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Abstract .  We show here that by modifying the eigenvalues A2 < A3 < 0 < ~1 of 
the geometric Lorenz attractor, replacing the usual e x p a n d i n 9  condition A3 + A1 > 
0 by a e o n t r a c t i n  9 condition A3 + A1 < 0, we can obtain vector fields exhibiting 
transitive non-hyperbolic attractors which are persistent in the following measure 
theoretical sense: They correspond to a positive Lebesgue measure set in a two- 
parameter space. Actually, there is a codimension-two submanifold in the space of 
all vector fields, whose elements are full density points for the set of vector fields that 
exhibit a contracting Lorenz-like attractor in generic two parameter families through 
them. On the other hand, for an open and dense set of perturbations, the attractor 
breaks into one or at most two attracting periodic orbits, the singularity, a hyperbolic 
set and a set of wandering orbits linking these objects. 

O. Introduction 
Let M be a manifold. Denote  Vr(M) the Banach space of C r vector 

fields with uniformly bounded  derivatives, endowed with the usual C ~ 

norm. If X E Vr(M) denote X t : M  ~ the flow of diffeomorphisms 

generated by X.  There exist various definitions of at tractors .  We shall 

use the strongest  one: a set A C M is an a t t rac tor  of X E v r ( - / F [ )  if it 

is compact,  invariant under X,  transitive (i.e. it contains dense orbits) 

and it has a compact  neighborhood U such that  

1 -- U xt(u) �9 
t>0 

A compact  neighborhood U of A satisfying the above proper ty  is 

called a local basin of A. 

Moreover we say that  A is persistent (in the C ~ topology) if it has a 
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234 ALVARO ROVELLA 

local basin U such that setting. 

Ay = UY*(V) ,  
t>0 

then Ay is an attractor for every Y in a C r neighborhood of X. 

Typical persistent attractors are the hyperbolic attractors. In di- 

mension 3, a Cl-persistent attractor without singularities has to be 

hyperbolic [M1]. In every dimension > 3 examples of non hyperbolic 

Cl-persistent attractors without singularities are known. 

Allowing singularities, there exist Cl-persistent attractors even in 

dimension 3. This was discovered by Guckenheimer in 1975. Motivated 

by an algebraically very simple differential equation on R 3 proposed by 

Lorenz ILl as a finite dimensional approximation of the evolution equa- 

tion of atmospheric dynamics, Guckenheimer produced a C ~ vector- 

field Xo on R 3 having a C 1 persistent attractor A containing a singular- 

ity with eigenvalues A1 < A3 < 0 < A1 and /~1 + /~3 > 0. The attractor 

A became known as the geometric Lorenz attractor, but so far it is still 

unknown whether the original Lorenz equations contain such an object. 

Richlik, [R], has proved its existence in a differential equation close to 

that of Lorenz. Beside its persistence, the geometric Lorenz attractor 

has other surprising properties, like having modulus of stability 2, but 

we shall not pursue that line of properties. 

Here we shall consider a vector field almost identical to that used by 

Guckenheimer, but with the eigenvalues of the singularity being A2 < 

A3 < 0 < A1 and satisfying A1 + A3 < 0. It will be constructed so 

that it has an attractor A containing the singularity, but this attractor 

won't be persistent. In a neighborhood H there will be an open and 

dense set of vector fields for which the attractor breaks up into one, or 

at most two, attracting periodic orbits, a hyperbolic set, the singularity 

and wandering trajectories linking these objects. But on the other hand, 

A will have a compact neighborhood U such that 

A = N X 6 ( U I ,  
t>o 
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T H E  DYNAMICS OF PERTURBATIONS 2 3 5  

and, for a positive measure set of vector fields X E L/, the set 

Ax = nxt( ) 
t>0 

is an a t t rac tor  of X. 

To give an accurate meaning to this measure theoretical property, 

we shall introduce a concept of full density point of a subset of a Banach 

space, a t tempt ing  to generalize the usual concept of full density point 

of a subset of a finite dimensional manifold. Recall tha t  given a subset 

S of a finite dimensional Riemannian manifold M,  we say tha t  x is a 

density point of S, if, denoting rn the Lebesgue measure, and Br(x) the 

ball of radius r and centered at x, we have: 

rn(Br(cc) N S) 
lira = 1 

Definition. Given a subset S of a Banach space E,  we say tha t  x 6 S is a 

point of k-dimensional full density of S if there exists a C ~ submanifold 

N C E, containing x and having codimension k, such tha t  for every k- 

dimensional manifold M intersecting N transversally, then every point 

of N n M is a point of full density of S N M in M. 

Definition. We say tha t  an a t t rac tor  A of X E Vg(M) is k-dimensionally 

almost persistent, if it has a local basin U such tha t  X is a k-dimensional 

full density point of the set of vector fields Y 6 Vg(M) for which Ay = 

Nt>oYt(U) is an at tractor .  

Now we can state our result: 

Theorem.  There exists a C ~ vector field X 0 in ]R 3 having an attractor 

A containing a singularity, and satisfying the following properties: 

(a) There exist a local basin U of A, a neighborhoodbt of Xo, and an open 

and dense subsetbtl, oflg, such that for all X E btl, Ax  = Nt>_oXt(U) 

consists of the union of one or at most two attracting periodic or- 

bits, a hyperbolic set of topological dimension one, a singularity, and 

wandering orbits linking them. 

(b) A is 2-dimensionally almost persistent in the C 3 topology. 

The usual Lorenz a t t rac tor  is analyzed by showing tha t  its dynainical 

properties are in correspondence with those of a map of the interval 

Bol. Soc. Bras. Mat., Vol. 24, N. 2, 1993 



236 ALVARO ROVELLA 

f: [-1, I] *-% with a graph of the form shown in figure i, with derivative 

> i. In our case, a similar reduction is possible, but it leads to a map 

of the form shown in figure 2, with derivative 0 at z = 0. This is due to 

having A1 + A3 < 0 instead of )q +/~3 > 0. 

j 
Figure 1 

Figure 2 

This kind of maps, associated to contracting Lorenz attractors was 

first discussed by Arneodo, Coullet and Tresser [ACT]. Their interest, 

however, was on the appearance of cascades of bifurcations as a tran- 

sition to chaotic behaviour, and not on the persistence of the attractor 

like in the present paper. 

Property (b) of the theorem follows applying to this map the meth- 

ods of Benedicks and Carleson [BCI], [BC2], suitable modified. 

The open and dense set in property (a), where the vector field ex- 

hibits what can be described as Axiom A dynamics, follows also from 

analyzing this map and exploiting its monotonicity property. 
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I. Descr ip t ion  o f  the Initial Vector f ie ld 

In this section we will describe the initial vector field, Xo. In the next 

one we will study its perturbations. 

X0 is a C ~ vector field in I~ 3 with a singularity at the origin, whose 

eigenvalues satisfy -A2 > -A3 > A1 > 0, and whose eigenvectors are 

supposed to have the directions of the coordinate axis. We will also 

assume that Xo is linear in a neighborhood of the origin containing the 

cube {(x, y, z): Ixl, lYl, Izl < 1} Both trajectories of the unstable manifold 

of the singularity intersect Q, the top of the cube, as in the figure a: 

Y 
. X 

Figure 3 
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238 ALVARO ROVELLA 

A local stable manifold of the singularity intersects Q at {x = 0}, so 

we can consider the first re turn map F0 defined in Q* = Q\{x  = 0}. 

Figure 4 

By a simple calculation using the form of the flow of X0 in the 

linearized neighborhood, it is easy to see tha t  the first re turn map F,  

from Q+ to {x = 1} is: 

F(x, y, 1) = (1, yx r, xS), 

where 

/~3 )~2 
s -  A1 and r = - ~ 1 1 .  

To obtain F0, the map F must be composed with a diffeomorphism 

which will be supposed to carry lines z = const, in {x = 1} to lines 

{y = const} in Q. Moreover, we will assume tha t  the  flow of X0 is 

such that  the lines with the direction of the axis O Y  (of the strong 

stable manifold of the singularity) form an invariant foliation for X0. In 

particular, this implies tha t  in Q F 0 has an invariant foliation; then F0 

has the form: 

Fo(x, y) = (fo(x), go(x, y)) 
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THE DYNAMICS OF PERTURBATIONS 239 

Figure  5 

As the flow is smooth  and has no singularities between {z = 1} and 

Q, it follows from the formula for F ,  tha t  the order of f(~ at x = 0 is 

s - 1, tha t  is: 

lim f(~(z) is finite and r 0. 
x- 0 Ixl 8-1 

Ogo Ogo 
For the same reason, the orders of ~-x  and ~ -y  at x = 0 are, at 

least, s - 1 and r, respectively. 

Next  we sill summarize the propert ies of X 0 just  described and others 

tha t  will be needed in the proofs. After this, we will briefly comment  

the new properties.  

Properties of: X 0 

1. XO has a singularity at the origin, whose eigenvalues satisfy: 

(1.1) - ~ 2  > - ~ 3  > ~1 > 0 

(1.2) r > s + 3, where r = -~2 /A1,  s = -~3 /A1.  

2. There is an open set U in R 3 containing the cube and the singularity 

tha t  is positively invariant under XO. The first re turn map F0: Q* --+ Q 

has the form 

Fo(x, y) = (fo(x), 90(x, y)) 

Thus, the foliation by lines {y = const.} of Q is invariant under FO. 

3. There is a positive number  p that  will be supposed sufficiently small 

such that  the contraction along the invariant foliation of lines y = const. 

in U is stronger than p. 
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4. Proper t ies  of fo 

(4.1) The  order of fo at x = 0 is s -  1 > 0. 

(4.2) fo has a discontinuity at x = 0, f0(0 +) = -1 ,  f0(0-)  = 1. 

(4.3) f6(x)  > 0  x • O. 

(4.4) m xx>0 f (x) = f6(1),  maxx<0 f (x) = s  
(4.5) The  points  1 and - 1  are preperiodic repelling, tha t  is, there exist 

k - ,  k +, n - ,  n + such that :  

= > 1 

f ~ - + n - ( - 1 )  = / ~ - + ( - 1 ) ,  ( f ~ ) ' ( f ~ - ( 1 ) )  > 1. 

(4.6) f0 has negative schwarzian derivative: S( fo)  < o~ < O. 

Remarks. 

�9 Proper t ies  (1.1) and (1.2) are open, so they are valid for all X near 

x 0 .  

�9 We will use (4.5) to prove par t  (b) of the  theorem,  and (4.6) to prove 

par t  (a). 

�9 By (4.1), S( fo ) ( x )  ---+ - o o  as Ix] -+ 0: this can be seen by direct cal- 

culation. Thus  (4.6) mus t  the  verified only outside a ne ighborhood 

o f x  = 0. 

�9 The  proper ty  s ta ted  in 3 is an hypothesis  on the behaviour of the 

vector field X0 outside a ne ighbourhood  of the  origin. Close to 

the  singularity, the  constant  of contract ion of the foliation depends  

on the relation between the  eigenvalues. P roper ty  (1.2) gives the 

necessary condit ion to obtain this contract ion.  

II. Ex is tence  o f  Fol iat ions  

In this section we will show tha t  some of the  propert ies of the initial 

vector field are still valid for C 3 per turbat ions .  Let b / b e  a small neigh- 

borhood  of Xo. T h e n  every X C b / h a s  a singulari ty close to  the  origin, 

whose eigenvalues, )u(X) ,  A2(X) and A3(X) satisfy the  propert ies  (1.1) 

and (1.2) of the  last section. Fur thermore ,  the  trajectories ~I(X) and 

~2(X) contained in the  unstable  manifold of the singulari ty of X,  still 

intersect the square Q. 
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THE DYNAMICS OF PERTURBATIONS 241 

In addition we can make H and U smaller to obtain that  the open 

set U C_ IR 3 is positively invariant by the flow of each X E b/. 

Proposition. For each X E ld there is a C 3 stable one dimensional 

foliation in U invariant under X and that varies continuously with X .  

Proof .  Let 12 = {(x, l): x C U, l is a one dimensional subspace of TzU}. 

Fixed a point x E U there is a diffeomorphism between the set of 

one dimensional subspaces of TzU and the quotient of the unit sphere 

of T~U under identification of antipodal points. This implies that  12 is 

locally diffeomorphic to SU, the unit tangent  bundle of U. We will use 

this fact without  specific mention. 

For each X E N it can be defined a vector field 52 in /2  as follows: 

Take x E U and v E T~U a unit vector and put 

X(x ,  v) = (X(x), DXx(v) - (DXx(v), v)v). (1) 

The first component  in the definition of X(x,  v) is a vector in TzU 

and the second one is a vector in TxU orthogonal to v; so fg(x, v) E 

T(~m)12. It is not difficult to check that  the flow associated to X is 

f 
(x, v)) -- t (t, x),  I1 11 ) (2) 

where ~o denotes the flow of X. 

Now recall from section I tha t  the initial vector field X0 has an 

invariant foliation in U defined by lines {y = const.}. The set of pairs 

(z, l) with z c U and 1 the direction of the leave passing through z define 

a submanifold ]2 of 12. V is J20-invariant because if (x, v) E V than it is 

easy to see that  @(t, (x, v)) E 12 for t > 0, by formula (2). Now we want 

to show that  V is 3-normally hyperbolic. 

For each (z, v) ~ l; define 

E u = {0}  • 

where 0 is the origin in TxU and Sx is the unit sphere in TxU. 

As T(xm)V = T~(U) x {0} (now 0 is the origin in T~(Sx)) we have the 

following splitting: 
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To show that E~,v ) is _~ invariant, take a vector w E Tv(Sz) and the 

curve ~/in/~ defined by 7 in s defined by 7(s) = (x, v + sw). Then we 

have: 

(D~t)(x,v)(O,w) -- ~t  o = d~ ~( t ,x ) ,  II(D~t)~(v + sw)][ 

( (DqDt)x(w) ((Dcpt)x(v), (D~t)x(w)} (Dcpt)x(V)) 
= 0, I I ( D ~ ) ~ ( ~ ) l l -  j j (D~t)x(v)jj  3 

This proves tha t  E u is D ~  invariant and implies (~,t) 

(D~t)(z,v)(0, w) 2 I[(D~t)x(W)ll 2 <(D~t)x(v), (DTt)x(w)} (3) 

= [l(D~dx(v)ll 2 -  II(D~t)x(V)[I 4 
On the other  hand,  it is easy to see tha t  for u E TxU: 

(D~t) (x,v)(u, 0) = ((Dcp~)z(U), 7(x,.), (u)) (4) 

where 7(x,v)(u) is a vector tangent  to Sx at the point  v involving second 

derivatives of the map  ~t, so it is 0 in the  linearized ne ighborhood of 

the  origin and has norm bounded  by a constant  outside: 

tr162 cii~ll. 

To prove tha t  12 is 3-normally hyperbolic we have to check tha t  the 

rate of expansion in E u is three t imes the  great  expansion of vectors (x,~) 
tangent  to 12. If (x,v) E 12, the  direction of v is (0, 1,0), so, as we 

have supposed in section I t ha t  outside a ne ighborhood of the  origin the  

contract ion along v is given by a small number  p > 0, we can diminish p 

and use formula (3) to obtain tha t  the  expansion in E ~ is sufficiently (x,~) 
large if compared  wi th  tha t  along ]2. Now it remains to show this 

condi t ion when  x is in the  linearized ne ighborhood of the  origin. For 

this, it is enough to calculate the  eigenvalues of X at  the  point  (0, (0, 1, 0)) 

which is the  singulari ty of X.  In fact, using (3) we obtain tha t  the 

eigenvalues associated to vectors in E(0,(0,1,0) ) are -)`2 + A3 and -A2 + 

AI(0 < -)`2 + A3 < -)`2 + )`1); and using (4) it is easy to see tha t  the  

eigenvalues associated to vectors in T(0,(0,1,0))12 are ),2 < ),3 < 0 < ),1. 

So the  condi t ion we need is 

--A 2 + A3 > 3AI 
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which is precisely hypothesis (1.2) of section I. 

Once we know that  l; is 3-normally hyperbolic, we can apply well 

known results about  such manifolds to obtain tha t  for all X E 5 / t h e  

induced vector field f (  in s has an invariant manifold of class C 3 and 

varying continuously with X (see [HPS]). Now it is easy to see that  

this invariant manifold obtained for f~ induces a C 3 invariant stable 

foliation for X const i tuted by one dimensional curves in U. This proves 

the proposition. 

Now for each X E N we construct  a new square close to Q (that we 

will still call by Q) formed by lines of the foliation, so that the first return 

map Fz to Q has an invariant foliation, and we can also put coordinates 

(x,y) in Q such that x = 0 correspond to the stable manifold of the 

singularity and 

F (z, y) = (A(x) ,  gx(z, y)). 

The one dimensional map f x  induced by F x  through the foliation 

is C 3 in x r 0; 0 is the discontinuity and critical point, and we suppose 

tha t  fx (0  +) = -1 ,  f x ( 0 - )  = 1. The order of f )  at x = 0 i s  s x - 1 .  

Finally, the maps f x  and its three first derivatives depend continuously 

on X. Now we have: 

Corollary. Each f x has negative schwarzian derivative. 

P r o o f .  As sx  > 1, lirnx_.0 S( fx ) (x )  = - o e  uniformly in X C/d. Outside 

a neighborhood of x = 0, S f x  is close to Sfo; as S f0 < 0, the corollary 

follows. 

In a first version of this paper we proved that  the foliations were 

only C 1+~. It was F.  Takens who suggested tha t  C 3 foliations could 

be obtained. Now we can use two well known properties of maps with 

negative schwarzian derivative: 

(i) Every a t t ract ing periodic orbit has a critical point or an extreme 

point of the interval in its basin. (Singer's theorem),  [el). 

(ii) Every compact  invariant set with all its periodic points hyperbolic 

repelling and without  critical points, is hyperbolic. (Guckenheimer's  
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theorem, [G]). 

III. Proof  o f  Part  (a) o f  the Theorem 
We want to prove that if 5/is a small neighborhood of X0, then there 

exists b/l, open and dense in L/I such that for all X E UI then non- 

wandering set of Ax is hyperbolic. 

Lemma 1. All X ELt can be perturbed so that the two trajectories of 

the unstable manifold of the singularity have attracting periodic orbits 

as w-limit. 

Suppose this lemma proved and let's see how part  (a) of the theorem 

follows from it. Consider the one dimensional maps f x  induced by the 

vector fields X ~ b/. The points 1 and - 1  (the critical values) correspond 

to the separatrices of the unstable manifold. From lemma 1 it follows 

that there exists Lr residual in U such that for each X E UI: 

�9 fx has one or at most two attracting periodic orbits whose basins 

contain the critical points of fx. 

�9 Every periodic orbit of fx is hyperbolic. 

As each fx has negative schwarzian derivative, Singer's theorem 

implies that each fx has at most two attracting periodic orbits. In ad- 

dition, if X E b/l, the complementary set of the basins of the attracting 

periodic orbits is hyperbolic. Hence L/1 is actually open and all X E/I/1 

satisfies part (a) of the theorem. 

Proof of Lemma I. We will consider the one-dimensional maps induced 

by each X E Ls What we must prove is that every X can be approx- 

imated by Y E L/such that the points I and -I are both attracted by 

at t ract ing orbits of fy .  

The transformations: 

Y E Lt --+ Wfy(O +) C [--1, 1] 

Y E bt --~ Wfy(O- ) C [--1, 1] 

w h e r e  Wry(X) denotes the w-limit set of m under f y ,  are lower semicon- 

tinuous, as it is easy to verify, if considered with topology C 3 in the 

domain and the Hausdorff topology for closed sets. Therefore, they  are 
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continuous in a residual of 5/, and we can assume tha t  X per ta ins  to 

this residual and has all its periodic orbits hyperbolic.  

Now we will suppose tha t  a~fx (1) is not an a t t rac t ing  periodic orbit; 

to prove the  l emma we mus t  find Y close to X such tha t  a~fy(1) is an 

a t t rac t ing  periodic orbit. 

Claim. If c~fx (1) is not an a t t rac t ing  periodic orbit,  then  0 ~ czfx (1) 

If 0 ~ wfx(1 ) then  a~fx(1 ) is hyperbolic.  As hyperbolic  sets have 

empty  interior, there exists a ne ighborhood V of ~fx (1) such tha t  for a 

residual set of x E V, f J ( x )  ~ V for infinitely many  j > 0. 

Note tha t  0- is the  unique preimage of 1, so, from 0 ~ cJfx(1 ) it 

follows tha t  1 ~ cJfx(1 ). Thus  we can per tu rb  f x  in a ne ighborhood 

of 1, disjoint of V, such tha t  for the  new map,  fy,  we have f J(1) ~ V 

infinitely many  times. So aJfy(1) is not  contained in V and this gives a 

contradict ion because we supposed tha t  X was a point  of continui ty of 

the map  X --~ cJfx (1). This  proves the  claim. 

So, 0 E wfx (1) if wfx (1) is not  an a t t rac t ing  periodic orbit.  Suppose 

first tha t  0 can be accumula ted  by CUfx (1) from the left, tha t  is: there 

exists a sequence kn ~ cc such tha t  fi~n(1) < 0 Vn, and fxkn(1) -+ 0. 

It is not difficult to see tha t  given (~ > 0 there exists Y E 5/ at a 

distance less than  ~ from such X such that :  

fy(x) fx(x) Vx; fy (x)  > fx(z) Jr 5/2 Vlzl > xo 

where x0 is chosen so tha t  Ify(z)l < c implies Izl > x0, for all Y E 5/ 

and c small enough.  

Claim. There  exists j > 0 such tha t  f~(1) < 0 < f~(1). 

Assuming the contrary we prove by induct ion tha t  f~(1) > f~((1) 

for all j > 0: this is very simple because f y  > f x  and bo th  maps  are 

increasing in [-1, 01 and in [0, 1]. Fur thermore ,  it follows tha t  fr  - 

f~+l(1) > 5/2 if f)+1(1) E ( - e ,  0), e a small constant .  Now take nk such 

tha t  f x  k (1) E (-(~, 0), and note  that :  

--fxk(1) _> f ~ k ( 1 ) -  fxk(1) > 5/2. 

This contradicts the fact that f~k (1) --+ 0 and proves the claim. 
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This implies tha t  there exists Y0 at a distance of X less t han  ~ such 

tha t  fr = 0; so fY0 has a super  a t t ract ive periodic orbit.  Now it 

is easy to see tha t  we can find Y close to Y0 and such tha t  f y  has an 

hyperbolic periodic a t t rac tor  whose basin contains 1. This  proves the  

lemma under the assumption that w/x(l ) accumulates on 0 from the 

left. Suppose now that this doesn't occurs; so, as 0 ~ Wfx(1),co/x(l ) 
must accumulate on 0 from the right. 

This implies that -i E Wfx (i), thus, as we are supposing that wfx (i) 
is not an attracting periodic orbit, then Wfx(-1) is not an attracting 

periodic orbit. So we can use the first claim to obtain that 0 E W/x (-i). 
Now wfx(l ) C wfx(-i ) and so 0 is accumulated by wfx(-I ) from 

the right. Next, as in the second claim, we perturb to obtain that -I 

is being attracted by a periodic attractor. This is an open condition, so 

we repeat the argument, but now beginning with a vector field X such 

that Wfx(-i ) is an attracting periodic orbit, and so the proof finishes, 

because we have two c a s e s :  Wfx (1) is an attracting periodic orbit, or 0 is 
accumulated from the left by a~fx(1), and in bo th  cases we showed how 

to obtain the  lemma. 

IV. Proof of  Part (b) of  the Theorem 
Each X in a small ne ighborhood of X0, induces a map  of the  interval, 

f x .  For X 0 this map  was denoted by f0: it is defined in [-1, 1], being 

tha t  f0(0-)  = 1 and f0(0 +) = -1 ;  the  points  I and - 1  are preperiodic re- 

pelling. Let k -  be such tha t  f ~ - ( - 1 )  and f U  (1) are periodic of periods 

n -  and n +. Let 's  define 

N =  { X Eb / : fk+(1)  and f ;~- ( -1)  are periodic } 

wi th  periods n + and n -  respectively 

If L/is small enough, we have tha t  N is a submanifold  of codimension 

2 containing X0, and tha t  f}+ (1) and fk x-  ( -1)  are preperiodic repelling. 

Let M be a C a bidimensional  submanifold  of /4 intersecting N 

transversally. We mus t  prove tha t  all vector field in N • M is a full 

density point  of the  set of Y ~ M such tha t  Ay is an at t ractor .  

Let 's  take Y0 C M N N, and {Ya}a>_0, a one paramete r  family con- 
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ta ined in M such tha t  the functions a --+ fYa(T1) have derivative 1 at 

a = 0. We will prove tha t  a = 0 is a full density point of the set of pa- 

rameters  for which Aya is an at tractor .  This, as the next lemma shows, 

implies tha t  Yo is a 2-dimensional full density point of the vector fields 

Y in M such that  Ay is an at tractor .  

Lemma.  Let A C R 2, and for each 0 c [0, 27v) define Ao = {rei~ r > 
1 

0} N A. Suppose that for all 0 E [0, 2~r), lime-~0 - m l ( A o  n Be) = 1, where 

ml  denotes Lebesgue measure in N and Be is the ball of center (0, 0) and 

radius c in R 2. Then: 

rn2(A N Be) 
lira -- i, 

e-~O m2(Be) 

where m2 is the two-dimensional Lebesgue measure. 

Proof .  Fix any ~ > 0 and define 

C6~o = {0 E [0,2rc):ml(AN B1/~) >_ 1 - ~ V n  >_ no}. 
n 

Observe tha t  6 {CO o }no_> 1 is an increasing sequence of sets which union 

is [0, 2re), so ml(Cn~0) --+ 2re for all ~. Then, denoting by XA(r, O) the 

characteristic function of A: 

m2(A N BUn ) = dO rxA(r, O)dr 

>s dof - ~ ./0 r;ga(r, O)dr 

1 - (5  

The result follows easily. 

Thus, as was pointed above, we can consider one parameter families. 

Theorem 2. There exists a set E of  parameters such that: 

�9 For all a E E the points 1 and - 1  have positive Lyapunov expo- 

nents under fYa, that is: there exists A1 > 1 such that (f~)'(zL1) > 

A] ~ V n > O .  

�9 For all a E E the positive orbits of the points 1 and - 1  under fYa 

are dense in [-1, 1]. 
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�9 0 is a full  density point of  E:  

1 
lim - r n l ( E  • [0, a)) = 1 
a--*0 a 

Now observe that  this theorem implies par t  (b) of our theorem. In 

fact, for each a E E,  Ay a is an at tractor:  its transitiveness follows from 

that  of fYa because the foliation that  gives rise to fYa is stable. 

Benedicks and Carleson proved a version of theorem 2 for the quad- 

ratic family. Here we will follow their arguments,  only proving those 

facts tha t  have essential differences. For the rest we refer to [BC1], 

[BC2] and [MV] 
Proof of Theorem 2. To clarify the notation, denote by ~a the function 

fYa" Before beginning with the proof, we recall some properties of the 

maps ~a that will be needed in the sequel. 

V.1 There exist positive constants K1, K2, independent  of a (and of 0), 

such that:  
K2lxl s-1 _< ~;(x) < K l l X l  s 1 

for all a, x, where s = s(a) > 1. To simplify the notation,  we will take s 

independent  of a. 

V.2 V)a E C 3. Their derivatives depend continuously on a. So ~a has 

negative schwarzian derivative, for sufficiently small a. 

V.3 The functions a --~ ~a(1) and a --+ p a ( - 1 )  have derivative 1 at a = 0. 

This is the condition of transversality. 

V.4 Wi th  the purpose of simplify the notation, we will suppose that  the 

. points - 1  and 1 are fixed by ~0, so ~)(1) > 1 and qo~(-1) > 1. 

We will begin proving that  maximal orbits outside a neighborhood 

of the critical points have exponential growth of the  derivative. 

L e m m a  1. There exists AO > 1 with the following property: given d > 0 

there exists ao(5) > 0 such that, if  

0 < a < a 0 ( 5 ) ;  qDJ(x) > 6  V 0 _ < j < k - 1  and 9~ka(X) <_~, 

then: 
> 
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This lemma is one of the basic facts that  support  the proof of 

Benedicks and Carleson. Their  initial map, 1 - 2 x  2, is C 1 conjugated to 

an expansive map, 1 - 2[xl: they  used this in the proof of the lemma. 

We don' t  have this fact in our ease, hence the proof won't  be so simple. 

It will require two new lemmas. 

Lemma 1.1. There exist 5o > 0 and A' > 1 only depending on the initial 

vector field XO, and satisfying the following property: Given 5 > O, there 

exists a2(5) such that for tYl E (5, 50) and 0 < a < a2((~), there exists a 
time g > 0 such that I~J(y)l > (50 for 1 <_ j <_ g and (~)e ,(y) >_ •,e. 

The orbit of the point x of lemma 1, cannot enter in ( -5 ,  (5) until k, 

but it could intersect (-50, 50) before this time; lemma 1.1 controls the 

derivative in a piece of orbit beginning at this re turn to (-50, 5o). 

Lemma 1.2. There exist a1(50) > 0 and/k0(50) > 1 such that, if a < 

a1(50), IPJ(Y)I > ~0 V0 <_ j < ko and ~ka~ < 50, then: 

> (,Xo(5o))ko 

This seems lemma 1, but  permit t ing al and Ao depend on 50. How- 

ever, 50 was fixed in lemma 1.1, so it is easy to see tha t  lemma 1 follows. 

Proof  o f  Lemma 1.1. Let 

Mff(a) = maXlz~:l[<e ~'a(Z), and m~(a) = minlz:Fll<~ ~'a(Z)- 

As M+(a) = m+(a)  and M o ( a  ) = too(a),  there exist a' > 0 and 

e > 0 independent  of a, such tha t  
+ s - 1  

(]vii (a)) < W < a',  (1) 

and a similar formula for ]V/e- and m~-. 

Let 50 > 0 be such tha t  I~a(Y) • 11 < e if lY] < 5O. Let lY[ E (5,5o), 

for example, ~ < y < ~0. We define: 

g(y, a) = min{j _> 1: 9~J(y) > --1 + e}. 

It follows that:  

g / g - 1  i r 7  s - 1  g - 1  
(~a) (Y) ~'a (Y) > = ( 2 )  

where z = ~Pa(Y), rr~ = m~(a), g = g(y, a) and K 1 comes from V.1. 
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On one hand,  if ua = ~ a ( - 1 )  + 1, Me = M~-(a) and  I z + l l  < e we 

get: 

~ ( z )  + 1 <_ .~ + M~(z + ]), 

because  ~ ( - 1 ) + 1  = ua and  p~(z) _< M~ for I z + l  I < e. If  we pu t  

z = Pa(Y), it follows, by  definit ion of g = g(a, y): 

g-1 
qoga(z) <_ Va E Mi  + M : ( z  + 1) - 1. 

�9 i=0 

Then,  as pe~(z) > - 1  + c, it follows tha t :  

e-1 ~ 
Z-< I > s  l]ai~=OM'~) M :  g (3) 

B u t  on the  o ther  hand,  p r o p e r t y  V.1 implies t ha t  z + 1 _< K2yS/s.  

P u t t i n g  this  in (2) and  using (3) we obta in:  

8 - 1  

(qOa) (y) __ K 1 (z + 1) 

8 - - 1  

i=o j \ M ~ - I / s e ]  " 

(4) 

g-1 i Now, as g(a, y) < g(a, (5), the  su m ~ i = 0  M~ is b o u n d e d  independen t ly  

of y. As u~ --+ 0 when  a ~ 0 we can choose a0((5) such t ha t  

g-1 s 
E M  i < - .  Ua e 2 

0 

Then  it follows f rom (4), tha t :  

s - - 1  g ) S ?Tt~ 
/ s  

(5) 

m ~  
B y  (1), there  exists  ),1 > 1 such t ha t  ),1 < MS_US. 

Finally, g(a, (50) can  be  made  large, by  choosing a and  (50 small�9 Then,  

as g = g(a, y) > g.(a, (50) we can obta in ,  f rom (5), t ha t  
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Observe tha t  the  proof  of l emma 1.1 implies tha t  go and A' can be 

chosen independent  of the family contained in L/. 

Proof  o f  L e m m a  1.2. 

Claim. There  exists/1/5o such tha t  if X E b/5 o and f x  has a non-repell ing 

periodic orbit  F, then  F n (--60, (50) r 4 i. In other  words, all a t t rac t ing  

or non-hyperbol ic  periodic orbit  for f x  with X E He o, must  intersect 

(-(50, (50), 
Suppose tha t  this is not  true, then  there exists a sequence X~ --+ X0, 

periodic points  Pn of per iod kn for fx~, with (f~)'(p~) < 1, and such 

tha t  {f~:~(pn): 0 < j <_ k~ - 1} does not intersect ( -g0,  (5O). 

Let P~ = { f ~ ( p ~ ) :  0 < k~ - 1}, and let A be the set of limit points  

of Un>lP~. It  is easy to see tha t  A is invariant under  f0 and tha t  

A N (-(5, (5) = ~b. Then,  as f0 has negative sehwarzian derivative, A must  

be hyperbolic.  Then  there exist rn > 0, A > 1 and a ne ighborhood V of 

A, such tha t  (f~)'(x) > A for all Y near X 0 and x ~ V. But  this is a 

contradict ion because P~ C V for all n large. 

Claim. There  exists rn > 0, A > 1 such that ,  if a is sufficiently small 

and ~{(x) r (-(50, (50) for all 0 < j < rn - 1, then  (~2)'(x) > Am. 
Reasoning as in the previous claim, we can find a set A, disjoint form 

(-(5o, (50), p0-invariant and closed. Its periodic orbits are repelling, by 

the first claim, and so the  conclusion follows as before. 

This  claim implies tha t  (pak)'(x) > A k for all k > rn such tha t  

I~J(x)t > (5o for all j < k. It only remains to prove tha t  this is also 

t rue for k < rn. 

As f0 has negative schwarzian derivative, and the  images of the 

critical points  are fixed by fo, there exists # > t, independent  of k, such 

that :  

f~(x) E (-5o,  6o)implies(f~)'(x) > / z  (,) 

This is easy to prove looking at the picture of the graph of f~ re- 

str icted to the maximal  interval of continui ty of f~ tha t  contains x, as 

in figure 6 below. If we denote  by [a, b] this interval, then: 
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6 
0 

-1 

I 

i I 
i t 

\ x  
Figure 6 

f~(b) - f~(x) > 1 - 60, and 

f 3 ( x )  - f 3 ( a )  _> 1 - 60, 

so there exists # > I such that: 

f~(b) - f ~ ( z )  > #, > #. 

b - x  x - a  

This implies tha t  (f~) '(x) > #, because the contrary assumption violates 

the minimum principle (if g has negative schwarzian, then g' cannot have 

a positive minimum).  Then  property (,) of f0 is proved, and, once a 

value m is fixed, it extends to a neighborhood of XO, for all k < m, tha t  

is: 

k , x] fk/x~ (.f~) ( , > # if X< ~ E (--60, (50) 

for all k < m and X in a neighborhood of X0 tha t  doesn' t  depends on 

6 (only o h m  and (50). Taking I > 1 such tha t  A m _< #, the proof of 

lemma 1.2 is complete. 

Now, as in [BCI] or [BC2], we will exclude the parameters that don't 

verify the following basic assumption: 

~J(1) >__ e -c~3, 9zJ(-1) >_ e -~3 (BA) 

(a is a positive small constant). 

Consider a t ime k for which qpka(1 ) < 6, and suppose that  the pa- 

rameter  a is not excluded by application of the (BA). Then  we define the 
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binding period associated to a and k as the maximal period 1 < j < p 

such that ,  for some small/3 > 0: 

<pk+j(]) _ qo j - l ( _ ] )  < e- /3 j  if(Pak(1) > O, and 

qoak+J(1) -- 90J-l(1) < e -r ifqOak(1) < O. 

Then.~ during the binding period, the orbit of wa^k+l (1) is close to that  

of i (or -1) .  Thus, the arguments will contain an induction hypothesis. 

Let A1 be such that  1 < A 1 < A O. We assume that  

(02J)'(1) > A~, (~J)'(--1) > ,~{, Vl < j  < ]~ 

Thus, the first i tem of theorem 2, is proved for those parameters for 

which the induction can be completed until k. 

Lemma2 .  Let k be such that ~ ( t )  E (e ~k, 6), and assume the induction 

hypothesis valid until l~ - 1. 

Then there exist positive constants p and ~- depending only on c~ and 

/3, such that: 

(a) (~J)'(~) E (p-1 p) V(, fl ~ , -  , ~a \ )J, - -  P, P [ 1 ~k+lqU for  all j < where is 
(~) , (~)  
the binding period associated to k and a. 

ro ros -- log pK2 
(b) p ~ 1, s 

p + log 3 /3 + log )~1 

(C) p + l t  k [ ( l~  (~a ) (~a(1)) _> ~cxp 
Lk s 

, where e-tO = ~ak(1) . 

s - 1 ) 3 ) ( P + 1 )  l s  > 1 .  

Similar results can be obtained when ~ak(l) E (-6,-e ~k) or for  the 

orbit of the point -i. 

Proof .  
j - 1  t g r i ~(~(()) - ~ ( ~ ( ] ) )  

( ~ U ( O  _ H 1 + 
qoa(qoa(1)) i={) 

To give a proof of part (a) we need the next sum bounded 

j - 1  / i t i ~ ( ~ ( { ) )  - ~ ( ~ a ( ~ ) )  
/ i 

~:o ~a(~a(])) 
(1) 
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As i 6 - c ~ i  / i Pa(1) _> ~a(Pa(1)) _> K2 e-~(s-1). On the  other  hand,  

- v i ( 1 )  _< - < 

and as #)a is C2: 

~a(99a(~)), i _ ~a()ga(1)), i <_ A 99~(~) - )9~(1) _< Ae -/3(i+1) 

Then, the sum (I) can be bounded above by: 

j-i 
j-1 Ae_#(i+l) Ae-# E exp[-/3 + o~(s - 1)]i < p 

K2e-ai(s-l) - 1422 i : 0  
i = 0  

where/3 > a(s - i) is the first condition we impose to a and/3. 

Let's prove (b). 

Fixed j < k 1, there  exists ~7 C ( -1 ,  ^k+l - - Wa (I)), such that: 

j k + l  _ j , k + l  1 ~a(~a (1)) g~J(:l)  = (~a) (r/) ~a (1) + 

--< P(~Ja) (1)~-(~ak(1)) s >-- PAJle-r~ 
This, together  with the  definition of binding period, imply the fol- 

lowing assertion: 

if j _< p and j < k, then e -~j >_ pl~e -r~ (2) 
s 

tha t  is: 
j <_ r o s -  log pK2/s < k/2 

+ log ~1 

(the last inequality because r0 < ak,  and if a is small) 

If p > h, t hen  j can be subs t i tu ted  in the  assertion (2) by k - 1, 

obtaining k - 1 < k/2, t ha t  is not  possible. Thus,  p < k, and so j can 

be subs t i tu ted  by p in (2), and we obtain: 

ros -- log pK2/s 
p<_ 

/3 + log ~1 

This  gives one of the est imates of p. To get the  other  suppose tha t  

~ ( x )  < 3 for all x. Then:  

_-- ~P+l(~ka(1) ) -- ~ a + l ( o  +)  > e -~ (p+ I ) ,  
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for some r; E (0, ~ak(1)). 

From this it follows that  

--/3(p+1) < ( p + l )  log3+log  ~ ( 1 )  = ( p + l )  log3 " r 0. 

This implies (b). 
8 

Finally, let t - 
S - - ] '  

p + l  t k t, l k t i k4-1 ) = 

_ _  p t k + l  t > (i))] 

1 
sK2 . 

_ [(qOa) (~0 a (1))]s -- i p (qOa) QT) > ~_~i (i§ p, k + l  -1 p, 

where ~] is such that 

~pa(_l ) , (gap+k+l (1) p /  k+l - -  = ( ~ a )  (~/)(~Oa (1 )  + 1 ) .  

Following: 

[ ( ~ + l ) ' ( ( p a k ( 1 ) ) ] t  > S/{ '2 (pP+ /~+ l (1 )  - -  (pP( - -1 )  p - t A p l / s - 1  

- -  / ( 1  
> sK2 

Klpt exp(- /9(p+ 1) + P legal )  
- -  8 - - 1  

( ) _ > T e x P k s _ l  /3 ( p + l ) .  

Finally, if/3 is small, the coefficient of (p + 1) in the exponential is 

positive. Then the last inequality in (c) follows by making 6 small (this 

implies that  r0 is large, and so p is large). 

The proof of lemma 2 is complete. 

We say that  a t ime j is free for the point 1 and the parameter  a if 

I~oJ(1)l > 6 and j does not belong to any binding period; j is a return 
for the point 1 and the parameter  a if ]~(1)1 _< 6 and j does not belong 

to any binding period. 

Let H+(a) = #{i < j: i is free for 1 and a}. 

We will exclude the parameters  a that  don' t  satisfy the free period 
assumption: 

H?(a) > (1 - s 0 ) j ,  H~-(a) > (1 - s 0 )  j (FA) 
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H~-(a) is defined in the obvious way; e0 is a small positive constant.  

Now we prove that  for a parameter  a not excluded by application of 

(BA) or (FA) until t ime k, the induction can  be  completed. 

In fact, during the free periods, lemma i implies tha t  the deriva- 

tive has exponential .growth at a rate of i0 ,  while for binding periods, 

lemma 2 says that  we don' t  have loose of derivative. So we obtain that  

(~b'(1) _> ao:(a)~ -~k _> ~[(1-~0)log~0-<k > a) where a~ can be taken 
as close to t 0 as we wish by making ~ and e0 small. 

The same est imates hold for the point - 1 .  

Let E be the set of parameters  never excluded. Then as we have just  

shown, E satisfies the first i tem of Theorem 2. Now it must be proved 

that  0 is a full density point of E.  

Let E+(E~)  be the set of parameter  values satisfying (BA) until 

n for the point 1 (resp. - 1 ) .  Suppose that  n is a return for some 
n 1 E + " then, according to the  location of ~oa(), this parameter  a E n-i' 

should be excluded or not. Those parameters in En+_l that are not 

excluded at t ime n will be divided into small intervals, so forming a 

part i t ion of E + (for the detailed definition see [BC1], [BC2] ol- [MV]). 

It can be  proved, as in the mentioned papers,  that:  

(~b'(1) < B (1) 
(~ ) ' 0 )  

for all 1 < k < n, where a, b are in the same interval of the  part i t ion of 

E+_l;  the constant  B depends only on (~,/3 bu t  not on n, a or b. 

This fact is the principal reason for introducing the partitions. Now 

the measure of the set of parameters  excluded by application of (BA) 

at step n, can be  estimated: 

L ~  S..~(~+_]\u~ +) _< c~ ~ ( E +  1), ~h~r~ th~ co,~,t~nt c de- 

pends only on c~ and fl, and ~b > 0 is any number less than 

log A 1 s - 1 - - Z > o  
8 S 

(remember that this was the coefficient of  p in the estimates obtained in 

part (c) of Lemma 2). 
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To prove this lemma a distort ion proper ty  like (1) is needed for 

derivatives with respect to the parameter .  This follows by put t ing (1) 

together  with the general fact tha t  under expansiveness, derivatives with 

respect to the parameter  and with respect to the variable are similar. 

For this it is used (V.3). 

To est imate the measure of the parameter  values excluded by the 

application of (FA), Benedicks and Carleson introduce a large deviations 

argument and prove the following lemma, that  can be t ranslated to our 

family of maps without  essential modifications. 

L e m m a  4. There exists ~0 > O, an absolute constant, such that 

rn{a E E+: H+(a) < (1- gO)n} _< ao e-7oeon 
where ao = ao(~) is given by Lamina 1. 

For the proof  of Lemma 4 we refer to [BC2]. 

Now we will conclude the proof tha t  rn(E) is positive. 

Let 
F + = En+\(a E E + : H + ( a )  < ( 1 -  80)n } 

F g  = E g k { a  E E n : H g ( a  ) < (1 - c 0 ) n }  

F + = •n>_O F+ 

F -  = N~>_OEff 

Then the intersection of the Fn gives the set of parameters  never ex- 

cluded, tha t  is, E = A~k0Fn = F + n F - .  

By Lamina 4, .~(Z+iF+) <_ aoe-~O~O~. 
By Lemma 3, .~(Z+_I \ Z  ) )  <_ Ce-~'~ . ao. 
Thus we obtain 

~(~+ I\F~+) < ~(ELI\F~ +) 
- (,) 
_< . ~ ( < _ ~ \ < ) +  . ~ ( < \ s ~  +) _~ Coe-~1%o. 

where Co > 0 and 71 > 0 are independent of a 0 and n. 

As 990(1) = 1 and 9)0(-1) = -1 ,  it is easy to see that  exists a natural-  

valued function N such that  

�9 N ( a o )  ---+ oo as a0 -~ 0 

�9 I~(a)l > ~ and I~(-~)l > ~ for every a _< a0 and j <_ N(ao).  
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Thus  F f  = [0, a0] for all j <_ N(ao). 
Therefore, using (,) it follows that :  

m ( F  +) _> m([0, a0] ) - E m(Fn+- l \F+)  
n>l 

: a 0 -  E 
n>_N+l 

Now, as 6'o and 71 don ' t  depend  on a0, we obtain that :  

m ( F  +) 
~ 1 as a0--~0. 

a0 

The  same can be said about  F - ,  t hen  it follows tha t  

re(E) 
1 as a 0  --+ 0. 

a0 

Finally, the  constants  Co and 70 depend  only on the number  c~, /3 

and & 

Thus,  a set E verifying the  first and the  last i tems of Theorem 2 has 

been founded.  

It remains to prove the  transit iveness of the maps  Pa for almost  

every a E E. This  was done in the last chapter  of [BC2], where the 

density of the  unstable  manifold of a fixed point  was used. Our trans- 

formations haven ' t  fixed points  for a # 0, but  have two-periodic points  

with  dense unstable manifold in [-1, 1], and so the a rgument  of [BC2] 

can be adapted.  
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