
VLDB Journal, 4, 243-286 (1995), Serge Abiteboul, Editor

@VLDB

243

Realm-Based Spatial Data Types: The ROSE Algebra

Ralf Hartmut Gfiting and Markus Schneider

Received Apri115, 1993; revised version received, February 14, 1994; accepted March 18,
1994.

Abstract. Spatial data types or algebras for database systems should (1) be fully
general, that is, dosed under set operations, (2) have formally defined semantics,
(3) be defined in terms of finite representations available in computers, (4) offer
facilities to enforce geometric consistency of related spatial objects, and (5) be in-
dependent of a particular DBMS data model, but cooperate with any. We present
an algebra that uses realms as geometric domains underlying spatial data types. A
realm, as a general database concept, is a finite, dynamic, user-defined structure
underlying one or more system data types. Problems of numerical robustness and
topological correctness are solved within and below the realm layer so that spatial
algebras defined above a realm have very nice algebraic properties. Realms also
interact with a DMBS to enforce geometric consistency on object creation or up-
date. The ROSE algebra is defined on top of realms and offers general types to
represent point, line, and region features, together with a comprehensive set of
operations. It is described within a polymorphic type system and interacts with a
DMBS data model and query language through an abstract object model interface.
An example integration of ROSE into the object-oriented data model 02 and its
query language is presented.

Key Words. Realm, finite resolution, numerical robustness, topological correct-
ness, geometric consistency, object model interface.

1. Introduction

We consider a spatial database system to be a full-fledged D B M S with addit ional
capabili t ies for the represen ta t ion and manipula t ion of geometr ic data. As such,
it provides the da tabase technology to suppor t applications such as geographic
information systems. The s tandard D B M S view for the organizat ion of spatial
in format ion is the following: A database consists of several classes of objects. A

Ralf Hartmut Gfiting, Prof. Dr. rer. nat., is Professor, and Markus Schneider, Dipl.-Inform., is Research
Assistant, Prakfische Informafik IV, FernUniversit~it Hagen, D-58084 Hagen, Germany, gueting@fernuni-
hagen.de, schneide@fernuni-hagen.de.

244

spatial object is just an object with an associated value ("attribute") of a spatial data
type such as point, line, or region. This is true regardless of whether the DBMS
uses a relational, complex object, object-oriented, or other data model. Hence, the
definition and implementation of spatial data types is probably the most fundamental
issue in the development of spatial database systems.

Although spatial data types (SDTs) are used routinely in the description of
spatial query languages (e.g., Lipeck and Neumann, 1986; Joseph and Cardenas,
1988; Svensson and Huang, 1991, Tomlin, 1990), have been implemented in some
prototype systems (e.g., Rossopoulos et al., 1988; Orenstein and Manola, 1988;
G/iting, 1989), and some formal definitions have been given (G/iting, 1988a, Scholl
and Voisard, 1989; Gargano et al., 1991), there is still no completely satisfactory
solution available according to the following criteria:

�9 Generality. The geometric objects used as SDT values should be as general as
possible. For example, a region value should be able to represent a collection
of disjoint areas, each of which may have holes. More precisely, the domains
of data types point, line, and region must be closed under union, intersection,
and difference of their underlying point sets. This allows for the definition
of powerful data type operations with nice closure properties.

�9 Rigorous definition. The semantics of SDTs, that is, the possible values for
the types and the functions associated with the operations, must be defined
formally to avoid ambiguities for the user and the implementor.

�9 Finite resolution. The formal definitions must take into account the finite
representations available in computers. This has so far been neglected in
definitions of SDTs. I t is left to the programmer to close this gap between
theory and practice, which predictably leads to not only numerical but also
topological errors.

�9 Treatment of geometric consistency. Distinct spatial objects may be related
through geometric consistency constraints (e.g., adjacent regions have a com-
mon boundary). The definition of SDTs must offer facilities to enforce such
consistency.

�9 General object model interface. Spatial data types as such are of little use
unless they are integrated into a DBMS data model and query language.
However, a definition of SDTs should be valid regardless of a particular
DBMS data model and, therefore, not dependent on it. 1 Instead, the SDT
definition should be based on an abstract interface to the DBMS data model,
which we call the object model interface.

The purpose of this article (together with a companion work, Giiting and
Schneider, 1993) is to develop a formal definition of spatial data types fulfilling

1. This also holds for the implementation level: A spatial type extension package (STEP) should be able to
cooperate with any extensible DBMS that offers a suitable interface regardless of its data model.

VLDB Journal 4 (2) Giiting: Realm-Based Spatial Data Types 245

these criteria. A central idea is to introduce into the DBMS the concept of a
realm, a finite, user-defined structure that is used as a basis for one or more system
data types. Realms are somewhat similar to enumeration types in programming
languages. A realm used as a basis for spatial data types is essentially a finite set
of points and non-intersecting line segments. Intuitively, it describes the complete
underlying geometry of an application. All points, lines, and regions associated with
objects (spatial attribute values) can be defined in terms of points and line segments
present in the realm. In fact, spatial attribute values are created only by selecting
some realm objects. They are never created or updated directly. Instead, updates
are performed on the realm and from there propagated to the dependent attribute
values.

Hence, all attribute values occurring in a database are realm-based Furthermore,
the algebraic operations for the spatial data types are defined to construct only
geometric objects that are also realm-based. So the spatial algebra is closed with
respect to a given realm. This means that no two values of spatial data types
occurring in geometric computation have "proper" intersections of line segments.
Instead, two initially intersecting segments already have been split at the intersection
point when they were entered into the realm. One could say that any two intersecting
SDT values (say, lines or regions) "have become acquainted" already when they
were entered into the realm. This is a crucial property for the correct and efficient
implementation of geometric operations.

Realm objects (points and segments) are defined not in abstract Euclidean space
but in terms of finite representations. All geometric primitives and realm operations
(e.g., updates) are defined in error-free integer arithmetic. To map an application's
set of intersecting line segments into a realm's set of non-intersecting segments,
redrawing and finite resolution geometry is used (Greene and Yao, 1986). Although
intersection points computed with finite resolution in general move away from their
exact Euclidean position, this concept ensures that the unavoidable distortion of
geometry (i.e., the numerical error) remains bounded and very small, and that
essentially no topological errors occur (see Section 2; G/iting and Schneider, 1993).
This means that a programmer has a precise specification that directly lends itself
to a correct implementation. It also means that the spatial algebra obeys algebraic
laws precisely in theory as well as in practice. Furthermore, realms also solve the
geometric consistency problem.

Most closely related to this work are the formal definitions of spatial data
types (or algebras) (Giiting, 1988a, 1988b; Scholl and Voisard, 1989; Gargano et
al., 1991; Voisard, 1992). None of these proposals fulfills all of the criteria given
above. Giting (1988a, 1988b) provided data types for points, lines, and regions,
but they are too restricted (e.g., a region is a single simple polygon without holes).
Scholl and Voisard (1989) defined general regions, and Voisard (1992) extended
this to general types for points and lines. However, the definitions are unnecessarily
complex. Gargano et al. (1991) gave only a single type for all kinds of geometric
objects; a value is essentially a set of sets of pixels. We feel this is not sufficient,

246

since many interesting spatial operations cannot be expressed. Although all of these
proposals give formal definitions, those of Gfifing and of Scholl and Voisard were
not based on finite resolution; hence the numeric correctness problems are not
addressed. Gargano et al. based their definitions on a finite underlying set of pixels,
but this is not practical since these finite representations are far too large to be
efficiently manageable. The geometric consistency problem is not solved in any of
these proposals; there is some weak support in Gfiting (1988a) through an area
data type, but it is not sufficient. Finally, all three proposals connected their spatial
types to a fixed data model: Gfiting and Gargano et al. to the relational model, and
Scholl and Voisard to a complex object algebra. Only Scholl and Voisard emphasize
a clean interface between the spatial algebra and the general object model. We
extend their work by offering an abstract interface not dependent on any particular
data model.

Separating geometric primitives from the remainder of geometric modeling
already was proposed by Frank and Kuhn (1986). Because of the conflict between
the infinite precision real numbers of Euclidean geometry and the finite precision
number systems of computers, they suggest abandoning coordinate-based geometry
to consider only the topological structures of point sets underlying spatial values.
Their topological data model (continued by Egenhofer et al., 1989) is based on
simplicial complexes and has a similar purpose as our concept of realms. Essentially
they offer an irregular triangular network partition of the plane as a geometric
domain over which spatial objects could be defined. However, the connections are
missing to the underlying finite arithmetic, as well as to spatial data types based on
this model. Also, in our view, a triangular partition contains too much information;
it is sufficient to keep those points and segments needed for spatial attribute values
in a geometric domain. Finally, their model is an abstract one, whereas we show
realms within a database context.

Our description and formal development of realm-based spatial data types was
begun in a previous article (Gfiting and Schneider, 1993), in which the lower layers
were defined, namely numerically robust geometric primitives, realms and their
update operations, and a number of realm-based structures (e.g., cycles and faces),
and primitives. In the present article, the spatial data types points, lines, and regions
and their operations, that is, the RObust Spatial Extension (ROSE) algebra, are
described and defined formally. Related issues, such as modeling partitions of the
plane within the type system and an abstract object model interface, are addressed.
We also show how the ROSE algebra can be integrated with a DBMS data model
and query language, using 02 as an example. In the following section, we provide
an informal overview of the complete concept.

2. Overview: Realm-Based Spatial Data Types

A realm is a set of points and non-intersecting line segments over a discrete domain,
that is, a grid, as shown in Figure 1. Values of spatial data types can be composed

VLDB Journal 4 (2) Giiting: Realm-Based Spatial Data Types 247

Figure 1. Example of a realm

Figure 2. Realm objects defined over the realm of Figure 1

from the objects present in a realm. Figure 2 shows some values definable over
the realm of Figure 1. Our realm-based spatial data types are called points, lines,
and regions, hence A and B represent region values, C is a lines value, and D a
points value. The precise structure of these values is not yet relevant here. One
can imagine that A and B belong to two adjacent countries, C represents a river,
and D a city.

The underlying grid of a realm arises simply from the fact that numbers have
a finite representation in computer memory. In practice, these representations will
be of fixed length and correspond to INTEGER or REAL data types available in
programming languages (or to special, higher precision implementations of number
systems). Of course, the resolution is much finer than can be shown in Figure 1.

248

The concept of a realm as a basis of spatial data types serves the following
purposes:

�9 It enforces geometric consistency of related spatial objects. For example, the
common part of the borders of countries A and B is exactly the same for
both objects.

�9 It guarantees nice closure properties for the computation with spatial data
types above the realm. For example, the intersection of region B with line C
(the part of river C lying within country B) is also a realm-based lines value.

�9 It shields geometric computation in query processing from numeric correctness
and robustness problems. This is because such problems arise essentially from
the computation of intersection points of line segments which normally do not
lie on the grid. With realm-based SDTs, there are never any new intersection
points computed in queryprocessing. Instead, the numeric problems are treated
below the realm level, namely, whenever updates are made to a realm.

�9 Additionally, a data structure representing a realm can be used as an index
to the database. Our implementation concept assumes that each point and
segment in a realm has an associated list of logical pointers to the spatial
attribute values defined over it in the database.

Let us now focus on the treatment of numerical correctness problems below
and within the realm level. This is necessary because geometric data coming from
the application are not intersection-free, as required for a realm. Application data
can at the lowest level of abstraction be viewed as a set of points and intersecting
line segments. These need to be transformed into a realm. As mentioned before,
the fundamental problem is that intersection points usually do not lie on the grid.

In Figure 3, the intersection point D ~ of line segments A and B will be moved
to the closest grid point D. This leads to the following topological errors: (1) A
test whether D lies on A or B fails. (2) A test whether D lies properly within
some area defined below A and B will incorrectly yield true. (3) If there is another
segment C between the true intersection point and D, D will be reported to lie
on the wrong side of C. The basic idea to avoid these errors, is to slightly change
segments A and B by transforming them into chains of segments going through D,
as shown in Figure 4. However, this allows a segment to drift (through a series
of intersections) by an arbitrary distance from its original position. For example,
a further intersection of A with some segment C (Figure 5) is resolved as shown
in Figure 6, where intersection point E is already a considerable distance from the
true intersection point of A and C. Note in particular that, in Figure 6, segment A
has been moved to the other side of a grid point (indicated by the arrow) which
may later be reported to lie on the wrong side of A.

A refined solution was proposed by Greene and Yao (1986). They defined for
a segment s an envelope E (s) as the collection of grid points that are immediately
above, below, or on s. An intersection of s with some other segment may lead

VLDB Journal 4 (2) Giiting: Realm-Based Spatial Data Types 249

Figure 3. Figure 4.

�9 !!: i!

Figure 5. Figure 6.

to a requirement that s should pass through some point P on its envelope (the
grid point closest to the true intersection point). This requirement is then fulfilled
by redrawing s by some polygonal line within the envelope rather than by simply
connecting P with the start and end points of s. Figure 7 shows a segment s (drawn
fat) together with the grid points of its envelope. Slightly above s, a redrawing of
s through P is shown.

Intuitively, the process of redrawing can be understood as follows: Think of
segment s as a rubber band and the points of the envelope as nails on a board. Now
grip s at the true intersection point and pull it around P. The resulting polygonal
path is the redrawing. The number of segments of this path is, in the worst case,
logarithmic in the size of the grid, but it seems that in most cases only very few
segments are created. This approach guarantees that the polygonal line describing
a segment always remains within the envelope of the original segment. We adopt
the technique for realms. It then means that, by redrawing, a segment never can
drift to the other side of a realm point. However, it still might happen that, after

250

Figure 7. Redrawing of segment s through envelope point p

P

a redrawing, a realm point is found to lie on a segment on which it did not lie
originally.

The formal definition of realm-based SDTs is organized as a series of layers.
Each layer defines its own structures and primitives, using the notions of the layers
below. These layers are described bottom-up in Gfiting and Schneider (1993) and
in the rest of this article. Let us briefly provide an overview of this development.

The lowest layer introduces robust geometric primitives. It defines a discrete space
N x N where N = {0, ..., n -- 1} is a subset of the natural numbers. The objects
in this space are points and line segments with coordinates in N, called N-points
and N-segments. A number of operations (predicates) such as whether an N-point
lies on an N-segment or whether two N-segments intersect, and which N-point is
the result of intersecting two N-segments, are defined. The crucial point is that
these definitions are given in terms of error-free integer arithmetic; hence they are
directly implementable.

Next, geometric realms are defined as described above; elements are called
R-points and R-segments. Basic operations on realms are insertion and deletion of
N-points and N-segments, which may trigger the redrawing of segments as described
above. Realms offer an interface to cooperate with a database system. For example,
the operation of inserting an N-segment returns a modified realm, a redrawing of
the inserted segment, and a set of redrawings of segments in the database that need
to be modified together with logical pointers to database representations of these
segments.

The second layer defines certain structures present in a realm that serve as a
basis for the definition of SDTs. A realm can be viewed as a planar graph; an
R-cycle is a cycle of this graph. An R-face is an R-cycle possibly enclosing some
other disjoint R-cycles corresponding to a region with holes. An R-unit is a minimal
R-face. These three notions support the definition of a regions data type. An
R-block is a connected component of the realm graph; it supports the definition of
a lines data type. For all of these structures, there are also predicates defined to
describe their possible relationships.

VLDB Journal 4 (2) G/iting: Realm-Based Spatial Data Types 251

This completes the scope of Giiting and Schneider (1993). The remainder
of this article is organized as follows: The definitions of the first two layers are
reviewed in Section 3. Section 4 introduces the third layer, spatial data types points,
lines, and regions, and defines the structure of corresponding values. The following
two sections prepare the definition of the fourth and final layer. In Section 5, a
flexible type system is introduced that allows one to precisely describe polymorphic
operations. In Section 6, the object model interface (OMI) is defined. As a top layer,
the ROSE algebra is described in Section 7. In Section 8, we show how the ROSE
algebra can be integrated with a given DBMS data model and query language,
choosing 02 as an example. Section 9 concludes the work and offers suggestions
for future research.

3. Robust Geometric Primitives, Realms, Realm-Based Structures

In this section, we review the concepts and formal definitions from Gfiting and
Schneider (1993) as a basis for defining the ROSE algebra. We have already
mentioned that there are several layers of definitions, each of which introduces its
own structures and operations and uses the notions of the layers below. To distinguish
operations of the various layers we use the following typographical convention:

�9 Layer l-robust geometric primitives: underscore (e.g., intersect)

�9 Layer 2-realms, realm-based primitives: underscore italic (e.g., area-disjoint)
�9 Layer 3-spatial algebra primitives: bold italic (e.g., area-disjoint)
�9 Layer 4-ROSE operations: bold (e.g., inside)

A summary of the various layers with their objects and operations is given in the
Appendix.

3.1 Robust Geometric Primitives

The lowest layer introduces a finite discrete space N • Nwith N = {0, ..., n--1} C N,
points and line segments over this space, and some simple predicates and operations
on them. All definitions are based on error-free integer arithmetic, which enables
direct and robust implementation. An N-point is a pair (x, y) C N • N. An N-segment
is a pair of distinct N-points (p, q); the segments (p, q) and (q,p) are defined to
be equal. PN denotes the set of all N-points, and SN the set of all N-segments.
Formal definitions of robust geometric primitives defined on N-points and N-segments
were given by Gtiting and Schneider (1993). We explain the primitives informally
here: Two N-segments meet if they have exactly one end point in common. They
overlap if they are collinear and share a (partial) N-segment. If they have exactly
one common point but do not meet, they intersect. They are disjoint if they are
neither equal nor meet nor overlap nor intersect. The on primitive tests whether an
N-point lies on an N-segment; the ~ primitive does nearly the same, but the N-point
must not coincide with one of the end points of the N-segment. The intersection

252

primitive calculates the intersection point of two N-segments and rounds it to the
nearest N-point.

3.2 Realms

Realms serve as a basis for SDTs and essentially represent a finite, user-defined
set of points and non-intersecting line segments over a discrete domain. Given N,
a realm over N (N-realm for short) is a set R = P U S such that

(1) e C_ PN, S C_ SN
(2) V s C S : s = (p,q) :=~p C P A q C P
(3) V p 6 P V s C S : --1 (p m s)
(4) V s, t E S, s 7~ t : -1 (s and t intersect) A ~ (s and t overlap)

The elements of P and S are called R-points and R-segments. There is an obvious
interpretation of a realm as a spatially embedded planar graph with set of nodes
P and set of edges S.

3.3 Realm-Based Structures and Primitives

This layer defines structures and relationships between these structures that can
be discovered within a realm, and that are useful for the definition of SDTs. A
realm can be viewed as a planar graph; informally, an R-cycle is a cycle of this
graph. An R-face is an R-cycle that possibly encloses some other disjoint R-cycles
that correspond to a region with holes. An R-unit is a minimal R-face. These three
notions support the definition of a regions data type. An R-block is a connected
component of the realm graph; it supports the definition of a lines data type. For
all of these realm-based structures, predicates (primitives) are defined to describe
their possible relationships. We now review the most important formal definitions.

An R-cycle c is a cycle in the graph interpretation of a realm, defined by a set
of R-segments S(c) = {so, ..., s in - l } , such that

(1) V i C {0, ..., m - l } : si meets s(i+l) rood m

(2) No more than two segments from S (c) meet in any point p.

Obviously the following relationships may exist between an N-pointp and an R-cycle
C:

(1) p o n c : r 3 s C S(c) : p o n s

For p = (x,y) let sp = ((x,y), (x, n--1)) (i.e., a vertical segment extending from p
upwards to the edge of the grid). Let St(c) be the set of segments in S(c) whose
right end point, but not the left one, is on sp (the left end point is the smaller one
of the two end points in the (x;y)-lexicographical order). Let Si(c) be the segments
in S(c) that intersect sp. Then

(2) p i n c : r -n p o n c AIsr(c)I + Is (c)l is odd
(3) p o u t c : ~:~ --1 (p o n c V p i n c)

Figure 8. Possible relationships between two R-cycles

C l ~

c 2 ,

VLDB Journal 4 (2) Gfiting: Realm-Based Spatial Data Types 253

Hence, c partitions the set PN into three subsets Pin(c), Po~(C), and Pout(C).
Let P(c) := Pon(C) t_) Pin(c).

Cycles are interesting because they are the basic entities for the definition of
regions over realms. The relationships shown in Figure 8 may be distinguished
between two R-cycles cl and c2. The following terminology is introduced for these
configurations:
c2 is

�9 (area-)inside (i,ii, iii)

�9 edge-inside (ii,iii)

�9 vertex-inside (iii)

C 1 �9

cl and c2 are

�9 area-disjoint (iv, v,vi)

�9 edge-disjoint (v,vi)

�9 (vertex-)disjoint (vi)

This means that (i) c2 is (w.r.t. area) inside cl; (ii) c2 additionally has no common
edges with cl; and (iii) c2 has not even common vertices with cl. Similarly, (iv) c2
is disjoint (w.r.t. area) with cl; (v) additionally has no common edges with cl; and
(vi) has not even common vertices with cl. The standard interpretation of the term
inside is area-inside, and the standard interpretation of the term disjoint is vertex-
disjoint. Furthermore, there are two positive notions: c 1 and c2 are adjacent if they
are area-disjoint and have common edges, and they meet if they are edge-disjoint
and have common vertices. The predicates are formally defined as follows:

cl (area-)insidee c2

cl edge-inside c z

el vertex-inside c2

et, c2 are area-disjoint

el, c2 are edge-disjoint
el, c2 are (vertex.)disjoint
Cl, ca are adjacent

cl, c2 meet

: r P (c l) C P(c2)

: 4=~ cl area-inside c2 A S(Cl) N S(c2) =

: ~=k cl edge-inside c2 A Pon(Cl) ('1 Pon(C2) =
: P (cl) N e(c) = Pie(c2) • P (c l) =

: r cl, c2 are area-disjoint A S(Cl) f3 S(c2) =

: r cl, c2 are edge-disjoint A Pon(Cl) 71 Pon(c2) =
: r cl, c2 are area-disjoint A S (cl) 71 S (c2) r

: ~ c~, c 2 are edge-disjoint A Pon(Cl) f3 Port(C2) gs

254

Figure 9. Possible relationships of R-segment lying within R-cycle
�9 s (area-) inside c (i, ii, iii)

�9 s edge- ins ide c (ii, iii)

�9 S vertex-irt~ide c (iF1)

Figure 10. Possible relationships of R-point lying within R-cycle

�9 p (area-) inside c (i, ii)

�9 p ver tex- ins ide c (ii)

One can observe similar ways that an R-segment s can lie within an R-cycle c (Figure
9). For an R-pointp and an R-cycle c, we have two possibilities (Figure 10). Formal
definitions are left to the reader.

Based on the concept of R-cycles, for the definition of a SDT for regions the
notions R- face and R-un i t are introduced, which describe regions from two different
perspectives, and which are used equivalently. Both of them essentially define
polygonal regions with holes. An R-unit is a "minimal" R-face in the sense that
any R-face within the R-unit is equal to the R-unit. Hence, R-units are the smallest
region entities that exist over a realm. In the next section, a region (data type) will
be defined that can be viewed either as a set of R-faces or, equivalently, as a set of
R-units. The first view emphasizes a minimal representation of the boundary of a
region, whereas the latter view supports the definition of set operations for regions.

An R-face f is a pair (c, H) where c is an R-cycle and H = {hi, ..., hm} is a
(possibly empty) set of R-cycles such that the following conditions hold (let S (f)
denote the set of segments of all cycles of f):

(1) V i C {1, ..., m} : hi edge- ins idec

(2) k/i,j C {1, ..., m } , i • j : h i and h j are edge-disjoint

(3) Each cycle in S (D is either equal to e or to one of the cycles in H (no other
cycle can be formed from the segments of f)

The first two conditions allow a hole within a face to touch in a vertex the boundary
cycle c or another hole. This is necessary to achieve closure under operations (e.g.,
subtracting face g from face f may lead to a hole in 3'). On the other hand, to
allow two holes to be area-disjoint makes no sense, because adjacent holes could
be merged by eliminating common boundary segments (similarly for adjacency of a
hole with the boundary). The last condition ensures uniqueness of representation,
that is, there are no two different interpretations of a set of segments as sets of
faces. Note that, in a given set of faces, it is entirely possible for a hole of one
face to contain some other faces ("islands").

VLDB Journal 4 (2) Gfiting: Realm-Based Spatial Data Types 255

Figure 11. Example of relationship f area-inside g

g~ B

m

The grid points belonging to an R-face f are defined as P(f) := P(c) \ U
i=1

Pin(hi). The possible relationships between an R-point p or an R-segment s and an
R-face f = (c,/-/) are:

1. p(area-)inside f :r p area-inside c AV h C H : -7 p vertex-inside h

2. s (area-)inside f :r s area-inside c AV h E H : --1 s edge-inside h

The various notions of inside and disjoint can be extended for the comparison of

two R-faces f = (f0, if) and g = (go, G), for example:

f(area-)inside g :~r fo area-inside go A V g C -G : g area-disjoint fo V 3 f C F :

g area-inside]~

This definition is illustrated in Figure 11.

f area-disjoint g

:r fo area-disjoint go V 3~, C -G : fo area-inside ~, V ~]~ E ff : go area-inside

f edge-disjoint g

: ~ fo edge-disjoint go V 3 ~ C -G : fo edge-inside g V ~]~ E ff : go edge-inside]e

The meaning of the remaining predicates edge-inside, vertex-inside, vertex-disjoint,
adjacent, and meet should be clear; definitions are omitted for brevity. We add a
primitive encloses:

f encloses g : ~=~ 3] ~ E ff : go area-inside f

An R-unit as a minimal R-face is defined as follows. Let F (R) denote the set of
all possible R-faces. Let f be an R-face.

f i s an R-unit : ~=~ V g E F (R) : g area-inside f ~ g = f

Figure 12. Example of an R-face which is not an R-unit
i

256

We denote the set of all R-units by U(R). Figure 12 shows an example of a realm
with all its R-units ui and an emphasized R-face which is not an R-unit.

In G/iting and Schneider (1993), the equivalence of two representations of a
region over a realm is formally established, namely, as a set of (pairwise) edge-
disjoint R-faces, and as a set of area-disjoint R-units. Operations called faces and
units are defined to convert between the two formal representations. Hence, the
equivalence can be expressed as: V F C_ F(R): faces(units(F)) = F. The units
operation is defined as units (F) := {u E U (R) [3 f E F : u area-inside.f}. The faces
operation Works as follows: From a given set of area-disjoint R-units, its multiset
of boundary segments is formed. Then, all segments occurring twice are removed.
The remaining set of segments defines uniquely a set of edge-disjoint R-faces. As
a result, we can now convert freely between the two formal representations, and
use the more convenient one in the definition of operations.

Let T be a set of R-segments, that is, T C_ S. Then, cycles (T) denotes the set
of all cycles (in the graph interpretation of realm R) that can be formed from
segments in T. Furthermore, we say that a set T of R-segments describes a set of
pairwise edge-disjointR-faces : r there is a set of edge-disjoint R-faces F such that
T = S (F). If T describes a set of edge-disjoint R-faces, then a function regions (7)
is defined to return this set of faces.

For the definition of an SDT for lines, the notion of an R-block is introduced.
A set T of R-segments is called connected : ~ V r, t E T 3 s l , ,,., sm E T : r = sl,
t = sin, and V i E (1, ..., m -- 1} : si and si+l meet. An R-block b is a connected
subgraph in the graph interpretation of a realm, defined by its set of R-segments

VLDB Journal 4 (2) Giiting: Realm-Based Spatial Data Types 257

Figure 13. p is meeting point, p' is not meeting point

b ~ ~ b 2

S(b). Two R-blocks bl and b2 are disjoint : <=~ V S 1 C S(bl) V s2 C S(b2) : Sl and
s2 are disjoint. For an R-point p, we consider the angularly sorted cyclic list Lp of
R-segments s C S(bl) U S(b2) that meet in p. p is called a meeting point if Lp is
the concatenation of two sublists Lp, 1 and Lp, 2 s o that all R-segments of Lp, 1 a r e

elements of S (bl) and all R-segments of Lp,2 a r e elements of S (b2), or vice versa
(see Figure 13).

Let bl and b2 be two R-blocks.

bl and b2 meet :r 3 s C S(bl) 3 t C S(b2) : s and t meet in a meeting point /~

V s E S (b l) V t E S(b2) : sTLt A
(s and t meet in p ~ p is a meeting point)

bl and b2 intersect :r V s C S(bl) V t C S(b2) : s 7 ~ t A 3 s E S(bl) S t E S(b2) :
s and t meet in p /~ p is not a meeting point

Again, we have two equivalent representations of a lines value, namely, as a set of
segments, or as a set of disjoint R-blocks. For a set of segments T C S, blocks (7)
denotes its partition into maximal connected components. Then, S (blocks (I)) =
T.

Some primitives relate an R-block b and an R-face f.

b (area-)insidef :~=~ V s C S(b) : sarea-insidef
b andfmeet :~=~ V s E S (b) : --7 sarea-insidefA3sCS(b) 3 t C S (f) :

s and t meet

b and fintersect:r162 3 s E S (b) : s area-insidef

Embedding N-points in the E, uclidean plane, we can define the distance dist (p,q)
between two N-points, the length length (s) of an N-segment, and the area area.. (c)
inside an R-cycle in the usual way. The area inside an R-face f = (c,H) is defined

as area (f) : = area (c) - Z area (h).
hEH

4. Realm-Based Spatial Data Types

The realm-based structures reviewed in the previous section form the basis for a
definition of spatial data types. The basic types introduced are called points, lines,

258

and regions, 2 and will be part of a spatial algebra defined in Section 7. There is a
"fiat" and a "structured" view of values of these types. The fiat view is the following:

For a given realm R, a value of type points is a set of R-points,
a value of type lines is a set of R-segments, and
a value of type regions is a set of R-units.

The structured view that we assume as the formal definition is as follows:

For a given realm R, a value of type points is a set of R-points,
a value of type lines is a set ofpairwise disjoint R-blocks, and
a regions value is a set ofpairwise edge-disjoint R-faces.

In Gtiting and Schneider (1993), we showed that the two views are equivalent.
The first view is conceptually very simple and supports a direct understanding of
set operations. The second view is "semantically richer" and shows lines and regions
values as consisting of a number of components (blocks or faces). Moreover, it
allows one to express relationships between these components and also emphasizes
the representation of the boundary in case of regions. Note that a regions value may
have holes. Holes are important because (1) they allow for an adequate modeling
of area features, and (2) they make it possible to obtain closure under point set
operations. Figure 14 illustrates the data types.

It should be obvious that these data types have very nice closure properties. They
are closed under the geometric operations union, intersection, and difference with
regard to the same realm. That is, the result of such an operation is a realm-based
value as well, and corresponds to the definitions of the spatial data types given
above. The geometric operations can be reduced to the corresponding set-theoretic
ones, and are defined as follows. Let P1, P2 be twopoints values, L1, L2 two lines
values, and R1, R2 two regions values. Then

union (P1,/~ := PIU P2
union (L1, L 2) : = blocks(S(L1) tO S (L2))

union (R1, R2) := faces (units (R1) t2 units (R2))

For intersection and difference, the definitions are analogous. Due to the underlying
realms, these operations both in theory and in practice obey the usual algebraic
laws (e.g., commutativity, associativity, distributivity).

The realm-based primitives reviewed in the previous section offer a formal
basis for the definition of spatial algebra primitives of which union, intersection, and
difference have just been introduced. The following further primitives are needed.
Let F and G be two regions values.

2. Unfortunately, there is a collision between the typographical conventions for realm-based primitives and
for data types (both underscore italic). It cannot be avoided to remain consistent with G0ting and Schneider
(1993) and G0ting (1993). The latter will be used below as a framework for defining signatures.

VLDB Journal 4 (2) Giiting: Realm-Based Spatial Data Types 259

Figure 14. Examples of spatial values

a t~oints value a lines value a re~ions value

F and G are area-disjoint : ~ , M f E F V g C G : f and g are area-disjoint

F and G are adjacent : tee F and G are area.disjoint A 3 f E F 3 g C G

: f and g are adjacent

The meaning of the remaining predicates (area-)inside, edge-inside, vertex-inside,
edge.disjoint, (vertex-)disjoint, and meet should be clear; definitions are omitted for
brevity. We define two further predicates intersect and encloses:

F and G intersect : r (units (F) fq units (G) ~ ~)

F encloses G : r M g C G 3 f E F : fencloses g

Let P and Q be two points values.

P and Q are disjoint : r P fq Q =

Let K and L be two lines values.

K and L are disjoint : r M k E K M l C L : k and l are disjoint

K and L meet : r (V k E K V l C L : k and l are disjoint V

K and L intersect

k and l meet) A (3 k E K 3 l C L : k and l meet.)

: ~ (M k C K M l E L : k a n d l a r e d i s j o i n t V

k and l intersect) A (3 k C K 3 l C L : k and l intersect_)

Let P be a points value, L a lines
values.

P (area.)inside F :

L (area-)inside F :

L and F meet : r

L and F intersect : r

P on_border_of v : r

v border_in_common w : r

_ _ value, F a regions value, and v, w lines or regions

M p E P 3 f C F : p area-inside f

M l C L 3 f C F : larea-insidef

M l E L Mf C F : -~ l area-insidef A

3 l E L 3 f C F : l a n d f m e e t

3 l E L 3 f C F : l and fintersect

M p C P 3 s = (qb q2) C S (v) : p = qx V p = q2

3 s C S (v) 3 t C S (w) : s = t

260

5. The Type System

The ROSE algebra is a system of spatial data types together with operations between
those types. Many of the operations are applicable to several types. Hence, we
need a framework and notations to describe polymorphic operations. We also need
to express certain constraints for the applicability of some operations. For example,
an adjacency test operation for regions should be allowed only if the two operands
are known to come from a set of disjoint regions (i.e., a partition of the plane).
Similarly, an overlay operation should be constrained to two partition operands and
not be applicable to arbitrary collections of objects with region attributes. In this
section, we briefly review a type system powerful enough to express polymorphic
operations and the mentioned constraints in a precise manner.

5.1 Second-Order Signature

A system of several sets and functions between these sets is called a many-sorted
algebra. A many-sorted signature describes the syntactic aspect of a many-sorted
algebra. It consists of two sets of symbols called sorts and operators; operators are
annotated with strings of sorts. Each sort is the name o f a set of the algebra and
each operator the name o f a function. For example, the symbols lines, regions, and
bool may be sorts, and intersectslinesregions boo___Al an operator. The annotation with
sorts defines the functionality of the operator. A signature defines a set of terms.

Second-order signature, introduced in Gtiting (1993), is a system of two, coupled,
many-sorted signatures where the top-level signature offers kinds (sets of types) as
sorts, and type constructors as operators. The terms of this signature define a
collection of types, that is, a type system. A simple example is shown below. Each
line describes a group of operators (type constructors in this case) with the same
functionality.

kinds DATA, GEO, SET

type constructors

DATA

GEO

GEO --+ SET

int, real, bool

points, lines, regions

se_At

Here/n__bt set, etc. are type constructors that generally have one or more argument
kinds and one result kind. A type constructor with zero argument kinds is called
a constant type. In the example above, all constructors except for set are constant
types. The terms of this signature, and therefore the available types of this type
system, can be classified by result kinds. For example, there are exactly three types
of kind GEO. The types of kind SET are set (points), set (lines), and set (regions). In
the example, the set of types is finite, but this is generally not the case.

A second, bottom-level, signature uses the types defined by the top-level signature
as sorts. Usually one does not write the bottom-level signature directly; a signature

VLDB Journal 4 (2) Giiting: Realm-Based Spatial Data Types 261

specification allows one to quantify over kinds, and so define polymorphic operations.
For example, we can define:

V data in DATA. data x data ---+ boot =, <~ <_, >_, >

V geo in GEO. geo x regions ---+ bool inside

Here, data and geo are type variables ranging over the kinds DATA and GEO,
respectively. The semantics of such a signature specification is a many-sorted
signature which is obtained by substituting for each type variable all types in the
respective kind. Hence, the first specification says that the comparison operators are
defined for two integers, two reals, or two boolean values. The second specification
defines an inside operator with functionalities points x regions ---+ bool, lines x
regions ---+ boo!, and regions x regions ~ bool.

This completes the description of the basic scheme of second-order signature.
Of course, there are also other ways of specifying polymorphic operations; for a
discussion and references, see G/iting (1993). The basic scheme was extended in
Giiting (1993) to support the definition of flexible database query languages. Some
of these techniques used in this article are:

Extensions of the concept of signature to include "automatically" for a given collection
of types (sorts, to be precise) product types, union types, list types, and function
types. If s, sl, ..., sn and t are sorts, then

�9 (sz x ... x s~) is a sort (product sort, denoting tuples of instances of the si)
�9 (sz U ...U sn) is a sort (union sort, denoting instances in any of the si)
�9 s + is a sort (the sort denoting non-empty lists of instances of s)
�9 (sl x ... x sn --+ t) is a sort (denoting functions from S lx ... x s~ into t).

With these extensions one can, for example, define the following operations:

V geo ill GEO.

(set (geo)) + --+ set (geo) union

set (geo) X (geo --+ bool) --+ set (geo) select

Here the union operator takes one or more operands that are all sets of geometric
values of the same type and returns a set (the union) of this type. The select
operator takes an operand of type set (geo) and a predicate on type geo and returns
a subset of the operand set fulfilling the predicate.

Specification techniques. Two additional specification techniques are illustrated by
the following example:

V geoi in GEO. (set(geoi)) + --~ data: DATA weight

The notation geoi is related to operators with a variable number of operands, and
means that, for each substitution of the variable geoi, an instance of the kind GEO
is selected independently. Hence, one possible operand combination for weight is
set (points) x set (lines) X set (lines). With the quantification "V geo in GEO," all
operands would have to be of the same type (e.g., set(points)).

262

The notation "data: DAT~' is to be read as "some type data in DATA," and
means that there is a type mapping associated with the weight operator. Intuitively,
the idea is that the operator itself determines the result type within the kind DATA,
depending on the given operand types. This is sometimes useful when it is not
possible or desirable to describe the result type precisely in the signature. To define
the semantics of such an operator, one needs to supply a type mapping function
(as a part of a second-order algebra; Gfiting, 1993). In this example, the weight
operator might return a value of type int if all operands are sets of points (and
return the total number of points), and a value of type real otherwise (say, the total
area or length). Some examples of meaningful operators with type mappings occur
in the ROSE algebra defined below.

Dynamic kinds. (This extension was not covered in G/iting, 1993). Sometimes it is
necessary to modify dynamically the set of instances of a kind, that is, to create
new types. For a kind K, the notation new (K) creates a new (anonymous) type in
K; the value of new (K) is a type that can be used in type expressions.

5.2 Type of Partition

The term partition refers to a disjoint subdivision of the plane into regions with
associated (non-spatial) attributes. For partitions, one would like to define special
operations like testing for adjacency (of two regions of a partition) or overlay (of
two partitions, resulting in a new partition). The question is how partitions can be
described in a type system so that the operations can be constrained to partition
operands.

We feel that a partition should be modeled as a set of objects with associated
regions attribute values and an additional constraint that for any pair of objects
in one particular partition, their regions values are disjoint (i.e., we would like to
model and manipulate sets of values such that for any two distinct values in such
a set a certain condition holds). To consider an example different from partitions,
let us assume we would like to model sets of integers with the property that there
are no two consecutive integers in the set.

The idea to make this possible in the type system is to introduce restriction
types and to collect them within a special kind. Let d be a data type and p be a
binary predicate on d. Then d p denotes a kind; each type d ~ in d p describes a set
of values of type d such that for any two distinct elements of d ~ the predicate p
holds. Furthermore, any such type d ~ is defined to be a subtype of d which means
that all operations defined for type d are also applicable to instances of type dt.

For the "non-consecutive integer" example, we could introduce a predicate
"two-apart" on integers, being true if the difference of the two operands is at least
two. Then in t tw~ denotes a kind whose element types have carrier sets 3 with

3. For a type, its set of ins tances is cal led the carrier.

VLDB Journal 4 (2) Gtiting: Realm-Based Spatial Data Types 263

the desired property. Hence, the set {3, 5, 10} would have a type within this kind
whereas for the set {1, 2, 3} there would not exist a type within kind in__/t tw~
The types themselves are anonymous (i.e., no explicit names for them need to be
introduced).

We use this as follows: The kind regions area'disj~ contains all types whose
carriers are sets of regions values such that any two distinct values of the type

are area-disjoint. A quantification "V area in regions area'disj~ binds the area type
variable to any such type. Hence, an adjacency test can be defined as:

V area in regions area'disj~ area • area --+ bool adjacent

Here, the quantification selects first one particular partition of the plane as a type
area. Hence, it is guaranteed that any two arguments for the operator adjacent are
from the same partition and are either area-disjoint or equal. Note that, when a
new partition is created in query processing, we can obtain a corresponding new
anonymous type for it with the notation new(regionsarea'disjoint).

On the side of the database system, this should be supported by making it possible
to define restriction types and to use them as attribute domains. For example, assume
an operation a r ea_d i s j o in t , applicable to values of type reg ions , has been made
known to the DBMS. One might write:

type mycountries = restrict (regions, area_disjoint);
class states (name: string; region: mycountries; pop: integer)

An insertion of a new object into class s t a t e s should then at least conceptually
be viewed as preceded by an insertion of a new reg ions value into the extension
of type mycountries. It should be checked that the new value is area_disjoint
with all values already present.

6. Object Model Interface

Spatial data types as such are of little use unless they are integrated into a DBMS
data model and query language. On the other hand, the definition of SDTs should
be valid regardless of any particular data model and, therefore, not dependent on
it. Consequently, SDTs should not be firmly embedded into a particular DBMS
data model. Instead, the SDT definition should be based on an abstract interface
to the DBMS data model, which we call the object model interface (OMI). Different
DBMS data models can then use the spatial algebra as a provided resource for
dealing with geometry. In this section, we define an object model interface for the
ROSE algebra. In fact, there are two aspects of the interface: (1) There are basic
concepts and operations in the object model that are needed to define the ROSE
algebra, and (2) there are constructs and notations needed to embed the ROSE
algebra into the query language, that is, to use the ROSE algebra.

264

6.1 Object Model Interface Concepts for Defining the ROSE Algebra

The concepts needed to define the ROSE algebra are the following:

�9 object types/classes
�9 collections of objects
�9 functions for accessing (attribute) values from objects
�9 data types/nt, real, bool
�9 a pool of names (for new objects/functions)
�9 an object aggregation function
�9 an object extension function

Object types~classes. We assume that each DBMS data model has some notion of
one or more object types or classes. For example, in a relational system, this would
be relations; in an object-oriented system we may have object class hierarchies, and
objects may have a complex structure. In terms of our type system, we model this
by a kind OBJ; each DBMS object class is represented as a type obj in OBJ.

Collections of objects. The structures manipulated in (and obtained as a result of)
queries may be sets of tuples, nested relations, sequences of object identifiers, graphs,
etc. The most simple, universally valid and data model-independent abstraction is
that of a set of objects. If a set of objects is not directly available, the DBMS data
model must provide functions to transform its structures containing objects into a
set of objects, and vice versa. In the type system we have a type constructor set
applicable to object types.

Functions for accessing attribute values. The OMI views an object as an abstract entity
whose internal structure is hidden. It is assumed that objects may have associated
values of standard or spatial data types, and that these values can be accessed by
means of attribute functions of type obj ---+ data, for any type obj in OBJ and data
type data.
Data types int, real, bool. We assume that standard data types for integers, real
numbers, and boolean values exist. Some ROSE operations yield results of these
types.

Apool of names. Some operations require (new) names as parameters, in particular
for introducing derived attributes (attribute functions). We introduce this pool of
names as a type ident in a kind IDENT.

Object aggregation function. Some spatial operations construct new objects as "ag-
gregation objects." For that purpose the DBMS data model has to provide a |
(product) function which for two objects 01 of type objl and o2 of type obj2 forms
an aggregation object 01@ 02. The same symbol is used to denote a corresponding
type mapping operation; hence there is also a product type objl| obj2 and object
ol | 02 is of type objl | obj2. On the product type all attribute functions defined on
either objl or obj2 are valid; this should be expressed by the type mapping (defined
within th---e object model). In a relational setting, this corresponds to concatenating

VLDB Journal 4 (2) Giating: Realm-Based Spatial Data Types 265

two tuples when forming a join; the result tuple has the attributes of both operand
tuples.

Object extension function. Sometimes it is necessary to add an attribute to objects of
a given object type. For that purpose the DBMS data model must offer an extension
function denoted by @. At the instance level, this operation adds a data type value
to an object, hence o @ v is an object o extended by a value v. At the type level, the
given object type obj is extended by an attribute function attr mapping objects into
values of some data type data. Hence, obj @ (attr, data) denotes such an extension
type of which o @ v is an instance if o has type obj and v has type data.

6.2 Embedding the ROSE Algebra into a DBMS Query Language

This part of the object model interface contains requirements about certain DBMS
query language notations and constructs needed to embed and fully use the ROSE
algebra. Facilities are needed to

�9 denote a (spatial) data type value
�9 denote a collection of objects together with an attribute (attribute function)
�9 extend objects by derived (attribute) values
�9 allow naming of an SDT value or a new attribute
�9 offer a grouping operation.

To show why these facilities are needed, we give a brief preview of some operations
of the ROSE algebra:

V obj in OBJ. V geo, ge01, ge02 in GEO.

geo • regions

lines x lines

set(obj) x (obj--+geol) x ge02

set(obj) x (obj--+geol) x ident

-+ bool inside
--~ points intersection

--* set (obj) closest

set (o:OBJ) decompose

The meaning of the first two operations should be obvious. The closest operator
takes a collection of objects together with a spatial attribute function and a further
SDT value v, and returns those objects whose attribute value is closest to v (usually
one object). The decompose operator also takes a collection of objects with a spatial
attribute. It produces a new collection of objects as follows: For each object in the
operand set, its attribute value is decomposed into its components (a component
is a point, a block, or a face). If there are n components, then n copies of the
original object are produced, each of which has one component as the value of a
new attribute. The name of the new attribute is supplied as the third parameter of
type ident.

We now discuss each of the mentioned facilities in turn and illustrate them in
the context of the relational model by (1) showing corresponding notations from
geo-relational algebra (G/iting, 1988a, 1988b) and (2) by extensions that might be
used for SQL. In examples, these relations are used:

266

cities (cname: string; center: points; pop: int)
states (sname: string; territory: regions; language: string)

Denote a data type value. This is needed to supply operands to operations such as
inside or intersection. There are two cases: (1) within the scope of an "object set
iteration," and (2) without object set iteration. In the first case, each object in a
set is considered in turn, and it suffices to write down the name of an attribute to
denote a single data type value.

QI: Calculate the population (in thousands) of all cities in Germany.

(a) cities select[center inside Germany] extend[pop/1000 {thousands}]
(b) select cname, thousands: pop/1000

from cities
where center inside Germany

Here, within the scope of a select or extend operator of geo-relational algebra, or
within the where-clause or select-clause of SQL, we have an "object set iteration."
An attribute name denotes a data type value.

In the second case (without object set iteration), one would like to refer to a
single data type value, in particular, to the attribute value of some specific object.
A notation is needed to identify a single object and to access one of its attributes.
In the geo-relational algebra, this is done by an extract operator. An error message
should appear if none or more than one object is identified by the condition.

Q2: Provide the geometry of the city Hagen (assuming there is only one "Hagen"
in the cities relation).

(a) cities extract[cname = "Hagen"; center] {Hagen}
(b) let Hagen

extract center
from cities
where cname = "Hagen"

Here, we have extracted a single points value from the cities relation. We have also
assigned a name (Hagen) to this value so that it can be used in later queries.

Denote a collection o f objects together with an attribute. This is needed for operations
like closest or decompose. Recall the signature for closest:

set(obj) • (obj --+geol) • geo2 --+ set(obj) closest

We need a notation to supply the two related operands set (obj) and (obj --+ geol).

Q3: Determine the city or cities closest to Hagen.

(a) cities seleet[cname 5 ~ "Hagen"] Hagen closest[center]
(b) closest Hagen

column center
from cities
where cname r "Hagen"

VLDB Journal 4 (2) Gating: Realm-Based Spatial Data Types 267

In this example, "cities" corresponds to the set (obj), and "center" to the (obj ---+
geol) operand. In geo-relational algebra, the set of objects is written first, and then
the points value (the geo2 operand); the attribute is given separately in brackets.
For an extended SQL, we suggest a column o~ from/3 construct to denote a set of
objects/3 with an attribute ol. This construct should be viewed as returning the two
operands separately, because they are needed by the ROSE algebra. In contrast,
writing select ce from/3 would yield a set (or multiset) of attribute values, that is,
an operand of type set(geol). This is not what the operator needs; in fact, a set of
values is not even available in the ROSE type system given below.

Extend objects by derived (attribute)values. This is needed to make the results of
spatial operations available. In geo-relational algebra, this is provided by the extend
operator; in SQL, by expressions in the select-clause, as in query Q1.

Allow namingofan SDTvalue ora new attribute. We have already seen two instances of
this. In query Q2, a name (Hagen) was assigned to an SDT value. An attribute name
must also be provided for derived attributes, as in query Q1. Finally, new attribute
names are needed by operations that construct new objects such as decompose.

Q4: Decompose all states into their basic areas.

(a) states decompose[territory {basic_area}]
(b) decompose into column basic_area

column territory
from states

Here, (a) shows the style for naming the new attribute that would be used in geo-
relational algebra (although there was no decompose operator). For the extended
SQL, we have invented an into column oz construct for the same purpose.

Offer a grouping operation. This is needed to support a "fusion" operation (which
essentially groups a collection of objects and forms the union of the areas in each
group).

Q5: Determine all regions of the states speaking the same language.

(a) states fusion[language; territory]
(b) fusion territory

from states
group by language

These applications of the fusion operator are really abbreviations of the use of
grouping:

(a) states group_by[language; group sum[territory]]
(b) select sum(territory)

from states
group by language

268

In geo-relational algebra and in SQL such a grouping operation is available; it is
used together with a sum aggregate function of the ROSE algebra. There may be
several attributes for grouping and several aggregate expressions.

7. The ROSE Algebra

We are now ready to define the ROSE algebra itself. It is a realm-based algebra,
since data types are defined on realms, and since operations operate on and produce
realm-based spatial values. All values occurring as operands are assumed to be
defined over the same realm.

Defining the ROSE algebra means that we will give a second-order signature with
the types points, lines, and regions, as well as types of the object model interface. The
algebra then consists of carrier sets for the types and functions for the operations.
The carrier sets for the three spatial types have already been defined in Section 4.
In this section, we formally define the functions for all operations.

The type system of the ROSE algebra, as discussed in Sections 5 and 6, is
summarized in the following specification:

kinds IDENT, DATA, EXT, GEO, OBJ, SET
type constructors

--~ IDENT

DATA

EXT

---> GEO

OBJ ~ SET

ident
int, real, bool, ...
lines, regions
points, lines, regions
set

Kind DATA describes the (standard) data types of the object model interface; there
will be other types in addition to the three that are required. There is a kind EXT
just containing types lines and regions, which supports the definition of operations
not suitable for points.

The operations of the ROSE algebra are divided into four groups. For each
group we give an informal introduction, show the signature, and then define the
semantics of the operations.

7.1 Spatial Predicates

These operations compare two spatial values with respect to their topological
relationships and return a boolean value. The predicates' names are self-explanatory.

VLDB Journar4 (2) Giiting: Realm-Based Spatial Data Types 269

V geo in GEO. k~ ext, extl, ext 2

geo X geo ---+ bool

geo x regions ~ bool

regions X regions ---+ bool

extl • ext2 --+ bool

area X area ---+ bool

points x ext ---+ bool

extl • ext2 ~ bool

EXT. V area in regions area'disj~ in

= , ~ , disjoint
inside
area_disjoint, edge_disjoint,

edge_inside, vertexAnside
intersects, meets
adjacent, encloses
on_border_of
border_in_common

For each operator op of the ROSE algebra, we define a function fop that gives the
operator's semantics and that has domains and codomain according to the operator's
signature entry. An underlying realm R is assumed in all definitions. Of course, we
rely on the primitives introduced in Sections 3 and 4.

Let vl, v2 be two values of the same type in GEO. Then
f= (Vl, V2) := (V 1 = I,'2)

fdisjoint(Vl, V2):---- (V 1 and V 2 are disjoint)
Let v be a value of a type in GEO, and F be a value of type regions.

J~nside(V, 17) := (v inside F)
Let vb v2 be each either a lines or a regions value.

J~ntersects(Vl, V2) := (V 1 and v2 intersect)
fmeets(vl, v2) := (Vl and v2 meet)

Let F and G be two regions values of a subtype area in regions area'disj~

fadjacent(F,G) := (F and G are adjacent)
fencloses(F,G) := (F encloses G)

The remaining definitions are omitted; they all just lift spatial algebra primitives to
the ROSE level.

7.2 Operators Returning Spatial Data Type Values

The second group of operations consists of operators returning atomic spatial values as
results. The operators intersection, plus, and minus realize the closure properties of
the ROSE algebra with respect to intersection, union, and difference of two atomic
spatial values. The common_border operator finds the common boundary line(s) of
two regions or lines values. The vertices operator returns the vertex (corner) points of
a lines or regions value, and produces apoints value. The contour operator calculates
a lines value from a regions value's boundary. The interior operator is applied to
a lines value and yields a regions value, which is composed of all regions that are
enclosed by segments of the lines value. If F is a regions value, interior(contour(F))
can be used to remove all holes of F; both operators are not inverse to each other.

270

V geo in GEO. V ext, extl, ext2 in EXT.

points • points --~ points intersection

lines • lines ~ points intersection

regions • regions --~ regions intersection

regions • lines --~ lines intersection

geo • geo --~ geo plus, minus

extl • ext2 ~ lines common_border

ext --4 points vertices

regions --~ lines contour

lines --~ regions interior

Note that the intersection operator applied to two lines values yields a points value,
not a lines value as the set-theoretic intersection of the underlying segment sets
(see operator common_border).

Let P and Q be two points values, K and L be two lines values, and F and G
be two regions values.

fintersection(P, Q) : = intersection(P, Q)
fintersection(K,L) := {p C R 13 s E S (K) 3 t E S (L) : s and t meet in p A p is

not a meeting point}

J~ntersection(F,,G) := intersection (F, G)
J~ntersection(F,,L) :-- blocks({s E S(L) 13 I c F : s insider})

Let vl and v2 both be either two points values, two lines values, or two regions
values.

fplus(Vl, v2) := union (vl, v2)
fminus(Vl, 1;2) := difference (vl, v2)

Let K and L be two lines values, and F and G be two regions values.
fcomraon_border(K,L) := intersection (K,L)
fcommon_border(F,L) :----fcommon_border(L,F):= blocks (S (F) [~ S (L))
fcommon_border(F,G) := blocks (S (F) M S (G))

Let v be a lines or regions value.

fvertices(V) := { p E R 1 3 s E S (v) : s = (p,q)}
Let F = {fl ,- . . , fn} = {(Cl, H1), ..., (cn, Hn)} be a regions value.

T~

fcontour(F) := blocks (U S(ci))
i=1

Let L be a lines value.

finterior(L) := regions (U S(c) --
~ y r (s (r))

{s C S (L)]3 c E cycles (S (L)) : s edge-inside c})

VLDB Journal 4 (2) Giiting: Realm-Based Spatial Data Types 271

Forming the interior of a lines value L is a somewhat more complex operation.
First, the union of all segments that occur in any cycles that can be formed from the
segments of L is computed. From this set of segments, all segments are removed
that lie properly within (edge-inside) some cycle. Hence, only segments of "outer
cycles" remain. Since these segments describe a set of edge-disjoint R-faces, the
regions function can be applied to return a corresponding regions value.

7.3 Spatial Operators Returning Numbers

The third group of operations contains spatial operators returning numbers. The
no_of_components operator yields the number of components (R-points, R-blocks,
or R-faces) of a spatial value. The dist operator calculates the minimal distance
between any two spatial values. The diameter of a spatial value is defined as the
largest distance between any of its components. The length operator calculates the
length of all segments of a lines value. The area operator computes the sum of the
areas of all faces of a regions value. The perimeter operator calculates the sum of
the length of all cycles of a regions value. If we intend to compute only the sum of
the length of the outer cycles and not of the holes of a regions value, we can use
the contour operator to eliminate holes first.

V geo, geol, geo2 in GEO.

geo --4 int no_of_components
geol • geo2 --4 real dist
geo --~ real diameter
lines ---4 real length
regions ---4 real area, perimeter

Let v and w be values of types in GEO. Let L be a lines value, and F be a regions
value.

fno_or_eomponents(V) := card (v)
faiameter(V) := max {dist(p,q) [p, q E fvertices(V)}

fie,,gth(L):= length(s)
s~s(g)

farea(F) := ~ area (f)
f cF

fpo, me,er(F):= length(s)
scS(F)

Note that the four operators diameter, length, area, and perimeter are not invariant
against redrawing (i.e., each of these four operations applied before and after a
necessary redrawing of one or more segments of a lines or regions value will yield
slightly different results). We want to define the dist operator in a way that is

272

invariant against redrawing, since it has a topological as well as a numerical aspect.
Consider a set of spatial objects with a spatial attribute and a spatial reference value
for which the nearest spatial object has to be computed. If the distance calculations
between spatial reference value and spatial attribute value vary depending on possible
redrawings, the answer regarding the nearest spatial object may vary, too, and lead
to topological inconsistency. Note the relationship to the closest operator discussed
below. Therefore, we define the distance function as follows. GP will denote the
set of grid points associated with a spatial value.

For a points value v let GP (v) := v, for a lines value v let GP (v) := E (S (v))
(the union of the envelope points of all segments of v) and, for a regions value v
let GP(v) := E(S(v)) U Pin(v). Then

O, if GP(v) N G P (w) # 0
fdist(V'W) : : min{dist(p,q)~ C GP(v) ,q C GP(w)} otherwise

Although the sets of grid points used in the definition may be very large, this operation
can be efficiently implemented, since it can be reduced to distance computations
between a point p and a segment s. It is only necessary to consider those envelope
points that are neighbors of the intersection point of s with a perpendicular line
going through p.

7.4 Spatial Operators on Sets of Objects

Operators of the last group take sets of objects as operands; some of them create
new sets of objects as a result. The sum operator aggregates over the values of
some spatial attribute of an object set and computes the geometric union of all
these values. The closest operator yields that object of an object set whose spatial
value is nearest to a spatial reference value. The decompose operator (Section 6.2)
multiplies each object of an object set according to the number of components of
its spatial attribute value, and adds this component as a new attribute. The overlay
operator allows one partition of the plane to be superimposed on another, and
allows them to be combined into area-disjoint regions. Partitions are given as sets

rea dtsjomt of objects with an attribute of a type in regions a " " " " (Section 5.2). The resulting
set of objects contains one object for each new region obtained as the intersection
of a region of the first partition with a region of the second partition. Note that
the regions of a partition do not have to completely cover the plane. Thus, it is
possible that a region of the first partition does not intersect any region of the
second partition. In this case it will not be part of any new object 4 (Figure 15).

The fusion operator merges the values of a specified (set of) spatial attribute(s)
on the basis of the equality of the values of another (set of) non-spatial attribute(s).

4. This corresponds with the standard join operation. If regions of one partition not intersecting a region
of the other partition were in the result, it would be similar to an outer join.

VLDB Journal 4 (2) Gfiting: Realm-Based Spatial Data Types 273

Figure 15. Overlaying two partitions of the plane

overlay

For each group of equal non-spatial attribute values a (set of) new spatial value(s)
is created as the geometric union of a set of spatial values of the group, s In Figure
16, a partition of districts with their land use is given. The task is to compute
the regions with the same land use. Neighbor districts with the same land use are
replaced by a single region (i.e., their common boundary line is erased). Each of
the hatched areas on the left is part of an object describing a district. On the right,
after the application of the fusion operator, all areas belonging to the same group
gi form a single regions value and are hatched in the same way.

The signature for these operations is as follows:
V obj, objl, obj2 in OBJ. V geo, geol, geo2 in GEO. V areal, area2 in regions area'disj~
V datai in DATA. V geoj in GEO.

set (obj) X (obj ---+ geo) ---+ geo sum

set(obj) x (obj---+geol) x geo2 ~ set(obj) closest

set(obj) x (obj---+geo) x ident ---+ set(o: OBJ) decompose
set(objl) x (objl --+ areal) x set(obj2) x (obj2 ---+ area2) x ident

--~ set (o: OBJ) overlay
set (obj) x (obj ~ datai) + X (obj --~ geoj) + --~ set (o: OBJ) fusion

Since the operations of this group deal with sets of objects, the concepts of the
object model interface are needed for their semantics definition.

For the definition of the sum operator let O = {ol, ..., on}, for n _> 0, be the
operand set of objects and attr the attribute function yielding an SDT value for
each object.

union(.. .(union(attr(ol),attr(o2)), . . .),attr(On)) if O 5 L
fsum (O, attr) : = ~ otherwise

5. The fusion operator could be extended to allow grouping also by spatial attributes. For efficient imple-
mentation, this requires a capability of sorting by spatial data type values, which means the ROSE algebra
would have to provide a "less-than" operator for each of the three SDTs imposing a linear order.

274

Figure 16. Merging a partition of districts with same land use

fusion

~] wheat ~ oats [~ barley ~ rye

For the definition of the closest operator, let 0 be the set of objects, attr the
attribute function, and rv the reference value for which the nearest spatial value
has to be calculated. Then

fclosest(O, attg, re) := {o E O I V o' E O:fdist(rv, attr(o)) < fdist(rv, attr(o'))}

The decompose operator has an unspecified result type in OBJ; hence, in addition
to its semantics function fdecompose, it needs a type mapping Ydecompos e (Section 5.1).
When an operator alpha with a type mapping is used in a query and applied to
some operands (say alpha(a,b,c)), then this leads to a call of its semantics function
falpha(a,b,c) during query execution. Additionally, it leads to a call of the type
mapping function "/-alpha during query parsing; the type mapping function is not
called with the actual operands O.e., a, b, c), instead it is called with the actual types
of these operands. These types can vary because of the polymorphic specification
of operators, which is the reason why type mappings are needed at all. The only
exceptions to this rule are operands of type ident; for them the actual identifier is
passed to the type mapping function. This is because the main purpose of such
operands is the use in type mappings.

fdecompose(O, attt; name) := {o �9 v 1o E O, v E attr(o)}
"rdeeompose(Set (obj), (obj ---+ geo), name) := obj �9 (name, geo)

Hence, each object is extended by one of the components of its spatial attribute; the

VLDB Journal 4 (2) G/iting: Realm-Based Spatial Data Types 275

new object type is an extension of the operand object type by a new attribute name
of type geo. For example, the call in query Q4 (Section 6.2) "decompose(states,
territory, basic_area)" leads to the following calls of semantics function and type
mapping:

f decompose (states, territory, basic.area)
"i-decompose(Set (state), (state ---+ regions), basic ~rea)

The overlay operator also needs a type mapping:

foverlay(O1, attrl, 02, attr2, name)
: = {(o1| 02) | v 13 ol E o13 02 02 :

Antersects (attrl (o i), attr 2 (o 2)) = true A v = Jqntersection (attrl (o 1), attr2 (o 2)) }
%verlay(Set (Objl), (objl --+ areal), set (obj2), (obj2 ---+ area2), name)

:= (objl @ obj2) @ (name, new (regionsarea'disj~))

Here, the resulting object type is the product of the two operand types extended
by a new attribute name of a new type in the kind regions area'disj~

The fusion operator is not formally defined since it is only an abbreviation of a
corresponding grouping operation (Section 6). The semantics definition would rely
on a formalization of the semantics of the grouping operation.

8. Integration with a DBMS Query Language: 02SQL/ROSE

The purpose of this section is two-fold: (1) to show the integration of the ROSE
algebra with one particular data model and query language, which further illustrates
the concepts and requirements of the object model interface; (2) to demonstrate the
"expressive power" of the ROSE algebra (within the context of a query language)
by showing some example queries.

For the integration example, we select 02 as one of the state-of-the-art object-
oriented database systems, with O2SQL as its current and future standard query
language (Bancilhon, 1989; Bancilhon et al., 1989, 1992; 02, 1993). O2SQL is a
functional language that deals with and allows the construction of atomic values,
tuples, sets and lists, provides operations on these structures, and allows one to
define methods on classes. Flat as well as nested structures can be constructed, and
all levels of a structure can be accessed. Elements of sets and lists and components
of tuples may be of any type or class. The syntax of O2SQL has an SQL-like style
through a select-from-where construct corresponding to the three algebraic operations
projection, cartesian product, and selection, extended by object-oriented features.

In the sequel, we will demonstrate the integration of our ROSE algebra with
O2SQL by presenting example queries. The notations regarding class definitions
and queries comply with the notations in Bancilhon et al. (1992) and 02 (1993).
A few notational extensions are necessary. Examples are based on the following
simple database, which models spatial aspects of Germany. The keyword public
means that components of a tuple structure are "visible" and can be accessed.

276

class State
public type tuple (name : string, territory : regions)

end;
class City

public type tuple (name : string,
zipcode : integer,
statistical_data : tuple (foundation_date : integer,

population : integer,
unemployment_rate : real),

municipal_area: regions)
end;
class

end;
class

end;
class

Highway
public type tuple (number : string, way : lines)

River
public type tuple (name : string, route : lines.)

District
public type tuple (name : string, region : regions, land_use : string)

end;

A class is a description of a group of objects but not a persistent repository for them
in a database. In 02 only objects associated with names are persistent. Therefore,
we introduce for each class a named collection of objects:

name Cities : set(City); name States : set(State); name Highways : set(Highway);
name Rivers : set(River); name Districts : set(District);

Spatial attributes are defined in the same way as attributes of standard data types,
using the SDTs of the ROSE algebra. However, note that we have compromised on
the typing of regions attributes. In the example database, each of these attributes

should really have its own type areai within the kind regions area'aisj~ to be able to
model partitions of the plane. Such a sophisticated typing is not available in 02.
We will, therefore, assume that for the 02 integration the definition of the ROSE
algebra is slightly changed so that all operators defined on areai types are defined
on regions instead. This does not change the definition of syntax or semantics of

these operators, because any value of some type areai in regions area-disj~ is in fact
a regions value; it just means that type checking cannot ensure any more that they
are applied to partitions.

The syntax of the spatial operations of the ROSE algebra in a query language
is not prescribed by the signature of the operations, but is part of the process of
embedding the operations into the desired query language (i.e., dependent on the
extended query language). Here, we select infix syntax for spatial predicates and
the two operations plus and minus and a functional syntax for all other operations.

VLDB Journal 4 (2) Giiting: Realm-Based Spatial Data Types 277

QI: List the names and the land use of districts that are neighbors with the same
land use.

select tuple (dnamel: dl.name, dname2: d2.name, land_use: dl.land_use)

from dl in Districts,

d2 in Districts

where dl.region adjacent d2.region and dl.landmse = d2.1and_use

All spatial predicates of the ROSE algebra (first group of spatial operations) can
be used as selection criteria in the where clause, just like conventional predicates.
The result of this query is a set of tuples, each formed by the tuple constructor
tuple. Components of tuples are accessed by the field extraction operator, denoted
by a dot. Here we have the facility of the OMI: Denote a data type value (within an
object set iteration).

Q2: Which states are enclosed by which other states?

select tuple (statel: sl, state2: s2)

from sl in States,

s2 in States

where sl.territoryencloses s2.territory

The result of the query is a set of tuples, each tuple being a pair of State objects.

Q3: Determine which highways cross which rivers and list their names, their ge-
ometries, and their crossings.

select tuple(name: r.name, route: r.route, number: h.number, way: h.way,

crossing: intersection (r.route, h.way))

from r in Rivers,

h in Highways

where r.route intersects h.way

Each tuple of the query result contains an attribute "crossing," whose value is the
intersection of a river and a highway value. (OMI: Extend objects by derived attribute
values, allow naming of a new attribute.)

Q4: Associate with each state those cities lying inside that state.

select tuple(state: s, cities_in_state: select c

from c in Cities

where c.municipal_area inside s.territory)

from s in States

278

The result is a set of tuples, each tuple being a pair of a State object and a set of
City objects whose geometry lies inside the geometry of the State object.

Q5: Which rivers partially form the boundary line of which states.'? In which parts
do they agree?
select tuple(rname: r.name, sname: s.name, border:

common_border(s.territory, r.route))

from s in States,

r in Rivers

where s.territory border_in_common r.route

Q6: Compute the length of the river and highway network.

length (sum(select attribute way from h in Highways)
plus sum(select attribute route from r in Rivers))

Here we have introduced a first extension to O2SQL to fulfill the requirement of the
OMI: Denote a collection of objects, together with an attribute. The notation is "select
attribute attr from s in S" where attr is the name of the attribute and S the set of
objects. 6 This is analogous to the "column o~ f rom/3" construct (Section 6.2).

In this query, it is interesting to observe that a single lines value is formed first,
to which the length function then is applied. Using the sum aggregate function of
02 applicable to sets of reals, one might formulate the query as follows:

sum(select length(h.way) from h in Highways) +
sum(select length(r.route) from r in Rivers)

Actually, the result will only be the same if no two highways use the same piece
of the highway network. But a more important issue to be discussed here is the
view of aggregate functions. The sum aggregate function of 02 used in this last
example is applied to a set of values. In contrast, the only aggregate function of
the ROSE algebra (sum) is applied to a set of objects with a spatialattribute. The
rationale behind this is to keep the type system of the object model interface as
simple as possible. For example, in the relational model sets of values are not
available. The ROSE algebra only assumes that collections of objects and atomic
values exist.

Q7: Calculate the perimeter of Bavaria (class State is assumed to describe states
within Germany).

perimeter(element(select s.territory from s in States where s.name = "Bavaria"))

The O2SQL element operator extracts the unique element of a singleton set. This is
exactly the facility "denote a data type value (without object set iteration)" of the OMI.

6. For the SQL embedding (Section 6.2), we have used a keyword "column." This seemed to fit with SQL,
which also speaks of "tables" rather than relations. For O2, which used terms like "tuple," a keyword
"attribute" appears adequate. Of course, this is just a matter of taste.

VLDB Journal 4 (2) Giiting: Realm-Based Spatial Data Types 279

The expression "element ..." denotes the territory of Bavaria.

Q8: Calculate the region outside Bavaria where wheat is cultivated.

sum(select attribute region

from d in Districts

where d.land_use = "wheat")

minus
element(select s.territory

from s in States

where s.name = "Bavaria")

This query yields an atomic spatial value.

Q9: Determine all cities that are located in areas which are completely enclosed
by highways.

select c

from c in Cities

where c.municipal_area inside interior(sum(select attribute way from

h in Highways))

This query yields a set of City objects fulfilling the where condition.

Q10: Check if the highways form a connected network.

no_of_components(sum(select attribute way from h in Highways)) = 1

Q l l : List the name(s) of the highway(s) being closest to Munich.

define Munich as
element(select c.municipal_area from c in Cities where c.name = "Munich");

select h.number

from h in closest(select attribute way from h in Highways, Munich)

In the first step, a named query of 02 defines Munich as a regions value. This is the
facility "allow naming of an SDTvalue" of the OMI. The closest operator takes as
operands a class or any other homogeneous set of objects together with a spatial
attribute defined on that object type, and a spatial reference value (in this case
Munich). It returns a set of objects that can be used in a query at all those positions
where a set expression is allowed.

Q12: Determine the component regions of the state Schleswig-Holstein (which
consists of a main land area as well as several islands in the North Sea).

select s.component

from s in

decompose into component

select attribute territory

from s in States

where s.name = "Schleswig-Holstein"

280

The decompose operator has three arguments: a class or any other homogeneous
set of objects, an SDT attribute to be decomposed, and a name for the new attribute
resulting from decomposition. The query yields a set of regions values. Here we
have introduced a second extension to O2SQL to offer the facility "'allow naming of
a new attribute" of the OMI, using a phrase "into attr" (Section 6.2).

Q13: Partition the state Bavaria with respect to the districts of land use.

overlay into districts_within_Bavaria
(select attribute territory from s in States where s.name = "Bavaria,"
select attribute region from d in Districts)

The result is a set of objects with a new attribute "districts_within_Bavaria." Each
partition for the overlay is given as a set of objects with a regions attribute.

Q14: Compute the regions of the same land use.

fusion(Districts; land_use; region)

The fusion operator requires three arguments, which are syntactically separated by
semicolons: a set of objects, a list of non-spatial attributes used for grouping, and
a list of spatial attributes used for geometric union. In the query above the District
objects are grouped according to equal land use and, for each group, the geometric
union of the regions values of the "region" attribute is formed.

O2SQL offers a grouping operator group so that the query can be formulated
without an explicit fusion operator:

group d in Districts by (land_use: d.land_use)

with (region: sum(select attribute region from p in partition))

Here the group operator is applied to a set of District objects. It groups District
objects by values of their "land_use" attribute, and produces for each group one
result tuple with two attributes. The first attribute "land_use" receives the value of
the "land_use" attribute of the group; the second attribute "region" is determined
in the with-clause by an expression that computes for each group the geometric
union of the "region" attribute values. One can refer to the current group by a
keyword partition.

9. Conclusions

In this article and the companion article (Gtiting and Schneider, 1993), we have
defined the ROSE algebra, a system of realm-based spatial data types. After the
geo-relational algebra (Gtiting, 1988a), which was implemented in the Gral system 7
(Gtiting, 1989, Becker and Gfiting, 1992), this is a second attempt to define a spatial
algebra for database systems and, in some sense, it represents what we have learned

7. The second author, Markus Schneider, took part in this implementation effort.

VLDB Journal 4 (2) Giiting: Realm-Based Spatial Data Types 281

in the meantime. In closing, let us summarize the highlights of the ROSE algebra.
It may also be interesting to compare it to the geo-relational algebra (in the sequel,
geo-algebra for short).

General types and operations. The ROSE algebra has very general data types to
represent points, lines, and regions in the plane. For example, it is now possible
to represent the whole area of a state including islands or separate land areas in
a single regions value, or a complete highway network in a single lines value. On
the one hand, this generality makes the spatial objects and operations conceptually
more difficult, requires a quite elaborate system of definitions, and needs more
effort in the implementation. This is why, in the geo-algebra, a decision was made
to deal only with simple polygons and single-component objects. On the other
hand, the generality is needed in applications (with Gral this became obvious when
the German state of Niedersachsen had to be represented which encloses--as a
hole--the state of Bremen). We feel that, through the several layers of definitions
of the ROSE algebra, we have managed the complexity. Apart from the better
capability to model spatial objects, an important benefit is that the types are now
closed under set operations of the underlying point sets--for any type one can form
union, difference (plus, minus) or aggregate over its values (sum) which makes the
rather complex fusion operation (Scholl and Voisard, 1989; Gargano et al., 1991)
a simple by-product of grouping. Also, all operations are now defined in the most
general way (e.g., the closest operation is available for all spatial types). In contrast,
in the geo-algebra it was not possible to define a difference operator on regions
since it would have led to holes, and intersection had to be defined as a relation
operation because a resulting set of intersection values could not be represented as
a single SDT value.

Rigorous definition. The carrier sets of the types and the semantics of all operations
have been defined completely, down to the level of simple arithmetic primitives on
integers. As a result, there is no ambiguity for a programmer about the precise
meaning of operations or about allowed structures. We feel this is very important
because, when dealing with complex spatial structures, questions about special cases
invariably come up, such as "Is it allowed that the boundary of a hole in a region
touches the outer boundary?" or "Qualify two adjacent regions as intersecting?"
The ROSE algebra definition gives precise answers to all such questions to an
implementor and, if not to end users, at least to people writing manuals for end
users.

Numerical robustness, finite resolution. The underlying realm provides the ROSE
algebra with a discrete basis and shields it from all problems of numerical robustness.
Integer coordinates can be used for the representation of SDT values; critical
operations such as testing whether points lie on the border of regions become feasible.
In contrast, in the geo-algebra, operations such as meets or common_border were
omitted, because--with real numbers representing coordinates of SDT values--it
was not clear how these operations could be implemented in a numerically robust

282

way. The discrete basis also greatly simplifies the implementation of geometric
algorithms for the operations. For example, to implement common_border one
can keep for each lines or regions value its defining segments in (x,y)-lexicographic
order, and then simply scan the two lists in parallel. Many operations can be
implemented by plane-sweep algorithms (Nievergelt and Preparata, 1982; Bentley
and Ottmann, 1979), which are simplified here because no intersection points need
to be computed; all sweep stations are known beforehand and one does not need
a dynamic structure to maintain the ordered list of sweep stations.

Data model independence, clean object model interface. The ROSE algebra is not
tied to any particular data model, but can cooperate with many models and query
languages. This might have been achieved in a trivial way by omitting all operations
manipulating objects (like closest, overlay) and not caring how the results of geometric
operations can be used in the DBMS. Instead, we have defined an object model
interface and investigated quite carefully the issues arising with the integration of
the ROSE algebra into a query language. Section 8 has demonstrated that a nice
integration with, for example, an object-oriented model and query language can be
achieved. To our knowledge, this is the first time that the problem of interfacing
a general purpose query language with a complex application-specific sublanguage
has been examined in some detail. Such interfaces will be important for cooperative
database systems using external computation services (Schek and Weikum, 1991).

Open Problems end Future Work

Implementation of the ROSE aIgebra. Data structures for the three SDTs and proce-
dures for all operations except for dist and the set-manipulating operations of the
last group (Section 7.4) have been realized (de Ridder, 1994), and are available
from the authors as a module library written in Modula-2 (de Ridder, 1995). The
implementation of operations makes heavy use of the following three techniques:
(1) scan or parallel scan of the halfsegment sequence s of one or two objects, (2)
plane-sweep, and (3) graph algorithms (de Ridder, 1994, 1995). Algorithms and
practical aspects of the implementation are described in Giiting et al. (1995). As a
next step, we plan to encapsulate this implementation within a "data type extension
package," and then connect it to the Gral system as well as to another query
processor called SECONDO.

A component that allows a realm to be represented, and that offers realm
operations (updates with redrawing, G0ting and Schneider, 1993) is almost finished.
The points and segments of a realm are stored in an LSD-tree (Henrich et al.,
1989). For the problems of interfacing realms and database systems see Giiting and

8. For a lines or regions value, its halfsegment sequence contains each segment of its object twice, once for
the left, and once for the right end point, called the dominating point for this segment. The halfsegment
sequence is ordered xy-lexicographically by dominating points.

VLDB Journal 4 (2) Gtiting: Realm-Based Spatial Data Types 283

Schneider (1993).
Some problems remain with the realm-based approach and need to be further

investigated:

lnvariance under redrawing. We are not satisfied with the fact that some of the
numeric ROSE operations (e.g., length, area) yield slightly different results before
and after a redrawing due to an update of the realm. Whereas we feel that slight
numerical errors are tolerable in contrast to topological errors, this may also lead
to "discrete errors." For example, when a collection of objects is sorted by area of
its regions, the order may change through a realm update. Perhaps a definition of
these operations can be found that is sufficiently consistent with the geometry of
the objects, but invariant under redrawing.

Objects and operations violating realm closure. One is still interested in spatial objects
that are not part of the given realm. For example, it should be possible to draw
interactively a region and then to use it in a query. The new region cannot directly
be compared with realm-based objects. One possible strategy might be to insert
this region temporarily into the realm, and to remove it again when the query has
been processed. There may be other solutions. So far we have restricted attention
to operations that are closed with respect to the underlying realm, but there are
also interesting operations that leave the given realm, for example, construction of
a Voronoi diagram, a convex hull, or a buffer zone around a spatial object. One
should study how these can be accommodated. One strategy might be to create a
new realm for the new spatial values, select a set of SDT values in the database
that might interact with the new geometries, and create another "small" realm for
them, and then use a "merge" operation on realms to compute all intersections.

Acknowledgments

The authors thank the referees who read the manuscript very carefully and provided
a large number of detailed questions and suggestions that helped to improve the
presentation. Thanks also to Andrew Frank, Michel Scholl, and Agn6s Voisard for
their comments. This work was supported by the DFG (Deutsche Forschungsge-
meinschaft) under grant Gu 293/1-2.

References

Bancilhon, E Query languages for object-oriented database systems: Analysis and
a proposal. Proceedings of the BTW (Datenbanksysteme in Bgtro, Technik und Wis-
senschaft), Ztirich, 1989.

Bancilhon, E, Cluet, S., and Delobel, C. A query language for the 02 object-oriented
database system. Proceedings of the Second Workshop on Database Programming
Languages, Salishan, OR, 1989.

284

Bancilhon, E, Delobel, C., and Kanellakis, E The O2Book. San Mateo, CA:
Morgan-Kaufmann, 1992.

Becker, L., and G/iting, R.H. Rule-based optimization and query processing in an
extensible geometric database system. ACM Transactions on Database Systems,
17:247-303, 1992.

Bentley, J.L., and Ottmann, T. Algorithms for reporting and counting geometric
intersections. IEEE Transactions on Computers, C-28:643-647, 1979.

Egenhofer, M.J., Frank, A., and Jackson, J.P. A topological data model for spa-
tial databases. Proceedings of the First International Symposium on Large Spatial
Databases, Santa Barbara, CA, 1989.

Frank A. and Kuhn, W. Cell graphs: A provable correct method for the storage
of geometry. Proceedings of the Third International Symposium on Spatial Data
Handling, Seattle, 1986.

Gargano, M., Nardelli, E., and Talamo, M. Abstract data types for the logical
modeling of complex data. Information Systems, 16(5):565-584, 1991.

Greene, D. and Yao, E Finite-resolution computational geometry. Proceedings of
the Twenty-seventh IEEE Symposium on Foundations of Computer Science, Toronto,
1986.

Gtiting, R.H. Geo-relational algebra: A model and query language for geometric
database systems. Proceedings of the International Conference on Extending Data-
base Technology, Venice, Italy, 1988a.

G/iting, R.H. Modeling non-standard database systems by many-sorted algebras.
Fachbereich Informatik, Universit~it Dortmund, Report 255, 1988b.

Gtiting, R.H. Gral: An extensible relational database system for geometric appli-
cations. Proceedings of the Fifteenth International Conference on Very Large Data
Bases, Amsterdam, 1989.

Gtiting, R.H. Second-order signature: A tool for specifying data models, query pro-
cessing, and optimization. Proceedings of the ACM SIGMOD Conference, Wash-
ington, DC, 1993.

Gfiting, R.H., de Ridder, T., and Schneider, M. Implementation of the ROSE
algebra: Efficient algorithms for realm-based spatial data types. FernUniversit~it
Hagen, Informatik-Report 170, 1995.

Gfiting, R.H. and Schneider, M. Realms: A foundation for spatial data types
in database systems. Proceedings of the Third International Symposium on Large
Spatial Databases, Singapore, 1993.

Henrich, A., Six, H.-W., and Widmayer, P. The LSD tree: Spatial access to multidi-
mensional point- and non-point-objects. Proceedings of the Fifteenth International
Conference on Very Large Data Bases, Amsterdam, 1989.

Joseph, T., and Cardenas, A. PICQUERY: A high level query language for pictorial
database management. IEEE Transactions on Software Engineering, 14:630-638,
1988.

VLDB Journal 4 (2) Gtiting: Realm-Based Spatial Data Types 285

Lipeck, U. and Neumann, K. Modelling and manipulating objects in geoscien-
tific databases. Proceedings of the Fifth International Conference on the Entity-
Relationship Approach, Dijon, France, 1986.

Nievergelt, J., and Preparata, EP. Plane-sweep algorithms for intersecting geometric
figures. Communications oftheACM, 25:739-747, 1982.

Orenstein, J., and Manola, F. PROBE spatial data modeling and query processing
in an image database application. 1EEE Transactions on Software Engineering.
14:611-629, 1988.

02 User's Manual, Version 4.1. 02 Technology, 1993.
de Ridder, T. Die ROSE-Algebra: Implementierung geometrischer Datentypen

und Operationen ffir erweiterbare Datenbanksysteme (The ROSE algebra: Im-
plementation of geometric data types and operations for extensible database
systems). Fernuniversitfit Hagen, Fachbereich Informatik, Diplomarbeit (Master
Thesis), 1994.

de Ridder, T. The ROSE system. Modula-2 Program System (Source Code). Fern-
Universitfit Hagen, Praktische Informatik IV, Software Report 1, 1995. Available
as a •TEX file for printing and/or as a compressed collection of ASCII files.

Rossopoulos, N., Faloutsos, C., and Sellis, T. An efficient pictorial database system
for PSQL. IEEE Transactions on Software Engineering, 14:639-650, 1988.

Schek, H.J. and Weikum, G. Erweiterbarkeit, Kooperation, Ffderation von Daten-
banksystemen (Extensibility, Cooperation, Federation of Database Systems). Pro-
ceedings of the BTW (Datenbanksysteme in Baro, Technik und Wissenschaft), Kaiser-
slautern, 1991.

Scholl, M. and Voisard, A. Thematic map modeling. Proceedings of the First Inter-
national Symposium on Large Spatial Databases, Santa Barbara, CA, 1989.

Svensson, P. and Huang, Z. Geo-SAL: A query language for spatial data analy-
sis. Proceedings" of the Second International Symposium on Large Spatial Databases,
Z~irich, 1991.

Tomlin, C.D. Geographic Information Systems and Cartographic Modeling. Englewood
Cliffs, NJ: Prentice Hall, 1990.

Voisard, A. Bases de donn6es g6ographiques: du module de donn6es/a l'interface
utilisateur. Ph.D. Thesis, University of Paris-Sud (Centre d'Orsay), 1992.

286

Appendix: Definition Layers For Realm-Based Spatial Data Types

ROSE Algebra
Operations

Objects: poims, lines, re dons

Operations: =, ;e, inside, edge_inside, vertex_inside, area_disjoint,
edgedlsjolnt, disjoint, intersects, meets, adjacent, encloses, on_.-
border of, border--re_common, intersection, plus, minus, com-
mon_border, vertices, contour, interior, count, dist, diameter,
length, area, perimeter, sum, closest, decompose, overlay, fusion

Spatial Data "Pypes
and Spatial Algebra

Primitives

Objects: ~oims. lines, re~ions

Operations: umon, intersection, difference, (area-)iuside, edge-inside,
pertexoinside, area.disjoint, edge-disjoint, (vertex-)disjoint, adja.
cent, meet, intersect, encloses, on_border_of, border_i~_common

I
Objects: R-point, R-segment; R-cycle, R-face, R-unit, R-block

Realms, Realm-Based
Structures and Realm- Operations: on. in. ~ (area-)inside, edge-inside, vertex-inside, area-

Based Primitives disioint, edge-disjoint, (vertex-)disioinL adjacent, meet, encloses, fit-
tersect, dizt. area

i
Objects: N-l~im, Noseg~,.~t

Robust Geometric
Primitives Operations: =, meet. ~ intersect, disioint, on, in, intersection, oaro

~ , l , ~ d

I
[i iiiii~i~ii~i~ii:~iiiii~ii~iii~J~i~ii~i:~iiiii~iiii~iiiii!~iii~i~:~iii~ ~i :'i:/:ii"i i:~ili i:'i:~ii:~ili"i !! i ' : ' : ' : '~er:~: :~:~ilili [! ii ~!:':':':':':::'*':':':'~::~n::~:~g~::[~72~i:::~n:' ~ : ~ d : : ~ iill

