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Abstract. The model described in this article is a generalised three component 
hydraulic model, proposed to represent net whole body bioenergetic processes 
during human exercise and recovery. During exercise, fluid flows from the 
three interconnected vessels in the system represent the breakdown of high 
energy phosphates (phosphagens), oxygen consumption and lactic acid pro- 
duction. During recovery, replenishment of the fluids represents the repayment 
of oxygen debt. The model is quantified and solved mathematically, and the 
solution compared with observed experimental data. Since currently known 
physiological facts are consistent with four configurations of this model, 
further experimentation is necessary. 
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1. Introduction 

There appears to be only one published theoretical model of whole body human 
energy processes during muscular exercise. This is the three component hydraulic 
model proposed by Margaria (1976). The three components represented are 
oxygen consumption (V02), lactic acid (lactate) formation (glycolysis) and phos- 
phagen breakdown (alactic energy). Their contributions towards the net total 
energy expenditure above resting levels are modelled by flows of fluid between 
(and out of) the three vessels comprising the system. Some models, both empirical 
and theoretical, exist for oxygen consumption only; for example Henry (1951), 
Volkov (1966), and Morton (1985a). No model for lactic acid production has 
been proposed, though Freund and Gendry (1978) and Zouloumian and Freund 
(1981) have proposed, and solved, a model for lactate kinetics after cessation of 
exercise. Likewise there is no modelling ancestry for alactic energy. 

Unfortunately, Margaria's hydraulic model was not quantified, though 
sufficient information was available to do so. No mathematical solution was 

* Permanant  address: Mathematics and Statistics Department, Massey University, Palmerston North, 
New Zealand 



452 R. Hugh Morton 

offered therefore, though a suggested graphical solution (Margaria, 1976; Figs. 
1.27 and 1.28) was presented. A mathematical solution to Margaria's model has 
now been obtained (Morton, 1984a). This solution conforms neither to Margaria's 
graphical presentation, nor to what actually happens under experimental condi- 
tions. These discrepancies, and directions for further work are discussed in Morton 
(1985b, 1986). 

This paper presents the M-M (Margaria-Morton) model, a generalisation of 
Margaria's original. All but four of the sixteen forms of the generalised whole 
body model can be rejected on the basis of known physiological facts. These 
four are solved mathematically, and the solutions compared with some experi- 
mental data obtained from exercising subjects. Since a unique form of the M-M 
model is not yet indicated by physiological observations, further experimentation 
is necessary in the hope of identifying a unique model. 

2. The generalised M - M  model 

Figure 1 below gives a diagrammatical representation of the generalised three 
component whole body hydraulic model. 

Vessel O, of infinite capacity, representing the oxidative energy source, is 
connected to vessel P, representing the alactic energy source, through a tube R 1 . 

R 1 has a maximal flow Mo, known as the maximal oxygen uptake, frequently 
denoted ~202 max. Vessel P has an assumed height H = 1 arbitrary unit, a volume 
Vp and a cross-sectional area Ap arbitrary units. 

The height of the base of vessel O above the base of vessel P is denoted qS, 
and hence the constant height of fluid in vessel O above R1 is 1 - ~b. A tap T, at 
the base of vessel P regulates the net outflow W from the system, where W 
represents the measured energy expenditure, or workload. Vessel L, representing 
lactic acid, is connected at its base to P, by a one-way tube R2 at a height ,~ 
above the base of P. Vessel L has a finite fluid volume VL, and R2 has a maximal 

T I 
w 

Fig. 1. The generalised M-M model 
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flow ML. The top of vessel L, except for a very narrow extension tube B, is at a 
level 0 below the fluid level in vessel O. The fluid in B represents resting blood 
and tissue lactate, and does not contribute in measurable amount  to the net flows 
in the system. Vessel L therefore has a height of  1 - h - 0, and a cross-sectional 
area AL . 

The model operates as follows. Suppose tap T is opened to allow a net outflow 
W. This induces a drop, h, in the level of  fluid in vessel P. This in turn induces 
a flow from O to P through R1. This flow, representing a rise in net oxygen 
consumption, is in accordance with the ratio of  h to 1 - qS, equalling the maximum 
Mo when h equals (or exceeds) 1 -  ~b. I f  W is small, then h will reach an 
equilibrium position, no greater than 0. This corresponds to a steady state oxygen 
uptake. I f  T is closed at any time, the level in P will return to its resting level, 
by virtue of  a decreasing flow through R1. This flow ceases when h equals zero, 
and corresponds to the repayment  of  the alactic oxygen debt. 

I f  W is of  sufficient magnitude, greater than a threshold value Wo known as 
the anaerobic threshold, then after a while h will exceed 0, in which case a net 
flow from L to P is then also induced. This flow which represents the production 
of lactic acid by the working muscles is in accordance with the differences in 
levels between vessel L (an amount  I below the top), and vessel P, with the level 
in L dropping also but lagging behind the level in P. I f  T is closed, P will be 
refilled, initially from both O through R1 and from L through Rz. This continues 
only until the lag in levels between L and P has been eliminated. This represents 
partial repayment  of  the alactic oxygen debt by contracting an increased lactic 
oxygen debt, known as delayed or post-exercise lactate formation. Thereafter P 
refills by a decreasing flow through R 1 and L in turn refills by a flow through 
the one-way return tube R 3. The flow through R 3 is also in accordance 
with the difference in levels between P and L. The maximal flow through R3, 
MR, is very much smaller than ML or Mo. Ultimately both the lactic and alactic 
oxygen debts will be repaid. Once again, if W had not been too great, an 
equilibrium level with h <~ 1 - ~b and fOe <~ I?O2 max could have been achieved, 
by which time the early lactate flow through R2 would have ceased. I f  T is closed 
after equilibrium has been reached, there would be no delayed lactic acid 
formation and both P and L would be refilled immediately, though R~ and R 3 

respectively. 
If  W is of  even higher magnitude, demanding an energy expenditure in excess 

of  r/'O2 max, then after a further while h will exceed 1 -  th. In this event, 1?O2 
will remain constant at f o e  max and the flow through R2 will persist. Since L 
is of  limited capacity, it will later become empty, and so too will P. The subject 
would then have depleted his energy stores, and would no longer voluntarily be 
able to maintain exercise at this level. It is of  course recognised that the causes 
of  fatigue are not well understood, and that it may result from other causes, such 
as proton accumulation, neuromuscular junction breakdown, calcium depletion 
or an interaction of  these or other factors. However, the model structure would 
have to be extended and additional assumptions made in order to incorporate 
any such factors. In any event, the assumption of  depleted energy stores plays 
no part  in the mathematical  development to follow. It is therefore one of con- 
venience in the general description of the model operation. Once T is closed, 
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repayment of  the lactic and alactic oxygen debts will be similar to the delayed 
lactate production (provided L is not yet emptied) described above, except that 
initially r~O2 will be constant at f'O2 max until such time as h < 1 - qk 

Since, as will be seen below, there are several different configurations of the 
model, the above description of the operation of the model serves as a general 
guide only. In addition, for the purposes of the mathematical treatment of the 
model later in this paper, the volumes or capacities of  the three vessels of  
the system are all regarded as measured in energy or work units, while flows 
in the system are regarded as measured in units of power. The "fluid" is therefore 
not real, but it and its flow are regarded as analogous to work and power. However, 
since exercise physiologists frequently measure oxygen uptake in litres per minute 
for example, and glycogen stores in mM, etc., this latter measurement approach 
has been adopted in general. The two approaches differ only by the appropriate 
energy equivalent constant, for example 1 ml 02 is equivalent to about 5 cal or 
21 joules, and so on. These constants, see Margaria (1976) for details, are sub- 
sumed within the mathematical workings. 

3. Model configurations 

There are in fact sixteen configurations of the generalised M-M model, depending 
on whether ~b and /or  0 and /or  A are or are not zero; and whether A is greater 
than, equal to or less than ~b; and/or  0 is greater than, equal to or less than 1 -~b. 
Margaria's (1976) original is the particular case when A =0  and q~ = 0=�89 The 
sixteen configurations can be reduced to four, by eliminating those inconsistent 
with known physiological facts. 

Firstly, since it is very well known that light workloads, even up as high as 
180 watts for active physically fit persons, can be performed entirely aerobically 
and without the production of any lactate, all those configurations, six in number, 
in which 0 - -0  must be eliminated. That is to say in normal individuals the 
anaerobic threshold is at a greater than zero workload. Secondly, since the 
anaerobic threshold, or the onset of lactate production, has been determined to 
be at workloads clearly less than the maximal oxygen uptake (Davis et al. 1976; 
MacDougall 1978; Weltman et al. 1978; Weltman and Katch 1979; Reinhard 
et al. 1979; Miyashita et al. 1981) those cases where 0 ~  > 1-~b can also be 
eliminated. Margaria's original is one of these further four cases. There are very 
many people however who believe that net anaerobic energy production at levels 
of 1~'O2 below maximal does not truly exist in steady state conditions, (e.g. 
Cerretelli et al., 1979; Seeherman et al., 1981). That is, increments in blood lactate 
levels are only transients that disappear with sustained activity. This is of course 
consistent with the model configurations below and has been described in the 
previous section. It is detailed in Sect. 4.3 below. Thus if one were to define the 
anaerobic threshold as that workload beyond which increments in blood lactate 
levels ceased to be transient, then such an occurrence would indeed coincide 
with 1702 max. Even so, one would still have to define some model parameter 
(no longer called the anaerobic threshold), say O, the level at which the onset of 
transient lactate production began, and clearly 0 < 1 - 4 ,  as indicated. Thirdly, 
in specially contrived experimental conditions, a real asymptotic VO2 max can 
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�9 

Fig. 2. Configurations of  the M - M  model 

be achieved for very severe workloads, and oxygen consumption does not com- 
mence an immediate decline after cessation of exercise, (Katch 1973; di Prampero 
et al. 1973). This implies that h has exceeded 1 - ~b, that is ~b ~ 0, in which case 
a further two configurations can be rejected. This leaves four configurations, 
denoted A, B, C and D shown in the montage of Fig. 2 above. 

These configurations are characterised by different combinations of phases 
of operation, such as were described in the previous section. Apart from the 
obvious flow from P through T, and the asymptotic equilibrium conditions, I202 
may be in a transient phase tending to a steady state, or in a phase constant at 
1202 max; and lactate production may be in a phase depending on the difference 
between h and l+  0, or in a phase dependent only on /. Denoting these phases 
of activity by 1202 tran, 1202 max, Lad and Lat respectively, then the model 
configurations and phases can be collated in Table t below, in which an * denotes 
the presence of that phase in the appropriate model configuration. 

4. Mathematical solution 

Since the net flow through T above resting level at any time is made up of the 
sum of flows through R~, R2 and the drop in level of vessel P, the behaviour of 

Table 1. Phase characteristics of  the M - M  model configurations 

Model configuration 
Active energy Energy source description A B C D 

A 1 1202 tran * * * * 
A2 1202 tran & L a  d * * * * 

A3 1202 max & L a  d * * 

A4 f 'O 2 tran & L a  l * 

A5 1202 max & L a  t * * * 
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the system is governed by a single differential equation, an equation of net energy 
balance given by 

W =  1702- 1?v ~ 1?L (1) 

and it is this equation in a variety of forms which will be investigated. In 
physiological terms, the total measured workrate or power output is given simply 
by the sum of oxidative power, alactic power and glycolytic power, all measured 
above resting levels. 

4.1. Phase A1 

Consider the first phase of activity, common to all four configurations, and 
suppose that in response to a constant workrate W, the fluid in P has dropped 
to a level h < O, (refer Fig. 1). The form of Eq. (1) applicable in this phase is 
given by 

Mo dh 
W =  1_4) h+Ap--~. (21 

This is a simple first order linear differential equation having as its general solution 

h A p ( 1 -  4)) [~-~pp- exp[ - Mo ( t+  c ) ] ]  (3) 
Mo Av(1 - 4)) 

where c is an arbitrary constant, its value to be determined by the initial conditions. 
These are simply that h = 0 at t = 0. Thus the particular solution, starting from 
rest, is given by: 

h A p ( 1 - 4 ) ) [ 1 - e x p [  Mot l 
Mo Ae(--1-~--4))J] (4) 

from which using Eqs. (1), (2) and (3) 

vo~= w l-exp A~(I-4)).IJ 

[ Mo, l 
- 1?p = Wexp A p ( 1 -  4))J (6) 

both expressed in workrate units, and of course - 1?L is zero. 
Thus provided W ~  Wo = MOO~(1 - 4)), then for large t, an asymptotic steady 

state is reached, when h = W(1 - 4))/Mo and I,'02 = W, and exercise is completely 
aerobic. The alactic oxygen debt at equilibrium is given by an amount ApW(1 - 
4))/Mo, the empty volume in P above the steady state level of h. 

It is of interest to note that Eq. (5) is of identical form to the empirical model 
proposed by Henry (1951), and has been used by physiologists to model oxygen 
kinetics for light workloads for many years. Of interest also is the fact that the 
exponential rate constant Mo/Ap(1-4))  is independent of W, a subject of 
controversy among physiologists, (Whipp and Wasserman 1972). 
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4.2. Phase IR  

To consider the recovery phase initiated during phase A1, denoted 1R, suppose 
that at some time t*, when h=h*<~O, and 1702= V*<~ Wo, tap T is closed 
corresponding to the end of exercise and commencement of recovery. Equations 
(2) and (3) still apply, but with W changed to zero and initial conditions h = h* 
at t--- t*. We can then obtain: 

[ Mo(!-,_*)] 
h = h* exp Ap(1 - qb) J 

1?O2 = V* exp[ M ~  
Ap(1 - qb) d 

[ - ('re = Moh* exp A - - - ~ t b  ) j 
1-4,  

(7) 

where M o h * / ( 1 -  ok)= V*. 
Again it is of interest to note that Eq. (7) is of identical form to the 1702 

recovery curve in common use by physiologists for the repayment of oxygen debt 
(Henry 1951; Leger et al. 1980). The rate constant is independent of W, and is 
the same value as during exercise, as has been observed experimentally (Henry 
and de Moor, 1956). 

4.3. Phase A 2  

Suppose however that tap T had been opened wider at the start, to some constant 
W >  fro- During phase A1, Eqs. (2)-(6) will still apply, but only up until some 
time tl, when h = ha = 0, and which marks the end of phase A1. This time can 
be obtained as the solution for t in Eq. (4) when h = 0, viz. 

Ap(1 -  ~b) ln[1 MoO ] 
tl----- m 0 W-~ -~-q~ ) ] 

which is only defined for W >  MOO~(1- O)= Wo. 
Thus consider phase A2, and suppose that fluid in P has dropped to a level 

0 < h < 1 - ~b, and that as a result of the induced flow through R2, fluid in vessel 
L has dropped to a level 0 < l < h - 0, (refer Fig. 1). The form of Eq. (1) applicable 
during phase A2 is given by 

W =  Mo dh dl 
h + Av-ff~+ AL-~t . 

1 -  4~ 
(8) 

Since the flow through R2 is in accordance with the differences in levels between 
vessels P and L, we have 

dl h - l -  0 
A c - ~  = ML 1 - 0 - Z 
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i.e. 

and 

AL(1-- 0--A) dl 
h - - - + l + O  

ML dt 

dh AL(1 - -O- -A)  d21 dl 

d t -  ML dt 2 ~ dt" 

Now substituting Eq. (9) and (10) into Eq. (8) and simplifying, yields 

d 21 MoAL(1 - 0 - A ) + ML(Ap + AL) ( 1 -- ~b) dl M o M L  
F - - +  

dt 2 A j , A L ( 1 - c ~ ) ( 1 - O - A )  dt A p A L ( 1 - q ~ ) ( 1 - O - A )  l 

ML( W(1 - qS) - MoO) 

A p A L ( 1 -  go ) ( 1 -  O - A ) " 

(9) 

(10) 

This second-order differential equation with constant coefficients is of  form: 

d21 dl 
dt 2 t- a - ~ +  bl = c 

where a, b and c are constants and can be solved for I utilising the following details. 
(i) Auxilliary equation: r2+ ar+ b = 0 which has two negative roots r~ and 

r2 obtainable by solution with coefficients a and b from Eq. (11). 
(ii) Complementary function lc = Cl erl '+ c2 e r2t where c~ and c2 are arbitrary 

constants. 
(iii) Particular integral: lp = c / b  with coefficients c and b from Eq. (11). 
(iv) The general solution is given by 

l = c~ eqt+ c2 er2'+ c/b.  (12) 

(v) Constants Ca and cz can be obtained making use of the boundary condi- 
tions, that: at t = ta 

1 dl =5=0 
by utilising Eq. (12) and its derivative at t = h- 

Having now obtained the phase A2 applicable version of Eq. (12), it together 
with its derivative can be substituted into Eq. (9) to obtain the phase A2 applicable 
version of  Eq. (9). This is of the form: 

h = k~ er~t+k2 e r 2 ' + c / b + O  (13) 

where kl and k2 are constants. 
By considering Eqs. (12) and (13) as t~oo,  but provided W ~ M o  or ~< 

Mo(1  - A ) / ( 1  -4>) then an aerobic steady state is possible during phase A2, with 
h and l tending to asymptotic levels in configuration A, differing only by an 
amount 0. It is relevant to note however that after h but prior to the attainment 
of the steady state, there occurs a partially anaerobic period of exercise. This is 
the early or transient lactate production discussed by Cerretelli et al. (1979) and 
mentioned earlier. A second exponential component of 1202, originally derived 
empirically by Henry and de Moor (1956), has been attributed by Whipp and 
Wasserman (1972) to this early lactate production. 

(11) 
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Lastly, using Eqs. (8), (12), (13) and its derivative, we can obtain equations 
for 1702, - 1?x, and - 1?L, the three energy components of the exercise. 

4.4. Phase 2RI  

Suppose that exercise was to cease at a time t* prior to the attainment of  a steady 
state during phase A2, when 0 < h = h*<~ 1 - 05, (or h * ~  < 1 - A  for configuration 
A), 1702 = V* and 0 < l = I*<  1 -  0 - i t ,  then Eqs. (8)-(11) would still hold, but 
with W =  0. So also would Eq. (12), but with W =  0 also and different values 

t r of c, c~ and e2; say c ,  c~ and c2 i.e. 

1 = e~ eqt+ c~ er2t+ e ' /b  (14) 

The constants c~ and c~ can be determined from the boundary conditions that 
at t = t*, l =  l* and d l /d t  from Eq. (12) equals d l /d t  from (14). Equation (14) 
together with its derivative can be substituted into (9) to obtain the equation for 
h, which is of  the form: 

h = k~ erlt+ k'2 er2t+ c ' /b  + 0 (15) 

Once again, using (8) with W =  0, (14), and (15) and its derivative, equations 
for the three energy components during recovery phase 2R1 can be obtained. 

During this phase, the delayed lactic acid formation occurs, (di Prampero et 
aI., 1979). Phase 2R1 is of  fairly short duration, ending when the levels in P and 
L equate, i.e. at a time when h = l+  0. Recovery from this time point on, is 
equivalent to the situation which would have arisen if phase A2 had continued 
to a steady state before exercise ceased. Let us therefore consider this stage of 
recovery. 

4.5. Phase 2 R 2  

This phase is characterised by both d h / d t  and d l /d t  being negative, that is P 
and L are being refilled from O. In the typical situation 0 <  l <  1 - 0 - i t  and 
h < l+  0, and the level in L lags behind the level in P (this time both rising). 
Equation (8), with W = 0 once again applies, but a flow through R3 must now 
be considered. This flow is determined by the difference in levels between P and 
L. i.e. 

and 

dl l + O - h  
AL--s 1--------~ 

AL(1-- A) dl 
.'. h - - + l + O  (16) 

MR dt 

dh A L ( 1 - A )  d21 dl 
) (17) 

dt - MR dt 2 dt " 

Equations (16) and (17) can now be substituted into (8) (with W = 0 ) ,  which 
yields another second order differential equation of the same form as (11), which 
therefore has another biexponential solution of the same form as (12). The general 
procedure for solution is therefore analogous to Sects. 4.3 and 4.4. 
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Phase 2R2, because of the very small magnitude of MR, continues for an 
extended period of time, until ! = 0. However, the behaviour of h is dominated 
by the faster of the two exponential terms, and tends fairly quickly to a very 
small positive value almost indistinguishable from zero. Once L has been refilled, 
a final phase 2R3 occurs when h actually does drop to zero, (that is, the resting 
level). The characteristics of this phase are analogous to phase 1R. 

4.6. Digression 

The above described phases, both active and recovery, are all applicable to the 
four configurations of the M-M model shown in Fig. 2. However it has been 
noted above, and in Morton (1985b), that experimental observations on 1202 of 
exercising athletes have been unable to distinguish between configurations A, B, 
C, and D. In general this is because exhaustion or fatigue has led to early 
termination of the exercise periods of high workload necessary to distinguish 
these configurations. For this, and for parsimonious reasons, the remainder of 
this section will consider only the differential equations for the various active 
and recovery phases of the four configurations, without rigorous solution and 
with minimal comment. Whenever the necessary information becomes available, 
mathematically inclined physiologists can return here, extract the appropriate 
equations and solve them. The notation tacitly adopted above will be retained. 
That is, the remaining active phases of Table 1 are denoted A3, A4 and A5 
respectively, and the recovery phases commencing at the end of one of these 
three active phases are denoted 3R1, 3R2, etc., 4R1, 4R2, etc. and 5R1, 51t2, etc. 
respectively. Relative positions of h and l can be deduced by referring to Figs. 
1 or 2 as necessary. 

4. 7. Remaining phases 

Consider firstly the third active phase, applicable to configurations C and D 
only, followed by a recovery. The following differential equations apply: 

During A3: 

dh dl 
W = Mo + Ap-~+ AL-~ 

dl h - l -  0 
AL-~t= ML-~-~ = A 

which leads to a solution of the form a e -kt + 3t + y 

During 3R1: 

dh dl 
O= Mo + Ae-~-[+ AL-~ 

dl h - I -  0 
AL-~= ML"~_ O _ A 

(18) 
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which is a short lived phase of delayed lactic acid formation, and leads to a 
solution of  the same form as (18). 

During 3R2: 

dh dl 
0 = Mo+Ap-d~+AL-~t 

dl 1+ 0 - h 
AL-~ =-MR 1----------~ 

another phase of short duration during which (as in 3R1) I)'O2 = Mo, and which 
has a solution also of the form of (18). 

During 3R3: 

0=  Mo h+ dh dl 
1 - &  Ap-~+ AL-~ 

dl l+O-h  
AL-dt= -MR 1 - A  

which is a phase of long duration, analogous to 2R2, with a similar biexponential 
solution. 

During 3R4: 

Mo dh 
O=~_~ h+ae-~-~ 

which leads to a single exponential as in 1R. 

Note. I have assumed above that 3R1 ends when h=l+O>l-c~.  It is of 
course possible that h = / + 0 = l - & ,  in which 3R2 does not occur. It is also 
possible that h = l+  0 < 1 - ~b in which case 3R1 ends when h = 1 - th. Phase 3R1 
is then a second phase of delayed lactic acid formation analogous to 2R1, ending 
when h = l+  0, then passing to 3R3. 

Next consider the fourth active phase, A4, applicable only to configuration 
A, followed by recovery. The following differential equations apply: 
During A4: 

Mo dh dl 
W= l-q5 h + AP dt + AL --  (19) 

dl 1 - O - A - I  
AL-~=ML 1--0--A (20) 

which pair of equations represent a different structure from previous cases, 
requiring (20) to be solved first, then substituting into (19) to give an equation 
of form 

dh 
- ah + 8  e -k '+  3' (21) 

dt 
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which solved for h gives an equation of form 

(at + b) e -~' + d (22) 

from which, provided W<~ Mo,  it can be shown that h tends to an asymptotic 
steady state as t ~ oo. 

During 4Rl: Eq. (19) with W=0, and (20) apply, and this phase has similar 
solution to (22). It is a phase of delayed lactic acid formation, ending with 
h = l - A .  

During 4R2: 

M o  dh dl 
O = ~ _  ~ h + A p - ~  + AL -~t t 

dl h - l -  O 
A L ~  = -  ME 1 - 0 - h 

which is a second phase of delayed lactic acid production, a hiexponential for l 
analogous to (14) in 2R1, ending when h = l +  0. 

During 4R3: 

Mo h + A p ~ +  dl 
0=l_~b  A L -dt 

dl I+ O -  h 
A L -dt = - M R 1---------~ 

which yields another biexponential solution, analogous to 2R2, a phase of long 
duration. 

During 4R4: 

0 = M o  h + dh 
1 -  ~ a p - ~  

a single exponential decline in h as in 3R4, 2R3 and 1R. 

Lastly, consider the fifth active phase, A5, and recovery, applicable to configur- 
ations A, B and C. The following equations apply: 

During A5: 

dh dl 
W = Mo + Ap-~+ A L ~  t (23) 

dl 1 -  0 - ) ,  - l  
AL-dt=ML 1 - 0 - A  (24) 

which pair represent yet another structure. The solution for I in (24), differentiated- 
and substituted in (23) yields an equation which can be integrated directly for h. 

During 5Rl: Eqs. (23) with W=0,  (24) apply,.and the solution is obtained as 
in A5. This is a phase of delayed lactic acid formation, terminating when h = 1 - ~b 
in configurations A and B, but when h = 1 - A in configuration C. 
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During 5R2, etc: For configuration A, analogous stages to 4R1 to 4R4 apply. For 
configuration B, analogous stages to 2R1 to 2R3 apply. For configuration C, 
analogous stages to 3R1 to 3R4 apply (with the proviso mentioned therein). 

5. Experimental verification 

As evidence of verification to parts of the M-M model, consider firstly the 
following 1702 time series, fully described in Morton (1984b, 1985a). The subject 
exercised at a light workload (133 watts) for 5 rain, followed by 3 rain of  recovery. 
Figure 3 shows this data, plotted breath by breath for the first 150 s of  phases 
A1 and 1R; otherwise every third breath is plotted. 

Jointly fitted curves using the B M D P  package (Dixon, 1983) to the active 
and recovery phases are respectively: 

VO2 = 0.527 + 1.559 (1 - e -~176 I/min 

and 
1-559e -~176 + 0.527 I/min 

and are plotted in Fig. 3 also. Coefficients of determination for the phases are 
respectively R 2 = 0.867 and R 2 = 0.893. These values may appear somewhat low, 
but note that breath by breath variability is relatively large, and there may also 
be a cyclic departure from regression (Morton, 1985a). The exponential time 
constants for the active and recovery phases do not differ significantly at the 5% 
level. 

Consider secondly the same subject, exercising similarly at a severe workload 
(300 watts). The t)'O2 time series plot is shown in Fig. 4. 

The anaerobic threshold for this subject is estimated to be at a 1202 of 
2.835 l/rain (2.4301/min above the resting level). Active phase fitted curves for 
1702 in l /min are as follows: 

AI: 0 .405+3.329(1-e  -~176 for 0 <  t<~59.3 s 

A2: 4.213 - - 0 . 1 0 5 e  -0"366(t-59"3) 

- -  1 . 2 7 e  -~176176  for 59.3 ~< t < 300 s. 
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For these two phases the R 2 values were respectively 0.849 and 0.877. Fitting 
recovery curves is not quite so simple since the "break point"  is not clearly 
defined, though it can be deduced from Fig. 1 that it must occur at some I;'O2 
in excess of  2.835 1/min. A brute force approach such as that of  Orr et al. (1982) 
has been adopted and the following curves obtained: 

2Rl:  -7 .160+0.241 e-~176176 e -0'00546(t-300) 

with a phase duration of 10.9 s, and 

2R2: 0.437+2.491 e-~176176 e -0"~176 

That is to say, the phase duration is determined so as to minimise the total sum 
of squared residuals over both line segments. The two line segments were fitted 
using the BMDP package, (Dixon 1983). Coefficients of  determination were 
respectively 0.738 and 0.866. In phase 2R2 the second exponential term was only 
just significant at the 10% level, but the coefficients are of  comparable magnitudes 
to their counterparts in Morton (1984a), which were derived from previously 
published values of  the appropriate physiological constants. 

It should be noted that these data were not collected for the purpose of 
elucidating this model, and the above evidence should therefore be interpreted 
accordingly. Furthermore these curves lend support  only to one of  the three 
bioenergetic components.  Measurements equally in agreement with the theory 
would be needed on at least one of the other two components before the whole 
model could be confirmed. 

The most  useful such confirmatory experimental data would be some measure 
of  the rate of  lactic acid production by the working muscles. Lactic acid concentra- 
tions in the blood are routinely taken both during exercise and recovery, and 
from these, inferences on production are made. However, since the blood is 
neither the location of lactic acid production nor the location of  any significant 
removal, such inferences must be regarded as hazardous. Needle biopsy tech- 
niques are available to obtain muscle lactate concentrations, from which lactate 
production can be calculated but these cannot realistically be performed on the 
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working muscles say every 10 or 20 s during the exercise itself. Until this measure- 
ment problem is solved, or until measurements on phosphagen breakdown become 
available, neither the unambiguous configuration nor the complete acceptance 
of the M - M  model can be certain. 

6. Comment and further development 

It has been pointed out (referee communication) that the model is not biologically 
realistic in the sense that there do not exist separate aerobic and anaerobic fuel 
stores, at least as far as carbohydrate is concerned, (fat is only accessible aerobi- 
cally). Perhaps therefore this should be modelled by a single compartment  with 
two taps, one representing aerobic access via oxygen consumption, and the other 
anaerobic access via lactate production. On the face of  it, this would seem 
appropriate,  but the quantitative exploitation of  such a change requires the very 
important assumption as to the operation of  some governing mechanism which 
determines the balance of flows between the two taps. This is no simple matter, 
and for the present this paper  chooses to exploit the properties of  the general 
three compar tment  model to the full, before turning to such an alteration, which 
would of  course represent progress of  the sort I allude to below. 

Nevertheless those two further developments of  the M - M  model, unam- 
biguous configuration and acceptance by physiologists, must now become the 
focus of  some research effort. In particular some method must be devised for 
continuously monitoring the production of lactic acid by the working muscles. 
Exercise physiologists are best suited to these methodological developments. On 
the other hand, a theoretical modelling and simulation approach may provide 
an alternate avenue out of  those difficulties. Since the rigorous exploitation of 
conceptual models,  at least in exercise physiology, lags behind detailed experi- 
mentally derived knowledge, there will undoubtedly occur future developments 
which render the M - M  model obsolete, or at least inapplicable except in rather 
general circumstances. This is progress. This is not to say however, that models 
such as the one presented here, although not leading or suggesting new directions 
nor novel experiments, perform no useful role. Such a useful role for example 
lies in the teaching field and as a learning aid. Indeed, stochastically treated 
microcomputer  simulations of  certain configurations of  this model produce "data"  
realistic enough for students to analyse as part  of  their assignment work in a 
course in human exercise physiology. 
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