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A CLASSIFICATION OF ~VIINKOWSKI PLANES 
OVER HALF-ORDERED FIELDS 

Giinter F. Steinke 

This paper concerns a construction of Minkowski planes over half-ordered fields [5] and 
[20]. Solving various functional equations the Klein-Kroll types of these Minkowski planes 
are determined with respect to G- and q-translations and (p,q)-homotheties. Examples 
for some of the resulting types are given. 

1. INTRODUCTION AND NOTATION 

A Minkowski plane A/t =- (P, ~, {[]+, If-}) consists of a set of points P, a set of at least 
two circles ~ (considered as subsets of P) and two equivalence relations ]]+ and ]l- on P 
(parallelisms) such that three mutually non-parallel points (that is, neither (+)-parallel 
nor (-)-parallel) can be joined by a unique circle, such that the circles which touch a 
fixed circle g at p e K partition P \ ]p[ (where IPl -- IP]+ U IP]- denotes the union of 
the two parallel classes of p), such that each parallel class meets each circle in a unique 
point (parallel projection), such that  each (+)-parallel class and each (-)-parallel class 
intersect in a unique point, and such that there is a circle that contains at least three 
points (compare [18]). 
Associated with every point p of AA there is an incidence structure, called the derived 
affine plane or residual plane ~4p -= (Ap, •p) at p, whose point set Ap consists of all points 
of AA that  are not parallel to p and whose set of lines Lp consists of all restrictions to Ap 
of circles of .h4 passing through p and of all parallel classes not passing through p. Indeed, 
A~ is a Minkowski plane if and only if all incidence structures Ap are affine planes. 
Let F be a coordinatizing ternary field of a derived affine plane of a Minkowski plane AA. 
Then A/t can be described as follows. The point set is F x F, where ~ -- F U (cx~). Two 
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points (27, y) and (x', y') are (+)-  or (-)-parallel if and only if x = x '  or y = y'  respectively. 
Each circle K of 34 is described by a function fK : 1~ -+ 1~ as 

K = {(27, fK(27 ) ) l  27 e F } .  

We always use this representation for the Minkowski planes AA(F; f ,  g) we define below. 
The axiom of parallel projection shows that  each function fK  is a pe rmuta t ion  of F. The 
axiom of joining implies tha t  the collection of all those permuta t ions  fK is a sharply 3- 
transit ive set of permutat ions  of ~. Conversely, each such incidence s tructure constructed 
from a sharply 3-transitive set of permutat ions  of ~ is equivalent to a more general hy- 
perbola  s tructure or (B*)-geometry, tha t  is, all axioms of a Minkowski plane are satisfied 
except the axiom of touching. 

A half- (or pseudo-) ordered field F is a field with a multiplicative subgroup P of index 
two. In particular, P contains all non-zero squares of F so that a finite half-ordered field 

cannot have characteristic two. Elements of P and of the other eoset of non-zero elements 
are called positive and negative respectively. We write x > 0 for x C P and x < 0, if x is 
negative. 

In [20] the notion of order-preserving, order-reversing and monotonic permutations of a 

half-ordered field F to permutations of ~ as follows. Let 

{ (271 - 272)(x2 - 273)(x3 - 271), i f  271,x2,273 # oo  

e(xl ,  x2, x3) = x3 - x2, if x l  = oo 
x 1 - -  X 3 ,  if z2 -- oo 

272 - -  X l ,  if X 3 : 0<3 

for mutual ly  disctinct Xl ,Z2,x  3 E ~. We then say tha t  a permuta t ion  f of ~ is order- 
preserving or order-reversing if and only if r  f (z2) ,  f (x3))/r  > 0 or 
~ ( f (x l ) ,  f (x2) ,  f (x3))/e(xl ,  x2, x3) < 0, respectively, for all mutual ly  disctinct x l ,  x2, x3 e 
~. We call f monotonic if f is order-preserving or order-reversing. When  x3 = oo and 
f fixes tha t  point one obtains the familiar definition of an order-preserving or order-re- 
versing permuta t ion  of F; cf. [4]. In the respective cases (f(x) - f ( y ) ) / ( x  - y) > 0 or 
(f(x) - f ( y ) ) / (x  - y) < 0 for all distinct x, y e F. 
We define I I+(~)  and I I - ( ~ )  to be the collection of all order-preserving and all order-re- 
versing permuta t ions  of ~ respectively. Finally let II(~) = II  + (~) U I I -  (~) be the collection 
of all monotonic permuta t ions  of ~. 
One readily verifies tha t  II(~) and 1-I + (~) are groups with respect to composi t ion of per- 
mutat ions.  I I+(~)  is a normal  subgroup of II(F) of index 2, and I I - ( ~ )  is the other coset 
of I I+(~)  in rl(~).  

We denote the projective linear group over the field F by PGL(2,  IF), tha t  is, the quotient 
group formed by the general linear group GL(2,F) of 2 x 2 matrices modulo the non-zero 
scalar matrices. Unless we refer to a particular field we shall write PGL(2,  Y) as PGL2,  
tha t  is, PGL2 and likewise the other groups are relative to the general half-ordered field 

Y. As ususal we identify an element of PGL2 represented by the 2 • 2 mat r ix  ( a db), 
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det ( ac db / = ad - bc # O, with the fractional linear mapping x ~+ (ax + b)/(cx + d) 
k / 

operating in the standard way on F = F U {oo}. We define 

PGL + = PGL+(2, F) = H+(F) n PGL(2, F); 

this is a normal subgroup of index 2 in PGL2. Similarly, let 

PGLf = PGL-(2,F) = H-(F) N PGL(2,F). 

An easy calculation shows that a permutation 7 : x ~-+ (ax + b)/(cx + d) belongs to PGL + 
or P G L [  if and only if ad - bc > 0 and a d -  be < 0 respectively. Note that if one chooses a 
different representing matrix the determinant multiplies by a square in F which is positive; 
hence the above condition is independent of the representing matrix. It is well known that 
PGL2 is a sharply 3-transitive permutation group of F. 
Let f,  g E 1I + (F). In [20] we defined 

;Cf,g = PGL + U g- IPGL;  f C_ II(F). 

Then 2M(F;f, 9) is the incidence structure whose circle set is ~],g, that is, each circle 
is the graph of a permutation in Ef,g. We call PGL + and g - I P G L 2 f  the positve and 
negative component of/Cf,g, respectively. (For F = R, PGL + = PSL(2, N) is the connected 
component of the identity of the topological group PGL(2, R).) 
We say that two permutations f,  g E II+(F) have the fized point property (FP) if and only 
if 

(FP) IFix(-r)l # 1 for all 7 E PGL+g-IpGLT;f 

where Fix(7 ) is the collection of all points fixed by 7. 
Then fl4(F; f,  g) is a Minkowski plane if and only if f and g have the fixed point property 
(FP); see [20, Theorem 2.7]. Furthermore, AJ(F; f ,g)  is Miquelian, that is, each circle is 
the graph of a fractional linear mapping x ~ (ax + b)/(cx + d), if and only if f ,  g E PGL + a 
where a is an order-preserving automorphism of F. 
Minkowski planes of this kind over R with the Euclidean ordering and their automorphism 
groups have been studied in [17], see also section 6 for examples. 
I wish to thank H.-J. Kroll for his comments and suggestions. 

2. AUTOMORPHISMS OF A//(F;f,g) 

We always make the assumption that f,  g E II + (F) and that f and g satisfy the fixed point 
property (FP). There are four fundamental types of isomorphisms between such Minkowski 
planes, cf. [20]. We list the three types of isomorphisms we shall use later on. 

2.1. Isomorphisms induced by linear fractional maps: 

(x, y) ~+ (~(x),/~(y)) 
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where a, fl E PGL +. A circle K, ,  T E :FLy, is mapped to KZ~-~.  This map yields an 
isomorphism from AJ(F; f,  g) to AJ(F; f a - 1 ,  gfl-1). 

2.2. An isomorphism that maps (+)-parallel classes to (-)-parallel classes and (-)-parallel 
classes to (+)-parallel classes: 

(x, (y, 

A circle K~, T C "~f,a, is mapped to KT-~. This map yields an isomorphism from fl4(F; f,  g) 
to Ad (F; g, f ) .  

2.3. An isomorphism that maps the positive component of the circle set to the negative 
component and the negative component to the positive component: 

(x, y) (/(x), w(y)) 

where ~/ E PGL 2. A circle Kr,  ~- C $-f,g, is mapped to K, yg~.f-1. This map yields an 
isomorphism from A4(F; f,  g) to A/t(F; f - i ,  7g-17-1).  

2.4. Let Aut(F) be the collection of all automorphisms of the field F and let 

PFL2 = PFL(2, F) = PGL2Aut(F) 

be the collection of all semi-linear fractional permutations ofF. Moreover, Aut + (F) denotes 
the order-preserving automorphisms and PFL~ denotes the order-preserving and order-re- 
versing transformations respectively, that is, PFL~ = II ~- (F) M PFL2 = PGL2~Aut + (F). 
We furthermore introduce for later use the collection Add + (IF) of all additive order-pre- 
serving permutations of F and the collection Mul + (F) of all multiplicative order-preserving 
permutations of F (both kinds of permutations extended canonically onto F). With these 
permutations we form the following subgroups of II + (F): 

A : A(F) = PGL+Add+(F)PGL +, 
= @(F) = PGL+Mul+(F)PGL +. 

Clearly, PFL + < A M (I). In fact, equality holds as we shall see in Lemma 5.4. 
We shall be using in particular the following permtations in PGL2: 

- the muliplication #a by a ~ F, a y! 0, i.e., #~(x) = ax. Obviously, #~ is additive 
and #a is order-preserving if and only if a > 0. 

- the translation wt by t E IF, i.e., 7t(x) = x + t .  Clearly, Tt always is order-preserving. 
We furthermore denote by T(F) the collection of all translations by elements of F, 
i.e., 

T = T ( F )  = { x ~ x + t I t c F } _ < P G L 2 .  

R e m a r k  2.5. Substituting f and g by 5 f  and 5~g, respectively, for two permutations 
~,~ E PGL+a  where a E Aut+(F), does not alter the circle set of the plane, that is, 
A/f (F; f , g )  = AA(F; 5f, 6'g). Since PGL + is still 2-transitive and because the stabilizer 
(PGL+)oo,0 of oo and 0 is transitive on P, we may assume, if necessary, that f and g both 
fix co, 0 and 1. We denote the stabilizers of co, 0 and 1 in II(F) and H• by H~o,0,1(F) 
and II~,0,1(F ) respectively. 
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2.6. Let M(F;  f ,  g) be non-Miquelian and assume that  F r GF(9). (The Minkowski planes 
of order 9 play a special role, compare [19] for the corresponding situation in projective 
planes. For more details about Minkowski planes of order 9 see [3] and [16].) Then the 
automorphisms of A/I(F; f ,  g) that  preserve (+)- and (-)-parallel classes are of the following 
form: 

(1) (x,y) ~-+ (a(x),f l(y))  is an automorphism of A/t(F; f ,g )  tha t  preserves (+)-  and 
(-)-parallel classes and fixes each of the two components of the circle set if and 
only if 

a c P G L 2 r  n f - I P G L 2 r  

CPGL2r M g - I p G L 2 r  

/3a -1 E PGL + 

for r r ~ Aut + (F). 
(2) (x,y) ~-+ (a (x ) , f l ( y ) ) i s  an automorphism of AJ(F; f ,9 )  tha t  preserves (+)-  and 

(-)-parallel classes and exchanges the two components of the circle set if and only 
if 

a E f - I p G L 2 r  M P G L 2 r  

13 E g - I P G L 2 r  A PGL2r  

~a  -1 E g - I P G L 2 f  

for r r E Aut + (F). 

For the next Lemma we follow [20, Lemma 4.2] which uses the group L+(F) = {x ~-> 
ax + t ] a, t E F, a > 0} < PGL +. (But we then obtain that  a below is in Aut+(F).)  

L e m m a  2.7. Assume that r 1 6 2  -1 _ PGL + for two permutations r r ofF. Then r ~ E 
PGL2c~ for some additive permutation a E II+(F). (The same a for both permutations.) 

Proof. Replacing r and r by ~rr and ~-~, respectively, for two suitable permutat ions or, 7- C 
PGL2, we may assume that  r and ~ both fix ee, 1 and 0. For each t E F there then exist 
at, bt, ct, dt 6 F, atdt - btct # O, such that  

r  + t) - a te(x)  + bt 
ctr  + dt 

for all x C F. Evaluating both sides at x = c~ and x = 0 gives us ct : 0 and bt/dt : r 
For t = 0 we then obtain r = (ao/do)r Evaluating at x = 1 yields ao/do = 1 and 
thus r = r Let at  = at~dr. Then 

�9 r  + t) = ~ , r  + r  

for all x, t E F. Since the left-hand side is symmetrical in x and t, we find that  
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for some constant 7 E F. Since at  r 0 for all t E F, we must have ~/ = 0. (Otherwise 
to = r  is defined and a t  o = 0.) Hence (~t = 1 is constant. Therefore the 
restriction of r to F is additive. [] 

3.  K L E I N - K R O L L  T Y P E S  OF MINKOWSKI  PLANES AA(F; f ,g )  WITH R E S P E C T  
TO G - T R A N S L A T I O N S  

Similar to the Lenz-Barlotti  classification for projective planes Minkowski planes were 
classified with respect to G- and {q}-translations in [9]; cf. [14] for a corresponding classi- 
fication of finite Minkowski planes. Let G be a parallel class (or generator) of a Minkowski 
plane A/t. A G-translation of ~ l  is an automorphism of M that  fixes precisely the points 
of G or the identity. A group of G-translations of A// is called G-transitive, if it acts 
transitively on each parallel class H of type opposite the type of G without  the point of 
intersection with G. We say that  the automorphism group F of AJ is G-transitive if F 
contains a G-transitive subgroup of G-translations. 
Wi th  respect to G-translations M. Klein and H.-J. Kroll obtained six types of Minkowski 
planes, in fact, the more general hyperbola structures, see [9, Theorem 3.4]. If Z denotes 
the set of all parallel types G for which the Minkowski plane is G-transitive, then exactly 
one of the following statements is valid: 

A. Z = O ;  
B. IZ] : 1; 
C. Z = {IP[+, ]Pl-} for some point p; 
D. Z consists of all (+)-parallel classes or of  all (-)-parallel classes; 
E, Z consists of all (+)-parallel classes plus one (-)-parallel class or of all (-)-parallel 

classes plus one (+)-parallel class; 
F. Z consists of all (+)- and all (-)-parallel classes. 

L e m m a  3.1. FI,9 is G-transitive for some parallel class G if and only if f or 9 belongs 
to A,  cf. 2.4. 

Proof. Suppose that  Ad(F; f ,  g) is G-transitive for some generator G. Up to isomorphisms 
of type 2.1 and 2.2 we may assume that  G is the (-)-parallel class of the point (c~, ce) 
and, by Remark 2.5, tha t  f and 9 both fix oc. A G-translation then is of the form 
(x ,y)  ~-~ (a(x) , f l (y))  where a = id, and fi is as in 2.6.(1) or 2.6.(2). The latter case cannot 
occur since by (FP) two circles that  touch at a point are in the same component  and 
because a G-translation takes a circle K to one that  touches K at K N G. 
In the former case we obtain 

id : a E P G L + r  (1 f - l p G L 2 + r  and 

f l e  P G L + r  M g - I p G L + r  

for r r E Aut  +. Thus r = r = id. Furthermore,/3 E PGL2 + must fix precisely the point 
oo. Hence fl must  be of the form fl(y) = y + t for some t E F. 
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Each ~- e T, cf. 2.4, is an automorphism of AA(F; f,  g) and so gTg -1 C_ PFL +. By Lemma 
2.7, g must be the composition of a permutation in PGL2 and an additive permutation of 
F. Hence g E A. 
Conversely, suppose that g E A, that is, g = aap  with a ,p  E PGL + and a E Add+(F). 
Then for each t E F the mapping 

(x, y) ~+ (x, p- l (p (y )  + t)) 

is an automorphism of Aft(F; f, g). (Note that aTt -= ~-a(t)a where Tt(y) = y + t.) Further- 
more, the collection of all theses automorphisms for t E F is transitive on each (+)-parallel 
class without the point whose ordinate is p-l(cx~); each of the latter points is fixed by 
every such automorphism. Hence Fy,g is G-transitive for G = F • { p - l (~ )} .  [] 

T h e o r e m  3.2. The automorphism group F f,g of a Minkowski plane AA(F; f ,  g) is of class 

F if  and only i f f ,  g E PFL+; 
E if  and only i f f  E PFL +, g e A \ P F L  + o r f  e A \ P F L  +, g e PFL+; 
D if  and only i f f  �9 PFL +, g �9 H+(F) \ A or f e H+(F) \ A, g �9 PFL+; 
C if  and only i f f ,  g E A \PFL+; 
B if  and only i f f  E H+(F) \ A, g E A \ PFL + or f e A \ PFL+~ g e H+(F) \ A; 
A f raud  only i f f ,  g E II+(F) \ A .  

Proof. Suppose that Ff,g is G-transitive for at least two (-)-parallel classes. According 
to [9, Theorem 3.4] FLy must be G-transitive for every (-)-parallel class. As in the proof 
of Lemma 3.1 we see that (x ,y )  ~-~ (x,7(y)) is an automorphism of AJ(F; f , g )  for every 
7 E PGL + that fixes precisely one or all points of F. Let E be the subgroup of PGL + 
generated by all these permutations 7. In fact, E _C PSL(2, F) (i.e., those linear fractional 
permutations x ~+ (ax + b)/(cx + d) with ad - bc = 1), and it is not hard to see that 
E = PSL(2,F). Then gEg -1 C_ FGL + by 2.6.(1). (Note that r = r = id in this case; cf. 
the proof of Lemma 3.1.) 
We can assume that g fixes co, l a n d  0. Since T =  {y ~ y + t  I t E F} < PSL(2,F), 
we obtain that g must be additive by Lemma 2.7. Furthermore, PSL(2, F) contains all 
permutations of the form x ~ a2x and x ~-~ - a 2 / x  for a r 0. From gTg -1 E PGL + for all 
these permutations one finds the functional equations 

g(a2x) = g ( a : ) g ( ~ )  
a 2 g(a 2) 

g ( - 7 )  = g(x) 

and 

respectively. This shows that 
g(xy) = g(~)g(y) 

whenever at least one of x, y or x y  is a square of F. In particular, g(x ~) = g(x) 2 for all 
x E F. Therefore 

g(xy):  = g((xy):) = g(x2y2) = g(x2)g(y~) = g(x)~g(y)~ = (g(x)g(y)):. 
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Hence 
 (xv) = +g(x)g(v)  

for all x, y E F. 
When F has characteristic 2, then obviously g is an automorphism ofF. If the characteristic 
o f f  is not 2 we define H+(x) = {y e F ] g(xy) = g(x)g(y)} and H_(x) = {y e F ] g(xy) = 
-9(x)g(y)}.  In fact, these two subsets of F are subgroups of the additive group of F 
and F --- H+(x) U H_(x). This can only occur when H+(x) = F or H_(x) = F. Since 
1 ~ H_(x) for x r 0 we must have H+(x) = F. This also holds true for x = 0. Hence g is 
multiplicative. Thus g C Aut + (F) C PFL +. 
Conversely, suppose that g E PFL +. Then it readily follows that  each mapping (x, y) ~-~ 
(x,'~(y)) is an automorphism of M(F; f ,g )  for each ~ E PGL +. (Note that  each c~ E 
Aut+(F) normalizes PGL+.) In particular, each mapping x ~-~ x + t for t c F and all its 
conjugates in PGL2 + are automorphisms of AJ(F; f,  9). This shows that Ff,g is G-transitive 
for each (-)-parallel class. 
Now the assertions of the theorem are an immediate consequence of Lemma 3.1 and the 
above considerations. [] 

Various examples for types A and D can be found in [6, w see also section 6 for examples 
of types F, D and A. 

C o r o l l a r y  3.3. Ff,g is G-transitive for at least two parallel classes of the same type if 
and only if f E PFL + or 9 c PFL +. 

R e m a r k  3.4. A Minkowski plane AA(F;f, 9) of type F is isomorphic to AJ(F;r  
for some order-preserving automorphism r of F. Hence there are non-Miquelian Min- 
kowski planes of type F in our family of planes if and only if Y admits order-preserving 
automorphisms ~ id. 

4. K L E I N - K R O L L  TYPES OF MINKOWSKI PLANES A~(F; f ,9)  WITH RESPECT 
TO q-TRANSLATIONS 

Let q be a point of a Minkowski plane M.  A q-translation of ~4 is an automorphism of 
Ad that is either the identity or fixes precisely the point q and induces a translation of 
the derived affine plane Aq at q. More precisely, let C be a circle passing through q. A 
(q, C)-translation of AJ is a q-translation that fixes C. A group of (q, C)-translations of 
AJ is called (q, C)-transitive, if it acts transitively on C \ {q}; a group of q-translation is 
called q-transitive, if it acts transitively on P \ ]q]. We say that  the automorphism group 
F of A~ is (q, C)-transitive or q-transitive if F contains a (q, C)-transitive subgroup of 
(q, C)-translations or a q-transitive subgroup of q-translations, respectively. 
With respect to q-translations M. Klein and H.-J. Kroll obtained seven types of Minkowski 
planes see [9, Theorem 4.9]. If Z denotes the set of all points q for which the Minkowski 
plane is (q, C)-transitive for some circle C through q, then exactly one of the following 
statements is valid: 

I. Z = ~ ;  
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II. Z = {q} for some point q and there is exactly one circle C through q such that  AA 
is (q, C)-transitive; 

III.  Z = {q} for some point q and AA is q-transitive; 
IV. Z consists of the points on a circle; 
V. Z consists of the points on a parallel class; 

VI. Z = P and for each point q there is exactly one circle C through q such that  A/t is 
(q, C)-transitive; 

VII. Z = P and ~4 is q-transitive for every point q. 

In the following we need a rather technical condition. We only use it in the proof of 
Lemma 4.2; its other ocurences come from applying Lemma 4.2. Let G be a subgroup of 
the additive group of the half-ordered field F. We say that an order-preserving permutation 
r of F is G-additive if and only if r + y) = r + r for all x E F and all y C G. We 
then say that  a half-ordered field F satifies (SA) if and only if 

(SA) For every subgroup G of the additive group of F such that  the factor group F /G  is 
isomorphic to a subgroup of Aut + (F) and every G-additive monotonic permutation 
r of F the subgroup r generates F as a field. 

Roughly speaking, this condition means that r and thus G cannot be too small and 
consequently Aut+(F) cannot be too big as compared with the additive group of F. ((SA) 
stands for small automorphism group, or more precisely, a small abelian group of order- 
preserving antomorphisms.) In fact, we can weaken (SA) a bit, but then it becomes even 
more technical Note however that  not every half-ordered field F satisfies (SA), see 4.1.4 
below for a counterexample. 

E x a m p l e s  4.1. 

(t) For every half-ordered field F for which Aut+(F) is trivial we have G = r = F for 
each subgroup as in (SA). Hence each such field satisfies (SA). In particular, every 
subfield F of ]~ with the familiar Euclidean ordering satisfies (SA) since Aut+(F) 
is trivial in this case. 

(2) Every finite field F satisfies (SA). Let F be of order p% The automorphism group 
of F is cyclic of order n (generated by the Frobenius automorphism x ~-+ xP). If  the 
prime p does not divide n, then Aut(F) contains no subgroup of order p. Hence 
G -- F for each subgroup G as in axiom (SA), and consequently r = F. 
I f p  divides n, then a subgroup H = r of index p is possible besides H = F but 
no other indices can occur, since F/H is elementary abelian and Aut(F)is cyclic. 
In this case [HI = p~-:l. Obviously, the subfield E generated by H can only have 
order p~ o r  pn-1 In the ~brmer case E = F. An easy computation shows that  the 
latter case can only occur i fp  = n = 2; but then Y is not half-ordered. This proves 
that  H generates F as a field and (SA) is satisfied. 

(3) Let p be a prime and let Zp be the prime field of order p. We let F -- Zp(X) be the 
field of rational functions over ZB, that is, F is the quotient field of the polynomial 
ring Zp[X]; cf. [13, IV]. The elements of F are of the form r(X)/s(X) where r(X) 
and s(X) ~ 0 are polynomials; addition and multiplication are the familiar ones. 
For a nonzero rational function t(X) = r(X)/s(X) E F we define t(X) E P if and 
only if deg r(X) - deg s(X) is even where deg r(X) and deg s(X) are the familiar 
degrees of the polynomials r (X) ,  s(X) ~ O. Note that  this definition is independent 
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of the particular representation of an element of F(X). Then P is a subgroup of 
index 2 in the multiplicative group of F and F becomes a half-ordered field. Note 
that  this definition also works for p = 2. 
The automorphism group of F is isomorphic to PGL(2, Zp), cf. [13, VIII,  Exer- 

/ 

1]. An element ( :  ~  PGL(2 , Zp)induces an automorphism of F b y  else de fin- 
\ / 

ing t (X)  being mapped to t ( (aX+b)/ (cX+d)) .  We determine the order-preserving 
automorphisms. Since X < 0 in F and because X is mapped to (aX + b)/(cX + d) 
we must h a v e a  = 0 o r  c =  0 ( ( a X + b ) / ( c X + d )  6 P i f a ,  c #  0). Likewise, if 
a = 0 then X + 1 is taken to b/(cX + d) + 1 = (cX + b + d) / (cX + d) which is 
in P. This shows that Aut + (F) consists exactly of the automorphisms induced by 
substituting X by aX + b, a, b E Zp, a # O. Hence an abelian subgroup of Aut + (F) 
is isomorphic to either the additive group of Zp or a subgroup of the multiplicative 
group of Zp. In particular, the order of such a group is at most p. 
We now show that F satisfies (SA). Let G be a subgroup of the additive group 
of F such that  F/G is isomorphic to a subgroup of Aut+(F). Hence, the index 
(F : G) <__ p, and obviously only index 1 or p can occur. If G = F, there is nothing 
to prove. So we suppose that  G has index p in F. Let r be a G-additive monotonic 
permutation of F and let H = r The G-additivity of r implies that  H is 
a subgroup of index p in F. Furthermore, H is a vector subspace over Zp of F 
considered as a vector space over Zp and H has codimension 1 in F. Clearly H 
generates F as a field and (SA) is satisfied. 

(4) The last example can be modified to yield half-ordered fields that  do not satisfy 
(SA). I am indebted to H. Kiechle for the following construction. Let E be an 
infinitely countable field of prime caharacteristic p > 0 (e.g., the the field Zp(X) 
from (3)) and let F = E(X) be the field of rational functions over E. As in (3) 
we say that  a nonzero element t (X)  = r ( X ) / s ( X )  E F is positive if and only if 
deg r(X)  - deg s(X)  is even. We now claim that  the trivial subgroup G = {0} 
and the identity r = id satisfy the hypothesis of condition (SA) but of course not 
the conclusion. Clearly, FIG is isomorphic to F which in turn is isomorphic, as an 
additive group, to E since both E and F have the same cardinality. Furthermore, 
E is canonically isomorphic to {t(X) ~-+ t (X  + a) ] a E E} which is a subgroup of 
Aut+(~). 

L e m m a  4.2. Let F be a half-ordered field that satisfies (SA). Then Ff,g is (q, C)-transitive 
for some point q and some circle C through q if and only if f and g belong to A. 

Proof. Suppose that  AJ(F; f,  g) is (q, C)-transitive for some point q and some circle C = K~ 
through q. Up to an isomorphism of type 2.1 we may assume that  q = (oo, oo) and using 
isomorphisms of types 2.1 and 2.3, if necessary, we may further assume that  C = Kid; 
following Remark 2.5 we can achieve that f and g both fix oc, 0 and 1. 
A (q, C)-translation then is of the form 2.6.(1), i.e., (x, y) maps to (a(x),  fl(y)) where 

a 6PGL2r M f - I p G L 2 r  

EPGL2r f7 g - I p G L 2 r  

fla -1 C PGL + 
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and r r E Aut  + (F). 
The tangent  bundle of C at  q consists of all circle K ~ ,  t E F, where Tt is the t rans la t ion  
by t as in 2.4. Since each circle in this bundle is fixed, we obta in  

/3Tt = ~-tCX 

for all t E F. In par t icular ,  t = 0 yields ~ = c~. Then 

. ( x  + t) = + t 

for all t, x E F. Evaluat ing at  x = 0 we find a ( t )  = a(0)  + t, i.e., 

c~ = T~(O). 

Clearly, a E PGL2r  with r = id c Aut+(F)  and id = pa  -1 E PGL2 +. 
The (q, C) - t r ans i t iv i ty  further yields tha t  for each a E F there is a corresponding (q, C)-  
t rans la t ion  and an a~ such tha t  a~ (0) = a. From above then a~ = 7~. In order to ob ta in  
an au tomorph ism the condit ion a~ C f - I P G L 2 r  for some Ca C Aut+(F)  must  stil l  be 
satisfied. Hence, there is a~ C PGL2 such tha t  f~-~ = c r ~ r  This only implies tha t  
f T f  -1 C P F L  + so we cannot  apply  Lemma 2.7. Evaluat ing bo th  sides at  c~, 0 and 1 one 
finds an(x) = ( f (a  + 1) - f (a)  )x + f (a) .  Therefore 

(1) f ( x  + a) = ( f (a  + 1) - f ( a ) ) r  + f (a)  

for all x, a C F, or 
f ( a + f - l ( x ) ) - f ( a )  

f ( a +  1) - f (a)  

is an au tomorph ism of F for each a E F. (This is Ca from above.) 
Since the  (q, C)- t rans la t ions  form a group, it  readily follows tha t  the map  �9 : F -+ Au t+(F)  
from the addi t ive group of F to the group of order-preserving au tomorphisms  of F defined 
by ~ ( a )  = r is a homomorphism of groups. Let K denote the kernel of ~ .  For a C K we 
then have 

f ( x  + a) = ( f (a  + 1) - f ( a ) ) f ( x )  + f (a)  

for all x e F. Let  c --= f ( a  + 1) - f (a) .  Then 

f ( x  + a) = - + f ( x )  + 

for a l l x  e F. If  c 7  ~ 1, there is a n x a  e F s u c h t h a t  ( c - 1 ) f ( x ~ ) + f ( a )  = 0. But  then 
f(x~, + a) = f(Xa),  and therefore a = 0 because f is a pe rmuta t ion  of F. Hence, if a # 0 
we must  have c = 1 and 

(2) f ( x  + a) = f (x )  + f (a )  

for all x E F. This also holds for a = O. Hence f is K-addi t ive .  Fur thermore ,  F / K  is 
isomorphic to a subgroup of Aut+(F) .  
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Let x E K and a c F. Then, using (2), identity (1) becomes 

f ( x )  + f (a )  : f ( x  + a) = ( f (a  + 1) - f ( a ) ) r  + f (a) .  

Hence 

o r  

=/(a + 1) - / ( a )  

C o ( y )  = 

for each y e f ( K ) ,  where c~ -= ( f (a  -4- 1) - f (a ) )  -1. 
Since f ( K )  generates F by axiom (SA), there is at least one nonzero element Yo E f ( K ) .  
Let fo : F -+ F be defined by fo(X) = f ( x ) y o  1. Clearly, fo is a monotonic permutat ion 
of F and fo also is K-additive. Hence, fo (K)  generates F by axiom (SA). However, for 
y e fo (K) ,  y = Zyo 1 for some z E f ( K ) ,  we have 

= 1) = 1) 

= caz(cay0) -1 = Zyo 1 

: y .  

Thus Cairo(K) = id. Since fo (K)  generates F as a field, we obtain that  r = id. This 
shows that  K = F, and consequently, f is additive by (2). 
Likewise, the condition a C g - I P G L 2 r  yields that  g is additive. 
Note tha t  7 A - 1 7  -1 = A so that  under an isomorphism of type 2.3 a Minkowski plane 
A/t(F; f , g )  with f , g  c A is taken to a Minkowski plane AJ(F; f ' , g ' )  with f ' , g '  E A.  
Conversely, suppose that  f ,  g E A, that  is, f = ~lalP1 and g = a2a2P2 with ~ ,  Pi E PGL + 
and ai C Add + for i -- 1, 2. Then for each t E F the mapping 

(x, y) ~ (p~l(pl (x)  + t), p~l(p2(y) + t) ) 

is an automorphism of M (F; f ,  g). (Note that  a~Tt = ~'~,(t)C~.) Furthermore, each such 

automorphism for t E F is a ((p~-l(oc),p~l(oo)),Kp;%~)-translation and the collection 

of all theses automorphisms for t C F acts transitively on Kp21px \ {(pl-l(o~), p2J-(oo))}. 
Hence FLg is ((p~-l(oo),p~-l(oo)),Kp;~p~)-transitive. [] 

R e m a r k  4.3. By [1] every order-preserving permutat ion of a finite half-ordered field F of 
odd order is an affine transformation of an automorphism of F. Hence in this case every 
order-preserving permutat ion of F that  fixes 0 and 1 is an automorphism of F and thus 
additive. 

R e m a r k  4.4. The last part  in the proof of Lemma 4.2 does not use property (SA). Hence 
Ff,~ is (q, C)-transitive for some point q and some circle C through q if f and g belong 
to A. Furthermore, if a permutation of F belongs to PFL +, there are many ways to 
represent it in the form trap with a, p E PGL + and a C Ant  + (F). This implies tha t  Ff,g 
is (q, C)-transitive for every point q and every circle C through q if f, g E PFL  + and that  
FLy is (q, C)-transitive for every point q on a parallel class and some circle C through q 
if f C PFL + and g E A. In particular, FLg is of class VII  or at least V in the respective 
c a s e s .  
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Corol la ry  4.5. Let F be a half-ordered field that satisfies (SA) and let q be a point of 
/t4(F; f ,  9). Then F/,g is (q, C)-transitive for some circle C through q if and only F/,g is 
q-transitive. In this case F /,g is Iql-- and IqI+-transitive. 

Proof. If F/,g is q-transitive, then it is (q, C)-transitive for every circle C through q. Con- 
versely, if Ff,g is (q, C)-transitive for some circle C through q, then both f and g belong to 
A by Lemma 4.2. Therefore F/,g is [ql-- and Iql+-transitive by Lemma 3.1. This implies 
the q-transitivity of Pf,g. [] 

T h e o r e m  4.6. Let F be a half-ordered field that satisfies (SA). Then the automorphism 
group F f,g of a Minkowski plane ~r f, g) is of type 

VII if and only if f, g E PFL +; 
V if and only i f f  e PPL2 +, g e A \ P P L  + o f f  ~ A \ p F L  +, g e PFL+; 

III if and only if f ,  g C A \ p r L  + 
I if and only i f / e  H+(F) \ A or g E II+(F) \ A. 

The types II, IV  and VI do not occur among the Minkowski planes Ad(F; f ,  g). 

Proof. By Corollary 4.5 the (q, C)-transitivity of F/, a implies its q-transitivity. Hence 
types II and VI cannot occur. 
If FI, a is of type VII, then FI,a is q-transitive for each point q. Hence Ff,g is G-transitive 
for each parallel class and so F/,g is of type F. By Theorem 3.2 therefore f,  9 E PFL +. 
If Ff,g is of type V, then FLa is q-transitive for each point q on a certain parallel class 
G, say G = IPI+. Hence Ff,g is Iq[_-transitive for each point q C G and F/,9 is also G- 
transitive. Thus FI, 9 is of type E or F. Therefore, by Theorem 3.2, at least one of f or 
g belongs to PFL + and the other to A. If both belong to PFL +, then we have type VII. 
Hence we must have f C PPL +, g e A \ PFL + or f c A \ PFL +, g c PFL +. 
Suppose that FLy is of type IV. Then Ff,g is q-transitive for each point on a certain circle. 
Hence F/,g is G-transitive for each parallel class and so Ff,g is of type F. By Theorem 3.2 
therefore f ,  9 C PFL + and F/,g is of type VII. [] 

For examples of Minkowski planes of types VII and I see section 6. 
Combining both classifications with respect to G-translations and with respect to q- 
translations M. Klein and H.-J. Krolll obtained the following ten types of Minkowski 
planes, see [9, Theorem 4.12]: I.A, I.B, I.D, II.A, III.C, IV.A, V.A, V.E, VI.A, VII.F. In 
view of Theorems 3.2. and 4.6 one readily obtains that only six of these types can actually 
occur among our Minkowski planes and that those types can be characterised as follows. 

T h e o r e m  4.7. Let iF be a half-ordered field that satisfies (SA). Then the automorphism 
group F f,g of a Minkowski plane fl4(F; f ,  g) is of type 

VII.F if and only if f ,  g E PFL+; 
V.E if and only i f f  e PFL +, g e A \ P F L  + o r f  e A \ P F L  +, g e PFL+; 

III.C if and only i f f ,  g 6 A \ PFL+; 
I.D if and only i f f  e PFL +, g e H+(F) \ A or f e H+(F) \ A, g e PFL+; 
I.B if and only i f / e  II+(F) \ A, g e A \ ppL + or f e A \ PpL +, g e II+(F) \ A; 
I.A if and only if f ,  9 E H+(F) \ A. 

Types ILA, IV.A, V.A and VLA do not occur among the Minkowski planes M(F; f ,g) .  
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5. KLEIN-KROLL TYPES OF MINKOWSKI PLANES JM(F; f ,g)  WITH RESPECT 
TO (/9, q)-HOMOTHETIES 

In this section we investigate a third kind of automorphisms which have been used in the 
classification in [8]. Let p and q be two nonparallel points of a Minkowski plane Ad. An 
automorphism ~, of 3,t is a (p, q)-homothety if "y fixes p and q and induces a homothety 
with centre q in the derived affine plane .Ap at p. A group of (p, q)-homotheties is called 
(p, q)-transitive if it acts transitively on each circle through p and q minus the two points 
p and q. We say that the automorphism group F of 3d is (p, q)-transitive if F contains a 
(p, q)-transitive subgroup of (p, q)-homotheties. 
With respect to (p, q)-homotheties M. Klein obtained 23 types of Minkowski planes see [8, 
Theorem 2.15]. As remarked in [8, p. 127] the types 8, 9, 16 or 21 do not occur as types of 
the full automorphism group of a Minkowski plane, see also [12] for an amendment to type 
9. (These types lead to Minkowski planes of order 3 or 4 and so the full automorphism group 
is of type 23.) Furthermore, H.-J. Kroll showed in [11] that type 22 cannot occur either. 
Finally, H.-J. Kroll and A. Madrafi proved in [12, Corollary 2.7] and [12, Corollary 1] that 
there are no Minkowski planes of type 6 or 5, respectively. Moreover, J.M. Jakdbowski, 
H.-J. Kroll and A. Madrag showed in [7] that Minkowski planes admitting automorphism 
groups of type 4 or 7 must be finite of order 3 or 5 (and then the Minkowski plane is 
Miquelian and of type 23). Since it easily follows that some of these types cannot occur 
for our Minkowski planes 3J(F; f, g), we included those types in Lemmata 5.1 and 5.2. 
Let 7-/denote the set of all unordered pairs of points {p, q} for which the Minkowski plane 
is (p, q)-transitive. Following we list only those types we shall refer to in this section in 
more detail: 

I. 7 / = ~ ;  
3. 7-I = {{p, q}, {Ipl+ A ]q]_, Ipl- cl Iq[+}} for some nonparallel points p and q; 

23. 7/consists of all pairs of nonparallel points. 

The full automorphism groups of Miquelian Minkowski planes are of type 23, see [8, p. 
126]. 
Given a permutation h we can form the double coset PGL+hPGL + of the subgroup PGL + 
containing h. As with the usual cosets two double cosets of PGL + are either disjoint or 
identical. Note that every double coset PGL+fPGL2 + equals the single coset f P G L  + for 
each f e PFL +. 
Using this notation we can characterise (p, q)-transitivity as follows. 

L e m m a  5.1. Fi,g is (p, q)-transitive for some nonparallel points p, q if and only if f ,  9 E 
i~, cf. 2.4, and f and g belong to the same double coset of PGL +, that is, one has that 
PGL2+fPGL + = PGL+gPGL +. (Equivalently, f and g both belong to PGL2+ttPGL + for 
some multiplicative order-preserving permutation # of F.) 
Moreover, if F l,g is (p, q)-transitive, then F l,g is also (]p]+ N Iql-, IPl- n ]ql+ )-transitive. 
In particular, Fi,g is not of type 2, 5, 6, 10, 15, 17, 18 or 20. 

Pro@ Suppose that M(F; f,  g) is (p, q)-transitive for some points p, q. Up to an isomor- 
phism of type 2.1 we may assume that p = (oc, c~) and q = (0, 0); following Remark 2.5 
we can achieve that f and g both fix co, 0 and 1. 
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Every ((oo, c~), (0, 0))-homothety 5 is of the form 2.6.(1) and every circle through (oo, oo) 
and (0, 0) is fixed. The bundle of circles through (e<~, co) and (0, 0) consists of the  following 

circles 
{K.~ I ~ eF ,~  > 0} u {K~-~.~ i I s e ~,s < 0} 

where #~ denotes mulipl icat ion by a, see 2.4. If  5(x, y) = (a(x) , ,3(y)) ,  then  

fl#r = #rO~ 

and 

~ - ~ m f  = g - ~ f a  

tbr all r, s E F, r > 0, s < 0. In part icular ,  for r = 1 one obtains  a = /3 .  Then  

~ ( ~ )  = ~ ( ~ )  

for all r, x E F, r > O. Evaluat ing both  sides at  x = 1 gives us a ( r )  = r a (1 )  for all r > O; 
evaluat ing bo th  sides a t  a fixed negative element n gives us a(rn)  = ra (n )  for all  r > O. 
Hence 

a (1)x ,  if x > 0 .  
O~(X) 

[ (c~(n)/n)x, if x < 0 

But  a E P G L + A u t + ( F )  by 2.6.(1), i.e., there  are c~ E P G L  + and r E Au t+(F)  such t ha t  
a = a r  Since a fixes 0 and co, we must  have ~r = #a, where a = c~(1). Then  

x, if x > 0  
r  ~(~)~ 

, ~ ( 1 )  , i f x < O  

Let c = a(n)/(na(1)). Then 

~2 = r = (r  = ( ~ ) :  = c ~ 2 .  

Hence c 2 = 1, and so c = •  If c = 1, then r = id and a = #a(1). Suppose tha t  c = - 1 .  

Then  
l + n ,  i f l + n > O .  

1 -  n = C(1) + r = r  + n) = [ - l - n ,  i f l + n < 0  

Therefore 2n = 0 or 2 = 0, respectively. In  any case, F has character is t ic  2 and c = 1 in 
F. Hence r = id and a = #,~ where rn = a(1) .  
Prom 2.6.(1) we further know tha t  a E f - I P G L 2 r 1 6 2  for some r E Aut+(F) .  
Therefore, f # , ~ f - 1  = PC for some p E PGL2. But f t t ~ f  -1 fixes 0 and co, so p = Pb for 
some b E F. Evaluat ing at  I yields b = f ( m ) .  Hence 

f ~ m f  -1 = ~:(m)~ 

and likewise, 
g#mg -1 = #g(m)r 
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We still have not used the fac t  tha t  every circle in the other half of the bundle through 
(0% oo) and (0, 0) is fixed by ~. From above we find tha t  #,~g-~#~f = g - l # ~ f # ~  for all 
s < 0. Thus 

#g(,~)#r162 = #g(,~)r = g#mg-~ #s = #~f #,~f-~ = #~#f(m)r 

and therefore g(m)r = s f (m)  for all s < 0, i.e., 

= 

for all s < 0. Let A = f (m) /g(m) .  Then 

: sr = r  = = 

for all s < 0, r _> 0. Hence 
x, if x >_ 0 

r  Ax, if x < 0  

It  follows as before tha t  A = 1 and r = id. Furthermore,  f -- g. Now f # m f  -1 = #/(m) 
becomes 

f(mx) = f(m)f(x). 

This identity holds for all x E F and by the ((c% oc), (0, 0))-transit ivity also for all m E F, 
m ~ 0. Obviously, the above identity is also satisfied for m = 0. This shows tha t  f = g is 
multiplicative. 
Conversely, suppose tha t  f ,  g c P G L + # P G L  + for some multiplicative order-preserving 
permuta t ion  # of F, tha t  is, f = a l#P l  and g = a2#P2 with hi, pi C P G L  + for i = 1, 2. 
Then each mapping  

for m E F, m ~ 0, is an au tomorphism of J~4(F; f ,g).  (Note tha t  ##m = #t,(m)# where 
#,~(x) = rex.) Furthermore,  each such automorphism for m e F, m r 0, is a (p, q)- 
homothe ty  where p = (p~-l(c~), p~-l(c~)) and q = (p l l (0 ) ,  p;l(O)), and the collection of 
all theses automorphisms for m E F, m ~ 0, acts transitively on every circle through p and 
q minus these two points. Hence Ff,g is ((p~-l(oc), p~-l(oo)), (p~-l(0), p21(0))-transit ive.  
Let f = 9 = # be a multiplicative order-preserving permuta t ion  of F so tha t  F:,g is 
((c~,oo),  (0,0))-transitive. Let a E PGL + be defined by cr(x) = __1 for x C F, x ~ 0, 

X 

and (r(0) = c~, a(c~) = 0. Then a # a  = #, since # is multiplicative. Hence, AA(F; f ,g)  = 
;L4(F; cr#~, #) and FLy is ((cr-l(c~),  oo), ( a - l (0 ) ,  0)-transitive by the above, tha t  is, FLy is 
((0, cx~), (oo, 0))-transitive. The general case of (p, q)-transit ivity readily follows from the 
above. 
Finally, one readily checks tha t  the sets 7-/ in types 2, 5, 6, 10, 15, 17, 18 or 20 are not 
closed under the mapping  {p, q} ~-~ {[p[+ N ]q]_, [p[_ N Iq[+}. Hence these types cannot  
occur. [] 
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L e m m a  5.2. Let p, q, r be three points such that q and r are parallel but neither q nor 
r is parallel to p. Assume that Ff,g is (p,q)-transitive and (p,r)-transitive. Then Fy,g 
is G-transitive for at least two parallel types of the same type and F f,g is of type 23. In 
particular, there is no Minkowski plane AA(F; f ,g)  for which Ff,g is of type 11, 12, 13, 14, 
19 or 22. 

Proof. Let p, q, r be three points as in the Lemma  and let q and r be (+)-parallel .  
Then, by [8, 2.4], Ff,g is Iql+-transitive. From Lemma 5.1 we further know tha t  FI,g 
is also (]p]+ M IqI-, Ip]- M ]ql+)-transitive and (IP[+ A ]rl_ , IPl- N Irl+)-transitive. Since 
IP]- f3 Iq]+ = IP]- M ]rI+ and [PI+ A IqI- is (+)-parallel  to ]p]+ M ]qI-, we obtain again by 
[8, 2.4] tha t  Ff,g is ]pi+-transitive. Hence Ff,g is G-transit ive for the two parallel classes 
IP]+ and Iql+. From Corollary 3.3 it then follows tha t  f e P r L  + or g e PFL  +. (In 
fact, g C PFL  + by our choice of parallel classes.) Since Ff,g is (p, q)-transitive, we have 
PGL+fPGL + = P G L + g P G L  + by Lemma 5.1. However, this double coset equals PFL  + 
Therefore, f , g  c PFL +, and more precisely, f , g  c PGL2+a for some order-preserving 
au tomorphism a .  This describes the Miquelian Minkowski plane, which is of type  23. The 
case tha t  q and r is (-)-parallel is dealt with analogously. 
Finally, one readily checks tha t  the sets 7 / i n  types 11, 12, 13, 14, 19 or 22 all contain a 
triple of points p, q, r as in the Lemma.  Hence these types cannot occur. [] 

After these preparat ions we can now classify our Minkowski planes with respect to (p, q)- 
homotheties.  

T h e o r e m  5.3. The automorphism group F f,g of a Minkowski plane A4(F; f ,  g) is of type 

23 if and only if f, g e PFL + and f P G L  + -- gPGL+;  
3 if and only if f ,  g E �9 \ PFL2 + and f and g are in the same double eoset of PGL+; 
1 if and only i f f  E H+(~)  \ (I) org E H+(~)  \ q ) o r f ,  g C � 9  andg  are in 

different double cosets of PGL +, that is, F G L + f P G L  + r P G L + g P G L  +. 

Proof. By the remarks made at the beginning of this section and by L e m m a t a  5.1 and 5.2 
only types 1, 3 and 23 can occur as types for the au tomorphism groups of our Minkowski 
planes. 
The assertion of the theorem about  type 1, i.e., there is no pair of points for which FS,g 
is (p, q)-transitive, readily follows from Lemma 5.1. Furthermore,  if Ff,g is of type 3, then 
f , g  E (I) and f and g are in the same double coset of PGL + by Lemma  5.1. Suppose 
tha t  f e PFL +. Then F G L + f P G L 2  + = f P G L  + C PFL + and thus g e P G L + g F G L  + = 
P G L + f P G L 2  + C_ P F L  +. Hence f ,  g e P r L  + and, more precisely, f ,  g e PGL+c~ for some 
order-preserving automorphism a.  Therefore, in this case, JUt(F; f ,g)  is Miquelian and 
Ff,g is of type 23. The case tha t  g E PFL + is dealt with similarly. This shows tha t  Ff,g is 
of type 3 if and only i f f ,  g E (I) \ PFL + and f and g are in the same double coset of P G L  +. 
Types  1 and 3 do not cover only one case, namely, if f ,  g E PFL + and f P G L  + = g P G L  +. 
From what  we said before it is clear tha t  this case describes the Miquelian Minkowski 
plane, which is of type 23. [] 

Each of the above types actually occurs as the type of the full au tomorphism group of a 
Minkowski plane A/I(F; f ,  g) for suitable half-ordered fields F and suitable order-preserving 
permuta t i son  f and g, see section 6. 
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Combining bo th  classifications from [9, Theroem 4.12] and [8, Theorem 2.15] M. Klein 
obta ined  32 types  of Minkowski planes see [8, Theorem 2.16]. In  view of Theorem 4.7 
and Theorem 5.3 and the restr ict ions given in [8, Theorem 2.16] of these 32 types  only 
types  VII .F.23,  VII .F.1,  V.E.1, III .C.1,  I.D.1, I.B.1, I .A.3 and I.A.1 are possible for the 
au tomorph i sm groups of our Minkowski planes. 
Before we can characterise the above mentioned types we investigate in the  following l emma 
the possible intersection between q~ and A. 

L e m m a  5.4.  q~ M A = P F L  +. 

Proof. Obviously P F L  + is contained in bo th  ~ and A. Let f E �9 M A. Then  there  are 
s E Add+(F) ,  fl E Mul+(F) and O'l,(72, fll,f12 E PGL2 + such tha t  f = (71ap~ = 02/~P2. 
Hence 

a s  = pp 

where (7 = (7~-1(71, p = p2pl  I E P G L  +. We consider three cases depending on the form of 
(7: 

Case 1: (r fixes oe. 
Then p fixes oo too. We therefore have an ident i ty  

as (x )  + b = ~(cx  + d) 

for all x E F and some a, b, c, d E F, a, c > 0. There is a b' E F such tha t  b = aa(b'). By the 
addi t iv i ty  of a we find aa(x  + b') = fl(cx + d) for all x E F and thus as (x )  = fl(cx + d -  cb') 
for all x E F. Evaluat ing  at  x = 0 gives us d - cb' = 0 and thus 

a (x/c) = p(x)  

for all x E F. Since the  left-hand side is addit ive in x, we obta in  tha t  fl E Mul+(F)  M 
Add  + (F) = Au t  + (F). This shows tha t  f E P F L  + in this case. 
Case 2: a maps  c~ to 0. 
Then p also maps  oo to 0. We therefore have an ident i ty  

a c 

s (x )  + b - Z ( V j - J  ) 

for all x E ~ and some a, b, c, d E F, ab, cd > 0. Taking reciprocals on bo th  sides and using 
the mul t ip l ic i ty  of/3 we find (a(x)  + b)/a = fl(x + d)/fl(c).  This is an ident i ty  as in case 
1 and it follows f E P F L  +. 
Case 3: (7  maps  ec to r r 0, co. 
Then p also maps  oo to a p o i n t  r 0, ao. a has the form(7(x)  = ( r x + a ) / ( x + b )  and 
similar ly p(x) = (sx + c ) / ( x  + d) for all x E ~ and some r, s, a, b, c, d E F, rb - a, s d -  c > O. 
There is a b' E F such tha t  b = a(b ' ) .  By the addi t iv i ty  of a we find 

r a ( x ) + a  ~ , s x + c .  

s ( x  + b') = P ( - x - ~ )  
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for all  x e ~ and thus  (rc~(x) + a - ra(b')) /c~(x)  = f l ( ( sx  + c - sb t ) / ( x  + d - b')) for all 

x C F. Let  a I = a - ra(b') ,  d = c - sb t and s = d - bq T h e n  the  above  iden t i ty  becomes  

r a ( x )  + a' ~, sx  + c'. 

~(~)  - / j ( - U 4 - ~ )  

for all x E F. E v a l u a t i n g  at  x = 0 gives us d ~ = O; eva lua t ing  at  x = - c ' / s  gives us 

r a ( - c ' / s )  + a '  = 0 and thus  ro~(x + ( c ' / s ) ) / a ( x )  = f l ( ( sx  + c ' ) / x )  = 13(sx + c ' ) / f l ( x )  = 
f l (s ) f l (x  + (c ' /s)) /13(x)  for all x e F. Let  p = 13(s)/r and  q = c ' /s .  By the  a d d i t i v i t y  of a 
we ob t a in  

9(x) 
OL(X) 

a~'qJ p f l (x  + q) - f l (x)  

for all x E F. Subs t i t u t i on  of x - q for x and the  add i t i v i t y  of a give us 

9(~ - q) 9(~) 
~(q)  p~" - ~ ( x  - q) + ~(q)  = ~ ( x  - q) + ~(q)  = ~(~)  = ~(q)  p ~ ,  ~ + q) ~ ( x )  " 

Hence  

and therefore  

for all x E F. 
yields 

Hence  

and  there fore  

p p ( z )  9 ( x )  

p~(~)  - ~ ( x  - q) v ~ ( x  + q) - ~(~)  

p29(~  + q) - 2pZ(z)  + Z(~  - q) = 0 

Subs t i t u t i on  of q2/x  for x in this  iden t i ty  and mul t ip l i ca t ion  b y / ~ ( x ) / f l ( q )  

p2fl(x + q) - 2pfl(q) - t3(x - q) = 0. 

2p~Z(~ + q) - 2p(~(x)  + ~(q))  = 0 

pZ(~ + q) = P(~) + 9(q) 

for all x E F. Th is  f inally gives us for c~ 

~(~) = ~ ( q ) ~ ,  , 
- ~ P L  x) 

or 

~(q) a (x )  

for all x E F. Th is  shows t h a t  fl is addi t ive.  Thus  fl E P F L  +. [] 

C o m b i n i n g  T h e o r e m s  4.7 and 5.3 one readi ly  ob ta ins  wi th  L e m m a  5.4 the  fol lowing charae-  
t e r i sa t ion  of  t he  Kle in -Kro l l  types  of our  Minkowski  planes in t e rms  of  f and  g as follows. 
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Class i f icat ion T h e o r e m  5.5. Let F be a half-ordered field that satisfies (SA). Let 

A = pGL+Add+(F)PGL + and 

q~ = PGL2+MuI+(F)PGL + 

be as in 2.4 where Add+(F) and Mul+(F) denote the collections of all additive or multi- 
plicative order-preserving permutations of F, respectively. Then the automorphism group 
Ff, a of a Minkowski plane JM(F; f ,  g) is of type 

VII.F.23 if and only if f ,  g C PFL + and f P G L  + --- gPGL + (Miquelian Minkowski planes); 
VII.F.1 if and only if f ,  g e P r L  + and f P G L  + r gPGL+; 

V.E.1 i f f  e PrL +, g e A \ P r L  + or /e  A \ P r L  +, g e PrL+; 
III.C.1 if f ,g  e A \ P r L  + 

I.D.1 i f f  e PrL2 +, g e H+(F) \ A or f e II+(F) \ A, g e PFL+; 
I.B.1 i f / e  I I + ( F ) \ A ,  g e A k P F L  + o f f  e A \ P F L  +, g e I I + ( F ) \ A ;  
I.A.3 if f ,  g e �9 \ PFL2 + and f and 9 belong to the same double coset of 

if and only 
if and only 
if and only 
if and only 
if and only 
PGL+; 

I.A.1 if and only if f ,  g E H+(F) \ A and one of the following holds: 
- f e n+(F)  \ r or 
_ g e n+(F)  \ r or 
- f ,g  C �9 and f and g belong to different double cosets of PGL +, that is, 
PGL2+fPGL + r PGL+gPGL +. 

No other types can occur among the Minkowski planes Jt4(F; f ,9) .  

We have examples of Minkowski planes in types VII.F.23, VII.F.1, I.D.1, I.A,3 and I.A.1, 
see the following section 6. We do not know at present whether or not types V.E.1, III.C.1 
or I.B.1 do occur. 

R e m a r k  5.6. Theorems 3.2 and 5.3 do not involve (SA). Combining these Theorems and 
using Lamina 5.4 we readily find that the automorphism group Ff,g of a Minkowski plane 
AJ(F; f,  g) can be of type F.23, F.1, E.1, D.1, C.1, B.1, A.3 or A.1. Clearly, types F.23 and 
F.1 imply type VII and type E.1 implies type at least V, see Remark 4.3.2. Furthermore, 
type C.1 implies type at least III. 
More precisely, one finds that Ff,g is of type F.23, F.1, E.1, D.1, C.1, B.1, A.3 or A.1 if 
and only if f and g satisfy the same conditions as for type VII.F.23, VII.F.1, V.E.1, I.D.1, 
III.C.1, I.B.1, I.A.3 or I.A.1, respectively, in the Classification Theorem 5.5. No other 
types can occur among the Minkowski planes Jt4(F; f ,g).  We therefore conjecture that 
Theorem 5.5 remains valid for any half-ordered field F even if (SA) is not satisfied for F. 

R e m a r k  5.7. In [12] H.-J. Kroll and A. Matrag investigated Miquelian pairs of points 
in Minkowski planes. An inversion in a Minkowski plane AA is an automorphism ~ of A/[ 
that exchanges (+)- and (-)-parallel classes and has the property that a, ~r(a), b and ~(b) 
are on a circle for any points a and b with b parallel to neither a nor ~(a). We then say 
that a 2-set {p, q} of points p and q in AA is Miquelian if the collection of all inversions 
of Ad that interchange p and q operates transitively on each circle C through p and q 
minus the two points p and q. For a subgroup of the automorphism group of Jr4 H.-J. 
Kroll and A. Matrag determined the collection of all Miquelian pairs of points such that 
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the corresponding inversions are in the subgroup. They obtained 9 types, cf. [12, Theorem 
3.6], of which only five can occur as types for the full automorphism group. Following we 
list those types where M denotes the set of all Miquelian unordered pairs of points in the 
Minkowski plane. 

M0. M = 0 ;  
M1. M = {{p, q}} for some nonparallel points p and q; 
/1//2. M -- {{p, q}, {]p]+ M ]q]_, [Pl- M [q[+}} for some nonparallel points p and q; 
M3. M = {{p,q} ]p,q E C,p 7 ~ q} for some circle C; 
M4. M consists of all pairs of nonparallel points. 

By [15, Theorem 1.3] the Miquelian Minkowski planes are the only planes of type M4. 
Furthermore, if A4 is (p, q)-Miquelian, then A// also is (p, q)-transitive, cfl [12, Lemma 
2.2] and [15, (4.1.ii)]. In particular, type 1 implies type Mo. For our Minkowski planes 
A4(F;f,g) the converse is also true. For example, if # E Mul+(F), then A4(F;#,#) is 
((c~, oo), (0, 0))- and ((c~, 0), (0, cx3))-transitive. In this case each map (x, y) ~+ (r/y, r/x) 
and (x,y) ~ (ry, rx) for r E F, r r 0, is an inversion of A//(F;#,#) that interchanges 
(c% c~) and (0, 0) and (0% 0) and (0, cx~), respectively. Hence, type 3 implies type M2. In 
summary we obtain that the automorphism group F/,g of a Minkowski plane Ad(F; f,  g) is 
of type M4, M2 or M0 if and only if it is of Klein-Kroll type 23, 3 or 1, respectively. 

6. SOME EXAMPLES 

In this section we specialise the Classification Theorem 5.5 to various half-ordered fields. 

6.1 F in i t e  fields. As seen in Example 4.1.2 every finite half-ordered field satisfies (SA). 
By [1] every order-preserving permutation of a finite half-ordered field F of odd order is 
an affine transformation of an automorphism of F. Hence in this case every order-preserv- 
ing permutation of ~ belongs already to PFL +. Therefore the finite planes in our family 
are all of type VII.F. More precisely, a Minkowski plane A//(F; f,g) is of type VII.F.23 
if and only if f P G L  + = gPGL + (Miquelian planes) and of type VII.F.1 if and only if 
fPGL + r gPGL +. 

6.2 Subfields of  R wi th  t he  Euc l idean  order ing .  By Example 4.1.1 every subfield 
F of ~ with the familiar Euclidean ordering satisfies (SA) and Aut+(F) is trivial. Hence 
PFL + = PGL +. Furthermore, Q is dense in F and every monotonic map is continuous. 
Hence it readily follows that Add+(F) = {#r I r E F, r > 0} since every additive map is 
linear over Q, cf. [2, 4.1.3]. Thus Add+(F) _C_ PGL + and therefore A = PGL +. 
From A = PFL + = PGL + we see that types VII.F.1, V.E.1, III.C.1 and I.B.1 are empty. 
In summary the automorphism group Ff,g of a Minkowski plane A4 (F; f,  g) where F is a 
subfield of ]R with the Euclidean ordering is of class 

VII.F.23 if and only if f, g E PGL + (Miquelian Minkowski planes); 
I.D.1 if and only i f f  E PGL +, g E H+(~) \ P G L  + or f E H+(~) \ P G L  +, g E PGL+; 
I.A.3 if and only if f , g  E �9 \ PGL + and f and g are in the same double coset of 

eeL+; 
I.A.1 if and only if f ,g E H+(F) \ PCL + and f E H+(F) \ �9 or g E H+(~) \ �9 or 

f ,  g E q~ \ PGL + but f,  g are in different double cosets of PGL +. 
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No other types occur. 
Note that for F = ~ the group PGL + becomes the projective special linear group PSL(2, ~). 
This group was used in [17]. Furthermore all of the above four types do actually oc- 
cur in this case. E.g. the map r : x ~ x 3 belongs to ~(1~) \ PGL+(2,•) and with 
this map one obtains Minkowski planes of type I.D.1, I.A.3 and I.A.1. (For example, 
A,t(]~; id, r A/l(t~; r r A/I(R; r r are Minkowski planes of the respective types. Of 
course, A-I(F4 id, id) is of type VII.F.23.) Note however, that not all of the above types 
may occur for a particular subfield F of ~; of course type VII.F.23 always occurs. 

6.3 Subfields of  t he  p-adic n u m b e r s  Qp wi th  t h e  p-adic o rder ing .  Since ~ is dense 
in Qp, one can follow the same steps as in 6.2. They result in exactly the same types 
VII.F.23, I.D.1, I.A.3 and I.A.1. 

So far we have accounted for types VII.F.23, VII.F.1, I.D.1, I.A.3 and I.A.1. In order to find 
models of Minkowski planes whose automorphism groups are of one of the remaining types 
V.E.1, III.C.1 or I.B.1 one essentially has to find half-ordered fields F that satisfy (SA) and 
that admit permutations in A \ PFL + and in H + (F)\  A. This is not too difficult. However, 
given such permutations one still has to verify the fixed point property (FP). For example, 
the field F = Zp(X) of rational functions over Zp (see 4.1.3) admits many permutations in 
A \ PFL +, e.g., for p > 2 let 5 be defined by d(h(X) + q(X)) = -h (X)  + q(X) where h(X) 
is polynomial and q(X) is a rational function such that the degree of the polynomial in the 
numerator is strictly less than the degree of the polynomial in the denominator. (By the 
division algorithm every rational function has an essentially unique representation in this 
form.) Then it readily follows that 5 is an additive order-preserving permutation and that 
5 does not $oelong to PFL +. However, id and 5 do not satisfy (FP). We therefore leave it 
open for now whether or not models of types V.E.1, III.C.1 or I.B.1 do exist. 
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