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A topological duality for some lattice ordered algebraic structures 
including f-groups 

NI~STOR G.  MART[NEZ* 

Dedicated to my wife Eugenia 

Abstract. A topological duality is developed for a wide class of lattice ordered algebraic structures by 
introducing in an ordered Stone space a natural binary and continuous function. In particular, duality 
theorems are obtained for g-groups and for abelian g-groups. 

Introduction 

Having in mind the well known topological representation of M. H. Stone for 
distributive lattices [9] and the duality theory of H. Priestley [7], [8], we develop a 
topological duality for the wide class of lattice ordered algebraic structures given by 
implicative lattices (Definition 1.1). Examples of implicative lattices are provided by 
structures coming from algebra, such as lattice ordered groups, and by structures 
coming from logic, such as Boolean algebras and Wajsberg algebras (in fact, this 
research can be viewed as an extension of the author's previous work [5]). Using as 
a basis our duality for implicative lattices we characterize f-groups as implicative 
lattices with a distinguished element and obtain duality theorems both for f-groups 
and for abelian f-groups. 

An important consequence of our results is that the algebraic structiare can be 
restored from the lattice spectrum endowed with a natural binary and continuous 
function. 

In w we introduce implicative lattices and give some examples to show the scope 
of our duality theory. 
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The main result of  w is the Representation Theorem (Theorem 2.6) which states 
that each implicative lattice is isomorphic to an implicative lattice of sets. 

To develop our duality we need for technical reasons a slight variant of the 
Stone duality for distributive lattices as presented in [1]; following ideas of  H. 
Priestley we consider in w ordered Stone spaces with endpoints (Definition 3.3) and 
obtain an appropriate duality theory for both distributive lattices and bounded 
distributive lattices based on these spaces. 

In w (Definition 4.1) we introduce the dual spaces of  implicative lattices; they 
are ordered Stone spaces with a binary continuous function satisfying certain 
algebraic and topological conditions. The main result of this section is Theorem 4.8, 
the duality theorem for implicative lattices. 

Finally in w we establish the topological dualities both for E-groups (Theorem 
5.11) and for abelian E-groups (Theorem 5.15). The dual space in the abelian case 
is especially nice: it happens to be a compact ordered abelian topological semi- 
group. 

1. Implicative lattices. Definition and examples 

DEF INI TI ON 1.1. A --- (A, v ,  A, -*)  is an implicative lattice iff <A, v ,  A ) 
is a distributive lattice and -* is a binary operation (called the implication of  A) 
satisfying the following equations: 

/L(1) x -*(y ^ y ' ) = ( x - * y )  ^ ( x  ~ y ' )  

IL(2) (x v x ')  -*y = (x -*y) A (x'  -*y) 

IL(3) x - * ( y v y ' ) = ( x ~ y )  v ( x ~ y ' )  

IL(4) (x/x x ')  ~ y  = (x -*y) v (x'  -*y). 

EXAMPLE 1.2. Let B = (B, v ,  ^ ,  -7, 0, 1> be a Boolean algebra and con- 
sider the usual implication x -*y = -7x v y. Then (B, v ,  A, -* ) is an implicative 
lattice. 

EXAMPLE 1.3. We'll say (as in [6]) that <A, v ,  A , - 7 )  is a De Morgan 
algebra iff (A, v ,  ^ > is a distributive lattice (not necessarily bounded) and 
7 is an unary operation satisfying --7(-7x) = x  and --7(x v y )  = --7x ^ --7y. Let 
A = (A, v ,  ^ ,  7 )  be a De Morgan algebra and define again x - * y  = -Tx vy .  tt  
follows at once that <A, v ,  ^ ,  -*> is an implicative lattice. 
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E X A M P L E  1.4. Recall that  G = (G,  v ,  A , . , - l ,  e )  is a lattice ordered group 
( ( -g roup  for short) iff (G, v ,  A ) is a lattice, (G, ', - l ,  e )  is a group and for each 

a , b , c � 9  c ( a v b ) = c a v c b ;  ( a v b ) c = a c v b c ;  c ( a A b ) = c a A c b ;  (aAb)c=-  
ac A be. 

Let 's define x ~ y  = x - l y ;  it is well known ([4], p. 67) that  the lattice o f  an 
Y-group is distributive and that  for each a, b ~ G, (a A b) -1 = a -1 v b - l ;  f rom this 

it can be readily shown that  (G, v ,  A ,  ~ )  is an implicative lattice. 

E X A M P L E  1.5. This example follows a suggestion o f  the referee. 

Let A = (A,  v ,  A ) be a distributive lattice and let End(A) be the set o f  the 

lattice endomorphisms of  A. End(A) is a partial lattice under  the operat ions o f  

pointwise join and meet. 

N o w  let's consider the lattice A ~- = ~A, v ' ,  A ' )  where v '  = A and A' = v .  It  

is not  difficult to check that  each lattice hom omorph i sm  q~ f rom A f to a sublattice 

o f  End(A)  yields an implication on A defined by x ~ y  = 4(x)(y). This happens to 

be the way all implications on A arise: if (A, v ,  A ,  ~ )  is an implicative lattice, 

then -~ is a lattice endomorphism in its second variable for each fixed choice o f  the 

first variable. For  each fixed second variable ~ is join and meet inverting in its first 

variable. It  follows that  { h x : A ~ A  such that  x e A  and h x ( y ) = x ~ y }  is a 

sublattice o f  End(A)  and ---> determines a lattice h o m o m o r p h i s m  f rom A ~ to this 

sublattice given by x--+ h~. 

2. Representation by sets 

Recall that  a non  empty subset I o f  a lattice L = (L,  v ,  A ) is a lattice ideal iff 

x <- y, y e I imply x e I and x, y s I implies x v y e I. I is called a prime lattice ideal 
if I N L and satisfies the addit ional condit ion x A y �9 I implies x e I or  y e I. A non 

empty subset F o f L  is a lattice filter i f fx  < y, x �9 F i m p l y  y �9 F a n d  x, y �9 F impl ies  

x A y �9 F. F is a prime lattice filter iff F ~ L and satisfies the additional condit ion 

x v y  � 9  implies x �9 F or y �9 F. 

I f  A is a distributive lattice, let's denote S(A) = {P ~_ A: P is a prime lattice filter 

o f  A} and }(A) = S(A) w { ~ , A } .  

P R O P O S I T I O N  2.1. Let A = (A,  v ,  ^ ,  ~ )  be an implicative lattice. One can 
define in S(A) a binary function �9 : S(A) x ~(A) ~ S(A) by the stipulation 

~ ( P , Q ) =  U { Y : X ' - * Y e Q }  (*) 
x ~ P  
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Proof If ~ ( P , Q ) = ~ ,  q ~ ( P , Q ) ~ ( A ) ;  then we may suppose that 
cb(p, Q) ~ ~ .  Note that in this case P va ~ and Q ~ ~ .  Let y, y '  e A be such that 
y - - -y '  and y ~ 4~(P, Q). Then there is x e P  such that x ~ y  e Q. From IL(1) of  
Definition 1.1, y < y '  implies x ~ y - <  x--*y' .  Since Q is a filter, x ~ y ' ~  Q and 
since x ~ P, y '  ~ ~(P, Q). 

If  y, y '  e q~(P, Q) let x, x" e P such that x ~ y  e Q and x" ~ y "  ~ Q. From IL(2) 
of  Definition 1.1, x-- ,  y <- (x ,', x ')  ~ y and x'---, y" <- (x /x x ')  --* y' .  Since Q is a 
filter, ( ( x ^ x ' ) ~ y ) A ( ( x ^ x ' ) ~ y ' ) ~ Q .  From IL(I)  of  Definition 1.1, 
(x/x x ' )  ~ (y  ^ y ' )  e Q, As P is a filter, x A x '  e P, so we have y /x  y '  e ~(P, Q). 
Then, using only IL(1) and IL(2) of  Definition 1.1, we have proved that q~(P, Q) is 
a lattice filter. Let now y, y '  be such that y v y '  e ~(P, Q). Then there is x e P such 
that x ~ ( y  v y ' )  e Q. From IL(3) of  Definition 1.1 we have (x ~ y )  v (x ~ y ' )  e Q. 
As Q = A or Q is a prime lattice filter, it follows that x ~ y  ~ Q or x ~ y '  e Q. Then 
y e ~(P, Q) or y '  e ~b(P, Q). [] 

OBSERVATION 2.2. From ( . )  it follows that for all P ~ S(A), 4~($2~, P) = 
�9 (P, ~ ) =  ~ and, if P ~ ~ ,  ~(P, A ) =  A. Also, q~ is order preserving in each 
variable with respect to the set-theoretical inclusion. 

OBSERVATION 2.3. q~ can not be defined in S(A), as the following examples 
show: 

Let 2 = {0, 1} with the order 0 < 1 and define for all x, y, x --*y = 0. Then 2 
becomes an implicative lattice. Note that {1} ~ S(2) but ~( {1}, {1} ) = ~ .  

Again in 2, now with the implication x ~ y = 1 for all x, y, 2 is an implicative 
lattice and ~( {1}, {1} )=  2. 

The following lemma will have a key role in the sequel. 

LEMMA 2.4. Let A = (A, v ,  ^ ,  ~ >  be an implicative lattice. Let P ~ ~(A) 
and a ~ A; let's define P~ = {x ~ A : x ~ a  r P}. Then (i) P~ ~ ~(A); (ii) Pa is the 
greatest Q (with respect to c_) such that a q~ q~(Q, P); (iii) I f  a, a" ~ A, then either 
P ~ _ P d  or Pd~_P~. 

Proof. If  x E P , ,  x ~ a ~ P .  Let x'>_x; from IL(2) of  Definition 1.1, 
x ' - ~ a < - x ~ a ,  then x ' - ~ a ~ P .  If  x , x ' ~ P a ,  x - - * a ~ P  and x ' - - , a ~ P ;  as 
P ~ S(A), (x ~ a )  v ( x ' ~ a )  (s P. From IL(4) of Definition 1.1, (x/x x ' )  ~ a  r P. If  
x v x '  e Pa, again from IL(2), (x --* a) /x (x'  ~ a) r P. As P is a filter, x ~ a r P or 
x '  ~ a r P. Then x ~ P~ or x '  ~ P, .  This proves (i). 

I f  a ~ 4~(P~, P), there is x ~ Pa such that x ~ a ~ P, which is a contradiction. 
1 * Then a r (b(Pa, P). NOW et Q ~ S(A) be such that a r ~(Q, P). For  all x e Q, 

x ~ a C P .  Then Q ~ P ~ .  
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To prove (iii) let a, a '  ~ A and consider P~ ~ ~,) = {x : x -o(a v a') 6 P}. From 
IL(3) of Definition 1.1, P(~ ~ d)=-P~ and P(~ ~d)-= Pa'. Now suppose there exist 
b ~ P~ \P~, and b' e P,, \P~. Then b --* a r P and b' -o a '  ~ P. From the properties of 
-o, ( b v b ' ) ~ a r  and ( b v b ' ) - - * a ' 6 P ,  and we obtain ( b v b ' ) r  Then 
(b v b') ~ P(~ ~ ~,). 

Since P(~ ~ d) ~ ~(A), then either b e P(~ ,, ~9 or b' ~ P(~ ,i ~.)- Both cases lead to 
contradiction, because b $ P~, and b" r P~. [] 

THEOREM 2.5. Let A = (A, v ,  ^ ,  ~ )  be an implicative lattice and 4) the 
binary .function (*) of Proposition 2.1. For each P ~ ( A )  let the function 
4)v : ~ ( A ) - ~ ( A )  be defined by 4)e(Q)-'-4)(P, Q). For each a ~ A let's denote 
o(a) = {P e ~(A): a ~ e}. Then 

(1) a(a ~ b )  can be obtained from ~(a), r and 4) by the formula 

G(a-ob)= (-] 4)F~[o(b)l (**) 
P ~ o'(a) 

(2) a(a ~ b )  is the greatest subset W c_ S(A) such that a(a) x W c 4)-l[a(b)]. 

Proof Let Q ~ a(a -~ b) and P ~ a(a). Then a -~ b ~ Q and a ~ P; from this we 
get b ~ 4)(P, Q); therefore, b ~ 4)F(Q) and Q ~ 4)Fl[a(b)]. For the opposite inclusion 
choose Q~4)el[a(b)] and assume for the moment that a - ~ b C Q .  Then 
a ~ Qb = {x : x ~ b  ~ Q}. From Lemma 2.4 (i) above we have Qb G ~7(a). Now, by 
the choice of Q we have Q ~ 4)~l[a(b)], which means that 4)(Qb, Q) ~ a(b). But this 
contradicts Lemma 2.4 (ii). 

To prove (2) note that from the above discussion a(a) x a(a ~ b )  c_ 4)-lid(b)] 
and suppose W ~ a ( a ~ b ) .  Then, there is Q ~ W  such that a ~ b C Q .  As 
(Qb, Q) ~ o(a) • W, b ~ 4)(Qb, Q), a contradiction. [] 

THEOREM 2.6: Representation Theorem 
Let A-= (A, v ,  A, ~ )  be an implicative lattice and consider the family of  sets 

~ (~(A))= {o(a): a E A} equipped with set-theoretical union and intersection and 
with the implication ~r(a) =~ o(b) = 0e  ~ ~(a) 4)~ l[g(b)]. 

Then ( ~  (~(A)), u ,  n ,  =~) is an implicative lattice and the map a ~-~ ,(a) is an 
isomorphism of implicative lattices. 

Proof As cr(a) w a(b) = o-(a v b) and 0-(a) n a(b) = a(a A b), ( ~  (~(A)), u ,  c~ ) 
is a distributive lattice. 

If  a # a '  we may suppose, for example, that a 4: a' .  From the Prime Filter 
Theorem, there is a prime lattice filter P such that a e P and a ' r  P. Then 
a(a) 4: a(a'). 
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We have that (A, v ,  ^ ) and ( ~  (g(A)), w, c~ ) are isomorphic as distributive 
lattices. But from Theorem 2.5 it also holds that a(a--*b) = a ( a ) ~  a(b); then 
( ~  (~(A)), w, c~, ~ ) is an implicative lattice isomorphic to A. [] 

3. A topological duality for distributive lattices 

Recall that a duality (or a coequivalence) between two categories ~r and ~) is a 
contravariant  function ~ : d - - *  N satisfying: 

(i) For  each object B of ~ there is an object A of  sJ  such that F(A) and B are 
isomorphic. 

(ii) For  each pair of  objects A , B  of  ~r the function from [A,B L, to 
[F(B), F(A)]~ induced by F is one-one and onto. 

In order to obtain a topological duality for implicative lattices we will first 
develop an appropriated version of the well known Stone duality for distributive 
lattices as presented in [1]. 

D E F I N I T I O N  3.1. Recall f rom [1] that a Stone space is a topological space X 
satisfying: 

(a) X is To space (i.e., for any two distinct points of  X there is an open set 
containing one and not the other). 

(b) The family of  compact  and open subsets of  X is a basis for X and a 
distributive lattice under set-theoretical union and intersection. 

(c) I f  (Us)s~s and (Vt)t~ r are non empty families of  non empty compact  open 
sets and 0s ~ s Us - 0t ~ r V,  then there exist finite subsets S '  ~ S, T '  ~_ T 

such that (-Is ~ s" Us --- [.Jr ~ r" Vt. 

With each distributive lattice L one can associate a Stone space S(L) whose 
points are the prime filters of  L (in [1], the prime ideals of  L) with the topology 

determinated by the basis {~}  u {4: a e L}, where ~ is the set of  prime lattice filters 
containing a (in [1], the set of  prime lattice ideals not containing a). 

I f  X is a Stone space, X can be endowed with the following partial order: x < y 
iff x e Cl({y})i We shall say that (X, z, < ) is an ordered Stone space if (X, z )  is a 
Stone space and < is defined in this way. For  S(L) this order coincides with the 
natural one: P _< Q iff P ___ Q. 

Note  that Theorem 2.4 enables one to express a(a --* b) in terms of  a(a) and a(b) 
together with the binary function 4. Thus, we want to define our representation 
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space as a space endowed with a binary function. From Observation 2.3 we have 

that the function �9 of Proposition 2.1 need not be defined at every point of the 
Stone space S(L) of  a lattice L. Thus, we will topologize ~(L). 

PROPOSITION 3.2. Let L be a distributive lattice. Then 

(i) The family {a(a): a E L} u {G~, S(L)} is a basis o f  a topology ~ for S(L). 
(ii) The compact and open subsets of  (S(L),  * ~) are exactly the members of  

{~ ,  ~(L)} u {o-(a): a ~ L}. 
@ * 

(iii) S(L) = ( S(L), ~, G, f~, L ~ is an ordered Stone space such that (2~ ~- P ~- L 

for all P ~ S(L). 

Proof. (i) follows from the fact that {~ ,  ~(L)} u {o-(a): a ~ L} is a lattice with 

respect to union and intersection. 
For (ii), let U be a compact and open subset such that U # G; and U # ~(L). As 

U is open, U is obtained as a union of members of { ~ ,  ~(L)} u {a(a): a ~ L}; since 

U # ~ and U r X, U can be written as U = Us ~ s o'(G) with S # ~ .  
From the compactness of U, it follows that U = U~ ~ s. o-(G) for a suitable finite 

subset S '  of  S; then U = a(V~s ,  G). 
In order to prove that the members of {G;, ~(L)}u{r  a ~ L} are compact 

and open subsets we need to prove the following statement: 
(x): If  L is a distributive lattice and S, T are non empty subsets of L such that 

N~ ~ s o-(a) ~_ Nb ~ T r there exist finite subsets S'  _ S, T' __G_ T such that 

N o(a)~ U ~(b). 
a ~ S "  b E T  ~ 

The proof  parallels [ 1, p. 72] but we include it for the sake of completeness. 
Let [S) and (T] respectively be the lattice filter generated by S and the lattice 

ideal generated by T. If [S) n (T] = ~ ,  by the Prime Filter Theorem there exists a 

prime lattice filter P such that [S) ~ P and P n T = G~. Since S _~ P and P n T = G~, 
P ~ na~ s a(a)\  Ub~ v a(b), which leads to a contradiction. Hence [ S ) n ( T ]  r ~ .  

Let c E [S) n (T] and let S '  ___ S, T' __c_ T be finite subsets of S and T such that 

/~ S ' <  c < V T'. By Theorem 2.5, a--*a(a) is a lattice isomorphism; then 

No ~ s, ~ (a )  _= Ub ~ T, ~(b) .  
It follows that the sets ~(a) such that a ~ L are compact. Trivially, the subset 

is compact and ~(L) is also compact because it is the only open subset that contains 

the point G; of ~(L). 
Let's now prove that (~(L), ~) is a Stone space. In the light of  condition (a) of  

Definition 3.1, let P, Q ~ ~(L) be such that P r Q. Suppose, for example, that 
a ~ P \Q.  Then P ~ rr(a) and Q ~ rffa). Condition (b) is verified from (ii) above and 
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the fact that { ~ , ~ ( L ) } u { a ( a ) : a e A }  is a lattice with respect to union and 
intersection. Finally, condition (c) is also verified as a consequence of  the statement 
(x) above and the fact that if U is a non empty compact and open subset, then 
either U = ~(L) or U = cr(a) for some a e A. [] 

D E F I N I T I O N  3.3. We say that (X, v, < ,  p,,,, pM ) is an ordered Stone space 
with endpoints if (X, T, -< ) is an ordered Stone space and Pm < P <-Pu for all 
p ~ X .  

From Proposition 3.2, we have that if L is a distributive lattice, then 
}(L) = (}(L),  ~, _ ,  ~ ,  L )  is an ordered Stone space with endpoints. 

OBSERVATION 3.4. As * , (S(L), z )  is a Stone space, from the Stone Represen- 
tation Theorem [ 1, p. 77], S(L) is homeomorphic to the Stone space S(L') of  some 
distributive lattice L' .  It can be shown that L '  is the lattice obtained by adding to 
L an upper bound (if  L hasn't  one), or a new one if L has a maximum, and a lower 
bound (if L hasn't  one), or a new one if L has a minimum. 

OBSERVATION 3.5. If  (X, r, -< ,pm,p~)  is an ordered Stone space with 
endpoints, the compact and open subsets U of X are increasing sets (i.e., x e U and 
x < y  imply y e U). In fact, x < y  i f f x  e Cl({y}); since U is open, if x ~ U, y e U. 

It follows that X is the only member of  the basis that contains the point p,~. 
Further, all ordered Stone spaces w~th endpoints are compact spaces. 

DEF I NI TI ON 3.6. We say that a compact and open subset U of an ordered 
Stone space with endpoints X is proper if U r ~Z~ and U r X. We denote by ~ (X) 
the family of  proper compact and open subsets of  X. 

PROPOSITION 3.7. I f  (X, ~, <, p,,,, PM ) is an ordered Stone space with end- 
points, ( ~  (X), u, n ) is a distributive lattice. 

Proof Let U, V s ~ ( X )  and suppose U u V = X ;  then p , , e U  or Pm~V;  
suppose, for example, Pme U. From Observation 3.5, since U is increasing, it 
follows that U = X, a contradiction. Also, if U, V E ~ (X), then U n V ~ ~ ,  
because PM ~ U n V. [] 

We are now in a position to prove the following: 

T H E O R E M  3.8. For each distributive lattice L, ~ (}(L)) is isomorphic to L, and 
for each ordered Stone s, pace with endpoints X, there is an order preserving homeo- 
morphism from X onto S (~  (X)) that also preserves endpoints. 
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P r o o f  From Proposition 3.2 (ii), U ___ }(L) is compact and open iff U = if5 or 
U = S ( L )  or U = a(a) for some a e L. For  all a cA ,  a ( a ) ~  ~ and a ( a ) ~  ~ (L)  

(L s a(a) and ~ r o-(a)). Then ~ (}(L)) coincides with the family {o-(a): a ~ L}. 

From Theorem 2.5, ~ (~}(L)) ~ L. 

Let's now prove that there is an order preserving homeomorphism between X 

and ~ ( ~  (X)) that also preserves endpoints. 

For each x e X ,  let 5 ( x ) = { U e ~ ( X ) : x s U } .  It is easy to prove that 

5(x)  ~ ~ ( ~  (X) ) .  Then, a function 5 : X ~ S ( ~  (X)) can be defined by x ~ 6(x).  It is 

easy to prove that 5 preserves endpoints. By properties (a) and (b) of Definition 3.1, 

5 is injective. Let's prove that 5 is onto: let P e ~ ( ~  (X)); if P = ~ ,  P = ~ ( P m )  and 

if P --= ~ (X), P = 5(pM).  Then we may suppose that P is a prime lattice filter of 

Z (x). 

CLAIM 1: N { U e ~ ( X ) :  U e P } ~ _  U { V e ~ ( X ) :  V C P } .  

Suppose, for the contrary, that the inclusion holds. Since U, V ~ ~ (X), U v e 

for all U ~ P and V ~ ~ for all V ~ P. Applying (c) of  Definition 3.1, we obtain 

that Ul n . . . n U,  ~ VI w . . . u V m for some n, m e N .  As UI  A . . . A Un ~ P , 

1/1 u "  �9 �9 w V m ~ P and, since P is a prime filter, 1,I,- ~ P for some 1 -< i -< m, which is 

a contradiction. 

Therefore, there exists x0 E n {U e ~ (x ) :  u ~ P } \ U  { v  ~ ~ (x ) :  v ~ P}. 

CLAIM 2: 6(x0) = P. 

Let U E g ( X o ) ;  then x o E U ;  as x o C U { V ~ ( x ) : v c P } ,  u c P .  For the 
opposite inclusion, let U e P; then Xo E U and we have U E 6(Xo). We have proved 

that 5 is onto. 
As the compact and open subsets of X are increasing, it is straightforward to see 

that 5 is order preserving. 
Let U be a compact and open subset and suppose first that U e ~ (X). Note 

that x ~ 5-1[a(U)] iff 6(x) ~ 5(x)  iff x e U. Then b - l [ o ' ( U ) ]  = U and a ( U )  = 5(U) .  

As 6 -1 [} (~  (X))] = X and 5-1[~Z~] = ~ ,  b(X) = ~ ( ~  (X)) and 6(~5) = ~ ;  we have 

proved that 6 and 6-1 are both continuous. [] 

Let's denote by ~ the category of distributive lattices with lattice homorphisms 
and by ~ the category of ordered Stone spaces with endpoints, whose morphisms 
are order and endpoint-preserving strongly continuous functions (recall that 
f : X ~ Y is strongly continuous if the inverse image of  a compact and open subset 

of Y is a compact and open subset of X). 
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T H E O R E M  3.9: Duality theorem for distributive lattices ge ~ 
Let F:  ~ ~ 5 ~ be such that for each object L or ~,  F(L) = (S(L!, z, ~_ , ~ ,  L )  

and for, each f"  ~ [L, L ' b ,  r ( f )  ~(L') - ~ ( L )  is defined by r ( f ) ( P  ) = f - l i p  ]for 
each P ~ ~(L'). 

Then F is a eontravariant funetor providing a duality between ~ and ~. 

Proof L e t f e  [L, L ' ]~;  sincef-~[~Z~] = ~ ; f  ~[L'] = L and for each prime filter 
P '  of  L', f - l~p,]  is either a prime filter of  L or f-~[P'] ~ {~ ,  L}, F ( f )  is well 
defined from S(L') onto ~(L). 

As we have that P'eF(f)-~[tr(a)] iff F ( f ) ( P ' ) ~ ( a )  iff f - l [p , ]  ~cr(a) iff 
f(a) e P" iff P' ~ tr'(f(a)), we obtain F ( f )  -~[~(a)] = ~r'(f(a)) and from this it can 
be readily seen that F ( f )  is strongly continuous. Also, it is easy to prove that F ( f )  
is order and endpoint-preservin,g. 

Let now X be an object of  S. From Proposition 3.7, we have that ~ (X) is an 
object of ~ and by Theorem 3.8 F(~,  (X)) is isomorphic (in categorical terms) to 
X. It only remains to prove that if L , L '  are objects of  ~ ,  the function 

g F / * 
[L, L ]~ -~ [F(L ), F(L)].~ is one-one and onto. 

Let f ,  g ~ [L, L']~ such that f # g. Then there is x ~ L such that, for example, 
f (x )  ~ g(x). Let P be a prime filter of  L '  such that f (x )  ~ P and g(x) q~ P. We have 
that F(f ) (P)  v~ r(g)(P). 

Now let g ~ [F(L'), F(L)]~.  For  each x ~ L, tr(x) is a proper compact and open 
subset of  S(L). As g is strongly continuous and order preserving, g-~[tr(x)] is also 
a proper compact and open subset. Then g-~[o-(x)] = o-'(yx) with y~ e L' .  As y~ is 
uniquely determined, we can define f :  L -~ L" by the assignment x ~y ~ .  Let's prove 
that f ~ [L, L ' b .  As a matter of  fact, we can write: 

t r ' ( f ( x ~  v x2)) = (Yx, v x 2 )  = g - - l [ o ' ( X l  V X2 )  ] = g - l [ o ' ( X l )  Q) O'(X2)  ] 

= g-l[ tr(x,  )] u g  '[a(xz) ] = r  1)) • o"(f(x2)),  

and from this we obtain f ( x ~ V X z ) = f ( x l ) v f ( x 2 ) .  In a similar way, 
f ( x ,  A X2) = f ( X l )  Af(x2).  

Finally, we prove F( f ) - - -g .  Let P ES(L'); as x eg(P) iff g(P) E~(x) iff 
P E g - l[~(x)] iff P ~ a'( f(x))  iff f ( x )  E P iff x e f -  l[p] iff x ~ F(f ) (P) ,  we have 
that F ( f  )(P) = g(P). [~ 

In some of  the examples stated at Section 1 the lattices considered are not only 
distributive but bounded. A similar duality can be developed for bounded distribu- 
tive lattices: 

D E F I N I T I O N  3.10. We say that an ordered Stone space with endpoints 
(X, 3, ~ ,Pm,PM) is of type 01 ifX\{pm } and {PM} are compact and open subsets 
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of  X. Let X = (X,  z, <-, Pro, PM ) and X" = (X ' ,  r', <- ", p;,, P'M ) be spaces of  type 
01. f : X - - *  X" is a morphism o f  type 01 i f f f i s  a morphism of  ordered Stone spaces 
with endpoints and the following two conditions hold: (O) f (p )  = P'M iffp = PM; (1) 

f ( p )  =p',, iff p =Pro. 

Let's denote by So~ the category defined above, and let @0~ be the category of  
bounded distributive lattices. From Proposition 3.2 it can be readily seen that if 
L e N01, then ~(L) is an ordered Stone space with endpoints of type 01. Also, if 

X e So~, ~ (X) e No~ with 0 = {PM} and I = X\{pm }. 
One can derive the following: 

T H E O R E M  3.11: Duality theorem for  bounded distributive lattices 
The map F o f  Theorem 3.9 establishes a duality between 9ol and 5P m . 

4. The topological duality for implicative lattices 

We are ready now to introduce the topological spaces associated with implica- 
tive lattices. 

DEF INI TI ON 4.1. X = (X,  z, <, Pro, PM, (P) is an IL-space iff: 
(a) (X,  ~, < ,Pm,PM)  is an ordered Stone space with endpoints. 
(b) ~0 is a continuous function from the product space X • X to X that is 

order-preserving in each variable with q~(p, p M ) = P M  for P CPm and 

~o(pM, pm) = ~o(p,,,, PM ) = Pm" 
(C) For  each proper compact and open subset U ~ X and for each p ~ X, there 

exists Pv, the greatest q (respect to -<) such that q~(q, p) r U. 
(d) I f  U and U' are proper compact and open subsets of  X and p e X, then 

either Pc, < Pv, or Pv- < Pc,. 
(e) If U, V are proper compact and open subsets of  X, ('lp~vq~jl[V] is a 

compact subset (where for each p e X ,  q)p : X ~ X  is defined by 
(pp(q) = rp(p, q)). 

PROPOSITION 4.2. Let A = (A, v ,  /x, ~ )  be an implicative lattice and q~ the 
binary function (*) defined at Proposition 2.1. Then IL(A) = (~(A), ~, c_, ~ ,  A, ~b) 
is an IL-space. 

Proof  Let's check conditions ( a ) - ( e )  of  Definition 4.1. From Proposition 3.2, 
(S(A),  ~, ~_, ;g, A ) is an ordered Stone space with endpoints and, from Observa- 
tion 2.2, q~(P, A) = A if P ~ ~ ,  ~(A, ~ )  = q~(~, A) = ~ and ~b is order-preserving 
in each variable. 
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To prove the continuity of  ~, let V be a compact and open subset of  IL(A). As 
1 ~ ~ ~-~[~5] = ~ and r  [S(A)] = S(A) x S(A), we may suppose that V is proper. 

Then V = a(b) with b ~ A. Let (P, Q) ~ �9 as ~(P, Q) ~ or(b), b ~ ~(P, Q) 
and there is a ~ b such that a ~ b ~ Q. Then (P, Q) ~ a(a) x cr(a ~ b), which is an 
open subset of  the product space contained in ~-~[o'(b)]. 

Conditions (c) and (d) follow from (ii) and (iii) of  Lemma 2.4 (in the sequel we 
will use without explanation the identity P~ = P~(,)). Condition (e) follows from 
Theorem 2.5. 

PROPOSITION 4.3. Let X =  (X,v,  <,Pm,PM, q~) be an IL-space and let 
(X) be the family of  proper compact and open subsets of  X. We define for 

u, v Z(x), 

u v = G [v].  (***) 
p ~ U  

Then ( ~  (X), w, n ,  ~ ) is an implicative lattice. 

Proof Let's first prove that for U, V ~ ~ (X), U =~ V ~ ~ (X). As U and V are 
proper subsets, U v L ~ ,  X and V ~ ~ ,  X; as U and V are increasing, Pmr U, V and 
PM ~ U, V. From Definition 4.1, condition (b), qg(p, pM) =P~t for all p r  then 
PM e U =~ V and U ~ V r ~ZL Now suppose that Pm ~ U ~ V. Then, for all p ~ U 

we have cp(p, Pro) ~ V. But P~I ~ U and r P,,) = P,~ r V. Thus, p,,, r U =~ V and 
so U ~ V ~ X .  We have proved that U=*-V is a proper subset of  X. From 
Definition 4.1, condition (e), U =~ V is compact; it remains to prove that U ~ V is 
open. Let q ~ np~ e: ~0p I [V]. From the continuity of  ~p (condition b), we have, for 
each p ~ U, two compact and open subsets Uq(p), Vp(q) such that p ~ Uq(P), 
q ~ Vp(q) and Uq(p) • Vp(q) ~_ ~o -1IV]. Since V ~_ Up ~ v Uq(P) and U is a compact 
subset, there is a finite subset F_~ U such that U ~_ Up~e Uq(p). Let's consider 

Vo(q) = Apse Vp(q). Note that q E V0(q) and, as X is a Stone space, Vo(q) is a 
compact and open subset. Let's show that Vo(q)~-Np~u~o;l[V]. Let q'~ Vo(q) 
and p E U. Choose p '  E F such that p ~ Uq(p'). As q' ~ np ~ F Vp(q), q' ~ Vp,(q). It  
follows that ( p , q ' ) ~  Uq(p')• Vp.(q)~_~o-l[V]; then we have that ~op(q')= 
~o(p, q') ~ V. 

Conditions IL(1) and IL(2) of  Definition 1.1 are satisfied from definition (***) 
by the properties of  the inverse image of  a function with respect to unions and 
intersections. Also it can be readily seen that for U, V, V'E ~] (X), (U =~ V )w  
(U =~ V') ~_ U =~ ( V u  V') and (U => V) u ( U '  =~ V) _ ( U n  U') =~ V. 

Let's now prove U=: , (VuV ' )~_ (U=~V)w(U=~V ' ) .  Choose q ~ U  
(V w V'). If  q r (U => V) w (U  =~ V') = ( Np ~ ~ q~ ~'  [ V]) w ( Ne ~ ~: ~ ~- ~ [ v']) then 
there exist p, p '  ~ U such that q~(p, q) r V and ~(p ' ,  q) r V'. 
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Let's consider the elements qv and qv. given by (c) of Definition 4.1. As 
p,p" ~ U, qv, qv" ~ U. From condition (d) qv <- qv. or qv, < qv. Suppose (for 
example) qv <- qv'. As q)(qv', q) r V' and (p is order preserving in the first variable, 
(O(qv, q) (~ V'. From this ~O(qv, q) r V and ~o(qv, q) r V', i.e., ~o(qv, q) ~ V w  V'. 
Since qv ~ U, we obtain a contradiction. 

We prove finally that ( U n U ' ) = ~  V c _ ( U ~  V ) w ( U ' ~  V). Choose q e 
(Uc~U') =~ V. If  q r  ~ V ) u ( U ' ~  V)=((~pEuq~;' [Vl)g(Npeu.(ppl[V]), 
then there exist p ~ U and p '  e U' such that q~(p, q) r V and rp(p', q) r V. Let's 
consider qv or condition (c). As p,p" <-qv, q v ~  Uc~U'. But rp(qv, q ) r  V, a 
contradiction. VJ 

OBSERVATION 4.4. We have proved that for each U, V proper compact and 
open subsets of an IL-space X, Op~ u~O71[V] is also open. Then we can replace 
condition (e) of Definition 4.1 by the following: 

(e') For any two proper compact and open subsets U, V, the greatest open 
subset W such that U x W _ ~0 - t[V] is a compact subset. 

Note now that if (32, ~, <-, pro, PM, q) ) is an IL space, the family (9(X) of the 
proper open subsets of X is a lattice under union and intersection. If  we consider 
the set ~(X x X) of proper open subsets of the product space X x X, we have that 
~o induces a function 0 : $ ( X ) ~ ( X  x X) defined by 0 ( g ) =  ~0-1[g]. From the 
properties of the inverse image of a function, ~ is a lattice homomorphism. Let's 
denote ((9(X), 0 > the lattice (9(X) endowed with the lattice homomorphism ~. 

From these remarks and Proposition 4.3 we establish to which extent implica- 
tive lattices can be represented by means of the set-theoretical operations: 

THEOREM 4.5. Let (A,  v ,  A ,  ~ > be an implicative lattice. Then A is isomor- 
phic to a sublattiee cd of  the lattice ((9(X), ~t) o f  an IL-space X satisfying: for all 
b\ V ~ cg, the greatest W ~ ~(X)  such that U x W c O(V) belongs to cd. 

We now prove that there is a duality between implicative lattices and/L-spaces.  

DEFINITION 4.6. Let (X,  ~, <,Pm,PM, q)>, (X ' ,  ~', <',P',, ,PM, q~'> be IL-  
spaces. A function f :  J ( ~ J ( '  is said to be a morphism of  IL-spaces iff f is a 
morphism of ordered Stone spaces with endpoints satisfying: 

(i) q~' ( f (p) , f (q))  <- ' f(@(p, q)). 
(ii) For each q ~ X  and V" proper compact and open subset of X', 

(f(q))v" = f(qf-~Ev'l)" 
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PROPOSITION 4.7. 
(1) I f  X and X" are IL-spaces and f : X ~ X "  is a morphism of IL-spaces, 

f - l [  (~p, u. q~pT-l[V']] = (~pr q~-'[f-~[V']]. 
(2) I f  A, A" are implicative lattices and h : A ~ A '  is an homomorphism of 

implicative lattices, then F(h) : ~(A') ~ ~(A) such that F(h)(P') = h ~[P'] is 
a morphism of IL-spaces. 

Proof To prove (1) let q ~ X  be such that f ( q ) ~  Op,~u.q~rl[V "] and let 
p ef - l[U'] .  Since f ( p )  ~ U', q~)(p~f(q) ~ V'. From (i) of Definition 4.6, as V' is 
increasing, f(~o(p, q)) E V', and so ~0p(q) ~f-~[V'] .  For the opposite inclusion, let 
q e 0p ~f--l[U'] q~p-~[f-l[V']] and suppose f (q)  r Np.~ w r Let p '  ~ U" such 
that (o'p,f(q)r V'. Since U' is increasing (f(q))v, e U'. From Definition 4.6 (ii), 

f(qf-l~v,l) ~ U', so we get qf-~fV'l ~f-~[U'] ;  thus q~(qf-,~vq, q) ef-~[V'], which is a 
contradiction. 

From Theorem 3.9, to prove (2) we have only to check 
(i) r F(h)(Q')) ~ F(h)(q~'(P', Q')). 

(ii) (F(h)(Q'))~(b) = F(h)(Q(r(h))- ~(b)l)" 
From the definition of F(h), (i) is equivalent to ~(h-l[P'],h-~[Q'])~_ 

h - l[q~,(p,, Q,)]. 

Let y e ~(h ~[P'], h-~[Q']) and let x e h-~[P "] be such that x ~ y  e h-l[Q'] .  
Then h(x ~ y) = h(x) ~" h(y) ~ Q'. Since h(x) ~ P', h(y) ~ q)'(P', Q') and 
y eh-l[cb'(P',Q')]. (ii) is equivalent to the identity (h-l[Q'])=h-l[Q'~(h(b))]. 
Now, x e ( h  ~[Q']) iff x ~ b C h - l [ Q  "] iff h ( x ~ b ) r  iff h ( x ) ~ ' h ( b ) r  iff 
h(x) ~ Q;(h(b~ iff  x r h-~[Q;(h( j .  [] 

Let ~r be the category whose objects are implicative lattices and whose 
morphisms are lattice homomorphisms which preserve the implication. Let IL be 
the category whose objects are/L-spaces and whose morphisms are the morphisms 
of/L-spaces.  

THEOREM 4.8: Duality theorem for implicative lattices 
The map F: j cp ~ IL such that for each implicative lattice A, F(A) = IL(A) and 

.for each morphism of  implicative lattices f :  A ~ A ' ,  F ( f  ) : IL(A') -~IL(A) is defined 
by F( f ) (P ' )  = f - l [ p , ] ,  establishes a duality between J ~  and 1L. 

Proof By Proposition 4.2 and Proposition 4.7(2), F is a contravariant functor 
from ~r to IL. Note also that for each object X of IL, we have from Proposition 
4.3 that ~ (X) = ( ~  (X), u ,  n ,  =~) is an object of  J 5  ~ 

Let's prove that the map 6 : X - ~ F ( ~ ( J ( ) )  such that 6(p)= { U ~ ( J ( ) :  
p ~ U} is an isomorphism of/L-spaces.  From Theorem 3.9 we already know that 
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6 is an isomorphism of ordered Stone spaces with endpoints. In order to prove 
that 6 is a morphism of /L-spaces  let's check conditions (i) and (ii) of Definition 

4.6. 

For (i) q~(6(p), 8(q)) ~= 8(cp(p, q)), let V ~ ~b(8(p), 8(q)) and let U ~ 8(p) be such 

that U ~ V ~ 8 ( q ) .  As U=>V=Np~uqOp ' [V]  and p ~ U ,  cp(p,q)~V; then 

V ~ 6(q~(p, q)). 
To prove (ii) (8(q))~(v) = 8(q6-1~,,(v)l), note first that 8-'[a(V)] = 

V : q  e6-~[a(V)]  iff 8(q )ca (V)  iff V e6(q) iff q ~ V. Then, we will prove 

(8(q)),,(v) = fi(qv). Let U ~ ~ (X) be such that U => V r 8(q); then 
q r U => V = 0p~ ~: ~0p'[V]. Let p ~ U be such that q~(p, q) r V. As p < qv and U 

is increasing, qv ~ U and we obtain U ~ 6(qv). For the opposite inclusion, let 

U ~ }-' (X) be such that qv ~ U and suppose U ~ V ~ 6(q). Then q ~ U => V. As 

qv ~ U, we would have q)(qv, q) �9 V, which is a contradiction. Then U => V r 8(q) 
and we have U �9 (13(q))~(v). 

Note that 8 also satisfies 8(q~(p, q ) )~  ~b(8(p), 8(q)): let V ~ ( X )  such that 

cp(p,q) �9 V. Then (p ,q)e~0- ' [V] .  Since q~ is a continuous function from the 

product space X • X to X and the family of compact and open subsets of X is a 

basis, there are compact and open subsets U(p), U'(q), such that (p ,q )~  
U(p) • U'(q) ~ q~-'[V]. Moreover, U(p) is proper as we now show. As p ~ U(p) 
we have U(p) ~ .  Also, U(p) ~ X  because if Pm ~ U(p), (p,, , ,p~) ~ U(p) • 
U'(q), but from Definition 4.1(b), q~(P,,,,P,~t) =P,,, so we would have that Pm ~ V, 

which is a contradiction, because V is proper. Using q)(P:a, Pm)---Pm it 
follows in the same way that U'(q) is proper, too. Then, from Proposition 4.3 and 
the fact that q)(U(p) x U'(q)) c_ V we get q e U'(q) ~ U(p) ~ V. Further, 
U(p) ~ V �9 Y' (X). Thus, U(p) => V ~ 8(q) and V e (o(8(p), 8(q)). We can now 

prove that 6-1 : F ( ~  (X)) ~ X is a morphism of /L-spaces :  as a matter of fact, 

from the above identity ~(q~(~-l(p), 3 -  I(Q))) = cb(8(6- l(p)), 8(~-'(Q))), we obtain 
qffS-'(P), 8- ' (Q))=6-1(qs(P,  Q)); then, condition (i) of Definition 4.6 is satis- 

fied. Let's prove (ii) (8- ' (Q))v=8- ' (Q(~-~-z~vl ) .  As ( 8 - ' )  ~[V] = 8 ( V ) =  
{8(q) : q ~ V} and 8 is a bijection, it suffices to show that 6((~- '(Q))v) = Q~(v). 
Since v = 6 - ' [ 8 ( V ) ]  and 6 is a morphism of  /L-spaces, we can write 

6((8-~(Q))v) = 8((6- ~(Q))~--l[O(g)] ) = ({~(f~- ~(Q))~(v)) = Q~(v). 
We have proved that 8 is an isomorphism of /L-spaces between X and 

F ( ~  (X)). It remains to prove that if A, A' are implicative lattices, the function 

[A, A']:~e g [IL(A'), IL(A)]~L is one-one and onto. 
The fact that F is one-one follows exactly as in Theorem 3.9. To prove that F 

is onto,  let g ~ [IL(A'), IL(A)]:ao. As g is in particular a morphism of  ordered Stone 
spaces with endpoints, we can define a function f :  A ~ A' with the same assignment 
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of  Theorem 3.9: X ~ y x  (where g-l[r We already know that 

f e  [A, A']~; let's prove that f also preserves the implication: o'(f(x~ ~x2) )  = 
o-'(yx~-.x2) = g -1[~ ~ x2)] = g 1[ 0e  ~ ~(~) ~p- l[a(x2)]]. The last equality follows 
from Theorem 2.5 (1). Now, from Proposition 4.7 (i), 

Then, 

a ' ( f ( x  1 ---r X2)) = rr'(g-l[6(Xl )] " -4 /g  - 1 [0"(x2)]) = a ' ( f ( x , )  --*'f(x2)). 

Thus f ( x ,  ~ x2) = f ( x l )  ~ ' f ( x 2 ) .  [] 

We conclude this section giving a topological reformulation of some algebraic 
conditions that appear frequently in dealing with algebras coming from logic and 
also in lattice ordered groups. 

PROPOSITION 4.9. Let A = (A, v ,  /x, ~ )  be an implicative lattice and let 
X = (X, ~, -< ,Pm,PM, ~0) be an IL-space. For each one of  the following conditions on 
the left, the condition on the right is the corresponding topological translation (in the 
following sense: if  A satisfies (ai). IL(A) satisfies (a; ) and, if  X satisfies (a;), ~ (X) 
satisfies ( ai ) ) 

(al) x < (x--*y) ~ y ;  (a]) ~o(p, q) = q~(q,p) 

(a2) x - - * ( y ~ z ) = y - - * ( x - - * z ) ;  (a'2) ~o(p,q)(p',q))=q~(p',q~(p,q)). 

(al) and (ae) hold together if  and only if  ~o is associative and commutative. 

Proof. Let (S(A), ~, ~ ,  ~ , A ,  ~ )  be the /L-space corresponding to A and 
( ~  (X), u ,  ~ ,  =~) be the implicative lattice corresponding to X. Suppose that A 
satisfies (al) and let y ~ ~(P, Q). Then, there is x ~ P such that x ~ y ~ Q. From 
(al), x < ( x ~ y ) - - * y .  Then ( x ~ y ) - - * y  ~P.  Thus we have y ~q~(Q,P) and 
~(P, Q) ~ 4~(Q, P). In a similar way, ~(Q, P) __c ~(p, Q). Hence, IL(A) satisfies (a'l). 

Suppose now that rp satisfies (a~); let's prove U ___ (U ~ V) ~ V. Let q E U and 
suppose q r 0p~ v ~  v (pp-l[V] �9 Then, there is p e U =~ V such that rp(p, q) r V. As 
p e U => V and q e U, q~(q, p) e V. From this we get q~(p, q) ~ ~o(q, p) which is a 
contradiction. 
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To prove (a;) let z eVb(P,q~(P' ,Q));  then, there is y ~ P  such that 
y - - , z ~ q ~ ( P ' , Q )  and x ~ P "  such that x - , ( y ~ z ) ~ Q .  From (a2) it follows 
that y --* (x --* z) e Q. Then x --* z ~ q~(P, Q) and z ~ q~(P', ~(P, Q)). We have 
proved ~(P, q~(P', Q)) ~ ~(P' ,  q~(P, Q)). The opposite inclusion follows in a 
similar way. 

Suppose now that q~ satisfies (a;). Let's prove U =~ (V => W) = V =~ (U ~ W). 
Let q E U = z - ( V = ~ W )  and suppose q C V = ~ ( U = > W ) .  Then, there is p ~ V  
such that ~0(p, q) r U =~ W and p '  e U such that q~(p', q~(p, q)) r W. From (a;) 
it follows that q~(p,q~(p',q))r As p e V ,  q ~ ( p ' , q ) r  and, as 
p ' e  U, q r U =~(V=~ W), a contradiction. The opposite inclusion follows 
similarly. 

If (al) and (a2) hold, we can write q ) (p ,q ) (p ' , q ) )=q) (p ,q ) (q ,p ' ) )  = 

rp(q, q~(p, p'))  = q)(~o(p, p')q).  

Then (p is associative. The converse also follows easily. L~ 

OBSERVATION 4.10. From Proposition 4.9 above, if A is an implicative 
lattice satisfying (al) and (az), }(A) is a compact ordered abelian topological 
semigroup (possibly non Hausdorff). Thus, a surprising connection arises 
with another branch of Mathematics: the well studied theory of topological 
semigroups. 

5. The duality for f-groups and for abelian f-groups 

In order to apply our duality theory to f-groups and to abelian f-groups, we 
characterize these groups as implicative lattices with a distinguished element. 

PROPOSITION 5.1. Let G = ( G ,  v ,  A , . , - l , e )  be an #-group and define 
x - -*y  = x - l y .  Then (G,  v ,  , ' , , - -*)  is an implicative lattice with a distinguished 

element" e satisfying: 

(#1) ( x - * e ) - * e  = x  

(#2) x ~ x = e 
(Y3) x --*((y --*e) ~ z )  = ((x --*y) ~ e )  -+z. 
We call it the implicative lattice of G and we denote it by C,. 
Conversely, let A = ( A ,  v ,  /x, ~ )  be an implicative lattice with a distinguished 

element e ~ A satisfying (El), (Y2) and (f3) above. Then defining x "  y = (x ~ e ) - ~ y  
and x - 1 = x ~ e, (A, v ,  ^ ,  ", - 1, e )  is an Y-group. We call it the #-group of A and 

we denote it by A. 
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P r o o f  From Example 1.4 we already know that (~ is an implicative lattice. 
Condition (El) follows from the fact that ( x - ~ ) - ~ =  x and (f2) from the identity 
x - i x  = e; we obtain (E3) from these equalities: 

x ~ ( ( y  ~ e )  --*z) = x - l ( ( y  -~e) - l z )  = x - l ( ( y - l ) - l z )  = x - l ( y z )  

= (x -~y ) z  = ( ( x - ' y )  - b - ~ z  = ((x -+y) --,e) - , z .  

For the converse, note first that (#3) guarantees the associativity off 

x(  yz)  = (x  ~ e) ~ (( y -~ e) ~ z) = (( (x  ~ e) ~ y)  ~ e) ~ z = (xy)z. 

As we have from (El) that xe  = (x ~ e) ~ e = x, e is a fight unit for .  ; from (E2) 
x ( x  ~ e) = (x ~ e) ~ (x ~ e) = e. Then, for all x ~ A, x ~ e is a right inverse for x. 
It is well known that the conditions above suffice to prove that ( A , . , - ~ ,  e )  is 
a group. The equations c(a A b) = ca ^ cb; (a ^ b)c = ae /x  be; e(a v b) = ca v eb; 

(a v b)c = a c  v be, follow respectively from IL(1), IL(2), IL(3) and IL(4) of  
Definition 1.1. [] 

PROPOSITION 5.2. Let  G = (G,  v ,  A , - ,  -~, e )  he an abelian Y-group. Then 

satisfies conditions (E l) and (E2) o f  Proposition 5.1 and the following: 

(E;)  x - , ( y ~ z ) = y - > ( x - - , z )  

(E'4) ( y  ~ e )  ~ ( x - - * e )  = x ~ y. 

Conversely, i f  A = (A ,  v ,  /~, ~ )  is an implicative lattice with a distinguished 

element e satisfying (El), (E2), (E j) and (E'4), then A is an abelian Y-group. 

Proof. Let ff be an abelian Y-group. Using associativity and commutativity of  
�9 , we can write 

x - , ( y  -- ,z) = x - ' O , - ~ z )  = ( x - ~ y - b z  = ( y - ~ x - b z  

= y ' ( x - ' z )  = y - - , ( x - ,  z) 

and we obtain (E3). 
(E~) also follows at once using y x -  l = x -  ly. 

For the converse, commutativity follows using ({~) and (f~) from these equali- 
ties: 

x y  = (x  ~ e )  ~ y = (x  ~ e )  ~ ( ( y  -+e) --*e) -- ( y  ~ e )  ~ ( ( x  ~ e )  ~ e )  

= ( y  ~ e )  ~ x  = y x .  
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Using both (( ; )  and commutativity we obtain that �9 is associative from the 
equalities: 

x(yz )  = (x ~ e) --+ ( (y  ~ e) --* z) = (x -* e) ~ ((z ~ e) ~ y) 

= (z -~ e) ---} ((x ---} e) --* y) = (((x ---} e) --} y)) ~ e) -+ z = (xy)z. 

The remaining conditions follow as in Proposition 5.1. [] 

Let ff be the category of #-groups, where the morphisms are all homomor- 
phisms and let's denote J the category whose objects are the implicative lattices 
with distinguished element which satisfy equations (#l)-(#3) of Proposition 5.1 and 
whose morphisms are the homomorphisms of implicative lattices preserving the 
distinguished element. 

Note that for each object A of J ,  A = A; also, it is clear that i f #  : G -~ G' is a 
morphism of f-groups, f :  C, ~ ~;' such tha t f (x )  = f ( x )  for all x e G, is a morphism 
of J .  In fact, one can state the following: 

PROPOSITION 5.3. There is a categorical equivalence between (q and J .  

In a similar way, let's denote by ~qa the category of abelian Y-groups and by J a  
the category of implicative lattices with distinguished element which satisfy the 
equations of Proposition 5.2. Again, one can state the following: 

PROPOSITION 5.4. There is a categorical equivalence between ~a  and J a .  

Let's now show how to translate conditions (#l), (#2) and (#3) of Proposition 5.1 
in our topological spaces. 

PROPOSITION 5.5. Let  A = (A ,  v ,  A ,  ~ )  be an implicative lattice with a 

distinguished element e ~ A satisfying (#i), (#2) and (#3) of  Proposition 5.1. Let  
IL(A) = (S (A) ,  *, c ,  g~5, A,  rb) be the IL-space o f  A. Then: 

(1) o-(e) satisfies P ~ or(e) iff P~(e) r ~(e~ for  all P ~ ~(A) and it is the unique 
proper compact and open subset o f  S(A) with this property. 

(2) P ~_ Q implies Qe ~- Pgfor  all P, Q ~ ~(A). 

(3) P -- (Pe)~ for  all P ~ S(A). 
(4) P ~_ ee or Pe ~ P for  all P ~ ~(A). 
(5) I f  P ~ a(e), P~ ~ cr(a) for  all e ~ S(A) and for  all a ~ A. 

(6) I f  P ~ a(e), O ~_ ~(Q, P) for all P, a ~ ~(A). 
[(7) (q~(P, O))a = (q~(P, (O,)~))efor all P, Q E ~(A) and for  all a ~ A.] 
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Proof  Let A be an implicative lattice with e �9 A satisfying (El), (E2) and (f3). 

As we have f rom (f2) that  e ~ e  = e, it follows, for  all P �9 }(A), that  e �9 P iff 

e ~ e �9 P iff e r P~. Recalling that  Pa = P~(a) for all a �9 A we obtain P �9 a(e) iff 

P,(e) (~ a(e) for all P �9 ~;(A). 

N o w  let U c_ S~A) be a proper  compact  and open subset satisfying P �9 U iff 

Pu  r U for all P �9 S(A). Let a �9 A such that  U = a(a); let's prove that  a(a) = a(e). 
I f  P �9 a(a), f rom the hypothesis we have P~(a)~ a(a). As Po(~)= Pa we obtain  

a r P~ ; then a --* a �9 P. But f rom (f2) a --* a = e. Then, if P �9 a(a), P �9 a(e). For  the 

other inclusion let P �9 a(e) and suppose P r a(a). Then P~(a)�9 a(a). Using again 

P~(a) = P~, we obtain a �9 Pa and f rom this we derive a ~ a  = e r P, which is a 

contradict ion.  

For  (2) let P, Q �9 }(A) be such that  P_c  Q and let y �9 Qe. As y ~ e  r Q, 

y ~ e C P .  Then y E P  e. 
For  (3) note that  x �9 (P~)e iff X ~ e  r Pe iff (x ~ e )  ~ e  �9 P. As we have f rom 

(f l )  that  (x ~ e ) ~ e  = x, we conclude (P~)~ = P. 

For  (4) let's recall first f rom Proposi t ion 5.1 that  defining x . y  = ( x ~ e ) ~ y  
and x - l =  x ~ e ,  the structure (A,  v ,  /x, -~, ., e )  becomes an f -g roup .  Then, 

f rom a well known result ([2], Chapter  III ,  w Theorem 7) we have that  e < y v y -J 

for all y � 9  As x ^ x - l = ( x - ~ v x )  ~ we also have f rom all x � 9  that  

x /x  x - ~ < e. Then for all x, y �9 A, x ^ x - ~ < y v y - ~, or, in terms of  the implica- 

tion ~ ,  ( . )  x /x  (x -~e) < y v (y  --* e). Suppose now that  there is P �9 ~(A) such that  

P ~ P~ and Pe 7~ P; choose x �9 P such that  x r Pe and choose y �9 Pe such that  

y r  As x � 9  and ( x - ~ e ) � 9  x A ( x - ~ e ) � 9  F r o m  ( , ) y v ( y ~ e ) � 9  As 

P � 9  y � 9  or y - - * e � 9  As y � 9  Y--*eCP.  Then, y � 9  which is a 

contradict ion.  

(5) and (6) follow at once f rom (f2). [To prove (7) let y ~ (~(P,  Q))~ and suppose 

that  y r (cb(p, (Qa)e))e. Then y ~ e  �9 4~(P, (Q~)e). Let x �9 P such that  x ~ ( y  --*e) �9 

(Q,)e. Then ( x ~ ( y ~ e ) ) ~ e C Q ~  and we obtain ( ( x ~ ( y ~ e ) ) ~ e ) - - * a � 9  
F r o m  (f3) x ~ (((y ~ e) --* e) ~ a) �9 Q and f rom (f l )  we get x ~ ( y  ~ a) �9 Q. Then, 

as x �9 P, y --* a �9 4~(P, Q), which contradicts  y �9 (~(P,  Q))~. 

For  the other  inclusion, let y �9 (~(P, (Qa)~)e and suppose y r (q'(P, Q))a ; then 

y ~ a � 9  Let x � 9  such that  x ~ ( y ~ a ) � 9  F r o m  (f l )  and (f3) we 

can write x - ~ ( y  ~ a )  = x ~ ( ( ( y  ~ e )  ~ e )  ~ a )  = ((x ~ ( y  ~ e ) )  --,e) -~a. Then, 

x ~ ( y  -+e) �9 (Qa)e. As x �9 P, y --,e �9 ~(P,  (Q~)e); then y r (q'(P, (Q~)e))e which is 
a contradiction.]  []  

O B S E R V A T I O N  5.6. Recall that  a function g f rom an ordered set (X, <-) to 

(X, _< ) is said to be an involution iff g2 = Id and x -< y implies g(y) < g(x) for all 

x ~ X .  
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B,y (2) and , (3)  of Proposition 5.5, we can define an involution 
G " (S(A), ~_ > ~ (S(A), ~ > by the stipulation G(P) = Pe (note that G(tZ/) = A and 

G(A) = f2~). 

We are now in a position to define the topological spaces associated with 
f-groups. 

DEF I NI TI ON 5.7. Let X = (X, z, < ,Pm,PM, (P) be an/L-space.  We'll say that 
X is an f-space iff: 

(i) There is one and only one proper compact and open subset U _ X such 

that p �9 U iff Pu r U. We call it U e . 

(ii) The function g : ( X ,  <-)~ (X, <) defined by g ( p ) = Pv ,  is an involution 
satisfying g(p) < p or p <- g(p) for all p �9 X. 

(iii) If p r fie, Pu �9 U for all proper compact and open subsets U c X. 
(iv) If p �9 U~, q < q)(q, p) for all q �9 X. 
[(v) ((p(p, q))v = g(q)(P, g(qv))) for all p, q �9 X and for all proper compact and 

open subsets U _ X.] 

Of course, if A is an implicative lattice with a distinguished element e satisfying 
(El), (E2) and (g3) of Proposition 5.1, it follows from Proposition 5.5 and Observa- 
tion 5.6 that IL(A) is an f-space: condition (i) follows from (1) of Proposition 5.5. 

As G(P)= P~(e) and P<~)= Pe, from (2), (3) and (4) of Proposition 5.5 we 
obtain (ii); (iii) follows from (5) and the fact that P~ = P~(~); (iv) follows at once 
from (6). [~v) follows from (7) in this way: let U be a proper compact and open 
subset of S(A); then, there is a e A such that U = a(a) and we can write the 

equalities: 

(r Q))u = (q~(P, Q))~(a) = (~(P, Q))a = (4~(P, (Qa)e)e = (~(e,  (Q~(~))~@)))<e) 

= G(r G(Q<~)))) = G(eP(P, G(Qu))).] 

In the sequel we shall need the following: 

LEMMA 5.8. Let X = (X, z, < ,Pm,Pu, (P> be an E-space and let U be a proper 
compact and open subset of X. Then, for all q �9 X, q �9 U ~ U~ iff g(q) r U. 

Proof. In fact, if q �9 U =~ U, = Np~vq~pl[U,] and g(q) =qve �9 U, we would 
obtain q~(qv~, q) r U, which contradicts the definition of qUe" 

For the converse, suppose g(q) = qve r U and q r U =~ U~. Then, there is p �9 U 
such that q)(p, q) r Ue. From Definition 4.1 (c) p <- qv<; as U is increasing and 
p �9 U, we would obtain qv< ~ U, which is a contradiction. [] 
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T H E O R E M  5.9. Let X = (X, ~, -< ,Pro, PM, ~o) be an Y-space. Then ~ (X)  = 
( ~  (X), w, c~, =~), the implicative lattice of  X, with U~ as the distinguished 
element, satisfies (~l), (~ )  and (~3) of Proposition 5.1. 

Proof. To prove (f l )  (U ~ U~) =~ U~ = U, let q ~ (U =~ Ue) ~ U~ and suppose 

q r U. Then, from Lemma 5.8, g(q) = que ~ U =~ Ue. AS q ~ (U =~ U~) =~ Ue = 

0p ~ (u ~ u~ q~pl[Ue] and qu~ ~ U ~ Ue, we derive ~o(qve, q) ~ U~, which contradicts 
Definition 4.t (c). 

For  the other inclusion, let q ~ U and suppose q r (U =~ Ue) =~ U%; then there is 

p ~ U =~ ~.~ such that q~(p, q) r  from Definition 4.1 (c), p <- qua. Using Defini- 

tion 5.7 (ii) we get g(qu~) <- g(P), i.e. (qu~)c,, < Pu~. But (qu~)u~ = g(g(q)) = q. As 

q s U and U is increasing, Pu, ~ U. As p e U =~ [~ and Pu, ~ U, we would have 
~O(pu,, p) ~ Ue, which contradicts Definition 4.1 (c) again. 

To prove ((2) U =~ U = Ue, let q e U =~ U and suppose that q ~ Ue. Then, from 

(iii) of Definition 5.7, q v e U .  As U ~  U =  Op~v~opl[U], we would obtain 

~0(qu, q) e U, which is a contradiction. For  the opposite inclusion let q ~ Ue; then, 

from (iv) of  Definition 5.7, p -< cp(p, q) for all p ~ X. As U is an increasing set, 

cp(p, q) ~ U for all p e U, i.e., q ~ Op~vq~p~[U] = U =~ U. 
To prove ( ~ )  U = ~ ( ( V = ~ L % ) = ~ W ) = ( ( U = > V ) = ~ U e ) = ~ W ,  let q 

U =~ ((V =~ C~) =~ W) and suppose q r ((U =~ V) =~ U~) =~ W. Then there is 

p e (U =~ V) =~ L~ such that q~(p, q) q~ W. As p ~ (U =~ V) =~ U~, from Lemma 5.8, 

we have that g(p) ~} U =~ V. Then there exists p '  ~ U such that qffp', g(p)) r V. As 

g is an involution we can write g(g(~o(p',g(p)))) q~ V to obtain 

g(q)(p', g(p))) ~ V =~ U~ using again Lemma 5.8. As p '  e U and 

q e U = , ( ( V ~ U ~ ) = ~  W), ~o(p,q) e ( V = ~ U ~ ) = ~ W  and, as g(~o(p',g(p))) 
V ~ U~, we obtain ( . )  cp(g(~o(p', g(p))), q)(p', q)) ~ IV. Now, as q~(p, q) r W, 

P <- qw. As g is an involution g(qw) <- g(P). Then, using the fact that q~ is order- 
preserving in each variable, ~o(p', g(qw)) < ~o(p', g(p)). Then g(cp(p', g(p))) < 
g(q)(P', g(qw ))). Using (v) of  Definition 5.7. we obtain g(q~(p', g(p))) <_ (co(p', q))w. 
Now, as ~0((q~(p', q))w, ~o(p', q)) r W and ~0 is order-preserving in the first variable, 
(p(g(q~(p', g(p))), ~p(p', q)) r ~:  But this contradicts ( .) .  

For  the other inclusion let q ~( (U =~ V) =~ ~%) =~ W and suppose 

q q~ U =~ ((V ~ Ue) =~ W). Then there is p e U such that q)(p, q) r (V  =~ Ue) =~ W. 
Then, there is p '  s V =~ Ue such that q~(p', q~(p, q)) r W. As p'  ~ (q~(p, q))w and 

p ' ~  V ~  Ue, which is an increasing set, we have (q~(p,q))w=g(q~(p,g(qw)))e  
V ~ U~. Using Lemma 5.8. and the fact that g is an involution, we obtain 

~o(p,g(qw) ) (~ V. As p ~ U, g(qw) r Op~c, CPp~[V] = U=~ V. Then, from Lemma 
5.8, q w e ( U = ~  V) => U~. As q e ( ( U  =~ V) =~ Ue) =~ W a n d  q w e ( U  =~ V) =~ U~, 
we obtain q~(qw, q) ~ W, which is a contradiction. [] 
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Let Y be the category whose objects are f-spaces and whose morphisms are 
defined as follows: 

DEFINITION 5.10. f :  X--+X' is a morphism of{-spaces i f f f i s  a morphism of  
/L-spaces which also satisfies: 

f(g(p)) = g'( f(p))  for all p ~ X (,) 

(where, of course, g and g '  are the involutions introduced in Definition 5.7). 

T H E O R E M  5.11: Duality theorem for :-groups 
Consider the map F such that for each object A of.C, F(A) = II(A) and for each 

morphism f :  A--+A', F ( f )  : F(A')-+ F(A) is defined by r ( f ) ( P ' )  = f  l[p,] for all 
P ' e  F(A'). Then F is a duality between the category d and the category Y of  
(-spaces. Thus, by Proposition 5.3, there is a duality between f# and 2#. 

Proof. For each (-space X of 5e, let's consider the implicative lattice 
(X) = ( ~  (X), w, c~, ~ ) .  From Theorem 5.9 and Proposition 5.1 ~ (X) with 

Ue as the distinguished element is an object of d .  Let's consider again, as in 
Theorem 4.8, the function 3 : X---,IL(~ (X)) defined by 6(p) = {U ~ Y, (X) : 
p e U}. We already know that a is an isomorphism of  /L-spaces. Let's prove 
that 6 is also an isomorphism of :-spaces. To prove this we'll show that 6 and 6 - '  
are both morphisms of E-spaces. As 6 and 6-1 are morphisms of  IL-spaces, from 
Definition 5.10 it suffices to prove: (i) 6(g(q))= G(6(q)) for all q e X and (ii) 
6-1(G(Q)) =g(6 I(Q)) for all Q e IL(~  (X)). 

To prove (i) recall that G(6(q)) = (6(q))ue. Now U e 6(g(q)) iff g(q) ~ U. From 
Lemma 5.8 g(q) e U iff q 6 U ~ Ue; then U ~ 6(g(q)) iff u ~ ue r 6(q) iff 
g ~ (6(q))Ue. 

To prove (ii) let Q ~ IL(~  (X)); recall that 6 is a bijection function and take 
q , q ' e X  such that 6(q)= Q and 6(q')=G(Q). We have proved in (i) that 
6(g(q)) =G(Q).  Then q'=g(q) and we obtain 6 1(G(Q))=3 ~(6(q'))=q'= 
g(q) = g(6 1(6(q))) = g(6-1(Q)). 

At this point we have proved that X and F ( ~ ( X ) )  are isomorphic as 
(-spaces. It remains to prove that if A, A' are objects of  d ,  the function 
[A, A'] :  F [F(A'), F(A)]z: induced by the functor F is one-one and onto. From 
Theorem 4.8, we already know that if f and f '  are distinct morphisms, then 

r (  f ) =/= r (  f ').  
Now, let h : F(A') --+F(A) be a morphism of  (-spaces and consider the func- 

tion f :  A--+A' of Theorem 4.8, defined by the assignment x-+yx (where 
h-~[cr(x)] = cr'(yx) ). We already know that f is a morphism of implicative lattices 
such that F ( f )  = h. 
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Let's show that f ( e )  = e'. For this, we'll need the following: 

CLAIM. Let X and X' be E-spaces; if h : X ~ X '  is a morphism of  Y-spaces then 
h- ' [U~ , ]  = Ue. 

To prove this claim let p e h--~[Ur '] and suppose p ~ Ur From (i) of Definition 
5.7, Pc,~ E [~. From (ii) of the same definition, p < Pv~ or Pv~ -< P. As Ur is increasing, 
Pc,~ e Ur a n d p  r L~, we conclude p -<Pv~ = g(P). Asp  s h-l[U~,], h(p) E Ue,. From 
(i) and (ii) of Definition 5.7 (h(p))v~, = g'(h(p)) r b~,. As h is a morphism of  
E-spaces, from ( , )  of Definition 5.10, we obtain h(g(p)) r162 Then g(p) r h-~[L~,]. 
As p <-g(p) and h I[U~,] is an increasing set, we derive p Ch-L[b~,], which is a 
contradiction. 

For the other inclusion let p e Ue and Suppose p r h -  l[Ue' ]. AS p e Ue, Pv~ (~ Ue. 
As U~ is increasing, p ~ Pv~. From (ii) of Definition 5.7, Pv~ <- P, i.e., g(p) < p. As 
h(p) (~ U~,, (h(p))v~, = g'(h(p)) e U,,. As h is a morphism of f-spaces h(g(p)) E Ue'; 
then g(p) e h 1[U~,]. As g(p) <p  and h-l[U~,] is increasing, p s h-l[U~,], which is 
a contradiction. 

Using this claim for X = F(A') and X' = F(A) and recalling that E~ = o'(e) and 
U~,= a(e'), we can write o"(y~)=h-l[cr(e)] =h-~[Ue] = Ue, =a ' (e ' ) .  As a '  is a 
bijection, y~ = f ( e )  = e'. 

F 
Thus, we have proved t h a t f  e [A, A']j  ; since F ( f )  = h, the function [A, A']j  

[F(A'), F(A)]ao induced by the functor F is onto. This ends our proof. [] 

The dual space is especially well behaved in the abelian case. 

DEFINITION 5.12. Let X =  (X,  ~, <,Pm,PM, ~o) be an /L-space. We'll say 
that X is an abelian #-space, iff X satisfies: 

(i) There is one and only one proper compact and open subset U ___ X such 
that p e U iff Pv ~ U. We call it ~ .  

(ii) The function g : (X, -<) ~ (X ,  < ) defined by g(p) =p<. is an involution 
satisfying g(p) <- p or p <- g(p) for all p E X. 

(iii) If p ~ ~ ,  then Pv s U for all proper compact and open subsets U _c X. 
(iv) If p ~ Ue, q < q~(q, p) for all q ~ X. 
(v) q~ is associative and commutative. 

(vi) q~(g(~o(p, q)), q) < g(p). 

Note that conditions (i)-(iv) are the same of Definition 5,7; from (v) and the 
fact that q~ is continuous and order-preserving in each variable, it follows that 
abelian f-spaces are compact, ordered, abelian, topological semigroups. 
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P R O P O S I T I O N  5.13. Let  A be an object o f  da .  Then IL(A) /s an abelian 
-space. 

Proof. As IL(A) is an Y-space, ( i ) - ( iv )  are verified. To prove (v) it suffices to 
show that A satisfies both (a) x -< (x'-" -~) ~ y  and (b) x ~ ( y  ~ z )  = y  --,(x ~ z )  of  
Proposition 4.9. 

As (x - , y )  - y  = (x -~y)  -~y = ( y - ~ x ) y  and from commutativity y - ~ x  = xy  -~, 
we obtain (x ~ y )  ~ y  = x; this proves (a); (b) also follows from the commutativity 
by the equalities x ~ ( y  --,z) = x l ( y - l z )  = y - ~ ( x - ~ z )  = y  ~ ( x  ~ z ) .  

To prove (vi) ~(G(cb(P, Q)), Q) c G(P), let y ~ 4,(G(eb(P, Q)), Q) and suppose 
y r G(P) = Pe; then y ~ e  E P. Let x ~ G(cb(P, Q)) such that x -~y  e Q. As A is 

abelian, x ~ y = x - ly = yx  - ~ = ( y  -~ e) ~ (x ~ e). Then (y  ~ e) ~ (x ~ e) e Q. 
As x ~ G(q~(P, Q)) = (q~(P, Q))e, X --~ e q~ ~(P,  Q). But y ~ e e P and (y  ~ e) 
(x ~ e) ~ Q; then x ~ e ~ ~(P, Q), which is a contradiction. [] 

T H E O R E M  5.14. Let X = (X ,  ~, < ,pm,PM,  q)) be an abelian Y-space. Then the 
implicative lattice o f  X, ~ ( X ) =  ( ~  (X), w, n ,  =>) with U~ as the distinguished 

element, satisfies (~i), (E2), (E'3) and (E'4) o f  Proposition 5.2. 

Proof. Conditions (f l )  and (f2) follow as in Theorem 5.7. (To prove these 
conditions only (i) - ( iv )  of  Definition 5.7 were used and we also have (i) - ( iv )  in the 
definition of  abelian f-spaces.) (f~) follows from (v) of  Definition 5.12 and from 

Proposition 4.9. Let's prove (E'4) (V  =~ Ue) =~ (U => Ue) = U =*" V. 

Let q ~ (V  =, Ue) ~ (U ~ Ue) and suppose q r U ~ V =  Op~u~Opl[V]; then 
there is p ~ U such that cp(p, q) ~ V. Then, from Lemma 5.8, g(cp(p, q)) ~ V =~ Ue. 

As q ~ (V ~ Ue) =~ (U =~ Ue) and g(q~(p, q)) ~ V =~ Ue, ~o(g(~o(p, q)), q) ~ U ~ U~. 
From (vi) of Definition 5.10 and the fact that U =~ Ue is an increasing set, we 
obtain g(p) ~ U =~ Ue. AS p ~ U, ~o(p, g(p))  ~ Ue. But q) is commutative; then 

q~(g(p),p) ~ Ue. AS g(p) =P~:e we derive q)(Pve,P) ~ Ue, which is a contradiction. 
For the other inclusion, let q ~ U =:, V and suppose that q r  =~ Ue)=~ 

(U ~ Ue), then there is p ~ V => Ue such that ~o(p, q) r U ~ Ue; from Lemma 5.8 
g(q)(p,q)) ~ U. As q ~ U =* V =  Op~vq)p l [V] ,  we obtain q)(g(q)(p,q)), q) ~ V. 
From (vi) of  Definition 5.12, and the fact that V is an increasing set, g(p) ~ V. As 

p ~ V=>Ue and g(p) ~ V, we obtain q)(g(p),p) ~ Ue. But g(p) =PVe' then 
q)(Pu~, P) ~ Ue, which is a contradiction. [] 

Let's now consider the category ~q~ of abelian E-spaces, whose objects are the 
abelian f-spaces and whose morphisms are the morphisms of  /L-spaces which 
satisfy ( . )  of  Definition 5.10. It can be derived, with the same arguments used in 
Theorem 5.11, the following: 
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THEOREM 5.15: Duality theorem for abelian f-groups 
Let F be the map such that for each object A of Ja,  F(A) = IL(A) and for each 

morphism f : A ~ A ' ,  F ( f  ) : F(A') -',F(A) is defined by F ( f  )(P') =f - i [p , ] .  Then F 
is a duality between the category J a  and the category of abelian f-spaces. By 
Proposition 5.4, there is a duality between ~ga and 5Ca. 

In fact, for each abelian f-space X, we have by Theorem 5.14 that ~ (X) is an 
object of ~a;  thus, defining 6 as in Theorem 5.11, as 6 is a morphism of abelian 
f-spaces, it foUows that X and F ( ~  (X)) are isomorphic as abelian E-spaces. 
Finally, the fact that the function [A, A']j a F [F(A'), F(A)]~a induced by the 
functor F is one-one and onto follows exactly as in Theorem 5.11. [] 
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