— 0 in norm which contradicts (3.25) and (3.26).
This implies the result. W

IV. 8(H—2)#0

In this section we will always assume that (2.1) and (2.2) are satisfied and that
H= — A+ Vin I*(R"). We also suppose 1,¢.7 (H) but that i co..(H).

If 4, is an eigenvalue of H, we will want to study the continuous spectrum in
which A, is embedded. Let Py = Ey({4,}). The operator H=H + P, has only
continuous spectrum in a neighbourhood of 4, and is therefore a convenient object
to analyze.

Lemma 4.1. For some o >0, exp{ay]x|) Py is bounded and the operators [A, P, ]
and [A,[A, Py]}] are compact.

Proof. The first statement follows from [F-H2] which gives the additional result
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that o can be any number less than the distance from 4, to the next highest
threshold.
If yeRan P,, we claim that ¥ is in the domain of 4% Note that

(A+ 172y =B{x>YH+DY, B=(A+1P2H+) {x>7?
so we need only show that B is bounded. We can compute

B=[A,[A,H+)7111x>7 2+ 2[A,H+ )7 J(A + )<x)> 72
+(H+ i)"Y A+ 1)2x>2
Using (2.1) and (2.2), it is not difficult to show that the first two terms above are
bounded. The third term can be handled by elementary means. This implies that

APy, PyA, APy, APy A, and P, A? are all bounded. These operators are compact
because they are finite rank. W

From the estimate (2.7) and the proof of Theorem 2.2 ([P-S-S]) we learn that
the strong limits

Em(H—l,Fie) ' =(H— A, Fi0)~!
el0

exist as maps from L? to L2 for any s> 1/2.
Let

_ 1 — _
O(H — o) =5~ {(H — 1o —i0) ™" — (H— o +10)"}.

The operator §(H — A,) is a bounded operator from L? to L2 for any s > 1/2. In
order to understand the perturbation of the eigenvalue 4, it is important to know
that this operator is not identically zero. For this purpose, we introduce the
following condition:

For each i=1,..., M, v, has the decomposition

v, =0+ vk, 2 vi(y)(—A;+1)"1  is compact, and
veCH(X,;) with lim ([of()|+|yl"|Vor(p))) =0. (4.1)

{yl—w
Theorem 4.2. Suppose, in addition to the assumptions at the beginning of this section,
that (4.1} holds. Then 6(H — 1,) #0.

Remark. This result will be needed in Sect.V. As an aside, we note here
the fact that S(H — ,)#0 implies the existence of nonzero solutions u of
(— A+ V —do)u=0 with ue L% (R"), s > 1/2. Just set u = §(H — Ao)¢ for suitable
. (From Eq. (5.18), we see that P 6(H — 14) = 0.) For the existence of generalized
eigenfunctions for a.e. value of the spectral parameter, see [S2, Ki, J-Ki].

Proof. According to [M2] and [P-S-S], the operators
P3(H— 2o Fi0) 1 (x>

are bounded. Here P, is the spectral projection, ¥, .)(—i4), P-=1—P,, and
s> 1. Suppose 3(H — 4y) =0. Then

R=(H—Ag—i0)"* = (H — Ao +i0) "%,
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Formally R{(x> " *=(P_ + P, )R{x)*is also bounded if s > 1. We prove this in
Appendix B. Suppose pel?. Then, if yeCg,
((H~— lo)tﬁ,R<X>"‘s¢)=lifn ((H— 2o, (H— 2o —ie) " < x> 72 @)=, {x) o).

&l0

since C is a core for H, R{x) ~*¢ is in the domain of H— 4, and (H—4)R{x)> *p =
{x)"*¢. Thus {x) *¢ is in the domain of (H — 4,)~* and
R{x) TP =(H —4p) (x> 0.

We thus learn that (H — 2,)~'{x)>~* is a bounded operator if s > 1.
Let &=({x>(1 +u~1{x>) 1Y with £t 2 0 and p positive. We will estimate

HE(H — 26)™ x> 71T L+ 7 ) 7 H = N(w).
Note that N(u) < oo because ¢ and ¢~! are bounded. Suppose yeCF(R"), and
@ =(H~ ) x> E M1+ p~(x)) " 1. We have
TEH = 20) ™1 x> U+ a7 D) Y /1 )
= 1@ l/I(A + p 7 <xD)ECxHH = Ao |

S Lo l/IE<xHH = Ao . (4.2)
According to Corollary 3.2, we have
kI E<x>H = )01 2 11€6 ] (4.3)

for all e CT(R"). Equation (4.3) easily extends to ¢ in 2(H) with compact support,
so if e CF(R") with #{x) = 1 for | x| < 1, define n,,(x) = #(x/m) and let ¢,, = n,,¢. Then

kN E<x ) (H ~ Ao)pmll Z 11 E@mll- (4.4)
We have
O (H = A0)@m = <X (H = Ag)p — x> [A, 1,0 + BLx D [Po, . (4.5)
Now, [4,1,,] =2Vn,,'D + An,, so that the middle term is given by

2 Antmo.

= @2/m){x Vn(x/m)-Vo —

Clearly this is bounded uniformly in m by an L? function and converges pointwise
to zero. Thus we get L? convergence by Lebesgue’s dominated convergence theorem.
The last term in (4.5) is easily seen to converge to zero. Since YeCZ, {xM(H — Ag)ep
has compact support, and thus the first term in (4.5) converges. We conclude that

E(X Y (H = Ao)pm— ECXYH — Lo},
and thus by (4.4),
k[ E{x>H~Ao)o |l Z ol
From (4.2), it follows that N(u) < k. For i, ¥,eCg, we thus have
€Yz, (H = 20) ™1 Cx )T L+ p7 ) W) S kY - 12 .
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Taking the limit p1 oo, we thus have

(x5, (H = A0) x> T ) S ks - 2 -
This implies
CMH = Ag)™H(xy 71! (4.6)

is a bounded operator for t = 0. We now use Corollary 3.2 again to show that for
some small y, >0,

GO — Ag) "1 (x) " Lemr0 @.7)

is bounded by repeating the argument above with £ =¢,,0=0.
Let

F(Z) — <x>zte(1~z)y0(x)(ﬁ . /10)— le—(l——z)v0<x><x> - 1<x>~zt

for Reze[0, 1]. Matrix elements of F between vectors in C3 are analytic in a
neighborhood of {z:Reze[0,1]}. Thus, by interpolation using the boundedness
of (4.6) and (4.7), we find F(1/2) is bounded. Thus for all t 20 and a=y,/2,

{XDO(H — ) te s (xy 1! 4.8)

is bounded. We now improve (4.8) by using Corollary 32 with &, =
(1 + u~ Yy{x))* for small enough o and y. We find that for some y, >0,

O (H — Ag) tem (x> 12 4.9
is bounded. Let
G(z) = (x>~ 120D gnle= 1 — ) ™ le=t-1m 5y 512,
Again, by interpolation, we find G(1/2) is bounded so that
<2 > ™ 4HH — Ao) x> THH| < 0. (4.10)

We claim that if 1, <0, then there is an Xe. with X # R" such that Hy
has an ecigenvalue p, <4, with p, <info(Hy). Assume the contrary. Since
info, (H)eF (H), there is a subspace Y,e¥, Y, #R" so that infeo(H) is
an eigenvalue of Hy,. Since info.(Hy)eJ (Hy), there is a subspace Y,e.%,
Y, < Y,,Y, # Y, such that info, . (Hy,) is an eigenvalue of Hy,. Continuing in this
way, we have a chain of subspaces

Y, 2Y,5 -,

no two of which are equal. This chain can only terminate if Y;= {0} for some j,
but this is impossible, for then A, > info . (Hy, ,)=0.

Assuming 1, <0, we will show that (4.10) is false, thereby obtaining a
contradiction.

Applying the operator {x ) YHH — A,)" (x> ¥4 to f= (xDVHH — Ag)u with
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ueCF(R") and using (4.10), we find the estimate
<>~ S e[ e YHH — Aghull + 1K< x )™ Hul| 4.11)

for some compact operator K and all ueCF(R"). Let X’ be a subspace in . with
X' # R” such that Hy. has an eigenvalue gg < A, with g, < info.(Hy ). Fixing X’
we set Y = (X'}, We denote generic points in X’ and Y by x’ and y respectively.
Note that X; & X’ means that Y~ X} is a proper subspace of Y. It follows that
there is a point y,eY with |y,| =1 such that

;9o #0 foralliwith X, ¢ X"

Thus there is an open cone I” containing y, and a 6 > 0 so that for all i with X; ¢ X',

|mx| = 6|x], xel. 4.12)
Define
Wix)= Y vi(nx)
X;&x
and

I'p={xel:|x|>R}.
Let x5 be the characteristic function of the set B. Using (4.11) we obtain
x> ™ 4 ul| L el {x) ™ VHH — W —Agul + | K<x )™ Hul
+ | K x> YHH — W — 2+ iJull 4.13)
for all ueC3(I'), where
Ky = Wy p(H = W — Ag + )71 x M,

It is easily seen from (4.1) and (4.12) that K, is compact. For any compact operator
K we have

lim || Kyl =0,

R—w

and thus we obtain for R sufficiently large
I1<x> ™ ull < DXV HH — W* — Aoul| (4.14)

for all ueC3(Ig).
Let e [*(X') be a normalized eigenfunction of Hy. with eigenvalue u,. Define

WHx)= 3, vi(mx),

XX
and fix t, > 0 so that

IWHx) <3(ho — o)
for xeI',,. For each £ 2 t, choose 5, Y such that

n,? = Ao — Mo — WL(WO),
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and define
pdx)=yY(x)exp(in;-y), x=(x,y)
It is readily checked that ¢, satisfies the equation
(=4 + V(x) = W(x) — Ao)px) = (WHx) — WH(tyo))e (). (4.15)
Choose {eCJ(R") so that {{x)=11if |x| £ 1/2 and {{x)=0if |x] = 1. Set
7o) =Ly 1()5 —=tyo))y =@
where r, will be chosen later. For now we only specify that
(@) lmr/t =0,
t—> o

(ii) limr, = o0.

1k o0

From (4.15) we obtain
(= A+ V(x) = Wx) — Ao)u,(x) = (WE(x) — WH{tyo))u,(x)
- ZVQ‘)Z(X)‘V)?I(X) - (ptAZU
so that with m=dim Y
I GOMH(=A+V = W — Ao, |
1
< ( ey VIV -+ (1= Dityo)- (s — o) Pdxd )P
0
+ C(I"z_ lr;n,’z + rt— zr;n/Z)th
St (e —r))sup {|x] IVWER) x| Z £ — r b2 + o] L2t

Let
&= sup {|x|-|VWE)|:|x| 2 4¢}.

Then for large ¢,
I <x>1/4(H - W Ao)ut = Cr?/2t1/4(£trttM1 +r 1)-

On the other hand, given any R, for large enough ¢t we have suppy, =l ;. It is
thus easy to see that we can use (4.14) with u =y, for sufficiently large t. We have

CH<X>'”4%H2§!‘”2( I le)Pdxdy—  f I!P(X’)Ide’dy)

[l <r,/4 M <ry/dlx >4
>t Yo — cle” Py
for some ¢, >0 and > 0. Thus for large ¢
el xy ™ Vou | z e A2,
From (4.14)

t VA2 L o2 e T 4 1Y)
or

LS el /8 + /1. (4.16)
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Set
ﬁt = Max (8:3 - 1/2)’ re= (t/ﬁt)llz'

Then (i} and (ii) above are satisfied while (4.16) implies

1<2c./B,,

which is a contradiction for large t.
The proof in case 44 >0 is even simpler. Here we get a contradiction to the
estimate (4.10) by using u = u, with

u/(x) = exp (in, x)F(x)
in (4.14), where 7,eR”, |5,]* = Ao — W*(ty,). We omit the details. W

V. Instability of Embedded Eigenvalues

In this section we assume (2.1) and (2.2) are in force and H= — A + V in I3(R").
We also assume that 1,¢.7 (H) but that A, is an eigenvalue of H in o, (H).
Let £, be the space of all real-valued functions, W, such that

IWh=I1W(-A+D)7 I+ I(-4+ 1) P[4WIH(-4+ 17|
+ (A + 1) [A[A4,WIN(—A+ 1) < co.

Lemma 5.1. Let Py=Ey({o}), and H=H +P,. There is a §>0 so that if
[A— 4ol + Wi, <8, then the strong limits
lim(H+W—AFig)y ' =(H+W-1Fi0)! (5.1)
el0
exist as maps from L? to L2 for any s> 1/2. The operators (H+ W — A +i0)™!
are norm Holder continuous in the variables (A, W) for |A— Ay +| Wi, <$é. If
|2~ 2ol +|W|y <9, and A is not an eigenvalue of H+ W, (5.1) also holds with
H replaced by H. The Holder continuity is also valid for the operators
(H+W—A4i0)"L

Proof. As in the proof of Theorem 2.5, we find for some ¢, > 0,
EgwD[H + W, A]Eq, (1) Z coEg , il (5.2)

for some open interval I containing A, and all W with |W|, < §, if é, is sufficiently
small. The proof of [P-S-S] then shows that the limits (5.1) exist and are Holder
continuous in 4 if We#,. The Hélder continuity in W (in the norm |-|,) is proved
by exactly the same technique. We do not repeat the argument here. The Mourre
estimate also holds for H + W (sce Lemma 2.4) so that if A is not an eigenvalue
of H + W, the proof of [P-S—S] again shows that boundary values exist as maps
from L2 into L% (s> 1/2) and that they are Holder continuous in (1, W). W

‘We now present a result using a formalism which has proved very useful in
the study of eigenvalues [K2, Howl, 2]

Proposition 5.2. There is an open interval J containing Ay and a 6 >0 so that the
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following holds: Define Py = Ey({Ao}) and H= H + Pg. For AeJ and |W|, < §,(5.1)
holds. Define

Q.4 W)=Py(H+ W —4—i0) 'P,,.

Then Ael is an eigenvalue of H + W if and only if the operator 1 — Q (4, W) is not
invertible. (Note that Q, is well defined since all functions in RanP, decay
exponentially.)

The proof of this result is very similar to that of similar results found in the
literature. We sketch it mainly to establish notation: For Im z > 0, we have

H+W—-2) 1=HAW -2 L+ (H+W —2) 'PH+W—-2"1 (53
Multiplying by P,, we find
(H+W —2) 1Pyl —Po(H+ W ~2) " Po)=(H+ W —z)"'P,. (54)
Letting z = A+ i¢ and taking £]0 gives (for 4 not an eigenvalue of H + W)
(H+W—12—i0) Pl —Q . (AW)=(H+W—1—i0)'P,. (5.5

Suppose  YeRanP, and (1—Q (A W)Y=0. Then from (5.5),
(H+W—1—i0)"'y =0, which implies ¥ =0, so that since on
Ran Py, 1 — Q. (%, W)is just a finite dimensional matrix, 1 — @ (4, W) is invertible.
Conversely, suppose 1 — @, (4, W) is invertible. Let

Oz, W)=Py(H+ W —2)~'P,

for Im z > 0. 1t is easy to see from (5.4) that 1 — Q(z, W) is invertible, and thus from
(5.4),

H+W—2)"'"Po=H+W —2)""Py(1 — Qz, W))" .. (5.6)
Substituting (5.6) into (5.3) gives
HAW—z) t=(H+W-2!
FHAW =27 Pyl —Qz, W) *PH+W—2)"". (5.7
From (5.7), it follows that the limit

im(H+ W —J4—ig)™?
20

exists strongly as maps from L? into L% for s > 1/2. Thus the projection
Egqow({A})=s—lim —ig(H+ W —i—ig)" ' =0,
£}0

and A is not an eigenvalue of H+W. B

Lemma 5.3. There is an open interval J containing Ay, an n>0, and a § >0 such
that if W isin B, with \W|, <0, and A€ J, then with p(2)=21,+1—1

Q. (L W)y=y""Py—y ?PoWP,—y *P,W(H — A —i0)" ' WP,
+O(|W3*). (5.8)
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Proof. We use the resolvent formulae

H+W—z2) =H—-2z'—H—-2)"*WH+W—2)"1

=H-z)"'—~H+W—z)"'WH-z)"1. (5.9)
Thus
Oz, W) =y(2) Py — Y(2) 2P, WP,
+9(z) AP WH + W —z)"'WP,. (5.10)
We have

PWIH+W —1—i0) ' —(H—1—i0)" 1JWP,
=PoW{xX x> (H+ W — A—i0)" ' — (H — 2 —10) 1 J<x)> "} {x) WP,

If 1 >s>1/2, the expression in curly brackets is bounded in norm by ¢{W|} for
some 5 >0, while

[<x> WP S |WH + i)™ |- | (H + D{xD°Po | S c|W,.
Taking z =4 + i¢ and ¢} 0 in (5.10) thus gives (5.8). W

Lemma 5.4. Let J be as in Lemma 5.3. Suppose We B, and {p;:j=1,2, ...} is the
set of eigenvalues of PoWP,. Then, AeJ is an eigenvalue of H+ W,

A=lo+p;+O(|W|3) for some j.
Proof. Let & =y(A)(/ — o). Then we calculate using (5.8),
Q1 (A W)= Py =p(1) 2Py { — PoWP, + O(IW]3)}. (5.11)

-1
Now [[(§ — PoWP)™ 1 =(Min|£—/zj|) so that
i

E—PoWPy+O(|W13) = (£ — PoWPo)(1 + (£~ PoWP,) "1 O(IW13))
is invertible if
~1
(M_inlc§~ujl) lo(wWi | <1/2.
J
or, in other words, for some ¢ >0
[E—plzclWi3, allj. (5.12)
There exists a constant ¢, > 0 so that if
A —ho—plZ ¢, |WI3 forall j, (5.13)

then (5.12) is satisfied. Thus, in view of Proposition 5.2, if 4 is an eigenvalue of
H + W, we must have |4 — 4, — u;] <c;| W} for some j. W

Lemma 5.5. Suppose dim Ran P, =m. Then there is areal-valued function WeCZ(R")
such that PoWPg has m distinct eigenvalues as an operator on Ran Py,

Proof. We first show that if m > 1, we can find W,eCg such that P,W P, is not
a multiple of P;. Let {;}I~ | be an orthonormal basis for Ran Py. If (Y4, 0¢,) =0
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for all peCy, cleatly ¥y, =0 ae. If (Y, 0¥)=0f,, 0¥,) for all peCZ, then
IW11% = [{/,]* a.e. These two statements imply ¥, =y, = 0 a.e. and we have proved
our claim.

Suppose we have found a real W,eCg such that P,W, P, has m, <m distinct
eigenvalues. We will show how to construct a real W;eC§ with at least m, + 1
distinct eigenvalues. This will complete the proof.

Suppose {¥;}/%, is an orthonormal basis for Ran P, so that

W Wzlﬁj) = ﬂ‘sija 1=, <],

where | = 2. Find a real peCg such that {(;, p¥/;}}, < ;<; is not a multiple of the
identity. By making a unitary change of basis we can assume

(l//ia szj) = l‘taija 1 g— ia ]é I,
(‘//ia qolp.]) = I'Liéij: 1 g ia J é l,
where u, # p,. Let

Wz = {(‘jfia Wzl//j)}1 Sijsm
Q= {(’l’i’ (P'//j)}1 sij<ms

and let W(g) = W, + e@. The projection onto the eigenspace of eigenvalues for W(e)
near u is for small ¢

1 _
P(e) = P |z—;51|=5(z — Wi(g)) 1dz.

If the eigenvalues near u were all equal, we would have ({¢;}7, is the standard
basis in R™)

(e1, W(e)P(e)e ) (e 1, Ple)ey) = (e, W(E)P (e)ex)/(ea, Ple)ey).
But a simple calculation gives for j=1,2,
(e;, W(e)P(e)e)/le;, Pe)e;) = p + ep; + O(e?).

Thus the eigenvalue u splits into at least 2 eigenvalues. If ¢ is small enough, the
number of other distinct eigenvalues cannot decrease. Thus, for small enough & > 0,
the number of distinct eigenvalues of W(e) is at least m, +1. W

Lemma 5.6. Let Py, J, and 6 be as in Proposition 5.2 and suppose m = rank (Py).
Then there exists a real WeCZ(R”) and a t, > 0 such that

rank (1 - Q. (A tW)zm—1
for all AeJ and all t with 0 < |t]| < t,.
Proof. Let W be as in Lemma 5.5. Then according to Lemma 5.3,
Q. (AtW)=y"1Py —y~2tP, WP, + O(t?),
and with & = 9(A)(4 ~ 1)
1— Q. (4, tW)= —p(A)72Po(¢ — tW + O(t?),

where W = P,WP,. Choose a basis so that we can write (with some abuse of



Perturbation of Embedded Eigenvalues 431

= o ﬂ’1,'0
W‘”“(O u)

If &=1tu, —t{, where |{| £ c,|t], then

¢
(€ —tW +0(t%) = —t[(‘uzgﬂl_. 0) +0(t)].

Bm — Hy
Since the y; are distinct, the matrix in brackets clearly has rank =m — 1 for small
t. This conclusion also holds if {=tu;—t{ for any j if || < c,|t|. According to

Lemma 5.4, unless ¢ = tu; + O(t%), the operator 1 — Q. (4,tW) is invertible for ieJ
and thus has rank m. This proves the resuit. B

notation)

Lemma 5.7. With W as in Lemma 5.6, any eigenvalue of H + tW in J has multiplicity
one for 0 <|t]| <ty

Proof. Multiplying (5.4) by P, and defining

Q[z2) = Po(H +tW — 2)" 1P,
we obtain

Q.(2)(1 — Q(z, tW)) = Q(z,tW). (5.14)
Suppose 4eJ is an eigenvalue of H + tW. Set z = A + ig in (5.14) and note that
s—lim(H +tW — A —ig) " (—ie) = Eg({A}) = P;.

&0

We obtain from (5.14),

PoP Pl -0, (4tW)=0. (5.15)

Since rank (1 — Q ,(4,tW)) =2 m — 1, clearly (5.15) implies
rank (P, P, Py) S 1. (5.16)
From (5.16), it follows that P,(PoP,P,)P; = (P, P,P,)? has at most rank 1, and thus
rank (P,P,P) = 1. (5.17)

Suppose ¢, and ¢, are two linearly independent vectors in Ran P;. We can find

anon-zero vector ¢ = o, @, + a,@, with P, PoP, ¢ =0. But this implies | PPy ¢ |I* =

(@, P PoP,9)=0, or Pop=0. This contradicts Corollary 2.7 so that rank P, <1.
|

We are, of course, heading toward a result which says that not only can one
split a degenerate eigenvalue, but remove it completely. Before we prove this, we
need to know a bit more about §(H — A,) in addition to the fact that it is not the
zero operator.

Lemma 5.8.

Poo(H — 4,) =0. (5.18)
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Proof. With convergence in norm as maps from L2 to L?,, s > 1/2, we have

S(F — o) =Tlim (zi)[(ﬁ—zo —ig)" U —(H — Ao +ig)~ 1]

80 7i

=1lim §,(H — 1),
z]0
where
g 1

n(H— o + & G19)

OfH — do) =
But H = H + P, so that
g 1

Pyd(H — Ag) =i17ale

This proves (5.18). B

At this point, in order to learn more about the eigenfunctions of H we need
to make further regularity assumptions about the potentials v;, in addition to (2.1)
and (2.2).

Assumption R:

(2) The potentials v; belong to the Kato class Kp° [A-S, 82], where d; = dim X ;.

(b) If (x>~ *YeD(A) for some s and if (—A+ V + W)y =0, where W is
a real function in C¥(R"), and y vanishes in an open set, then ¢ =0.

It has been conjectured [S2] and proved for low dimension [Saw], that (a)=(b).
At this point, however, theorems guaranteeing (b) are not optimal for N-body type
potentials (see, for example, [J-K] and [G]).

Lemma 5.9. Suppose, in addition to the assumptions (2.1} and (2.2) in force in this
section, that assumptions R and (4.1) hold. Then if 2 is an open set in R* and  is
a (non-zero) eigenfunction of H with eigenvalue Ay, there is a real function We Cg (£2)
such that

(W, 6(H — Jg) W) #0.

Proof. If (W, 5(H — 4o) W) =0 for all real WeCg(£2), the Schwarz inequality
for non-negative quadratic forms implies that

(Wi, 8(H — 4o) W) =0 (5.20)
for all W, and W,eCg ({2). Let
Y =8(H — do) W .
According to (5.18),
(—A4V -2y =0. (5.21)

From assumption R(a) and [A-S], we can assume that y and y’ are continuous.
Thus, from (5.20) we obtain

J W' (x)=0, xeQ

From R(b), it follows that {xefQ:y¥(x)#0} is dense in £ so that y/'(x)=0 for
xef2 From (5.21) and assumption R(b), it then follows that ¢’ = 0.
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Choosing neC§ (R"). We have
(1, 0(H — 4o) W) =0
for all W,eCg (£2). Thus, repeating the arguments above, we obtain that
W' =6(H — ig)n=0.
Since this holds for all e CP(R"), we have a contradiction to Theorem 4.2. W

Remark. The unique continuation property R(b) does not guarantee that
{x:¥(x) =0} has measure zero. Thus {Wy:WeCg} is not known to be dense in
L? (for any s). For this reason the proof of Lemma 5.9 is somewhat involved.

Proposition 5.10. Suppose the assumptions of Lemma 5.9 are satisfied. There is an
open interval J containing A, so that, given any £ > 0, we can find a real C3 function
W with || Wl|| < & such that H + W has no eigenvalues in J. Here ||-l]| is any norm
on Cy.

Proof. Choose W, as in Lemma 5.7 so that any eigenvalue of H + tW, in J(J is
the closure of J, an open interval containing A, ) has multiplicity one for 0 < [t} < t,.
Choose t, (0, t,) so that | £, W, || < ¢/2. We can assume (by shrinking J if necessary)
that Jn 7 (H) = (J. We will now remove the eigenvalues of H, = H + t, W, which
are in J, one at a time. For simplicity of exposition, suppose there are just two
such eigenvalues, 1, and A,. Suppose then that (H; — A, )¢, =0 where ||¥, | = 1.
Note that the results of this section apply equally well to H,(J (H,)=Z (H) so
4187 (H,)). Choose a real function W,eCg so that

(Wotry, 6(H, — A Wayr, ) =a; >0. (5.22)
Here H,=H,+P,,P,=(y,, .. If
QL4 W)=P (H, +W—2—i0)'P,,

it follows from Lemma 5.3 and Proposition 5.2 that for 1 in some open interval
J; containing .,

Im QL (A, tW,) = ny, (1) 2P, W,8(H, — HhW, P, 12 + O(2*").  (5.23)

and for small enough {t|, H, + tW, has no eigenvalues in J, if and only if
1 — QL (A, tW,) is invertible. Here y;(1) =4+ 1—A,. Since P, W,6(H, — )W, P,
is continuous in A, we can assume (by virtue of (5.22) and (5.23) that for small
|t]| >0, 1 — QL (4,tW,) is invertible for all AeJ; (we may have to shrink J, again).
Thus H, + tW, has no eigenvalues in J, for small non-zero ¢, say 0 <|t] <t For
each AeJ\J, there is an open interval J(4) containing A such that (by Theorem
2.5) if [t] S t{4) (t{4) > 0), the following is true: If A,eJ(4), there is at most one
cigenvalue of H, + tW, in J(2) and this eigenvalue has multiplicity one, while if
A,¢J(4),then H, + tW, hasno eigenvalues in J(1). A finite family {J(A'):i=1,...,N}
covers J\J,. We can assume that only J(A') contains 4,. Let

t, = Min(t,t(AY), ..., t(AY)).

Then if 0<|t|Lty, H, +tW, has no eigenvalues in J, except perhaps one, of
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multiplicity ome, in J(4'). Choose t, in (0,£,) so that |1, W, || <¢/4. Then the

operator H,=H +1t, W, +t,W, has at most one eigenvalue in J, and this

eigenvalue has multiplicity one. If this eigenvalue indeed exists, denote it by u,.
Choose W;eCg such that

P2W35(ﬁz—ﬂ2)W3P2=“2P25 a, >0,

where P, is the orthogonal projection on the eigenfunction associated with y,.
We proceed to remove this eigenvalue in the same way we removed the previous
eigenvalue of H,. If ¢ is non-zero and small enough, H, +tW, will have no
eigenvalues in J. We choose such a non-zero t,t5, such that |t W;| < ¢/4. Then
the proposition holds with

W:t1W1+t2W2+t3W3. .

This proposition and Theorem 2.5 are the main ingredients in the genericity
result to follow.
Let 4 be the closure of the set of all real WeC§ (R} in the nom |+|,.

Theorem 5.11. Suppose, in addition to the assumptions (2.1) and (2.2) in force in this
section, that assumptions R and (4.1) hold. Then the set of all We% such that H + W
has no eigenvalues in o,,(H\Z (H) is a dense G;.

Proof. Let A be a compact subset of o (HN\T (H). If We# and H + W has no
eigenvalues in A, then by Theorem 2.5 (and a compactness argument) there is an
open ball B (in %) with center at 0 such that if We B, H + W + W has no eigenvalues
in A. Hence

D, ={We%:H + W has no eigenvalues in A}

is open. If WeCg, according to Proposition 5.10, we can find W,eC¥ with
[Wali—0 so that H+ W+ W, has no eigenvalues in A. Since CJ is dense in &4
in the norm |-, it follows that D , is also dense. Choose a sequence of compact
sets A, with A, 7o (HNT (H). We see that if

We(\D,, =G,

then H + W has no eigenvalues in o (H)\J (H). G is a G; and is dense by the
Baire category theorem. W

Remark. Suppose that the potentials v; satisfy (2.1) and (2.2). Then our discussion
shows that the following weak form of Theorem 5.11 holds.

Theorewm 5.12. The set of all WeZ such that H + W has only simple eigenvalues in
0. (HN\F (H) is a dense G;.
This theorem should be compared with results for the Dirichlet problem in {U].
To emphasize the local nature of our results, we will state another theorem.
For a compact set K < R" with non-empty interior, we denote by % the set
of all real functions in C§(R") with support in K. Equipped with the family of
seminorms

sup {|D*@(x)|:xeR", || <m}; m=0,1,...,
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9y is a Frechet space. We then have

Theorem 5.11. With the same assumptions as in Theorem 5.11 and with 9 as above,
the set of all We D, such that H + W has no eigenvalues in o ., (H\Z (H) is a dense G;.

Proof. The proof of Theorem 5.11" is almost exactly the same as that of Theorem
5.11 if one observes that under the additional assumption R, Lemma 5.5 through
5.7 and Proposition 5.10 hold for some WeCg (£2), where £ < interior (K). MW

We end this section by giving a simple set of potentials for which all of our
results are valid:
Suppose that for eachi=1,2,..., M,

v;elf (X;) with p,=2 and p,> %dim X,
and for all o with |a] <2,
lim|y|'™-D*p,(») =0 as y—oo inX,,

then (2.1), (2.2), (4.1), and the condition R all hold. The unique continuation result
implicit here is given in [G].

VI. Concluding Remarks

We would like to mention two open problems not considered in this paper.

The first problem involves the treatment of more general perturbations of H.
The perturbations treated here are not completely natural for the N-body problem
(but are quite natural for the generalized N-body Schrédinger operator). A more
natural class of perturbing potentials in the N-body problem would involve only
a sum of two-body potentials. One would still believe that, generically, embedded
eigenvalues are absent. But, in this case, the set of vectors Wi, where W is the
perturbation and ¥ is an eigenvector of H may not be sufficiently large to achieve
(Wy,8(H — 7.) W) #0 with our present state of knowledge of the operator
8(H — Ay). Thus, either one needs further knowledge about the operator 6(H — ),
or a different method is required to show that eigenvalues disappear under small
perturbations.

The second problem involves the determination of the set of potentials which
do produce embedded eigenvalues. There are indications that given a negative
embedded eigenvalue i, of — A+ V, there may be curves W(t,) with W(0,x) =0
such that H,= — A+ V + W(t,") has an eigenvalue 4, near A, for ¢ small. It would
be quite interesting to see il this were true in a general context.

Appendix A: Proof of Lemma 2.6

Suppose | W], <e, |A— Ao/ S¢, and y < are so small that Theorem 3.1 applies with
a=0. By Lemma 2.4, we can assume that the Mourre estimate holds for each 4
with |A— Ao| £e. Suppose by the way of contradiction that

H+W, =) =0, al =1,
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where |W,|; <&, |An— 4ol = ¢ and [[{x D, || — co. According to [F-H2], for each
m, "y eI? for some B> 0. Given this fact, it is easy to sce that the estimate
(3.1) applies to ¢ =y, so that with a =0, £ =¢&,, u=1, y =7, = 6, we have

Fvmll = 1 KEY . (A1)

But ¥, = &4,/ | &, | converges weakly to zero because, for any bounded set B,
lxg ¥, =0. This contradicts (A.1). W

Appendix B: Boundedness of R(x)> ", s>1

Under the assumptions (2.1) and (2.2) and 1,¢7 (H), we will show that if
S(H — 1,) =0, then R{x)* is bounded for s> 1.
According to {M2] and [P-S-S], the norm limits
lim {AY S(H — Ay +ig) (A, (B.1)

&l0
and

lim P (H — 4o Fig) 1 {A>"% (B.2)
el0

exist in I?(R") for any s> 1/2. Here (4> =(1+|4]*)"2 It easily follows from
8(H — 44) = 0 that the limits in (B.1) are equal. (Note that §(H — A,) is an operator
from L? to L2 so that this is not immediate from the definition.)

We will show that for s> 1/2,

o, R<x>™> ) S clloll- 1]l (B.3)

for all pe#(R"), the Schwartz space of rapidly decreasing functions. This will
prove the result.
Using the resolvent equation we find

(@, R<x>™*y)|

=lim|(g, {(H — i)' + (ko + i — )(H — o — ie) "' (H — )71} (x>~ 24))|
£10

Sclol- ¥ +clim|(o,(H — 1o —ie) "1 <A>™>Y),
el0
where _
Y= CAYPH =)D
By the proof of Lemuma 4.1 and interpolation (0 <s=< 1), one easily proves that

(W Lcilyli. Thus, to prove (B.3), we need only show that for all pe#(R") and
all v,

1i?31(<p,(§-20 —ig HATEY) = cllol- ¥l
We have
lim |(@, (H — 4o — ig) "' (A) ™)

£l0

- i(“y"g’ﬁm CAYT(H 14 ~i8)‘1<A>-2”ﬁ>l
el0
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=

€l0

" 1(1’* (A o, lim {AD™*(H ~ Ao + ie)‘1<A>-”‘/’>i
&l0

£}0

+l(¢,1imP+(ﬁ—lo+i8)_1<A>“25¢>lédl(ﬂll'ill]/ll- n

&l0
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