
Transformation Groups, Vol. 4, No. 2-3, 1999, pp. 127-156 C)Birkhs Boston (1999) 

R A T I O N A L  S M O O T H N E S S  A N D  F I X E D  

OF T O R U S  A C T I O N S  

M. BRION 

Institut Fourier, B. P. 74 
F-38402 Saint-Martin d'H~res 

France 

Michel.Brion@uj f-grenoble, fr 

P O I N T S  

Dedicated to the memory of Claude Chevalley 

Abstract .  We obtain a criterion for rational smoothness of an algebraic variety 
with a torus action, with applications to orbit closures in flag varieties, and to 
closures of double classes in regular group completions. 

I n t r o d u c t i o n  

For a complex algebraic group acting on a complex flag variety with 
finitely many orbits, the geometry of orbit closures is of importance in rep- 
resentation theory; the most interesting cases are Schubert varieties (in rela- 
tion to category O), and orbit closures of symmetric subgroups (in relation 
to Harish-Chandra modules), see e.g., [Ka]. 

In particular, it would be useful to characterize rationally smooth points 
of an orbit closure, i.e., those points where the local cohomology with con- 
stant coefficients is the same as for a point of a smooth variety. 

Criteria for rational smoothness of Schubert varieties have been obtained 
by Kazhdan-Lusztig [KL1], [KL2] and then by Carrell-Peterson [C], Kumar 
[Ku] and Arabia [A]. The latter criteria hold, more generally, for varieties 
where a torus acts with isolated fixed points, such that  all weights of the 
tangent space at such a fixed point are contained in an open half-space and 
have multiplicity one. 

But that  condition can fail for orbit closures of symmetric subgroups in 
flag varieties (e.g., for SOn acting on the flag variety of SLn). In the present 
paper, we obtain a criterion for rational smoothness of varieties with a torus 
action, which applies to these orbit closures as well. Our main result can be 
stated as follows, in a somewhat weakened version. 
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T h e o r e m  (1.4).  Let X be a complex algebraic variety with an action of a 
torus T.  Let x E X be an attractive fixed point of T,  that is, all weights 
of T in the tangent space T x X  are contained in an open half-space. For a 
subtorus T ~ C T,  let X T' C X be its fixed point set. Then we have 

dimx(X) < ~-~ dimx(Z T') 
T r 

(sum over all subtori of codimension one), and this sum is finite. 
Furthermore, X is rationally smooth at x if and only if the following 

conditions hold: 
(i) A punctured neighborhood of x in X is rationally smooth. 
(ii) For any subtorus T ~ C T of codimension one, the fixed point subset 

X T' is rationally smooth at x. 
(iii) We have dimx(X) = ~--~T' dimx(XT') (sum over all subtori of codi- 

mension one). 

Assume moreover that all weights in the tangent space T x X  have mul- 
tiplicity one. Then the subsets X T' identify with coordinate lines in TxX,  
and the sum of their dimensions is the number n(X,  x) of closed irreducible 
T-stable curves through x. So we obtain dim~(X) < n ( X , x )  with equality 
for rationally smooth x. This follows also from work of Carrell-Peterson 
(see [C] Theorem D), and Arabia [A], and will be generalized below (1.4 
Corollary 2). 

Consider now a connected semisimple group G, its flag variety B(G), 
and a symmetric subgroup H C G, that is, the fixed point subgroup of an 
involution 0 of G. Let TH be a maximal torus of H,  with centralizer T in 
G. Then T is a maximal torus of G, stable by 0. The TH-fixed points in 
B(G) are the (finitely many) T-fixed points, and the fixed points of subtori 
T ~ C TH of codimension one can be described completely in terms of the 
action of t~ on roots of (G, T) (2.5). 

Then our main result leads to an inequality for the dimension of an H- 
orbit closure X C 13(G), with equality if X is rationally smooth at a TH- 
fixed point (2.5); this generalizes a result of Springer [$2] concerning inner 
involutions. As an application, we characterize those SOn-orbit closures of 
codimension one in B(SLn), which are rationally smooth (2.5). 

Actually, much of our analysis extends to any reductive subgroup H C G 
having only finitely many orbits in B(G) (2.2, 2.3). However, such orbits 
need not admit an attractive "slice" (2.3), whereas orbits of a symmetric 
subgroup do admit such a slice, see [MS] 6.4. 

Another application of our criterion is given in Section 3; it concerns 
double classes B g B  where B is a Borel subgroup of a connected reductive 
group G, and their closures B g B  in a smooth (G • G)-equivariant completion 
of G which is regular in the sense of [BDP]. We show in 3.1 that  these 
closures admit attractive slices at all points, and that they are rationally 
smooth in codimension two. This generalizes classical results for Schubert 
varieties [KL1]. 
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However, closures of double classes are not rationally smooth, apart from 
very few cases (3.3). And almost all closures of double classes are singular 
in codimension two (see [B1] Corollary 2.2). 

Although our results are stated for complex algebraic varieties, our argu- 
ments adapt to the case of an algebraically closed field of any characteristic, 
with rational cohomology replaced by l-adic cohomology. This makes the 
exposition rather heavy in several places. An appendix collects results on 
rational smoothness and on torus actions, for which we did not find suitable 
references. 

This work was begun during a staying at the Ohio State University in 
January 1998. I thank this university for its hospitality, and G. Barthel, W. 
Fulton, S. Guillermou, R. Joshua, L. Kaup and T. Springer for discussions 
and e-mail exchanges. I also thank both referees for their careful reading 
and useful suggestions. 

1. A c r i t e r i on  for  rat ional  s m o o t h n e s s  

1.1. N e c e s s a r y  cond i t ions  

In what follows, we consider complex algebraic varieties, that is, separated 
reduced schemes of finite type over C. With this convention, varieties need 
not be irreducible. For such a variety X, we denote by H* (X) cohomology 
of X with rational coefficients. For a point x E X, we denote by 

H~(X) := H * ( X , X  - {x}) 

cohomology with support in {x}, and by dimx (X) the dimension of the local 
ring of X at x. 

Def in i t ion .  X is rationally smooth at x if, for all y in a neighborhood of 
x in the complex topology, H y ( X )  is zero for all m r 2dimx(X),  and 

H2dim~(X)(x) is isomorphic to Q. 

If X is rationally smooth at a point x, then it is irreducible at that  
point (see Proposition A1). The set of rationally smooth points is open 
for the complex topology, and contains all smooth points. More generally, 
quotients of smooth varieties by finite groups are rationally smooth (see 
e.g., Proposition A1). Other examples of rationally smooth varieties are 
unibranched curves. 

We shall obtain necessary conditions for rational smoothness of a variety 
X at a fixed point of an algebraic action of a torus T (that is, T is an 
algebraic group isomorphic to a product of copies of the multiplicative group 
Gin). We shall always assume that X is covered by open affine T-stable 
subsets. By [Su], this assumption holds for T-stable subvarieties of normal 
T-varieties. 
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T h e o r e m .  Let T be a torus acting on a variety X with a fixed point x. I f  
X is rationally smooth at x, then, for each subtorus T ~ C T, the fixed point 
set X T' is rationally smooth at x. Furthermore, we have 

dimx(X) - dimx(X T) = E ( d i m x ( X T ' )  - dimx(XT)) 
T ~ 

(sum over all subtori T ~ C T of codimension one). 

Proof. We use equivariant cohomology (see e.g., [H]) which we briefly review. 
Let ET --+ BT be a universal principal bundle for T. Then T acts diagonally 
on X x ET with a quotient denoted by X x T E T.  Let 

H~(X)  := H * ( X  XT ET) 

be the T-equivariant cohomology ring of X with rational coefficients. The 
map X XT ET --~ E T / T  = BT is a fibration with fiber X,  and BT is simply 
connected. Thus, there is a spectral sequence HP(BT) |  :~z HP+q(x) 
and H~r(X ) is a module over H* (BT). The latter is the symmetric algebra of 
the character group of T, where each character has degree 2. The inclusion 
iT  : X T ~ X induces a H* (BT)-linear map 

i }  : H~r(X ) -+ H } ( X  T) TM H*(BT) | H * ( x T ) .  

By the localization theorem (see [H] or Proposition A6), i~ becomes an 
isomorphism after inverting all nontrivial characters of T. 

Let y e X T. Denote by H~,y(X) := H * ( X  XT ET, (X - {y}) • ET)  
the equivariant cohomology of X with support in {y}, and consider the 
map i~,y : H~,y(X) -+ H~,y(X T) = H*(BT) | Hy(XT) .  Applying the 
localization theorem to X and X - {y}, we see that  i~,y is an isomorphism 
after inverting all nontrivial characters. On the other hand, because X is 
rationally smooth at x, the spectral sequence HP (BT) | HI(X) H  q(X) 
degenerates for all y in a neighborhood o f x  in X T. Thus, H~r,y(X ) is a free 
H* (BT)-module generated by an element of degree 2 dimy (X) = 2 dimx (X). 
It follows that the space H~ (X T) is one dimensional, and hence that X T 
is rationally smooth at x e.g., by Proposition A1 (this can also be deduced 
from Smith theory; see [Br] Chapter III, Corollary 10.11). Furthermore, 
identifying the H* (BT)-modules H~r,x(X ) and H~,x(X T) with H* (BT), the 
map i~, x becomes multiplication by a homogeneous element f E H*(BT) of 

degree 2dimx(X) - 2dimx(XT) .  By the localization theorem, f is a scalar 
multiple of a product of characters. 

Let X be a primitive character dividing f ,  and let T I be tke kernel of 
X, a subtorus of T of codimension one. Then iT : X T ~ X factors as 
iT,T, : X T "-+ X T' followed by iT, : X T' -+ X .  By the localization theorem 

again, the map ~T',x : H~r,x(X) --+ H~r,x(X ) becomes an isomorphism after 
inverting all characters of T which restrict nontrivially to T I, i.e., which are 
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not multiples of X. Furthermore, X T '  is rationally smooth at x by the first 
step of the proof. Thus, we can identify * T' H~r,~(X ) with H*(BT);  then 
iT,,x identifies with multiplication by a product of characters which are not 
multiples of X. 

Choose a subtorus T" C T of dimension one such that  the product map 
T' x T "  --+ T is an isomorphism. Then the character group o fT"  is generated 
by the restriction of X- Furthermore, we can take JET = ET, • ET,,, then 
X T' XTET ~- BT' X (X T' XT,,ET,,) andXTxTET ~- BT, x (XTXT,,ET,,). 
Thus, we have isomorphisms 

, T t H~r,x(X ) ~ H*(BT, )  | H*,, ( x T ' )  * T H:r,~(X ) H*(BT, )  r HTr,,,z(Z T) T , x k  ], 

compatible with i~, T,,x. Applying the localization theorem to the T"-variety 
T '  "* * T '  * X , it follows that  gT, T ' , x  : H T , x ( X  ) --+ H } , x ( X T )  is an isomorphism after 

inverting X. In other words, i~, T,,x identifies with multiplication by a power 
X nx, and f is divisible by X n~ but not by X n~+l. Taking degrees, we obtain 

T'  2nn = 2dimx(X ) - 2 d i m x ( X T ) .  Now f is a scalar multiple of 1-]~ X n~ 
(product over all primitive characters) and our relation on dimensions follows 
by taking degrees. [] 

1.2. An  inequa l i t y  for d imens ions  of  f ixed po in t s  

Let X be a variety with an action of a torus T and a fixed point x. In general, 
there is no inequality between dimx(X) - d i m x ( X  T) and the sum (over all 
subtori of codimension one) ~-~-T' (dimx(XT') - dimx(XT)), as shown by the 
following 

E x a m p l e .  Let X be the hypersurface in A 4 with equation xy  + zt : O. 
Let T : Gm x Gm act on A 4 by ( u , v ) .  ( x , y , z , t )  : (ux, u - l y ,  vz, v - l t ) .  
Then X is T-stable and the origin is the unique fixed point (and the unique 
singular point as well). The nontrivial subsets X T' are: xy  : z : t : 0 
for T'  : {1} x Gm, and x : y : zt : 0 for T' : Gm x {1}. Thus, 
~ T '  d i m z ( X T ' )  : 2, whereas dimx(X) : 3. 

On the other hand, consider the action of T : Gm x G m on A 4 by 
(u, v) �9 (x, y, z, t) = (u3x, v~y, u2vz, uv2t). Then again X is T-stable and the 
origin is the unique fixed point; but now the X T' are the four coordinate 
lines, whence ~-~T' dimx (X  T') : 4. 

However, we shall obtain an upper bound for dimx(X) - dimx(X T) in 
terms of certain subsets of the X T'. Observe that  T acts on X T' through 
its quotient T / T '  which we can identify with Gm. Denote by Z ~ '  (x) (resp. 

x T ' ( x ) )  the set of all y 6 X T' such that x is the limit o f t y  as t --+ 0 (resp. 
T'  t -1 -+ 0) where t e Gm. Then both X+ (x) and xT_'(x) are locally closed 

T-stable subsets of X T' , and x is their unique common point. 

T h e o r e m .  Let X be a T-variety with a fixed point x. Then, notation being 
as above, there are only finitely many subtori T '  C T of codimension one 
such that X T' # X T, and we have 
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T !  _ P 

dimx(X) - dimx(X T) < E ( d i m x  X+ (x) + dimz X T (x)) 
T'  

(sum over all subtori of codimension one). 
I f  moreover X T' is smooth at x, then 

T p r dim, X+ (x) + dim, x T ' ( x )  = d im, (X T ) - d im,(XT).  

In particular, if each X T' is smooth at x, then 

dimx(X) - dimx(X T) __ ~-~(dim,(X T') - d im,(XT)) .  
T'  

Proof. We may assume that X is affine; then X admits a closed equivariant 
embedding into a T-module M, which maps x to 0. Because M r '  (0) is 

a linear subspace of M, it follows that X T' (x) = X N MT'(0) is closed 

in X. By definition, X+ T' (x) contains a unique closed orbit of T / T '  : the 

fixed point x. Thus, there exists a T/Tt-module V T'  and an equivariant 
T'  T '  V T '  T '  finite surjective morphism lr+ : X+ (x) ~ such that It+ (x) = 0 (by a 

version of Noether normalization lemma, see e.g., Proposition A3). Because 
T t X~' (x )  is T-stable and closed in X, we can extend 7r+ to an equivariant 

T'  T '  morphism p+ : X --+ V~ . Similarly, we have pT' : X --+ V_ T' . 

Observe that  there are only finitely many subtori T'  C T of codimension 
one, such that V~' is nonzero: indeed, such a subtorus is contained in 
the kernel of a weight of T in the tangent space T , X .  Let V denote the 
product of all the V T' ,  and let p : X --+ V be the product morphism; then 
p(X  T) = {0} because p(x) = 0 and Y T = {0} by construction. 

Shrinking X, we may assume that each irreducible component of X T 
contains x; in particular, X T is connected. Then we claim that X T is a 
connected component of the fiber p - l (0 ) .  Otherwise, there exists an closed 
irreducible T-stable curve C C p-1 (0) such that x is an isolated fixed point 
of C (see e.g., Proposition A4). Then T acts on C through some nontrivial 
character X. Thus, C is contained in X T' where T' C T is the connected 
kernel of X. Furthermore, because T acts nontrivially on C, this curve must 

T'  be contained in X T'(x) U X_  (x). But then p(C) has dimension one, by 
construction of p. 

From the claim, it follows that d im, (X)  _< d imxp- l (0)  + dim(V) -- 
dim, (xT)+d im(V)  = dim. (X  T) + ~'~T' (dim( VT' ) +dim(V-T' )) = dimx (X  T) + 

T'  ~ T , ( d i m x X T ' ( x )  + dim. X_  (x)). If moreover X T' is smooth at x, then 

there exists an equivariant morphism f : X T' --+ T . ( x T ' ) ,  x ~ 0 which 
T'  is 6tale at x. It follows that X+ (x), xT_'(x) and X T are smooth at x, 

and that dimx(X T') = d imTx (X  T') = dimTx(XT')+ + d imTx(XT ' )_  + 
T'  d imT . (XT ' )  T = dim. x T ' ( x )  + dim. x T ' ( x )  + dim.(XT).  Here T . ( X  )~- 

denotes the sum of all T/T'-eigenspaces of Tx (X  T') with eigenvalues of the 
corresponding sign. [] 
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1.3. Attract ive  fixed points 

We recall the notion of an attractive fixed point, and we obtain prelimi- 
nary results for rational smoothness at such a point, using ideas from the 
Appendix in [KL1]. 

Definition. Let T be a torus acting on a variety X. A fixed point x is 
called attractive if all weights of T in the tangent space T~X are contained 
in an open half space. 

By Proposition A2, the point x is attractive if and only if there exists 
a one parameter subgroup )~ : G m -+ T such that limt-~0 )~(t)y = x for 
all y in a neighborhood of x. Furthermore, the set of all y E X such that 
limt-~0 )~(t)y = x is an open affine T-stable neighborhood of x. Replacing 
X by this neighborhood, we may assume that X is affine; then X admits a 
closed T-equivariant embedding into TxX.  

Set 

: =  x - { x } .  

Choose an injective one-parameter subgroup A : Gm -+ T as above. Then 
all weights of the Gin-action on T~X via A are positive. Thus, the quotient 

P ( X )  := X /GIn  

exists and is a projective variety: indeed, it is a closed subvariety of P(TxX),  
a weighted projective space. We can view P ( X )  as an algebraic version of 
the link of X at x. 

Because the set of rationally smooth points is T-stable and open for the 
complex topology, X is rationally smooth at x if and only if it is rationally 
smooth everywhere. This condition can be read on P (X) ,  as follows. 

L e m m a .  Let X be an aJfine T-variety with an attractive fixed point x such 
that X is rationally smooth. Then P ( X )  is rationally smooth as well. Fur- 
thermore, X is rationally smooth if and only if P ( X )  is a rational cohomo- 
fogy complex projective space. 

Proof. Observe that  Gm acts on )~ with finite isotropy groups. By Proposi- 
tion Ah, it follows that X is covered by Gin-stable open subsets U admitting 
an equivariant morphism p : U --+ G m / P  where F C Gm is a finite subgroup 
(depending on U). Let Y be the fiber o fp  at the base point of Gm/F.  Then 
Y C X is a locally closed F-stable subvariety, and U is equivariantly isomor- 
phic to the quotient (G m • Y ) / F  where F acts diagonally on (~m • Y- Thus, 

P ( X )  is covered by the quotients Y/F.  Because )~ is rationally smooth and 
the map Gm • Y --+ X : (t, y) ~ ty is 6tale, Gm x Y is rationally smooth, 
too (see e.g., Proposition A1). Thus, Y is rationally smooth, and so is 
the quotient Y / F  by Proposition A1 again. Therefore, P ( X )  is rationally 
smooth. 



134 M. BRION 

We claim that X is rationally smooth at x if and only if 

H m ( ' Y ) - - {  Q otherwise,ifm--0~ 

where d = dimx(X). Indeed, the action of Gm on X extends to a map 
A 1 • X -+ X sending 0 • X to x, and restricting to the identity 1 • X -+ X. 
Thus, H m ( x )  ~ 0 for all m > 0. Now our claim follows from the long exact 
sequence 

. . .  --~ H m ( x )  -+ Hm( .~)  -+ Hxm+l(X) -+ H m + I ( x )  --+ . . . .  

Denote by ~ : )(  --~ P ( X )  the quotient map and let Q x  be the con- 
stant sheaf on )(  associated with Q. We compute the higher direct images 
Ri~,  Q)~. For this, consider the commutative square 

Gm • Y --+ Y 

(am • Y ) / r  ~ Y / r  

where Y and F are as above, and the downwards maps p, q are quo- 
tients by F. Because p and q are finite, we have Ri~,(pr, QGm• = 

F i r q , ( R  p y ,  QGm• where r I ~ p , ,  q, denote invariant direct image. But both 
p ry ,  QG~,• and R l p r y , Q ~ m x y  are isomorphic to Qv,  and R ip ry ,  QGm• 
vanishes for i > 2. Furthermore, q,rQy is isomorphic to Q y / r  via q*, and 
a similar statement holds for r p , .  It follows that ~r,Q~ and R I ~ , Q 2  are 
isomorphic to QP(x),  and that Ri~r, QR  = 0 for i > 2. Thus, the Leray 
spectral sequence for ~ reduces to a Gysin long exact sequence 

. . .  --~ H m ( x )  -+ H m - I ( P ( X ) )  -+ H m + I ( p ( x ) )  -+ H m + I ( X )  -+ . . . .  

Together with the claim, this concludes the proof. [] 

1.4. A c h a r a c t e r i z a t i o n  of  r a t iona l  s m o o t h n e s s  a t  an  a t t t r a c t i v e  
f ixed po in t  

We obtain our main result stated in the introduction, and some useful vari- 
ants as well. 

T h e o r e m .  Let X be a T-variety with an attractive fixed point x. Then 
we have dimx(X) ~ ~-~-T' dimx(XT') (sum over all subtori of codimension 
one). Furthermore, X is rationally smooth at x i f  and only i f  the following 
conditions hold: 

(i) A punctured neighborhood of x in X is rationally smooth. 

(ii) X T' is rationally smooth at x for each subtorus T ~ C T of codimension 
o n e .  
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(iii) dimx(X) = ET ,  dimx(XT') �9 

Proof. The first assertion follows from Theorem 1.2: because x is attractive, 
each X T' is equal to X+ T' or to X T' in a neighborhood of x. If X is rationally 
smooth at x, then (i) certainly holds, and (ii), (iii) follow from Theorem 1.1. 
Another proof of this results and of the converse as well, is sketched in [B2]. 
We reproduce this proof with some changes, so that it adapts to arbitrary 
characteristic. 

We may assume that X is affine, and we use the notation and results of 
1.3. Observe that  the T-action on X induces an action on P(X) ,  with fixed 
point set the disjoint union of the p ( x T ' ) .  Indeed, T-fixed points in P ( X )  
correspond to T-orbits of dimension one in )(.  

Assume that  (i), (ii) and (iii) hold. Then we claim that  the rational co- 
homology of P (X)  vanishes in odd degrees, and that the topological Euler 
characteristic x (P (X) )  is equal to dimx(X) := d. To check this, we use 
equivariant cohomology again. Notation being as in the proof of Theorem 
1.1, the map P ( X )  •  T "+ E T / T  = B T  is a fibration with fiber P (X) .  Be- 
cause the latter is projective and rationally smooth, the associated spectral 
sequence degenerates (by the criterion of Deligne, see e.g., [J] Proposition 
13). Thus, the H*(BT)-module H~(P(X) )  is free, and H*(P(X))  is the 
quotient of H~(P(X) )  by the ideal generated by all characters of T. 

By the localization theorem in equivariant cohomology (see e.g., [H] Chap- 
ter III, or Proposition A6), the H* (BT)-module H~(P(X) )  becomes isomor- 
phic to H ~ ( P ( X )  T) = H* (BT)| (P(X)  T) = (~T' H* (BT)| ( p ( x T ' ) )  
after inverting all nontrivial characters of T. Furthermore, by the preceding 
discussion and rational smoothness of the X T', each H* (P (X T' )) is a rational 
cohomology projective space; in particular, its cohomology vanishes in odd 
degrees. Because H* (BT) vanishes in odd degrees too, it follows that  the 
same holds for H:~'.(P(X)), and for H* (P(X))  as well. Furthermore, we have 
for the Euler characteristic of P(X) :  x (P (X ) )  = rankH.(Br)H~(P(X))  = 
rankI-l*(sr)HT(P(X) T) = ~-~T' x ( p ( x T ' ) )  = ~ T ,  dim(XT')  = d, which 
proves our claim. 

Because P ( X )  is projective of dimension d - 1, it has nontrivial rational 
cohomology in degrees 0, 2 , . . . ,  2 ( d -  1). Thus, the claim implies that P ( X )  
is a rational cohomology complex projective space of dimension d - 1, so 
that  X is rationally smooth at x. 

Conversely, assume that X is rationally smooth at x. Then, reversing 
the previous arguments, we see that rational cohomology of each P ( X  T') 
vanishes in odd degree, and that d = ~ T ,  x (P(XT ' ) )  �9 Because P ( X  T') is 
a projective algebraic variety of dimension dimx(X T') - 1, it follows that  
x ( P ( X T ' ) )  > dimx(XT'). Thus, we have d > ~-'~T' dimx(XT')  �9 But the 
reverse inequality holds, as a consequence of Theorem 1.2, so we must have 
d = E T ,  dimx(XT') ,  x (P (XT ' ) )  = dimx(XT') for all T'. It follows that 
each P ( X  T') is a rational cohomology projective space, and that  X T' is 
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rationally smooth at x. [] 

The arguments above also lead to the following 

C o r o l l a r y  1. Let T be a torus acting on an irreducible variety X of dimen- 
sion two; let x E X be an attractive fixed point, contained in only finitely 
many closed irreducible T-stable curves. Then X is rationally smooth at x. 

Proof. We may assume that X is affine and that T acts faithfully�9 Then 
dim(T) = 2 (otherwise there are infinitely many closed irreducible T-stable 
curves through x, namely, the T-orbit closures). Thus, X contains a dense 
T-orbit; in other words, the normalization of X is an affine toric surface�9 It 
follows that X contains exactly four T-orbits: the fixed point x, two orbits 
of dimension one, and the open orbit�9 

Thus, P ( X )  is a projective irreducible curve with a dense T-orbit, so that  
P ( X )  is homeomorphic to the projective line. Furthermore, X is covered 
by two affine open subsets of the form (3m •  C where F is a finite group, 
and C is an irreducible affine curve admitting a nontrivial action of Cm 
(this follows e.g., from Proposition Ab). Thus, C is unibranched, and ~7 is 
rationally smoth. By Lemma 1.3, X is rationally smooth as well. [] 

As another consequence of (the proof of) Theorem 1.4, let us derive the 
following refinement of a result due to Carrell and Peterson [C] Theorem D. 

C o r o l l a r y  2. Let T be a torus acting on a variety X with an isolated fixed 
point x, such that the number of closed irreducible T-stable curves through 
x is finite; denote this number by n ( X , x ) .  Then dimx(X) < n (X , x ) .  I f  
moreover X is rationally smooth at x, then dimx(X) = n ( X , x )  and each 
closed irreducible T-stable curve through x is exactly the fixed point set of a 
subtorus of codimension one in T. 

Conversely, if x is attractive and admits a rationally smooth punctured 
neighborhood, and if d imx(X)  = n (X , x ) ,  then X is rationally smooth at x. 

Proof. We may assume that X is affine and that X T = {x}. Observe 
that each closed irreducible T-stable curve in X is fixed pointwise by a 
unique subtorus T I C T of codimension one. Furthermore, X T' contains 
only finitely closed irreducible T-stable curves through x, and all such curves 

�9 �9 t 

must be contamed m X T (x) U X T' (x). Thus, the dimension of both X T' (x) 
T I and X (x) is at most one, and dim Z Tl(x) + dim X_ T' i x) is at most the 

number of closed irreducible T-stable curves through x in X T'. Now the 
inequality dimx(X) < n(X,  x) follows from Theorem 1.2. 

If X is rationally smooth at x, then each X T' is rationally smooth at x 
as well, by Theorem 1.1. Thus, X T' is irreducible at x. It follows that the 
connected component of x in X T' is either {x} or a closed irreducible T- 
stable curve through x. Now the equality dimx(X) = n(X,  x) follows from 
Theorem 1.1. 

For the converse, we argue as in the proof of Theorem 1.4: the T-fixed 
points in P ( X )  correspond to T-orbits of dimension one in X, that is, to 
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closed irreducible T-stable curves through x. Thus,  the number of T-fixed 
points in P ( X )  is d imx(X)  = d i m P ( X )  + 1. It follows tha t  P ( X )  is a 
rat ional  cohomology complex projective space. []  

Remark. The assumption tha t  x admits  a rat ional ly smooth punctured 
neighborhood cannot  be omitted,  as shown by the following example. 

Let X be the hypersurface in A S with equat ion x 2 + yz + xtw = O. 
Then X is irreducible, with singular locus x = y = z = tw = 0, a union 
of two lines meeting at the origin. Let T -- (fro • (fro act on A 5 by 
(u, v)- (x, y, z, t, w) = (u2v2x, u3vy, uv3 z, u2t, v2w). Then the origin of A 5 is 
an at tract ive fixed point,  X is T-stable of dimension four, and X contains 
four closed irreducible T-stable curves: the coordinate lines, except for the 
x-axis. But  X is not rat ionally smooth at the origin. To see this, consider 
the action of (fro on A 5 by u .  ( x , y , z , t , w )  = (x, uy, u - l z ,  t ,w) .  Then X is 
(]m-stable and X Gm is defined by y = z = x 2 + xtw = 0. Thus, X Gm is 
reducible at the origin. By Theorem 1.1, X is not rat ionally smooth. 

2. R a t i o n a l  s m o o t h n e s s  o f  o r b i t  c l o s u r e s  in  f lag v a r i e t i e s  

2.1. At trac t ive  s l ices  

We shall apply our criterion of rat ional  smoothness to certain orbit clo- 
sures. For this, we need the following notion, a variant of [MS] 2.3.2. 

D e f i n i t i o n .  Let X be a variety with an action of a linear algebraic group 
H and let x E X.  A slice to the orbit Hx at x is a locally closed affine 
subvariety S C X which satisfies the following conditions: 

(a) x is an isolated point of S M Hx. 
(b) S is stable under  a maximal  torus T of the isotropy group Hx. 
(c) The morphism 

H x S  -+ X 

(h, s) ~ hs 

is smooth at (1, x). 
The slice S is attractive if 
(d) x is an at t ract ive fixed point for the T-act ion on S. 

It is easy to see tha t  there always exists a slice S. If  moreover S is 
at tractive,  then  S M Hx = {x} and the morphism c~ is smooth everywhere. 

P r o p o s i t i o n .  Let X be a variety with an action of a linear algebraic group 
H, let x E X and let S be a slice to Hx  at x. If X is rationally smooth at 
x (and hence at all points of Hx)  and i f x  is an isolated T-fixed point of S, 
then the T-variety S satisfies conditions (i), (ii) and (iii) of Theorem 1.4 at 
x. The converse holds if the T-variety S is attractive. 

Proof. The map a is H-equivariant;  thus, it is smooth  at  all points (h, x) 
where h E H,  and the image of a is a neighborhood of H x  in X.  Using 
Proposi t ion A1, we see tha t  X is rat ionally smooth  along Hx if and only if 
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S is rationally smooth at x. Now the first assertion follows from Theorem 
1.1, and the second one from Theorem 1.4. [] 

As a first application, we give a direct proof of a criterion for rational 
smoothness of Schubert varieties, obtained by Carrell and Peterson using 
Kazhdan-Lusztig theory (see [C] Theorem E). 

Let G be a connected semisimple group, B C G a Borel subgroup, and 
T C B a maximal torus with Weyl group W. The T-fixed points in the 
flag variety G / B  are indexed by W. For w E W we still denote by w 
the corresponding fixed point, and by X(w)  = B w B / B  the corresponding 
Schubert variety; then the dimension of X(w)  is the length of w, denoted 
by l(w). Let x E W. Then x E X(w)  if and only if x < w for the Bruhat 
ordering on W. 

We now recall the construction of slices to Schubert varieties, and the 
description of their T-stable curves. By the Bruhat decomposition, the map 

(U n x u - x  -1) • ( u -  n x U - x  -1) ~ •(a) 
(g, h) ~ ghx 

is an open immersion, and its restriction 

U M x U - x  -1 ~ B x  
g ~-+ gx 

is an isomorphism. Set 

S := x (w)  n (U- n xU-x-1)x .  

Then S is a T-stable attractive slice to B x  at x in X(w).  
Let R C W be the set of reflections. For r E R, let T ~ be its fixed point 

set in T, and let Gr be the derived subgroup of the centralizer GT~; then 
Gr is a connected semisimple group of rank one. Set 

C(z, r) : =  G~x. 

Then the C(x, r) (r ~ R) are the closed irreducible T-stable curves through 
x in G/B.  Furthermore, rx <_ w if and only if C(x, r) is contained in X(w) .  
More precisely, we have x < rx < w (resp. rx < x) if and only i fC(x,  r) C S 
(resp. C(x, r) c Bx); see [C] Theorem F. 

Now, combining the proposition above with Corollary 1.4.2, we obtain 
the following 

Corol la ry .  Let x, w in W such that x < w, and let n(x, w) be the number 
of r E R such that rx < w. Then l(w) < n(x ,w) .  Furthermore, X(w)  is 
rationally smooth at x if and only if l(w) = n(y, w) for all y E W such that 
x < _ y < w .  

The first part of this result was conjectured by Deodhar and proved by 
Carrell-Peterson (see [C] Theorem A), Dyer [D] and Polo [Po]; the second 
part is due to Carrell-Peterson (see [C] Theorem E). 
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2.2. Orbits of spherical subgroups in flag varieties 

We still consider a connected semisimple group G and we denote by B(G) 
its flag variety. Let H C G be a spherical subgroup, that  is, B(G) contains 
only finitely many H-orbits. Let H ~ be the connected component of 1 in H; 
then H ~ is spherical in G, too. 

Easy but useful properties of H-orbits in B(G) are given by the following 

Proposition.  (i) Each closed orbit is isomorphic to a finite union of copies 
of the flag variety B(H~ 

(ii) Let X C B(G) be an orbit closure and Xo C X1 C . . .  C X~ = X a 
maximal chain of orbit closures. Then ~ = dim(X) - dim B(H~ 

(iii) Let [I D H be a subgroup of G which normalizes H and such that 
[-I/H is connected. Then H and [-I have the same orbits in B(G). 

Proo]. (i) Let x C B(G) be such that  Hx is closed. Then the variety Hx 
is complete; thus, the same holds for its component H~ Moroever, the 
isotropy group Hx = H N Gx is solvable. Thus H ~ is a Borel subgroup of 
H. 

(ii) Choose a Borel subgroup B of G, then the partially ordered sets of 
H-orbit closures in B(G) and of B-orbit closures in G / H  are isomorphic. 
Let ]I0 C ]71 C . . .  C Yt = Y be a maximal chain of B-orbit closures in G/H.  
Then Y~-I is an irreducible component of the complement of the open B- 
orbit in Y~. Because that  orbit is affine, we have dim(Yt_l) = dim(Yt) - 1. 
It follows that  dim(Y0) = dim(Y) - l. Back to H-orbits in B(G), we thus 
have dim(X0) = dim(X) - g .  Furthermore, X0 is a closed orbit, whence 
dim(X0) = dim B(H~ 

(iii) Let 0 C B(G) be an H-orbit and let c be its codimension in B(G). 
We show that  50 is / t -s table,  by induction on c. 

If c - -  0, then SO is open in B(G). Choosex  6 O; t h e n H x  is an open 
subset o f / t x ,  whence the product H/~x is open in/~.  But H/Ix  is a closed 
subgroup of / : /  containing H, because/~ normalizes H. Thus, H/~x is a 
union of components of H, and Hx is a union of components of /~x .  But 
H / H  is connected, whence Hx --- i-Ix. 

For arbitrary c, observe that  the closure O is a union of components of 
the set of x 6 B(G) such that  the codimension of Hx in B(G) is at least 
c. The latter set is closed and /~-stable b e c a u s e / t  normalizes H. As 
is H-stable and _f-I/H is connected, it follows that  O is/~-stable. Now the 
argument above shows that  O is/~-stable. [] 

Definition. The rank g(X) of an H-orbit closure X C B(G) is the codi- 
mension in X of any closed orbit, or equivalently, the common length of all 
maximal chains X0 C X1 C . . .  C X~ = X of orbit closures. 

In the case where H = B as in 2.1, the closed orbits are fixed points, and 
the rank of X -- X(w) is the length of w. 
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For a reductive spherical subgroup H C G and an H-orbi t  closure X in 
B(G), we shall show tha t  l (X)  satisfies an inequality similar to Corollary 2.1, 
with equality if X is rat ionally smooth. For this, we shall analyze the fixed 
points in X of a maximal  torus of H,  and of its codimension one subtori. 

2.3. F i x e d  p o i n t s  in  f lag v a r i e t i e s  

Let H C G be a reductive spherical subgroup, and let Tt/ C H be a maximal  
torus. For a subtorus T I C TH~ we denote by G T' (resp. H T') its centralizer 
in G (resp. H)  and by B(G) T' its fixed point in B(G). It is well known tha t  
G T' is connected and reductive and tha t  B(G) T' contains only finitely many 
orbits of G T', each of them being isomorphic to the flag variety 13(G T'). The 
torus T I is regular in G if B(G) T' is finite, or equivalently, G T' is a maximal  
torus of G. 

L e m m a .  Notation and assumptions being as above, TH is regular in G. 
Furthermore, each H T' is a reductive spherical subgroup of G T'. 

Proof. Because H ~ acts on B(G) with only finitely many orbits, (H~ T' 
acts on ]3(G) T' with only finitely many orbits as well; see [R]. It follows tha t  
(H~ T' is spherical in G T'. In particular,  (H~ T€ = TH is spherical and 
central in G TH . Thus, G TH is a torus, and TH is regular in G. [] 

Now assume tha t  the codimension of T ~ in TH is one, and tha t  T t is 
singular in G. Then T ~ C H T' C G T' and the quotient H T' / T  ~ has rank at 
most one. Let G' be the quotient of G T' by its center, and let H ~ be the 
image of H T' in G I. Then G T' and G ~ have the same flag variety which we 
denote by B ~. Furthermore,  H ~ is a reductive spherical subgroup, of rank at 
most one, of the nontrivial  connected adjoint semisimple group G ~. Thus, 
H ~~ is either the multiplicative group or (P)SL 2. Because H I has finitely 
many orbits in B ~, we have dim(B ~) < 1 in the former case, and dim(B ~) < 3 
in the latter case. Thus, G ~ is isomorphic to (PSL2) n with n < 3, or to 
PSL3. A closer look leads to the following classification. 

(1) H I = G I = PSL2. Then B ~ is projective line p1 with transitive action 
of H ' .  

(2) H '~ is a one dimensional torus of G ~ = PSL2. Then B ~ = p1,  and 
the H~~ in B ~ are two fixed points and their complement.  If  H ~ is not 
connected, then it is the normalizer of H I~ and it exchanges bo th  H~~ 
points in B ~. 

(3) H ~ = PSL2, the diagonal in G' = PSL2 • PSL2. Then B ~ = p1 • p1 
with diagonal action of H ~. The H~-orbits in B ~ are the diagonal and its 
complement. 

(4) H ~ = PSL2 = SO3 embedded into PSL3 = G ~. We can consider B ~ 
as the variety of flags in the projective plane p2,  and H I as the stabilizer 
in PSL3 of a smooth  conic Co. Then the H~-orbits in B ~ are given by the 
position of a flag (p, d) (where p is a point of p2 and d a line containing 
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p) with respect to Co. So there is a unique closed orbit: the set of flags 
(p, d) such that d is tangent to Co at p. This orbit is isomorphic to p1. 
And there are two orbit closures of dimension two, defined by p is in Co, 
resp. d is tangent to Co. It is easy to see that the maps (p, d) ~+ p, resp. 
(p, d) ~-~ d identify these orbit closures to the rational ruled surface of index 
two, denoted by F2. 

(5) H r~ = SL2 and G r = PSL3 where H r~ is embedded as the image of 

matrices of the form a with a d -  bc = 1. Denote by/~r the norma- 
b 

lizer of H r~ in G'. Then/~1 is the image of matrices of the form a 
b 

with t(ad - bc) = 1. Observe tha t /~r  normalizes H r, and that the quotient 
[-II/H r is the multiplicative group. Thus, H r a n d / t '  have the same orbits 
in B r, by Proposition 2.2. Fur thermore , / I '  is the stabilizer in G r of a point 
Po in p 2  represented by the first basis vector of C 3, and of a line lo in 
p2, represented by the first dual basis vector. Thus, ~ rr has three closed 
orbits in Br: the set of flags (p, d) such that p = Po (resp. d -- do; p E do 
and d E P0)- These orbits are isomorphic to p1. Furthermore, there are two 
/~r-orbit closures of dimension two, consisting of flags (p, d) such that P0 E d 
(resp. p E do). The maps (p, d) ~-+ p (resp. (p, d) ~-+ d) identify theses orbit 
closures to the blow-up of p2 at the point P0 (resp. the blow-up of the dual 
projective plane at the point do). Thus, both orbit closures are isomorphic 
to the rational ruled surface F1 of index 1. 

(6) H r --- PSL2, the small diagonal in G r = PSL2 • PSL2 x PSL2. Then 
Br = p1 x p1 x p1 with diagonal action of H r. The Hr-orbit closures in B r 
are the small diagonal p 1  three partial diagonals isomorphic to p1 • p1, 
and B r. 

Remarks. (i) For a symmetric subgroup H of G, we shall see in 2.5 that 
only types (1) to (4) can occur. It can be checked that the same holds if G 
is simple and H ~ C G is a maximal connected reductive spherical subgroup; 
for this, one uses Kr~imer's classification of reductive spherical subgroups 
of simple groups [Kr]. But types (5) and (6) do occur in general, e.g., 
type (5) for H = Sp2 n C SL2n+l = G, and type (6) for H = SO2n+l C 
SO2n+1 x SO2u+2 = G where H is embedded in G by h ~ (h, (h, 1)), or for 
H = G2 C SOs --- G embedded by its defining representation. 

(ii) By [MS] 6.4, all orbits of symmetric subgroups in flag varieties admit 
attractive slices. But this fails for arbitrary reductive subgroups: consider 
for example, G = PSL3 and H = SL2 as in type (5). Then we can take 
for TH the image of diagonal matrices with eigenvalues (1,t, t -1) where 
t E (~m. Let x E B(G) be the standard flag in C 3. Then the weights of 
the TH-action on the normal space T x B ( G ) / T x H x  are 1 and -1 .  Thus, H x  
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admits no attractive slice at x. Furthermore, both H-orbits of dimension 2 
have unipotent isotropy groups, so that  they admit no attractive slice either. 

2.4. A c r i t e r ion  for  r a t iona l  s m o o t h n e s s  

Notation and assumptions being as in 2.3, we shall describe fixed point sub- 
sets in an H-orbit  closure X C B(G), and deduce a necessary condition for 
rational smoothness of X at a TH-fixed point. We begin with the following 
result, which is easily checked by inspection using the discussion in 2.3. 

L e m m a .  For any subtorus T' C TH of codimension one, each irreducible 
component of X T' is smooth, and is either a point (this may occur in type 
(1)), or p1 (this may occur in all types), or p1 • p1 (in types (3) and (6)), 
or F1 (in case (5)), or F2 (in type (4)), or B(PSL3) (in types (4) and (5)), 
or p1 x p1 • p1 (in type (6)). 

For a subtorus T' C TH of codimension one, let ~T' (X, x) be the sum 
of the ranks of the irreducible components of the HT'-varieties X T' which 
contain x. Observe that IT , (X ,x )  is 0 in type (1), at most 1 in types (2) 
and (3), at most 2 in types (4) and (5), and at most 3 in type (6). 

P r o p o s i t i o n .  (i) For any x E X T ' ,  we have f ( X )  <_ ET' ~T'(X, X) with 
equality if X is rationally smooth at x. 

(ii) / f  moreover X is irreducible and ~(X) < ~(Hx) + 2, then X is ratio- 
nally smooth at x. 

Proof. (i) By Theorems 1.1 and 1.2, we have dim B(H ~ ----~T' dimB(HT:~ 
T ~ and dimx(X) _< ~ T '  (dimx X+ (x) + dim• xT ' (x ) ) .  Furthermore, we claim 

TP that dim• X+ (x) +dimx X T' (x) <_ dim B(H T',~ + ~T' (X, x). Indeed, if X T' 

is irreducible at x, then it is smooth at x by (i). Thus, we have dim• X T' (x)+ 
dims xT_ ' (x) = dim• (X  T') = dim B(H T''~ + l ( X  T') where the first equality 
follows from Theorem 1.2, and the second one is the definition of the rank. 
If X T' is reducible at x, then we are in case (4), (5) or (6), and moreover 
H'x  is closed in B'. In cases (4) and (6), x is attractive in B' and the claimed 
inequality is obvious; in case (5), it is checked by inspection. It follows that 

< ET, 
If moreover X is rationally smooth at x, then each X T' is irreducible at 

x, and hence smooth at x. We conclude by Theorem 1.1. 
(ii) Let E be a TH-stable slice to H x  at x in B(G); then S := E n X is a 

slice to Hx in X. If ~(X) = ~(Hx) + 1, then S is an irreducible curve with 
nontrivial action of TH (because TH is regular in G). Thus, S is unibranched 
at x, and hence rationally smooth. If g(X) = e(Hx) + 2 and TH acts on S 
with a dense orbit, then S is rationally smooth by Corollary 1.4.1. Finally, if 
g(X) = ~(Hx) + 2 but  TH has no dense orbit in S, then S is fixed pointwise 
by a subtorus T' C TH of codimension one. Thus, S C E T' and the latter is 
a slice to HT'x  in 13 T' . Because dim(S) -- 2, it follows from the classification 
in 2.3 that S = E T', whence S is smooth. [] 
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2.5. T h e  s y m m e t r i c  case 

Consider now a connected semisimple group G with an involutive automor- 
phism 8. Then the fixed point set H -- G o is called a symmetric subgroup; 
it is a reductive spherical subgroup of G. We refer to IS1] for this and for 
other results on symmetric spaces, to be used below. 

We shall obtain a precise version of Proposition 2.4 (i), in terms of the 
combinatorics of H-orbits in B(G). We begin by relating the approach of 
2.3 to the structure of symmetric spaces. 

Let TH C H be a maximal torus. Then its centralizer T is a P-stable 
maximal torus of G. Thus, 0 acts on the Weyl group W, on the subset R of 
reflections, and on the set a5 of roots of (G, T) as well. For c~ E 4, let re E R 
be the corresponding reflection, and Ga C G the corresponding semisimple 
group of rank one. Then Ga contains a representative of re. Finally, set 
T~ = (TH M ker(a)) ~ Then the T~r are exactly the codimension one subtori 
of TH which are singular in G. Define the type of c~ (or of the corresponding 
reflection re) as the type of T ]  in the classification of 2.3. 

L e m m a .  (i) There exists a P-stable Borel subgroup B of G containing T; 
then B O'~ is a Borel subgoup of H.  Any two such Borel subgroups of G are 
conjugated by W ~ 

(ii) Let ~ E 4;  then 
c~ has type (1) if and only i fGa is contained in H (in particular, 0((~) = ~). 

has type (2) if and only if 0(~) = a, Ga is not contained in H, and 
c~ 7s ~ + O(fl) for all ~ E 4. 

has type (3) if and only if O(a) 7 ~ a, and ~ + O(a) ~ g2. 
a has type (4) if and only if: c~ + O(a) E q~, or a = ~ + 0(~) for some 

E 4. And there are no roots of type (5) or (6). 

Proof. (i) There exists a pair (B0, To) where B0 is a P-stable Borel subgroup 
of G, and To is a P-stable maximal torus of B0. Let U0 be the unipotent 
radical of B0, and let B o be the opposite Borel subgroup, with unipotent 
radical B o . Then the product map U o x To x U0 --+ G is an open immersion. 

Thus, the same holds for the product map (Uo) ~176 x T~ '~ x U~ '~ --+ g .  
n0,0 and (Bo) ~176 are opposite Borel subgroups of H. In It follows that  ~o 

particular, T0 ~176 is a maximal torus of H. Thus, we can write TH = hT~176 -1 
for some h E H. Taking centralizers in G, we obtain T = hToh-1; then we 
can take B = hBoh -1. If B' is another Borel subgroup containing T, there 
exists a unique w E W such that  B' = w B w - 1 ;  now B' is P-stable if and 
only if O(w) = w. 

(ii) Let T ~ = T~. Then 0 acts on the group G T' and on its quotient G ~ 
by its center. Let H '  be the image of H in G'; then H'  is a subgroup of 
finite index in G ~. It follows that  (G', H ~) is not of type (5) or (6), because 
SL2 is not a subgroup of finite index of a symmetric subgroup of PSL3 or 
of SL2 x SL2 x SL2. The description of types (1) to (4) follows from the 
discussion in [S1] w [] 
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For B as in the lemma above, the pair (T, B) is called standard. We then 
identify B(G) with G/B;  the point x E (G/B)  T is identified with an element 
of W, still denoted by x. 

Recall that a E (I) is called compact imaginary (resp. noncompact imagi- 
nary; real; complex) if Ga is contained in H (resp. 0(a) = a but  Ga is not 
contained in H; O(a) = -a ;  O(a) • 4-a). In our case, there are no real 
roots, because the set of roots of (B, T) is 0-stable. Furthermore, reflections 
of type (1) (resp. (2); (3) and (4)) correspond to compact imaginary roots 
(resp. certain noncompact imaginary roots; complex roots). 

We now recall the parametrization of H-orbits  in G/B;  our notation dif- 
fers from that in IS1] by an inverse, because B-orbits in G / H  are considered 
there. Let N be the normalizer of T in G; then N is 0-stable. Set 

]2 := {g E G ] g-lO(g) E N} .  

Then )2 is stable by the (H • T)-action: (h,t)g = hgt -1, and each (H • B)- 
orbit in G meets 1) in a unique (H • T)-orbit. As a consequence, H-orbits  
in G / B  are parametrized by the set of double classes V := H\ )2 /T .  

There is a base point v0 E V, the image of 1 E N; the corresponding 
H-orbit  is closed, e.g., by the lemma above. Observe that 12 is stable under 
right multiplication by N; this defines an action of W on V, denoted by 

 o.v. 

For v E V, we denote by X(v)  C G / B  the corresponding H-orbit  closure, 
and by e(v) its rank. We write v ~ _< v if X(v ' )  C X(v) .  This defines a 
partial order on V, which is studied in [RS]. 

Finally, we shall need the following result, see [$2] 2.5: For any r E R of 
type (2), there exists g(r) E G~ such that g(r)-lO(g(r)) is a representative 
of r in N. In particular, g(r) E )2. Let v(r) be the image of g(r) in V. 

T h e o r e m .  Let v E V and let x E W such that x . v o  < v. Let n2(v,x) be 
the number of reflections r of type (2) such that x . v(r) < v. For t -- 3, 4, 
let nt(v, x) be the number of reflections r of type (t) such that rx  . Vo g v. 
Then we have 

1 
g(v) < n2(v,x) 4- -~n3(v,x) + n4(v,x) 

with equality if  X (v) is rationally smooth at x. 

Proof. We wish to apply Proposition 2.4 (i) combined with the lemma above. 
For this, given a subtorus T ~ C TH of codimension one, we analyze the con- 
tribution of T I to the formula in that proposition. We denote by ~T' (v, X) 
the sum of the ranks of the irreducible components of X(v)  T' which con- 

T ~ tain x, and by X(v)x  , the union of these components, i.e., the connected 
component of x in X(v)  T'. 

If T ~ = T~ for r of type (2), the component of x in (G/B)  T' is the curve 
C(x, r) considered in 2.1. By [$2] 3.1, this curve is contained in X(v)  if and 
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only if x .  v(r) ~_ v. In other words, we have ~T' (V, :g) : 1 if x.  v(r) < v, and 
gT' (v, x) = 0 otherwise. 

If  T '  = T}  for r of type (3) or (4), observe tha t  X ( v ) N G T ' x  is connected, 

by the explicit description in 2.3. Thus, we have X(v)  n GT'x = X(v )  T'. 
Now rx .  Vo ~_ v iff rx E X(v)  iff rx E X(v)  T' (because rx E GT'x anyway). 
For T '  of type (3), one checks tha t  gT,(V,X) is the half  of the number of 
r �9 R such tha t  T/_/= T'  and tha t  rx �9 X(v)  T'. 

If  r has type (4), then  one checks tha t  IT,(V,X) is at  most the number of 
r as above, with equality if X(v)  T' is irreducible. 

E x a m p l e s .  1) In the case where TH is a maximal  torus of G ( that  is, 0 
is inner), only types (1) and (2) occur, and we recover the following result 
of Springer [$2]: the rank of X(v)  is at most the number of noncompact  
imaginary reflections r such tha t  x �9 v(r) <_ v, with equality if X(v)  is 
rat ional ly smooth  at x. 

2) Consider G = SLn with the involution O such tha t  O(g) = tg-1. Then 
H = SOn. The flag variety B(SLn) contains n - 1 irreducible H-stable 
divisors D I , . . . ,  Dn-1, where each Dm consists of those complete flags (V1 C 
. . .  C Vn-1) in C ~ such tha t  the restriction of the s tandard  quadratic form 
to Vm is degenerate. 

For n >_ 4, we claim tha t  D1 and Dn-1 are smooth; D2 and D~-2 are 
rat ionally smooth,  but  singular; and no other Dm is rat ionally smooth (see 
[Ku] for a similar result concerning Schubert divisors in arbi t rary flag vari- 
eties). 

To check this, consider first the case where n = 2n' is even. Choose 
a basis of C ~ with  coordinates x l , . . .  ,x~ such tha t  the quadrat ic  form is 
xlx2n, +x2x2n,-1 + . . .  +xn,x,~,+l. Let T (resp. B) be the group of diagonal 
(resp. upper  tr iangular)  matrices in this basis. Then  (T, B) is a s tandard  
pair~ and 0 acts on T by O(tl, . . .  ,tn) = ( t n l , - . - , t l l ) .  The roots of (B ,T)  
are the aid (1 < i < j _~ n) where ~i , j ( t l , . . .  ,tn) -- tit-j 1. The roots of 
type (3) are the ai,j where i + j  ~ 2 n ' +  1, and all other roots have type (2). 
Let  x be the s tandard  flag in our basis. Using either [RS] 10.3 or geometric 
arguments,  one checks tha t  

n ' - i  i f m = l o r m = 2 n ' - l ,  
n2 (Din, x) = n '  otherwise, 

2n'(n' - l) - 2 i f m = 2 o r m = 2 n ' - 2 ,  
na(Dm, x) = 2n ' (n '  1) otherwise. 

On the other hand,  l(Dm) = g(B(SLn)) - 1 = n '2 - 1. By the Theorem 
above, it follows tha t  D 3 , . . .  , D2n'-3 are not rat ionally smooth.  

In the case where n = 2n' + 1 is odd, we replace the quadrat ic  form by 
2 Then the discussion is similar, but  now X l X 2 n ,  + I -~- . . . -.~ X n ,  X n ,  +2  -~- X n ,  + l .  

the roots of type (3) are the ai,j  with i r n~+ l ,  j r n ' + l  and i + j  r 2n '+2 ,  
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whereas all other roots have type (4). We have i(Dm) = n '~ + n' - 1 for all 
m, and one checks that  

n a ( D m l x ) = { 2 n ' ( n ' - l ) - 2  i f m = 2 o r m = 2 n ' - I  I 
2n'(n'  1) otherwise, 

f 2 n ' - I  i f m = l o r m = 2 n ' ,  n4(DmlX) [ 2n' otherwise. 

Again, it follows that  D 3 , . . . ,  D2n'-2 are not rationally smooth. 
It remains to check our assertion for D1 and D2 (because 0 acts on B(G) 

and exchanges Dm and Dn-m). For this, let rm : B(SLn) ~ Grn,m be the 
canonical map to the Grassmanian of m-dimensional subspaces. Then Dm is 
the preimage of the divisor E m of degenerate subspaces, under the fibration 
7r m. For m = 11 because Grn, 1 = pn-1  and E1 is a smooth quadric, D1 is 
smooth. For m = 2, let Gr/8,2 C Grn,2 be the subvariety of totally isotropic 

planes. Then Ee contains GrinS,2 as its closed SOn-orbit�9 Furthermore, one 

checks that a slice to GriS2 in Grn,2 at the point span(el, e2) is 

S := {span(el + aen-1 + ben, e2 + Cen-1 + aen) I a, bl c E C} 

where (el, , en) is the basis introduced above. Thus, a slice to Gr is in E2 
�9 " �9 n,2 

is S N E21 isomorphic to the quadratic cone (a 2 - b c  = 0). We conclude that  
i s  E2 is rationally smooth but singular along Gr~, 2. Thus, D 2 is rationally 

smooth but singular as well. 

This result, combined with Proposition 2.4 (ii), implies e.g., that  all SOn- 
orbit closures in B(SLn) are rationally smooth for n = 4. This is no longer 
true for n = 5, an example being D2 N D3. 

Remark. Back to the case of an arbitrary symmetric subgroup, consider a 
point x E X not necessarily fixed by a maximal torus of H. Then the 
orbit Hx admits an attractive slice at x, by [MS] 6.4. Thus, a criterion for 
rational smoothness of X along Hx can be derived from Proposition 2.1. 
This leads to the following question: For a subtorus T' of codimension one 
in a maximal torus of H=, when is X T' rationally smooth at x? 

3. Closures  of  doub le  classes in r egu la r  g r o u p  completions 

3.1. C o n s t r u c t i o n  of  slices 

Let G be a connected reductive group. Then G x G acts on G by (gl,g2)7 = 
g17g~ "1. This identifies G with the homogeneous space (G • G)/diag G where 
diag G denotes the diagonal in G x G. Let T C G be a maximal torus, W its 
Weyl group1 and BI B -  two opposite Borel subgroups containing T. Then 
B x B -  acts on G as above, the orbits being the double classes BwB-  where 
w 6 W. In particular, the open orbit is BB- .  
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Let X be a (G x G)-equivariant completion of G which is regular in the 
sense of [BDP]. Then B x B -  acts on X with finitely many orbits, whose 
study was initiated in [B1]. We shall construct attractive slices to these 
orbits. For this, we need more notation and results, adapted from [B1] 2.1. 

Each (G x G)-orbit O C X contains a unique point y such that  (B x B-)y 
is open in O, and y is the limit of a one parameter subgroup of T. We refer 
to y as the base point of O. 

Furthermore, O determines two opposite parabolic subgroups P D B and 
Q D B - ,  with unipotent radicals R~(P), R~(Q) and common Levi subgroup 
L = P M Q, by requiring that  the stabilizer (G x G)y is the semidirect 
product of Ru(Q) x P~(P)  and (diagL)(T x 1)y. In particular, (T x T)y = 
(diagT)(T x 1)y is a maximal torus in (G • G)y. In fact, (T x 1)y -= (Z x 1)y, 
where Z denotes the connected center of L. 

Let (b be the root system of (G,T); then we have the subsets ~+ (resp. 
@L) of roots of (B, T) (resp. (L, T)). Let W L be the set of all w E W such 
that  w(q ~+) is contained in @+. Then each (B x B-)-orbi t  in O = (G x G)y 
can be written uniquely as (B x B-)(w,T)y for w E W and ~- E W L. 

Choose representatives ~,  ~ in the normalizer of T, and set x := (~, ?)y. 
Then (T • T)z = (w,~-)(T x T)y(w-l,7 -1) is a maximal torus in (G x G)~ 
and thus in (B x B- )x .  The codimension of (B x B-)x in (G x G)x is 

+ 

For simplicity, set 
Zy := (Z x 1)y; 

then Zy is the isotropy group of y for the left action of T on T. Set 

~(y) := {z E T I Y E Zyz}. 

Since T is a smooth toric variety, P~(y) is a Zy-stable slice to Ty at y in T. 
Since X is regular, ~(y) is a slice to O in X as well. Furthermore, P~(y) is 
isomorphic to the affine space A d where d = codin~T(Ty ) = codimx (O), and 
Zy acts linearly on A d by d independent characters. Thus, Z(y) contains 
exactly d closed irreducible Zy-stable curves through y, the coordinate lines 
Ci (y), �9 �9 �9 Cd (y). 

For any a E @, let Us C G be the corresponding unipotent subgroup. If 
w - i ( a )  E ~+ U @L, then Uw-l(a) does not fix y, whence Ua x 1 does not fix 
x. Thus, 

c(x, (us x i)x 

is an irreducible locally closed curve through x, stable by (T x T)x. We 
define similarly 

C(x, a ) -  := (1 x Uc~)X 

for a E @ such that  ~--i(a) E @- U ~L" Finally, we set 

c i ( z )  :=  

for 1 < i < d. Now we can state the following 
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T h e o r e m .  Notation being as above, the map 

(U- M wUw -1) • (UM TU-T -1) • 2(y) ~ X 
(g,h,z)  ~ (gh, h~)z 

is an embedding, and its image S is an attractive (T x T)x-stable slice to 
(B x B - ) x  at x in X .  Furthermore, the closed irreducible (T x T)x-stable 
curves through x in S are the C(x, a) (oL E (I)- M w((I)+)), the C(x, a) -  
(~ �9 ~+ N T(~-)) ,  and the Ci(x) (1 < i < d). 

Proof. After multiplication by (@, ~ ) - 1  we reduce to the somewhat simpler 
study of X along the orbit (w- lBw,  ~r-lB-~-)y. For this, set 

S : =  ( V M w - l V - w )  x (U- MT-1UT) x E(y), i ) :=  (1, 1,y). 

Consider the map 
5' X 

(g,h,z)  ~ (g,h)z. 

The group (T x T)y acts on S by (u, v) . (g, h, z) = (ugu -1, vhv -1, uv- lz )  
with fixed point Y, and ~r is equivariant. Identifying S with the affine space 
of dimension g(w) + l(T) + d, the action of (T x T)y is linear, with weights: 
(a, 0) (a �9 (~+ M w - l ( ~ - ) ) ,  ( 0 , - a )  (a �9 O-  M T-I((I)+)), and the weights 
of Cz(y), . . . ,Cd(y).  Furthermore, the multiplicity of each weight is one, 
and (T • T)y = (diagT)Zy where Zy acts on C I ( y ) , . . . ,  Cd(y) through d 
linearly independent weights. It follows that  ~ is attractive, and that  the 
(T • T)y-stable curves in S are the (Ua x 1)y (c~ �9 (I) + M w-l((I)-)) ,  the 
(1 x Ua)y (~ �9 ~ -  N T-I((I)+)), and CI(y), . . . ,Cd(y) .  

Furthermore, from the description of (G x G)y and the fact that  Z(y) 
is transversal to (G x G)y at y, it follows that  ~r is ~tale at ~), and that  
7r-1(7c(~))) = {~)}. Because ~) is attractive, ~r is an isomorphism onto its 
image, a locally closed subvariety of X. 

Finally, we check that  the action map w - l B w  x ~--1B-T • 7r(S) --~ X is 
smooth at (1, 1, y); this follows from the decompositions of tangent spaces 

TyX = Ty(G x V)y @ TyZ(y) = Ty(B x B - ) y  �9 TuE(y) 

= Ty(w-ZBw x T-1B-~-)y@Ty((UMw-IU-w) x (U- M T-1UT)y) ~TyE(y) 

= • T S(y), 

which follow in turn from the structure of (G • G)y described above. [] 

Applying Corollary 1.4.1, we obtain immediately the following 

Coro l la ry .  Any (B x B-)-orbit closure in a regular completion of G is 
rationally smooth in codimension two. 

In contrast, (B x B-) -orb i t  closures in regular completions are singular 
in codimension two, apart from very few exceptions (see [B1] Corollary 2.2). 
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3.2.  M o r e  o n  s l ices  a n d  c lo sures  o f  d o u b l e  c lasses  

We just  saw that closures of double classes in regular group completions 
admit attractive slices at all points; furthermore, these slices contain only 
finitely many invariant curves. Therefore, we can obtain a criterion for 
rational smoothness of these closures, similar to that for Schubert varieties 
(Corollary 2.1). To make this explicit, we need to know more about invariant 
curves, and to describe the inclusion relations between closures of double 
classes as well. 

Notation being as in 3.1, we begin by analyzing the closed irreducible 
(T x T)x-stable curves through x in the slice S. Because X is regular, the 
(G x G)-orbit (-9 of codimension d is contained in the closure of d orbits 
(91, . . . ,  (9d of codimension d -  1. Furthermore, we can index these orbits so 
that  the base point Yi of each (-9i belongs to the curve Ci (y). Thus, we have 
Ci (y) = Zyyi = Zyyi U {y}, and Ci (x) - {x} is contained in (B x B - ) ( w ,  T)yi. 

The behaviour of the other curves is given by the following 

P r o p o s i t i o n .  Notation being as above, the curve C(x, ~ ) -  {x} is contained 
in (B • B - ) ( r~w ,T )y  for any c~ E (I)- n w(~+).  Similarly, C ( x , ~ ) -  - (x} 
is contained in (B x B - ) (w , r~T)y  for any ~ E q)+ n T(~--). 

Proof. Set gra := U a - ( 1 } ;  then C(x, c~)-(x} = gr~x and (]~ C U_~raTU_a 
= U-aTrawU_w-l(~)w -1 C BrawU_w-l(a)w -1. Set f~ := w - l ( a ) ;  then 
/~ E (I)+. If f~ ~ ~L +, then U_f~ x 1 fixes y and the assertion follows. 
Otherwise, (U_z x 1)y = (1 x U_~)y because /3 E (I)+. Thus, we have 
(gr a x 1)x C (BrawU_~, T)y = (Br~w, TU_~)y C ( B x B - ) ( r a w ,  T)y because 
TU_~ ---- U_~(Z)T is contained in B - T .  The proof of the second assertion is 
similar. [] 

We now describe the inclusion order between closures of (B x B-) -orb i t s  
in X. This is given by the lemma below, where wo,n denotes the longest 
element in WL. A closely related statement is obtained in [PPR] for reduc- 
tive algebraic monoids; the latter can be considered as affine embeddings of 
connected reductive groups. 

L e m m a .  Notation being as above, the closure of (B x B - ) ( w , T ) y  in (-9 = 
(G x G)y is the union of the (B x B- ) (w ' ,T ' )y ,  where w',~-' E W satisfy 
w ~ > w and T~WO,L > TWo, L. 

I f  moreover (9~ C (-9 is a ( G x G)-orbit with base point y~ and associated 
Levi subgroup L ~, then 

(B x S - ) (w , r )yn(9 '=  U(B x B-)(wv, Tv)y' 

(decomposition into irreducible components), where the union is over all 
v E WL such that TV E W L' and ~(w) = g(wv) + ~(v). 

Proof. Consider the ( B -  x B)-orbits in (-9. We claim that the orbit ( B -  x 
B)(1,wo,n)y is closed. Indeed, setting BL := B M L and B L := B -  M L, we 



150 M. BRION 

have B -  = BLRu(Q ) and B = BLRu(P) ,  whence ( B -  x B)(1,wo,n)y = 
(B L x BL)(1,Wo,L)y = (1,WO,L)(B L X BL)Y = (1,W0,L)(1 X BL)Y and 
(1 x B-~)y identifies with the image of B L in L/Zy,  which is closed in there. 

Now we have B - T  = B - T B  L (because r B L  ~--1 C B - ) ,  whence 

(B x B - ) ( w , r ) y  = (B x B - ) ( w ,  TWO,L)(1,WO,L)BLY. 

Equivalently, (B x B-)(w,~r)y = (B x B-)(w,~-Wo,L)(B- x B)y. So the 
canonical map from 

(B x B - ) ( w ,  Two,L)(B- x B) XB-• ( B -  x B)(1, wO,L)y 

to (B x B -  ) (w, T)y is dominant and proper, hence surjective. By the Bruhat 
decomposition, the closure in G of (B x B-)(w,~ 'wo,L)(B-  x B) is the 
union of the double classes (B x B-) (w ' , r lwo,L) (B - x B) with w' > w 
and T~WO,L > TWo, L. This implies the first assertion, whereas the second 
assertion follows from [B1] Theorem 2.1. [] 

3.3. S ingula r i t i es  o f  c losures  o f  d o u b l e  classes  

Using the combinatorics of 3.2, we show that the closure of a double class 
B w B -  at a fixed point of B x B -  contains in general all closed irreducible 
(T x T)-stable curves through that point (this improves on [B1] Theorem 
2.2, with a more natural proof). Thus, this closure is not rationally smooth, 
as a rule. 

An exception to that  rule is the case where G = PGL(2). Indeed, that 
group has a unique regular completion X,  the projectivization of the space 
of 2 x 2 matrices. Furthermore, the closure in X of the standard Borel 
subgroup B is isomorphic to p2 and hence smooth; it contains only two 
closed irreducible (T x T)-stable curves through the (B x B)-fixed point. 

Similarly, the group SL2 has a unique regular completion X, a quadric in 
the projective completion of the space of 2 x 2 matrices. Furthermore, the 
closure in X of the standard Borel subgroup B is a nondegenerate quadratic 
cone of dimension two. Thus, B is singular, but rationally smooth; again, 
it contains only two closed irreducible (T x T)-stable curves through the 
(B x B)-fixed point. 

We shall see that all exceptions arise from both examples above. To state 
our result in a precise way, we need the following 

Def in i t ion .  A simple root a is called isolated if a is not connected to any 
simple root in the Dynkin diagram of G. In particular, G has no isolated 
simple root if and only if the quotient of G by its center contains no direct 
factor isomorphic to PGL(2). 

T h e o r e m .  Let X be a regular completion of G, let w E W and let x E X 
be a fixed point of B x B - .  If  G has no isolated simple root, then B w B -  
contains all closed irreducible i T x T)-stable curves through x. In particular, 
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the tangent space to B w B -  at x is the whole tangent space to X at x, and 
B w B -  is not rationally smooth there unless w = 1, that is, B w B -  = X .  

Proof. Since B w B -  contains B w o B - ,  we may assume tha t  w -- w0. Then 
the slice S at  x is a (T x T)-stable open neighborhood of x. Further- 
more, the closed irreducible (T x T)-stable curves through x in S are: the 
C(x ,a )  = (U~ x 1)x (a  E ~ - ) ,  the C ( x , a ) -  = (1 x Ua)x (a E ~+), and 
e l ( x ) , . . .  ,Cz(x) where / i s  the rank of G. Furthermore,  C(x ,a )  - {x} is 
contained in ( B x B - ) ( r a ,  1)x by Proposit ion 3.2, and similarly for C(x, a ) - .  

Let z be the base point of the closed orbit Z := (G x G)x. Then x -- 
(w0, Wo)Z where w0 E W is the longest element. We have (B x B- ) ( ra ,  1)x = 
(B x B- ) ( rawo,wo)z  C B w o B -  where the inclusion follows from Lemma 
3.2. Thus, C(x, a) is contained in B w o B - .  The argument  for C ( x , a ) -  is 
similar. 

Consider now a curve Ci(x) where 1 < i < I. By Proposi t ion 3.2, there 
exists a (G x G)-orbit (9i with base point zi such tha t  dim(O/) = dim(Z) + 1 
and tha t  Ci(x) - {x} is contained in (T x T)(wo, wo)z~. Let P, Q, L, Z be 
associated to Oi as in 3.1. Then  dim(Z) > dim(Zy,) = dim(T) - 1. Thus, 
either P -- B, or P is a minimal  parabolic subgroup containing B. 

In the former case, (G x G)y~ is the kernel of a character of B -  x B. 
Arguing as above, we obtain tha t  Ci (x) is contained in B w B - .  

In the lat ter  case, let a be the simple root corresponding to P ,  and set 
W a := {w E W I w(a) E R+}. Then we have by Lemma 3.2, BwoB-MO~ = 

Uvew~ (B x B-)(WoV, v)zi. Choose a simple root /3  which is connected to 
a in the Dynkin  diagram. Then  rat# and worar#ra are in W a. Thus, 

B w o B -  D (B x B-)(rar#ra,worar#ra)z i  D (B x B-)(Wo, Wo)Zi, 

where the first inclusion follows from Lemma 3.2, and the second one from 
tha t  lemma applied to w = rar#ra, ~- = worar#ra, w ~ = "r ~ = Wo. Indeed, 
w ~ ~ w is clear, and Trra = wor~ > wor~r# = Tra because r~ ~ r~r#. 

So we conclude tha t  Ci(x) is contained in B w o B - .  The remaining asser- 
tions follow now from Corollary 1.4.2. [] 

Appendix 

P r o p o s i t i o n  A1.  Let X be an algebraic variety of dimension d and let 
x E X .  

(i) The dimension of the space H~d(x)  is the number of d-dimensional 
irreducible components of X through x. 

(ii) If X is rationally smooth at x, then it is irreducible at x. 
(iii) Let 7c : X --+ Y be the quotient by the action of a finite group G. If 

X is rationally smooth at x, then Y is rationally smooth at ~(x). 
(iv) Let r : X --+ Y be a smooth morphism. Then X is rationally smooth 

at x if and only if Y is rationally smooth at r(x) .  
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Proof. (i) Let TX,Q be the dualizing complex of X for sheaves of Q-vector 
spaces IV]. For each integer m, the homology sheaf 7tm(Tx,q)  is associated 
with the presheaf U ~ H m ( u )  * (the dual of cohomology with compact 
supports). This presheaf vanishes for m > 2d, and is a sheaf for m = 2d. 
Furthermore, by IV] Corollaire 2.6.5, the stalk of Tx,q  at x is the dual of 
RFx(Qx)  where Qx  denotes the constant sheaf on X associated with Q. 
It follows that  U ~ H i d ( u )  is a sheaf, and that  its stalk at x is H~d(x) .  
This implies our assertion. 

(ii) It follows from (i) that  X has a unique irreducible component Y of 
dimension d which contains x. If X has another irreducible component Z 
of dimension e < d which contains x, then we can choose a smooth point 
z e Z - Y arbitrarily close to x. Now H2e(X)  = H2e(z )  is nonzero, a 
contradiction. 

(iii) Denote by Qx  the constant sheaf on X associated with Q. Then 
G acts on the direct image ~ . Q x  and the subsheaf of invariants ~.CQx is 
isomorphic to Q y  via the map Qy --+ ~ . Q x  (indeed, this map induces an 
isomorphism on stalks). Furthermore, Ri~r.Qx = 0 for i > 1. It follows 
that  It. : H * ( X )  ~ H*(Y)  restricts to an isomorphism H * ( X )  c -~ H*(Y) .  
Considering the isomorphisms above for X and X - ~r-l~(x) =- X - Gx, 
we obtain an isomorphism H ~ z ( X )  a ~ H*(z) (Y  ). Furthermore, the left 

hand side is isomorphic to ((~geC/a,  Hgz(X) )  c ~ H * ( X )  c*" Since X is 
rationally smooth at x, the vector space H* (X) is one dimensional, concen- 
trated in degree 2 dimx (X), and Gx acts trivially there. Thus Y is rationally 
smooth at lr(x). 

(iv) Shrinking X and Y if necessary, we can factor ~ as an 6tale morphism 
f : X -~ Y x A N followed by projection g : Y x A n --+ Y. By excision, we 
have H ~  (X) ~ H}~x) (Y • A n). Furthermore, by the Kfinneth isomorphism, 

we have H m ~ (Y • A n) = H~-2~(Y).  It follows that  H m ( x )  is isomorphic (y,) 
t o  g m-2n  (Y~ ~(z) ~ J" [] 

P r o p o s i t i o n  A2. For a torus T acting on a variety X with a fixed point 
x, the .following conditions are equivalent: 

(i) The weights of T in the tangent space T z X  are contained in an open 
half space. 

(ii) There exists a one-parameter subgroup )~ : G m --+ T such that, for all 
y in a neighborhood of x, we have limt--,0 A(t)y = x. 

If  (ii) holds, then the set 

Xx := {y e X I limA(t)y = x} 
t--~0 

is an open a]i~ne T-stable neighborhood of x, which admits a closed T-  
equivariant embedding into T z X .  

Proof. For equivalence of (i) and (ii), we can replace X by any open afiine 
T-stable neighborhood of x, and thus suppose that  X is affine. Let A be 
the algebra of regular functions on X, and let mx be the maximal ideal of 
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A corresponding to x. Then T acts on A so that  mx is T-stable, and T x X  
is the dual space of m ~ / m  2. 

If (i) holds, then we can find a one parameter subgroup )~ which is positive 
on all weights of T~X.  Then )~ is negative on all weights of m / m  2 and thus, 
of m n / m  n+l for all positive integers n. Because A ~- @n>o m n / m n + l  as 
a T-module, the action of )~ on A has negative weights, and A ~ = C. It 
follows that  limt~0 )~(t)y = x for all y E X. 

Conversely, if (ii) holds, then the algebra A is negatively graded via )~. 
Thus T x X  is positively graded via A. 

For arbitrary x, observe that  Xx is contained in any open T-stable neigh- 
borhood of x in X. Thus, to check that  Xx is open and affine, we may 
assume that  X is affine; now Xx = X by the argument above. Let V be a 

2 in m~. Then V generates the algebra of reg- T-stable complement to m x 
ular functions on Xx (this follows from the graded version of Nakayama's 
lemma; see e.g., [E] p. 135). Thus the corresponding map Xx --+ V* is a 
closed equivariant embedding. Furthermore, V is isomorphic to (TxX)*.  [] 

P r o p o s i t i o n  A3. Let X be an affine variety with a Gm-action and an 
attractive fixed point x. Then there exists a Gm-module V and a finite 
equivariant surjective morphism ~ : X --+ V such that ~r-l(0) = {x} (as a 
set). 

Proof. Let A be the algebra of regular functions over X. Then A = ~n~=O An 
is positively graded by the (]m-action. For any positive integer r, set A (r) := 
~n~=O Ant .  Then A is a finite module over A (r), and there exists r such that  
A (r) is generated by its elements of minimal degree. So we can assume that  
A is generated by its elements of degree 1. 

For any irreducible component Y of X, the set of f E A1 such that  
f ( Y )  -- 0 is a proper linear subspace of A1. So there exists f E A1 such 
that  f ( Y )  ~ 0 for all such Y. Let X '  C X be the zero set of f ;  then x E X ~ 
and dim(X ~) -- d -  1 where d = dim(X). So we construct inductively 
f = f l ,  f 2 , . . . ,  fd E A1 such that  x is their unique common zero. Consider 
the morphism ~ = ( f l ,  f 2 , . . . ,  fd) : X -+ A d. Then ~ is equivariant for the 
Gm-action on A d by multiplication, and r - l ( 0 )  = {x}: the quotient of A by 
its ideal generated by f l , . . . ,  fd is finite dimensional. By the graded version 
of Nakayama's lemma, it follows that  ~ is finite. Because dim(X) -- d, the 
map r is dominant, and hence surjective. [] 

P r o p o s i t i o n  A4. Let X be a connnected variety with a nontrivial action of 
a torus T and a fixed point x. Then there exists a closed irreducible T-stable 
curve C c X which contains x as an isolated fixed point. 

Proof. By induction on the dimension of X at x, the case of dimension 
one being trivial. We may assume that  X is affine and irreducible. Let 

: X --+ X / / T  be the quotient in the sense of geometric invariant theory. 
Then ~r is surjective, and its fibers are connected; because T acts nontrivially 
on X, these fibers are infinite. In particular, ~ - l~(x)  = {y e X [ x e Tyy} 
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is infinite. Let y 6 lr-17r(x), y ~ x. If  dim(Ty) = 1, we can take C -- T--y; 
otherwise, we can choose z 6 Ty  - Ty,  z ~ x. Then x 6 T z  with dim(Tz) < 
dim(Ty),  and we conclude by induction. [] 

P r o p o s i t i o n  A5.  Let T be a torus acting on a variety X and let 0 C X 
be an orbit. Then (9 admits an open affine T-stable neighborhood U in X ,  
with an equivariant retraction 7c : U --+ (9. 

Proof. We may assume tha t  X is affine. Let f be a regular function on 
X which vanishes identically on (9 - (9 but  not on (9, and which is an 
eigenvector of T. Then f has no zero in the orbit (9, and therefore CO is 
closed in the open affine T-stable subset X n ( f  ~s 0). Thus, we may assume 
tha t  (9 is closed in X.  

The orbit  (9 is isomorphic to a torus. Choose such an isomorphism f : 
(9 --+ GUm . Then the coordinate functions f l , . . . ,  fn are eigenvectors of T. 
Since (9 is closed in X,  we can extend f l , . . . ,  fn to regular functions on X,  
eigenvectors of T. They define an equivariant morphism F : X --+ A n which 
maps (9 isomorphically to GUm. Then we can take U = F-I(GUm). [] 

P r o p o s i t i o n  A6.  Let T be a torus acting on a variety X .  Let T'  C T be a 
subtorus, and iT, : X T' ~ X the inclusion of the fixed point set. Then the 
map 

** * T r 

*T' : H ~ ( X )  --+ H~r(X ) 

becomes an isomorphism after inverting finitely many characters of T which 
restrict nontrivially to T' .  

Proof. Observe tha t  the kernel and cokernel of i~, are both  modules over 
H~r(X - x T ' ) .  Thus, it is enough to prove tha t  H{r(X - X T') is killed by a 
product  of characters which restrict nontrivially to T' .  In other words, we 
may assume tha t  T '  fixes no point of X.  

Let U C X and (9 be as in Proposi t ion 4 above. Then H~(U) is a module 
over H~((9) and the lat ter  is killed by all characters which restrict trivially 
to the isotropy group F of (9. Since T'  fixes no point of O, we can find a 
character  X which restricts trivially to F but  not to T' .  Now the kernel and 
cokernel of the map H~r(X ) --+ H~r(U ) are modules over H~r(X - U), and 
we conclude by Noetherian induction. [] 
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