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Summary 

The influence of risk of herbivory and its variation in time on the optimal defence strategy in plants is 
analysed by a simple optimization model. We contrast two possible defence strategies; a constitutive 
defence with an invariant defence level in time and an idealized induced defence, that is, a strategy that 
adjusts the defence level to the prevailing risk of herbivory. We also take into account effects of the 
efficiency of the defence. If there is no variation in risk of herbivory over years, constitutive and induced 
defence should have the same expected optimal defence level and both strategies are equally fit. The 
optimal defenee level increases as the maximum fecundity and the adult to juvenile survival ratio of the 
plants both increase. If the risk of herbivory varies stochastically, the expected optimal level of the 
constitutive defence is either increased or unaffected by the variation, whereas the induced defence strategy 
may result in both higher or lower expected optimal defence levels as variance increases. This outcome is 
dependent on the mean risk of herbivory. It also depends on the defence efficiency, i.e. the shape (convex, 
concave or linear) of the defence function that relates the probability of survival if encountered by a 
herbivore to defence level. Thus, the defence level of plants interacting with variable herbivore populations 
cannot be unambiguously predicted unless the defenee strategy (constitutive or induced), mean risk of 
herbivory, the form of the defence function and plant life history are known. 

Keywords: optimal plant defence; constitutive defence; induced defence; stochastic risk; mathematical 
model 

Introduction 

Many plants seem to protect  themselves against deleterious herbivory by a wide array of chemical 
and structural defences. The degree to which plants tend to be defended also seems to vary 
depending on, for instance, the 'apparency'  of the plants (Feeny, 1976; Rhoades and Cates, 1976; 
Chew and Courtney,  1991), resource availability (Coley et al., 1985) and, obviously, the risk of 
herbivory (Bryant et al., 1989; Edelstein-Keshet and Rausher,  1989; Oksanen, 1990; Augner  et 
al., 1991; Coley and Aide, 1991). As regards the chemical defence, we may distinguish four 
different principal types. On the one hand, the defence may be either endowed ('constitutive') or 
induced, i.e. changing in relation to past and present herbivore damage (Haukioja and 
Neuvonen,  1985; Karban and Myers, 1989). On the other hand, the defence may also be either 
'quantitative' ,  i.e. its effects being dosage dependent  or 'qualitative', i.e. having more or less full 
effect if present but  without marked improvement  as the concentration increases (Rhoades, 1979; 
Coley et al., 1985). 

Ant ipredator  defences arc not only confined to plants. There  are a number of examples of 
induced dcfences among freshwater and marine invertebrates, e.g. spines and crests in bryozoans 
and cladocerans (Havel,  1987; Harvell,  1990; Clark and Harvell,  1992; Riessen, 1992). Indeed, 
induced defences, which need a proximate and reliable cue to be triggered, seem to be common 
to many modular  organisms (Harvell,  1990), plants and animals alike. Modular animals and 
plants may in fact have a lot in common with respect to allocation decisions and inducible 
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defences, since they both grow by repeated production of modules, which may be subject to 
grazing. 

In this paper we develop a simple optimal defence model focusing explicitly on the role of the 
risk of herbivory and type of defence according to the above definitions. In particular, we will 
analyse the effects of a variable risk of herbivory. One of the reasons for this interest is the notion 
that an occasionally very high herbivore pressure, intervened by periods of low or absent 
herbivore numbers, e.g. the snowshoe hare 10 year cycle, would select for more heavily defended 
plants than situations of a more constant and intermediate risk of herbivory (cf. Bryant et al., 
1989, for details). The defence problem for an organism facing a variable predation pressure has 
also been examined in some detail for invertebrates capable of inducing a morphological defence 
(Harvell, 1990; Clark and Harvell, 1992). Neither theory, nor empirical studies have generally 
been taken as far by students of plant defences (Karban and Myers, 1989; Zangerl and Bazzaz, 
1992). We believe that a more formal treatment of many aspects of plant-animal interactions is 
still needed since many hypotheses and suggested mechanisms and evolutionary scenarios in this 
field are not always unequivocally stated (see also Fagerstrrm et al., 1987). 

Our approach in this paper is deliberately simple and general and not so much aimed at 
understanding specific systems, but rather to elucidate the essentials of plant defence in relation 
to grazing pressure, especially regarding the variability in the risk of herbivory. Therefore we do 
not consider any frequency dependencies that may influence the optimal defence levels (cf. 
Lundberg and ,~strrm, 1990), neither do we study the possible evolutionary games between 
different types of defences. The effects of the level and variability of the risk of herbivory on 
plant defence are such surprisingly neglected problems in the literature of plant-herbivore 
interactions. In this paper, we are also interested in the effects of different defence functions, i.e. 
the shape of the function relating the amount of defence to its efficiency against herbivores. As 
we shall see, this relationship may not only influence the optimal defence level as such, but also 
the relative benefit of a constitutive versus an induced defence type. 

Models 

We have assumed an age-structured plant population with a reproducing adult stage and non- 
reproducing juvenile one. We further assume that a plant that is potentially subject to herbivory 
can enhance its expected fitness by allocating resources to a chemical defence. The defence is, 
however, also assumed to be costly in terms of fitness. We let the expected plant fitness (cf. 
Schaffer, 1974) be defined as 

W = S a + S jB(D)  (1) 

where S a is the per capita adult survival rate, Sj is the per capita juvenile survival rate and B ( D )  is 
fecundity as a decreasing function of the defence level of the plant (0 ~< D ~< 1). If D = 0, the 
plant allocates none of its resources to defence, whereas if D = 1 all available resources 
(constrained by some minimum maintenance and growth) are allocated to defence. We may 
regard D as the concentration of some defence compound, scaled such that D = 0 means zero 
concentration and D = i maximum concentration of that particular compound (cf. Fagerstr6m et 
al., 1987). 

For simplicity, we assume that the defence cost only affects fecundity and that this cost is 
linear, i.e. 

B ( D )  = b - cD (2) 

where b is the maximum fecundity (in the absence of defence allocation) and c is a cost constant 
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(0 < c <. b/D) determining the rate of the fecundity reduction as more resources are allocated to 
defence. We are aware of the fact that the allocation of resources to defence may affect other 
components of the life history of a plant as well, e.g. growth and competitive ability (Gulmon and 
Mooney, 1986; Fagerstr6m et al., 1987; Crawley, 1988; Simms, 1992). However, we have chosen 
a simple, but still meaningful, effect on fitness (Bfiggs and Schultz, 1990). If we also assume that 
fecundity generally is somehow proportional to growth and adult size (Harper, 1977), a defence 
reducing growth may also reduce fecundity (see also Louda et al., (1990) for a review). 

During each suitable time interval (e.g. a year) a plant may or may not be encountered by a 
herbivore. Thus, we introduce the following probabilities: p is the probability that a plant is 
encountered by a herbivore during this time interval and q(D) is the probability that a plant 
survives a herbivore encounter as a function of D. We assume that p is somehow positively 
related to herbivore density and initially that p is constant in time. We also let 

q(D) = D ~  ( I x > 0 )  (3) 

We will call Equation 3 the defence function. If ix < 1 then the defence function is a 
monotonically increasing but decelerating (concave) function of D, if IX > 1 then the defence 
function is an exponential one (convex) and if ~ -- 1 it is a straight line. In the following analyses, 
the three Ix-cases will be exemplified by values of 0.5, 1 and 2. The mortality risk if encountered 
(1 - q(D))  will be positive for all D < 1 and will be zero if D = 1. The defence may either lower 
the risk of being attacked upon encounter or reduce the damage of an attack. 

We may now write fitness as 

W = (1 - p) (S  a .4- SjB(D)) + p (S  a -4- SjB(D))D~ (4) 

which simplifies to 

W = (S, + Sj(b - cD))(1 - p + pD~) (5) 

after inserting Equation 2 into Equation 4. Thus, fitness in the absence of herbivory (S a + Sj (b - 
cD)) ,  is reduced by the term 1 - p + pDV i fp > 0, i.e. if the risk of herbivory is larger than zero. 
Any defence level D < 1 decreases the survival probability of the plant if encountered compared 
to D = 1, which ensures the herbivore-independent survival given by S a and Sj. 

Equation 5 is the function to be maximized and we may now find the optimal defence level by 
setting W ' ( D )  equal to zero, solving for D* and checking that W"(D)<0.  After some 
rearrangements we have 

D* ( V ( ~ p ) 2 +  A l ~ p p ) 2  = _ _ for IX = 0.5 (6a) 
3 

D* = A -  1 - p  f o r l x =  1 (6b) 
2 2p 

A V ( A )  2 l ~ p p  
D* = ~- + - for IX = 2 (6c) 

for the three Ix-cases, respectively, where A = (Sa/S j + b)/c. These solutions represent the 
optimal defence levels as long as 0 ~< D* ~< 1, otherwise D* = 0 or D* = 1. Note also, that 
Equation 6c gives the optimal solution only if 

i.e. if S] and c are sufficiently small and Sa, b andp are relatively large. Otherwise, the square root 
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in Equation 6c is undefined. When that is the case the fitness function has no extreme points and 
one of the boundary solutions (D* = 0 or D* = 1) must represent the optimal solution. 

In the absence of variation in the risk of herbivory we conclude for all three cases that the 
optimal defence level quite intuitively decreases as the defence cost (c) and the probability of 
escape from herbivory (1 - p) both increase. On the other hand, note that the optimal defence 
level increases as maximum fecundity (b) and the adult to juvenile survival ratio (Sa/Sj) both 
increase. When Inequality 7 is not fulfilled, the boundary solutions (D* = 0 or 1) prevail and the 
change in D* is stepwise. 

Variable risk o f  herbivory 

We now assume that the probability of herbivore attack (p) varies stochastically between years. 
We will analyse the simplest case when p only take two different values, Pl and P2 with 
probabilities k and 1 - k, respectively. Using Equation 5 and the above assumptions, we may 
now calculate the expected fitness over a large number of years as the geometrical mean 
(Schaffer, 1974), 

E[W] = [(Sa + Sj(b - cD))(1 - P l  + PlDg)] k 

[(S~ + S](b - cD))(1 - P2 + p2D~)](1 - k) (8) 

= (Sa + Sj(b - cD))(1 - Pl -t- plD~)k(1 -- P2 + p2O~t) (1 - k) 

In the following, we will focus on two different strategies a plant may adopt in order to 
maximize fitness when the risk of herbivory varies stochastically among years. The first, which we 
call 'constitutive' defence is a strategy with a constant optimal defence level with respect to the 
expected fitness E[W] over all years. The second will be called 'induced' defence, which is an 
idealized flexible defence strategy. It means that the plant adopts an optimal defence level for 
each year's level of herbivory, i.e. Dpl* and Dp2* , respectively. 

Constitutive defence 

Analogous to the deterministic case, we can now find the optimal defence level for the 
constitutive strategy, Dc* , by putting E[W]'(D) equal to zero, solving for the optimal D and 
checking that E[W]"(D) < 0. As tx = 0.5 and p~ = 2 Dc* cannot be analytically solved therefore 
we have to rely on numerical solutions. The expected fitness can then be found by inserting these 
solutions into Equation 8. 

Induced defence 

First, we are interested in the optimal defence level for each level of herbivory, i.e. Dpl* and 
Dp2*. These can be obtained by inserting each herbivory risk level, Pl and P2 respectively, into 
Equations 6a-6c. To be able to compare the defence levels of the induced defence strategy with 
that of the constitutive defence strategy we calculate the mean optimal defence level for the 
induced strategy over several years. This is represented by the arithmetic mean of Dpl* and Dp2* 

E[lYii] = kDp* + (1 - k)Dp* (9) 

where the subscript i denotes the induced defence strategy. Using Equations 6 and 8, we may 
calculate the expected fitness of the induced defence strategy as 

E[W(Dp*,  Dp*)] = ((Sa + Sj(b - cDp*))(1 - Pa + Pl(Dp*)~) k (10) 

((Sa + Sj(b - CDp*))(1 - P2 + p2(Dp*)@ (1 - k) 
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In Fig. 1 the optimal defence level is plotted as a function of the risk of herbivory for IX = 0.5, 1 
and 2 whenp  does not vary (k = 1). As mentioned previously, the optimal defence level increases 
as p increases, but differently so for different values of IX. The higher ix is, the steeper the optimal 
defence function will be. If IX is sufficiently large (ix = 2 in Fig. 1) D* will be a step function, i.e. 
at a certain p-value the optimal defence level abruptly changes from zero to one. Increasing Sj or 
c or decreasing S a or b would decrease the optimal defence level but also make the curves 
smoother. 

What  is then the effect of introducing variation in the risk of herbivory? To be able to deal with 
a variable risk of herbivory we define the mean and variance of the binomially distributed random 
variable p as p = kpl + (1 - k)p 2 and Var[p] = k (1-k) (p l  - p2) 2, respectively. In Fig. 2 the 
optimal defence level is plotted as a function of the variation in the risk of herbivory (with k = 
0.5) for a given mean risk (note that the maximum possible variance in p is VarLo] = 0.25). The 
optimal defence level for the constitutive defence strategy is either increasing or unaffected as 
variation in the risk of herbivory increases. Both p and Ix also influence the optimal defence level 
(Dc*). In contrast, the optimal defence level for the induced defence strategy can be differently 
affected by Var[p], so that it increases with increasing variation if p is low (0.25, Fig. 2a and b), 
and decreases if p is high (0.75, Fig. 2c), except when ~ = 2. When the induced defence is 
increasing with increasing variance the level of the induced defence also exceeds that of the 
constitutive defence. The opposite is true when the induced defence decreases. In addition to the 
general patterns in Fig. 2 it is also possible for the optimal defence function of the induced 
defence strategy to change the direction of the response as the variance in risk of herbivory 
increases. As shown in Fig. 3 the optimal induced defence first decreases for increasing low 
variance and then starts to increase as the variance of risk of herbivory further increases. We thus 
conclude that there is no unambiguous effect of variation in the risk of herbivory on the optimal 
defence solution without considering mean herbivore pressure (a0), defence efficiency (IX), type of 
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Figure 1. The optimal defence level as a function of,0, the mean risk of herbivory for p, = 0.5, 1 and 2 with 
c = 4, b = 5, S a = 0.5, Sj = 0.1 and Var[p] = 0, i.e. no variation in risk of herbivory between years. Since 
Var[p] = 0 the constitutive and induced defence strategies coincide. 
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F igure  2. The  op t ima l  de fence  level  as a funct ion  of Var[p] ,  the  var iance  in risk of he rb ivory  for(a)  IX = 0.5 
and  (b) Ix = 2 w h e n  the  m e a n  risk of  h e r b i v o r y p  = 0.25 and  (c) iz = 0.5 and  (d) Ix - 2 w h e n  the  m e a n  risk of  
he rb ivo ry /~  = 0.75. O t h e r  p a r a m e t e r  values as in Fig. 1. (C)) const i tu t ive  defence  strategy.  ( A )  induced  
de fence  strategy.  
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defence strategy (constitutive versus induced) and plant life history (especially juvenile and adult 
survival). 

Not  only does the opt imal  defence level vary with the mean and variance of the risk of 
herbivory,  but  also the expected fitness when the defence is optimized. I t  follows from Equations 
8 and 10 that  the expected fitness decreases as p increases for both the constitutive and the 
induced strategy. As shown in Fig. 4 the difference in expected fitness between the two strategies 
increases as the variance in the risk of herbivory increases, the induced defence increasing its 
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Figure 3. As Fig. 2, but with Ix = 1.0, p = 0.5 and higher juvenile survival, (Sj = 0.5). 
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Figure 4. The expected fitness of the constitutive (O) and induced (A) defence strategies as a function of the 
variance in the risk of herbivory, Var[p], for (a) tx = 0.5 and (b) Ix = 2./~ = 0.25. Other parameter values as 
in Fig. 1. 
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superiority. Generally the expected fitness of the induced defence strategy increases as the 
variance of the risk of herbivory increases, while the opposite generally is true for the constitutive 
defence. 

Discussion 

The general result that the optimal defence level increases as the risk of deleterious herbivory 
increases is rather obvious. What is of note and may be considered as counter-intuitive is the 
effect of ix on the shape of the optimal defence function. If we allow ix < 1 to represent a 
'qualitative' defence type, i.e. being efficient if present, but without further strong dosage 
dependence, then the optimal defence response will be smooth with respect to the risk of 
herbivory. This is because the qualitative defence is a relatively cost-effective defence, since a 
small allocation into defence results in a faster than linear increase in the benefit of defence (the 
survival when encountered by a herbivore), while the cost of the defence only increases linearly. 
Thus, the qualitative defence is relatively effective when the defence is at a low concentration and 
should accordingly be produced at relatively lower levels of risk of herbivory. The slope of this 
optimal defence curve is shallow because the rate of increase in the efficiency decreases as the 
allocation to defence increases. On the other hand, the 'quantitative' defence (ix > 1) is effective 
at higher concentrations, making it relatively more expensive to deploy, since the cost is assumed 
to be linear. Therefore, a quantitative defence should not be deployed unless the risk of 
herbivory is relatively high. If the risk is sufficiently high to warrant deployment of a defence, a 
large allocation should be made because the quantitative defence is relatively inefficient at low 
concentrations. Thus, the plot of D* for tx > 1 in Fig. 1 is a step function. 

In this model we have not considered the possibility that different defences with respect to IX 
may also be associated with different costs (Coley et al., 1985). However, if we assume that a 
defence type with IX < 1 is still linear but more costly (i.e. have a higher c) than a defence type 
with ix I> 1, that would only reinforce the results discussed above. The optimal defence function 
for Ix = 0.5 in Fig. 1 would then be pushed downwards but retain its smooth shape. For tx = 2 
(Fig. 1) the threshold risk of herbivory (when D* goes from 0 to 1) would be pushed to the left 
but remain as a step function. This stepwise pattern may, however, be smoothed out if a non- 
linear cost of defence is assumed. More precisely, if the cost of the quantative defence (IX > 1) is 
increasing in a convex manner as the allocation to defence increases, then the optimal defence 
function would be less stepwise. Likewise, for the qualitative defence the optimal defence 
function would be steeper if the associated cost increased in a concave manner as the allocation to 
defence increases, thus decreasing the difference between the optimal defence for the quantita- 
tive and the qualitative defence types. 

The response to variations in the risk of herbivory is markedly different for the constitutive and 
induced defence strategies. While the constitutive defence strategy always increases or is 
indifferent to variation, the induced defence strategy may result in both an increase (if the mean 
risk is low) or decrease (if the mean risk is high) in the optimal defence level as the variation 
increases. The direction of the response in relation to the mean risk is dependent on the position 
of the mean risk in relation to the convex and concave parts of D*(p) (Fig. 1). I fp  is below the 
inflection point, i.e. in the convex region of the function, then the induced defence will increase 
as variation increases due to variation in non-linear functions (Jensen's inequality; cf. also Welsh 
et al., 1988). If t5 is above the inflection point, i.e. in the concave region of the function, the 
opposite is true. Now, only Ix = 0.5 produces a truly sigmoidal function with a mathematically 
defined inflection point, but the above reasoning will also hold true if the function is more or less 
stepwise (Fig. 1). 
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Thus, it is obvious that to predict differences in defence levels between different populations, 
information about mean herbivore pressure, defence efficiency (approximately qualitative versus 
quantitative defence), type of defence strategy (constitutive versus induced) and plant life history 
is necessary. Bryant et al. (1989) suggested a co-evolutionary response of North American 
willows and birches to the strongly cyclic snowshoe hare herbivory, as opposed to the weakly 
defended shrubs and trees in Finland with no hare cycles. Since cyclicity entails either increased 
variance in the risk of herbivory, increased mean risk or both, one cannot unambiguously infer 
the response in defence level. 

The life history of a plant may also have an important influence on its optimal defence level. 
For instance, Loehle (1988) suggested that increased adult longevity in woody plants should be 
associated with chemical and structural defences. This is exactly what our model predicts 
(Equations 6a-6c). In fact, increasing adult survival rate (Sa) for a constant juvenile survival (Sj) 
should lead to an increased optimal defence level for all types of defence strategies. Conversely, 
plants with high juvenile survival rate in relation to adult survival should generally invest less in a 
chemical defence. For such plants, the fitness benefit of a defence does not outweigh the 
fecundity cost since juvenile survival is already relatively high and some contribution to future 
generations is secured. The most extreme case of this is when Sa = 0, i.e. when the plant is 
annual. Thus, annual plants can be expected generally to have lower defence levels than 
perennial plants (cf. Herms and Mattson, 1992). This actually corresponds very well with the 
observations by Feeny (1976) about the apparency of the plants, where perennial plants may be 
regarded as more apparent than annuals. Zangerl and Bazzaz (1992) have also suggested that 
plants with a low root : shoot ratio (as is the case for many annual vascular plants) should have 
less defence per unit weight than those with a high root : shoot ratio. Also, the maximum 
fecundity (b) affects the optimal level of defence. Increased b compensates for the fecundity costs 
of defence and, thus, allows an increased optimal defence level. 

From Fig. 2b it is clear that if a defence is quantitative (Ix > 1), the mean risk of herbivory is 
low (t5 = 0.25) and the variation in the risk of herbivory is high, the only defence strategy that can be 
realized is the induced one. This is because a quantitative defence is less cost-effective. When 
evaluating the expected fitness of the two different defence strategies one has to note that the 
constitutive defence is predicted to be less fit than the induced one whenever there is a variation 
in the risk of herbivory, regardless of the defence efficiency (Fig. 4). The superiority of the 
inducible defence is, however, exaggerated in our model since we implicitly impose a perfect 
induction (i.e. perfect knowledge of the changes in the risk of herbivory, without any costly 
sampling or triggering and without delays in the changes of defence levels when the risk of 
herbivory changes). If the induced defence is less perfect, the constitutive defence would 
probably have a selective advantage, at least when the variation in the risk of herbivory is low. 

Our model gives qualitative predictions about the level of defence allocation in plants as a 
result of the mean level and variation in the risk of herbivory. Unfortunately, this risk, and 
particularly its variation over time is rarely quantified in studies of plant defences. This is also 
true for recent reviews in the field (e.g. Karban and Myers, 1989; Herms and Mattson, 1992; 
Zangerl and Bazzaz, 1992; but see Lubchenco and Gains 1981). However, for example, Zangerl 
and Bazzaz (1992) suggested that the chemical defence in wild parsnip (Pastinaca sativa) will be 
under the direct influence of the probability of attack from herbivores. Lubchenco and Cubit 
(1980) found strong induced morphological changes in marine annual algae when subjected to a 
high risk of herbivory. This is in conformity with our predictions, in the sense that plants with 
induced defence should respond strongly to a high risk of herbivory within that season, although 
annual plants are generally predicted to have lower defence levels than perennial plants. 
Moreover, the root : shoot argument of Zangerl and Bazzaz (1992) and the general problem of 
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resource allocation in plants depending upon environmental resources (Herms and Mattson, 
1992) may modify the processes in the simplified world we have modelled. Studies of freshwater 
and marine invertebrates give strong support for the conclusion that induced defences are 
expected when the risk of predation is unpredictable and the cost of defence is high (e.g. Clark 
and Harvall, 1992). For invertebrates both theory and data unambigously point in the same 
direction. For plants, on the other hand, we still lack good data on the risk of herbviory and its 
distribution over time, in relation to defence strategies. 

In this paper we have outlined an analytical framework to these questions by explicitly 
considering plant defence in relation to fitness. Many of the predictions remain to be tested and 
more elaborate and specific models to be developed. Plant life history and adequate fitness 
measures should be more closely considered in order to understand both the evolution, as well as 
the dynamic consequences of the myriad of chemical defences found among plants. Our 
knowledge about plant defence in relation to available resources and individual plant growth is 
fairly detailed. However, we still do not fully understand how the risk of herbivory, which is 
fundamental to defence theory in the first place, may influence plant defence and life-history 
solutions. 
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