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Summary 

We use Hamilton's Rule to investigate effects of genetic relatedness on the predicted size of social groups. 
We assume an aggregation economy; individual fitness initially increases with group size, but in sufficiently 
large groups each member's individual fitness declines with further increments in the size of the group. We 
model two processes of group formation, designated free entry and group-controlled entry. The first model 
assumes that solitary individuals decide to join groups or remain alone; group size equilibrates when 
solitaries no longer choose to join. The second model allows group members to regulate the size of the 
group, so that the predicted group size results from members' decisions to repel or accept intruding 
solitaries. Both the Nash equilibrium group size and any change in the equilibrium caused by varying the 
level of relatedness depend on the particular entry rule assumed. The largest equilibrium group size occurs 
when solitaries choose between joining or not joining and individuals are unrelated. Increasing genetic 
relatedness may reduce and can never increase, equilibrium group size when this entry rule applies. The 
smallest equilibrium group size occurs when group members choose between repelling or accepting 
intruders and individuals are unrelated. Under this entry rule, increasing genetic relatedness can increase 
and can never decrease, equilibrium group size. We extend the models' predictions to suggest when 
individuals should prefer kin vs non-kin as members of the same group. 
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Introduction 

It  has frequently been argued that genetic relatedness implies larger group sizes in social foragers. 
For  instance, Rodman  (1981) discussed groups composed of relatives and suggested that the 
group size maximizing each member ' s  inclusive fitness always exceeds the associated group size 
where individual (i.e. direct) fitness attains a maximum. Smith (1981; 1985) proposed a similar 
argument  for apparent ly supra-optimal hunting group sizes of the Inuit people  inhabiting the 
Arctic. We examine the predicted positive effect of relatedness on group size because previous 
analyses share two questionable assumptions. First, proponents  have assumed that group size 
should always maximize each member ' s  fitness, that is, the prediction neglects stability 
considerations (reviewed by Giraldeau,  1988). Second, the prediction sometimes has been based 
on a common,  but erroneous,  definition of inclusive fitness: the 'simple weighted sum'  (see 
Grafen,  1982). We consider each point in turn. 
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Optimal and equilibrium group size 

Let G represent group size. f~(G) is the direct fitness of each of the G identical group members. 
To begin, we summarize models of equilibrium group size which treat G as a continuous variable 
(Sibly, 1983; Clark and Mangel, 1984; Pulliam and Caraco, 1984). 

Sociality can be advantageous when 12(G) defines an aggregation economy, implying that 
fitness initially increases with group size, that is, (dl2/dG)c = 1 > 0. However, in a sufficiently 
large group, competition among the members ordinarily must cause fitness to decline with further 
increases in group size. Consequently, we restrict attention to 'peaked' fitness functions (Clark 
and Mangel, 1986), that is, we assume fitness is a non-negative quantity (12(G) >_ 0 VG) attaining 
a maximum at a unique G = G* >- 2. Therefore, dIl/dG = 0 and d2II/dG 2 < 0 only when 
G = G*, so that G* is an 'optimal' group size of two or more members. 

Assume that groups form as solitary individuals decide to live socially and that an individual 
can enter any group at no cost (Sibly, 1983). Since 12(G) is peaked, two cases are possible, but not 
equally probable. If 

lim ~(G)  > f l (G = 1) (1) 
G---->oo 

every member of a model population could coalesce into a single group, since solitaries always 
increase their direct fitness by joining any group they encounter. Aggregation economies, 
however, will rarely be so beneficial; extremely large groups are more likely to form in response 
to spatial heterogeneity of resources than to benefits of sociality per se (Pulliam and Caraco, 
1984). In the more probable case, Inequality 1 is reversed and we can predict a Nash equilibrium 
group size G? where 

12(G ~) = f~(G = 1) (2) 

Solitaries should join a group of size G as long as II(G + 1) > 1~(1), since joining increases 
fitness. When group size has increased to G ̂  a solitary no longer gains fitness by joining that 
group. No group member is tempted to leave unilaterally, since departure does not offer a fitness 
increment. Therefore, G ̂  qualifies as a (neutrally stable) Nash equilibrium. 

Since f~(G) is peaked, it follows that G ̂  is unique and (d~/dG)c: < 0. Therefore, G ̂  > G*; 
free entry of solitaries predicts that group size will exceed the optimum G* at competitive 
equilibrium (Sibly, 1983; Clark and Mangel, 1984; Pulliam and Caraco, 1984; see Giraldeau and 
Gillis, 1985). A similar approach should apply when a minimally required fitness value constrains 
the maximally sized group a solitary will join (see e.g. Caraco and Wolf, 1975). 

Treating G as continuous is a simplifying convention. We can restrict G to positive integers and 
obtain the same results, that is, the first difference M2(G), where AI)(G) = fZ(G + 1) - 12(G), is 
positive for all G < G* and negative for all G -> G*. Hence, A~(G) < 0 around the Nash 
equilibrium G ̂  . 

Relatedness and group size 

This section examines 'optimal' and equilibrium group size when members are genetically 
related, so that the economic analysis involves inclusive fitness. Inclusive fitness is often divided 
into a direct and an indirect component. The direct component encompasses benefits to self, 
while the indirect component refers to the net effect self exerts on benefits to its relatives, 
devalued by the coefficient of relatedness r. Grafen (1982) points out that some calculations of 
inclusive fitness have suffered from 'double-accounting', which inflates the indirect component of 
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inclusive fitness. Double-accounting consists of including all the benefits kin accrue, rather than 
only the extra portion that can be attributed to sews behaviour. In the context of group 
membership decisions, avoiding double-accounting implies that the indirect component should 
not include the benefits relatives already enjoyed before self joined the group (Grafen, 1982, 
1991; Giraldeau, 1988; Giraldeau and Gillis, 1988). Our analysis will show that properly 
transforming the direct fitness function ft into inclusive fitness changes the equilibrium (kin) 
group size in a manner that is dependent on the rules of entry. 

Free entry assumes that solitaries can decide whether or not to join a group. Under group- 
controlled entry, group size is regulated by members deciding whether or not to repel joiners. 
Our results show that in the absence of genetic relatedness, equilibrium group size is usually 
larger (and never smaller) for free entry than for group-controlled entry. However, increasing 
genetic relatedness ordinarily decreases equilibrium group size under free entry and increases the 
equilibrium size under group-controlled entry. 

To examine how relatedness between members of a population can affect group-membership 
decisions (and, hence, group size), we shall use Hamilton's Rule (see Grafen, 1991). Imagine a 
forager in an aggregation economy where all members of the population are genetically 
related by coefficient r. Hamilton's Rule proposes that an act can be selectively favoured when 
rB - C > O, where B represents the net benefit of the act on all relatives at which it is directed 
and C is the cost of the action on self. The terms of Hamilton's rule refer to the evolution of 
altruism. Indeed, by definition, altruism must impose a cost on self and provide a benefit to 
others. However, Hamilton's Rule applies to the economics of any behaviour, once the effects of 
feasible actions on B and C are specified. With respect to group membership, the effect that 
joining (or leaving) a group has on self may be positive or negative, depending on group size. 
Similarly, the effects on others can also be positive or negative, depending on group size. In this 
context, therefore, it is better not to use the terms benefit and cost to refer to effects on relatives 
and self respectively. We replace B by E m  the total effect on relatives and replace C by Es, the 
effect on self. For decisions concerning membership in groups with free entry, Hamilton's Rule 
becomes as follows. Any individual encountering a group of relatives should join the group when 

r E R +  E s > 0  (3) 

To calculate the effect on relatives, ER, resulting from the actions of self, we must subtract the 
direct fitness enjoyed by the relatives before self joins the group from the fitness resulting from 
the addition of self to the group. Suppose self joins a group of ( G - l )  relatives and, thus, 
increases the group's size to G. The effect on each of self's ( G - l )  relatives in the group is 
12(G) - O ( G - 1 )  = Af t (G- i ) .  The total effect ER on the ( G - l )  relatives is 

ER = ( G - I )  Af t (G- I )  (4) 

Es, the effect of joining the group on self, is given by the direct fitness of membership in a group 
of size G, 12(G), minus the direct fitness of self in its alternate state, solitary foraging, 

Es = ft(G) - a(1) (5) 

Assuming free entry of solitaries into groups, Inequality 3 implies that self should join a group 
when the resulting group size renders rER + Es > 0. Since ft(G) is peaked, the equilibrium group 
size for relatives should be the largest group where this inequality is not reversed (since reversal 
indicates decreased inclusive fitness). To specify how relatedness influences equilibrium group 
size, we simply substitute Equations 4 and 5 into Inequality 3; the result indicates that a solitary 
should join a group of size ( G - l )  whenever 
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r ( G - 1 )  AFt (G-I )  + [Ft(G) - a(1)] > 0; 
r ( c - 1 )  [ a ( c )  - a ( c - 1 ) l  + a ( c )  > Ft(1) (6) 

The left-hand side of Inequality 6 varies with both coefficient of relatedness and group size, but 
f~(1) is a non-negative constant. We can rewrite Inequality 6 as: 

H(r, G) > a(1)  (7) 

If r = 0, Inequalities 6 and 7 define G ̂  for the discrete case, that is, H(r=0,  C ^) = Ft(C ° > 1%(1) 
> Ft(G ~ +1) when G ~ is a stable equilibrium and ft(G" = 1)(1) > ~ ( G  ^ +1) when G" is neutrally 
stable. 

We assume r is continuous on [0, 1] and use Inequality 6 to emphasize that H(r, G) depends 
linearly on the value of r: 

H(r, G) = t~(G) + ( G - l )  AFt (G- l )  r (8) 

The slope of the line, for 0 < r -- 1, will be positive or negative according to the sign of AFt(G-1) 
First, suppose that a solitary encounters a group that is smaller than the optimum, so that 

2 -< G -< C*. For any such G, gt(C) > 1)(1). Since AFt (G- l )  > 0 for C - C*, we have 

OH(r, 2<-G<-G*)/Or > 0 (9) 

Therefore, H(0_<r_l,  2_<G_<G*) > Ft(1). Inequality 7 always holds, so that rER + Es > 0 for 
every value of r. Thus a solitary, should always join any group of ( G * - I )  or fewer members, 
independently of the degree of relatedness. 

If a solitary encounters a group that is larger than G ̂  then t)(G) < ~(1) and AFt(G) < 0. 
Therefore, H(0_<r_<l, G>G ̂ ) < 1)(1). Inequality 7 can never hold and rER + Es < 0 for every 
value of r. A solitary, therefore, will never be selected to join a group of G ̂  or more members, 
independently of the degree of relatedness. Since G ̂  is the equilibrium group size for r = 0, 
increasing relatedness apparently does not increase group size beyond G ,~ under free entry. 

In combination, the two preceding paragraphs indicate that, independently of relatedness, the 
equilibrium group size must contain at least G* members and no more than G ̂  members. 
Consequently, any influence of relatedness on the decision to join a group must involve 
H(r, G*<G<-G^). 

Suppose ~ ( G  ^) = 1)(1). Then G ̂  cannot remain a Nash equilibrium for any r > 0. Above we 
assume that G* < G ~, implying that A ~ ( G " - I )  < 0. Applying Equation 8 to this case yields 
H ( 0 < r - 1 ,  G ̂ ) < ~(1). Inequality 7 again cannot hold, so that rER + Es <0. Therefore, a 
solitary will not be selected to join a group of (G" -1 )  members when r > 0. That is, G ̂  exceeds 
the equilibrium when individuals are related and the equilibrium group size must satisfy G* -< G 
< G ̂ . Relatedness cannot increase, but rather can decrease the equilibrium group size under free 
entry. This conclusion remains true for Ft(G ̂ ) -> Ft(1). 

Continuing, recall that I)(G) > ~(1) for G* < G < C ^ . But AFt (G- l )  < 0 for each of these 
group sizes, so that 

OH(r, G*<G<G^)/Or < 0 (10) 

H(r, G) initially exceeds Ft (1), but declines as r increases. For at least the largest of these values 
of G (and possibly for all), H(1, G) < ~(1), since there must be an equilibrium group size. For 
any such G, there is a critical level of relatedness re: 

f~(C) - Ft(1) (11) 
= ( c - i )  [ a ( c - 1 )  - a ( c ) ]  
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Table 1. Numerical example of equilibrium group size when solitaries have free entry into groups of size 
( C -  1) 

Group size (G) 
1 2 3 4 5 6 7 8 

~I(G) 5 10 11 9 6 4 2 1 
E s = f~(G) - •(1) - 5 6 4 1 -1  - 3  - 4  
ER = (¢3--1) [ft(G) - f~(G-1) ] - 5 2 - 6  -12 -10 -12 - 7  

rER + E s  
r = 0 - 5 6 4 i a -1  - 3  - 4  
r = 0 . 1  - 5.5 6.2 3.4 a -0.2 - 2  -4.2 - 5  
r = 0 . 2  - 6 6.4 2.8 ~ -1.4 - 3  -5.4 - 5  
r=0o3  - 6.5 6.6 2.2 ~ -2.6 - 4  -6.6 - 6  
r = 0 o 4  - 7 6.8 1.6 a -3.8 - 5  -7.8 - 7  
r =  0°5 - 7.5 7 1 ~ - 5  -5  - 9  - 8  
r = 1.0 - 10 8 a - 2  -11 -11 -15 -11 

" The equil ibrium group  size is the largest g roup  for which rER + Es is positive for each level of r. W h e n  r = 0, the 
equi l ibr ium group  size is G ^ = 5. The equi l ibr ium size decreases as r increases; the equil ibrium is G* = 3 when  r = 1.0 

If r < re, H(r, G*<G<G ̂ ) > ~(1). Equivalently, rER + Es > 0, so that a solitary enhances its 
inclusive fitness by joining and therefore increasing the group size to G. Consequently, the 
equilibrium group size must be at least G. If r > re,  H(r, G*<G<G ̂ ) < f~(1). In this case rER + 
Es < 0. Now a solitary should not join the group and G must exceed the equilibrium size defined 
by the inclusive fitness criterion. For G between G* and G ^ ,, greater relatedness can sometimes 
reduce the equilibrium group size. In fact, if r > rc  evaluated at G = (G* + 1), the equilibrium 
group size will be as small as the 'optimal'  group size G*. 

For free entry, group size increases as long as rER + Es > 0. The minimal group size where 
adding an additional member reverses this inequality is the equilibrium group size. Suppose r > 0 
and the equilibrium group size G exceeds G*. Then G must satisfy G* < G < G ̂  , so that MI(G)  
< 0 for each G. Since G is the equilibrium 

H(0<r-< l ,  G) > a (1)  > H(0<r- -1 ,  G + I )  (12) 

From Equation 8, the equilibrium group size is the maximal value of G where 

f~(G+l )  - f/(1) f~(G) - f~(1) (13) 
r[f~(G) - a ( G  + 1)] < G < 1 + r [ f~(G-1)  - f~(G)j 

The general conclusion of the preceding analysis is that increasing relatedness will ordinarily 
decrease, and will never increase, equilibrium group size under free entry. Table 1 illustrates 
these results with a numerical example. Given the table's values for fl(G),  G* = 3 and G ^ = 5. 
As r increases from 0 to 1.0, the inclusive fitness calculations show that the equilibrium group size 
for free entry decreases from 5 to 3. 

Table 1 presents an example where the optimal group size G* becomes the Nash equilibrium 
for r = 1.0. It might not be surprising that competitive and cooperative strategies can sometimes 
converge if individuals are genetically identical. Note, however, that the equilibrium group size 
does not always decrease as far as G* when r increases to 1.0. For example, suppose that 11(4) is 
increased from 9 to 10 in Table 1. The equilibrium group size for r = 1.0 is now G = 4 > G* = 3. 
In this case a solitary encountering a group of G* members increases its direct fitness (Es) five 
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units by joining. The consequent collective effect on its genetically identical relatives (Er0 is a 
loss of three units. Then, rER + Es > 0 and the equilibrium exceeds the optimum at r= l .0 .  

Group-controlled entry 

The results in the previous section assume unrestricted access to group membership. Group 
members, however, will not always be indifferent to joiners (e.g. Vehrencamp, 1983). Therefore, 
we ask whether relatedness will also affect a group member's tendency to repel joiners. For 
simplicity we assume that all group members collectively expel the joiner when Hamilton's Rule 
favours preventing a solitary from increasing the size of the group. For this application the rule 
becomes: repel a solitary attempting to increase group size from G to (G + 1) when rER + Es > 
0. The terms ER and Es must be redefined to reflect the new decision being analysed. E~ is now 
the effect of repelling an intruding relative on the intruder: 

ER = a(1)  -- 12(G+1) (14) 

Equivalently, the effect per group member is ER/G. Es is now the effect of repelling the intruder 
on self, where self is the entire group: 

e s  : G [ a ( 6 )  - a ( 6 + 1 ) 1  (15) 

Equivalently, the effect per group member is - All(G). 
Each group member should choose to repel an intruder when rER + Es > 0 and should accept 

an intruder when the inequality is reversed. Using Equations 14 and 15 repelling is favoured 
when 

r[a(1) - a ( G + l ) ]  + G[a(G)  - a ( G + l ) ]  > 0; 
[ft(1) - a ( G + l ) ]  (r/G) > AFt(G) (16) 

We again assume ~(G)  is peaked and 12(1) = II(G^). 
Initially, suppose that 1 -< G - (G* - 1). For any such G, A~(G) > 0 and [~(1) - ~ (G+I ) ]  < 0, 

by the definition of G*. Therefore, Inequality 16 cannot hold for any value of r and rEa + Es < O. 
A group of (G*-1)  or fewer members should never repel a joiner, independently of the level of 
relatedness, since each addition to the group increases each group member's fitness. 

For completeness, suppose G >- G ̂ . Then Ate(G) < 0 and [~(1) - f~(G+I)] > 0 by the 
definition of G ̂  . Therefore, Inequality 16 always holds, so that rEg + Es < 0 for every value of r. 
Repelling joiners would be favoured, independently of relatedness. 

Clearly, the equilibrium group size must contain at least G* members and less than G ̂  
members. The latter point shows that group-controlled entry, independently of the value of r, 
ordinarily will maintain each group member's fitness above ~(G^) ,  hence, above a solitary's 
fitness 12(1). 

For every possible equilibrium group size G, where G* - G < G ̂ , All(G) < 0. If r = 0, 
Inequality 16 must then always hold. Equivalently, repelling is favoured at each group size. For 
r = 0, the largest group to accept a joiner is (G* - 1); G* is consequently the equilibrium group 
size when individuals are unrelated. Since G* < G ~ , group-controlled entry results in a smaller 
equilibrium group size than does free entry when groups are composed of unrelated individuals. 

If 0 < r -< 1, Inequality 16 might be reversed, so that the equilibrium group size increases as 
relatedness increases. For example, if G = G*, Inequality 16 indicates that a joiner should be 
repelled unless r is large enough to satisfy 

r[a(1) - a ( G * + l ) ]  < G*[a (G*+I )  - a(G*)]  < 0 (17) 
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Table 2. Numerical example of equilibrium group size a when groups of size G can repel solitary joiners 

Group size (G) 
1 2 3 4 5 6 7 8 

f~(G) 5 10 11 10.5 10 8.5 6 4 
Es = G[f~(G) - f~(G+l)  ] - 5  - 2  1.5 2 7.5 15 14 - 
ER = fl(1) -- 12(G+l) - 5  - 6  -5 .5  - 5  -3 .5  --1 1 - 

r E R  + E s 
r = 0 - 5  - 2  1.5 b 2 7.5 15 14 
r = 0.1 -5 .5  -2 .6  0.9 b 1.5 7.1 14.9 14.1 
r = 0.2 - 6  -3 .2  0.4 b 1 6°8 14.8 14.2 
r = 0.3 -6 .5  -3 .8  -0.1 0.5 b 6.45 14.7 14.3 
r = 0.4 - 7  -4 .4  -0 .7  0 b 6.1 14.6 14.4 
r = 0.5 -7 .5  - 5  - 1 . 2  -0 .5  5.7 b 14.5 14.5 
r = 1.0 - 1 0  - 8  - 4  - 3  4 b 14 15 

m 

w 

h 

The equilibrium group size is the smallest group for which r E  R + E s is positive. 
b Equilibrium group size for each level of r. 

I f  Inequal i ty  17 holds,  r E n  + Es < 0 and the g roup  of  size G* should not  repel a joiner.  I f  nei ther  
G* nor  ]Af~(G*)I, is too  large, a given value of  r will be more  likely to make  Inequal i ty  17 true. 
W h e n  there  are few group  member s  to incur a decline in fitness as group size increases (i.e. small 
G*),  it is less likely that  a related in t ruder  will be repelled. A small [M2(G*)I suggests that  the 
effect on self is less likely to offset the indirect  benefit  to the related joiner.  Increased  relatedness 
can increase and wilt never  decrease,  the equil ibrium group  size under  group-cont ro l led  entry.  

For  g roup-cont ro l led  entry,  g roup  size increases until rE n + Es > 0. The  minimal group size 
satisfying this inequali ty is the equil ibrium group  size, since it is the smallest g roup  to repel,  
r a ther  than  accept ,  a joiner.  Suppose  r > 0 and the equil ibrium group size G exceeds G*. Then  
G* < G < G ^ and Af t (G)  < 0 for  each G. The  equil ibrium group size will be the maximal  value 
of  G where  

r [ a ( c +  1) - a 0 ) ]  d a ( g )  - (18) a ( c )  - a ( O + l )  < o < I + - a ( o )  

Increas ing relatedness can increase and will never  decrease,  equilibrium group size under  group-  
control led  entry.  Table  2 illustrates these results. The  equil ibrium group  size is G* = 3 for r = 0, 
but  increases to 4 when r = 0.3 and then to 5 for  r >- 0.5. Note ,  however ,  that  for the values of  
~ ( G )  used in Table  1, the equilibrium group  size under  g roup  control  remains 3 for  every r in 
[0, 1]. 

Discuss ion 

We begin this section by compar ing  the two models .  Then  we ment ion some implications of  our  
results for free entry and for  g roup-cont ro l led  entry.  Finally, we c ommen t  on group size as an 
asymmetr ic  game  be tween a solitary and a group.  

We  scaled the logic of  our  models  so that  a 'decis ion '  taken because  (rEr~ + Es) is positive 
results in a g roup  of  G members .  The  two models  are more  similar than the resulting expressions 
for  effects on the relative(s) and on self might  suggest. For  example,  a solitary deciding to join 
ano the r  solitary (a g roup  of  one)  is essentially identical to a group of  one  choosing not  to repel a 
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joiner. More generally, suppose a group increases from m to (m + 1) members. Let ER(f) and 
Es(f) represent the free-entry model's components of inclusive fitness, each evaluated at G = (m 
+ 1). Similarly, let ER(g) and Es(g) represent the group-controlled model's components of 
inclusive fitness, each evaluated at G = m. From the equations in the text we have ER(() = -- 
Es(g) and Es(f) = - ER(g). If the given increase in group size means that a group of in does not 
repel a joiner, then rER(g) + Es(g) < 0. In terms of the free-entry model's elements, this 
expression is: 

rEs(f) + ER(f) > 0 (19) 

Inequality 19 shows that the models predict group size changes in an economically symmetric 
manner, despite the important behavioural difference between free entry and group-controlled 
entry. 

Group-controlled entry begins with the assumption that a solitary individual attempts to 
establish membership in the group. Free entry asks whether a solitary should or should not prefer 
group membership. Consequently, the model for free entry has a certain logical precedence over 
the group-controlled model; a group cannot repel unless a solitary tries to join. However, the 
group-controlled model may apply quite appropriately to questions concerning eviction of an 
individual from its natal unit or when social dominance relationships govern group composition. 
Group control may additionally prove important when changing ecological conditions, such as 
temporal variation in food availability, change the relationship between group size and fitness, so 
that the equilibrium group size becomes smaller. 

The argument concerning the effect of genetic relatedness on the decision to join others is not 
new. For instance, Grafen (1986) reanalysed Noonan's (1981) data on the decision of female 
brown paper wasp (Polistesfuscatus) whether to join a nest and become a worker, establish a nest 
of her own as a solitary queen or simply die. He pointed out that the decision depended on the 
effect that joining had on relatives. In situations where relatedness is high, Grafen (1986) 
predicted that females would either join unrelated females or even prefer to die rather that be 
solitary queens. We apply the argument to a more general aggregation economy and consider the 
effects of group-entry rules. 

Suppose the free-entry model applies. Then solitaries about to make a group-membership 
decision should respond to the extent of their genetic relatedness to group members. Many 
animals apparently act as if they recognize genetic relatives, based on preferences for kin as 
associates (Blaustein et al., 1991). When such discrimination is possible, we can envisage certain 
patterns in group-membership decisions. First, assume that G < G*. Individuals should prefer 
joining groups of relatives. Joining enhances inclusive fitness through both benefits to relatives 
and benefits to self. As relatedness between group members and the joiner increases, the indirect 
contribution to self's inclusive fitness increases. Thus, for a given ER, solitaries should prefer 
joining groups with their closest relatives. A similar prediction arises for group-controlled entry 
when G < G*. The members of the group always enhance direct fitness by not repelling a 
solitary, but the increase in inclusive fitness is greater when a more closely related individual joins 
the group. 

Now assume free entry with G >- G*. Individuals might prefer to join groups of non-relatives. 
This would avoid the negative effect imposed upon relatives (hence, upon the decision-maker's 
inclusive fitness) when a solitary joins a group and inflates its size beyond G*. Joining non- 
relatives could offer the opportunity to avert this effect. However, the prediction differs for 
group-controlled entry. When G >- G*, not repelling a new group member amounts to kin- 
selected altruism. Hence, the group should repel an intruder unless that individual is related so 
closely that the benefit to the relative overcomes the loss of direct fitness. It is important to realize 
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that these predictions involve G*, not because it is the expected size of groups of relatives, but 
because it is the pivotal group size around which group-membership decisions are based. The 
analysis suggests that kin recognition occurs not only so that relatives can assort positively, but 
also so that relatives may (under different ecological conditions) avoid each other during group 
formation. 

This note has two explicit purposes. 

(1) To specify how relatedness enters the elements of decision rules that in turn influence group 
size in an aggregation economy. 

(2) To emphasize that the inclusive fitness of every group member need not always attain a 
maximum at the equilibrium group size. 

We analysed free entry and group-controlled entry separately since different processes will 
govern group formation in different social systems. Earlier analyses of equilibrium group size 
have uniformly assumed free entry. Our model suggests that predicted group sizes depend on the 
explicit assumptions concerning group entry. Groups of primates and social carnivores, for 
instance, might often control the entry of solitaries (Jansson, 1985), while free entry might often 
describe group formation in granivorous birds. 

We could weaken assumptions about entry rules and model changes in group size as the 
outcome of an asymmetric game between a solitary and the group. Suppose, for example, that 
G* < G < G ̂ , f l (G+ l )  > f~(1) and r = 0. A solitary's fitness would increase if it joined the 
group, but every current group member's fitness would decline. The interaction of the competing 
objectives can be portrayed by modifying the fitnesses to consider the cost of entry for the solitary 
and the cost of repelling an intruder for the group. The solution to the game, for different levels 
of relatedness, would indicate when changes in group size follow the free-entry rule and when 
group-controlled entry applies. Our arguments assume that relatedness does not affect the shape 
of the fitness function. Increased relatedness could, however, allow the evolution of qualitatively 
different social behaviour that alters group size effects on fitness and, consequently, influences 
the equilibrium group size. 
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Note added in proof 

A different analysis of the group size problem has led to analogous conclusions concerning the 
effect of relatedness on group size (Higashi and Yanamura, 1993). 
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