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GENERALIZATION OF THE PALEY-WIENER THEOREM IN WEIGHTED SPACES 

V. I. Lutsenko and R. S. Yslmukhametov 

i. Introduction 

Let X be a linear topological space of complex functions defined on some subset T c 
Rn (C"), and assume that a system of functions e <t,z>, z e ~, is complete in this space. 
Then the generalized Laplace ~ransform, which takes a linear continuous functional S on X 
to a function ~(z) = (S, exp(<t, x>)), z ~ ~, establishes an isomorphism between the ad- 
joint space X* and a linear topological space of functions defined on ~. 

Many mathematicians have devoted their work to the problem of describing the adjoint 
space in terms of generalized Laplace transform. For example in [i] the projective limit 
of weighted Banach spaces of the form 

{ / ~  ti (D): II / II = sup [[ ] (z) [ /exp (--~ ( - - ln  d (z)))] < ~ }  
2 

was considered, where D is a convex, bounded region in C", d(z) is the distance from a 
point z to aD and ~ is a convex function, and a complete description was given of the ad- 
joint space in terms of the generalized Laplace transform. In [3, 4] some generalization 
of the Paley-Wiener theorem for weighted Hilbert spaces. 

The present article is devoted to the problem of describing adjoint spaces in terms 
of the Laplace transform on the space 

L=(l,W) = { /~L,o~ (1): III IIc,c~,w) = '  aef f~, I/(t)l,/W(t)dt < ~ }  , 

where I is a bounded interval on the real axis and i/W(t) is a measurable function on I. 

THEOREM i. Let W(t) be a function on I bounded from below by a positive constant and 
bounded from above on each compact subinterval of I. Let h(x) = sup (xt--ln ]/W(t))- Young's 

conjugate function of the function In [W(t), and define p~(x) by the condition 

,x+p~(x) 
~-o,(x) [~  (x) - -  h' (t) ] dt --~ t .  

Then 

i. The generalized Laplace transform ~(z) of the functional S on L2(I, W) is an entire 
function satisfying the condition [~[(z)[ < C S exp (h(x)), 

II ~' I1" = ~. ~. [ ~' (x + iy)I S e -~(~) p~ (x) dE' (x) dy -~ ~e II S II~,(l,w). 
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, 

(=e)-' II S Ilu(~,w) < II S II < ue II S Ik, u,w) 

hold. Furthermore, in this case the converse is also true: if F(z) 
of exponential type satisfying the condition IF(z)l < C F exp (h(x)), 

~nIn IF (x + iy)j2 e-21~(~)p~ (x) d~' (x) dy ~ ~ ,  

If inW(x) is a convex function, then the lower and upper bound 

(i) 

is an entire function 
z = x + iF, 

then there exists a function S on L2(I, W) such that 

(z)=-F(z) ,  z~_C. 

3. If W(x) = exp(zt)d~(t), where ~(t) is a nonnegative measure on R, then llSll2.,(x.w) ~ 

I.I. l (x + iY) 12d (x)dy. 

Remark. Proofs of these assertions were obtained by the first author. The formula- 
tion of the problem and idea of some arguments used here belongs to the second author. 

2. Preparatory Results 

Let u(x) be a convex function on R and u(x) ~ cx + d. Define a function Pu(X) on R 

by the identity [ ~+pu(~) ~-Pu (=) lu'(t) -- u'(x)Idt ~ I or by the equality u(x + Pu(X)) + u(x - 

Pu(X)) - 2u(x) ~ i. By the continuity of the function u(x) and the second identity we see 
that the function Pu(X) is uniquely defined. The function satisfies the equality 

I[ ~'(;) (u' (x + t) - -  u' (x - -  t)) dt ~ 1. 

LEMMA i. The function Pu(X) has the following properties: 

i) IPu(X) - Pu(Y) l < I x - Yl for any x, y &R; 

2) Pu(X) ~ y + Pu(Y) + Pu(Y + Pu(Y)) - x, if y ~ x ~ y + Pu(Y), 

Pu(Y - Pu(Y)), if y - Pu(Y) ~ x < y; 

_ ~ u'Fpu(y) 
3) i < Pu(X)du'(x) _< 4. 

,.~tl--pu{|l) 

Proof of Lemma i. We prove Assertion i). Let x ~ (y, y + p(y)), p(y)deJpu(y). 
the function u' (x) is nondecreasing and x + t ~ y + (t - x + y), we have the estimate 

~x-Fp(I~)- u 
~=+P(Y)-'  (u' (x  + t) - -  u'  (x  - -  t)) dt > (u: (y + (t - -  x + y))  - -  u'  (y  - -  (t - -  x + y)))  d t .  
~0  " X - - t l  

Hence 

eP(V) 
[p(u)-u (u' (x  + t) - -  u'  (x  - -  t)) dt  / >  ~o (u' ( y  + ~) - -  u'  (g - -  ~)) dT = t .  
~0 

pu(X) ~ x - y + Pu(Y) + 

S i n c e  

From this and the definition of p(x) it follows that x + p(y) - y ~ p(x) or p(x) - p(y) 
I x - YI" Similarly from the inequality 

~u+P (lJ)--x cu+P (~)--x 
(u' (x + t) - -  u' (x - -  t)) dt ~ 3 o  ( u ' ( y + ( x + t - - y ) ) - - u ' ( y - - ( x + t - - y ) ) ) d t  

we have the estimate p(y) -- p(x) ~ Ix -- y . By the same proof, if x ~ x g y + p(y), we 
have the inequality I p(x) - P(Y) I g x - y . By the symmetry of the definition of p(x) 
this inequality also holds for y ~ x ~ y - p(y). Thus Assertion i) holds for arbitrary 
y ~ R .  
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Let us prove the first inequality in 2). Introduce the notations a = y - p(y), b = 
y + p(y), by the definition of the function p(x), the inequality to be prov~.d follows from 
the inequality 

fb+~(b)--~ (U' (X + t) - -  U' (X - -  t)) tit >~ 1, 
0 

which in turn follows from the estimate 

r [b+a(b)--x (u '  (b + (x + t - -  b)) - -  u '  (x - -  t))) dt >t/ jo+a(b)--X(u' (x -}- t ) - - u '  ( x - - t ) ) d t  ~ Vb--x 
pb l-p ( b )-- x 

/> ~b-= (u' (b + (z + t - -  b)) - -  u '  (b - -  (x + t - -  b)))dt ----- I . 

The second inequality in 2) can be proved similarly. 

We now prove the lower estimate of the integral in 3) 

de f  e~,+P(u) , r y [,II-l-P (I0 
A = ~.-o(~) p (z) du (z) = - ~u-o (.) p (z) du '  (z) + ~ p (x) du '  (z). 

From i), which we have proved, we have the estimate p(x) ~ b - x if y ~ x ~ b and p(x) 
x - a if y ~ x ~ a. From this we have the relation 

I b r (x - -  a) du' (x) _c_ (b - -  x) du' (x) 

o r  

Integrating by parts on the two integrals~ 

A > ~' 
-:/--o(u) 

We now prove the upper estimate of the integral A. 
have 

we obtain from the definition of p(x) 

"~P('~) (u '  ( x )  - -  u '  ( y ) )  d z  = t .  (u ' ( y ) - -u ' ( z ) )dx  + I~, 

We use the relations in 2). 

f I:' [~ ( x -  b p (b)) d (u' (x) - -  u' (y)). A ..-~ - -  ,~ ( z  - -  a + p (a ) )  d (u'  ( y )  - -  u '  (x) )  - -  ~~, 

We 

Integration by parts gives the estimate 

A ~ P (a) [u '  (y) - -  u '  (a)] + 9 (b) [u '  (b) - -  u '  (y)] § .,,_p(,,) I u '  (y) - -  u '  (z) l dx = ( 2 )  

= p (a) [u'  (y) - -  u '  (a)] + p (b) [u '  (b) - -  u '  (y) ] -§  1. 

Let us estimate the first suanmand on the right side of the last inequality: 

I :  a~(u,~+o(a)) ~+p(,) 
p ( a ) [ u ' ( y ) - - u ' ( a ) ]  < [ u ' ( y ) - - u ' ( a ) ] d x  + oma,o,,~+o<~))[u'(y)__u'(a)]dx. 

S i n c e  i f  x e [max ( y .  a + p (a)), a + p (a ) ] ,  u ' ( x )  ~ u ' ( y ) ,  we h a v e  

p(a)[u'@-.'(a)] < I ~ ( ~ ' ~ 1 7 6  +,  

+ ( u ' ( x ) - - u ' ( a ) ) d x  + ~ma~(~,,+o(~))(u ( x ) - - u ' ( a ) ) d x .  

The  sum o f  t h e  l a s t  two  i n t e g r a l s  i n  t h i s  i n e q u a l i t y  d o e s  n o t  e x c e e d  1 by  t h e  d e f i n i t i o n  
o f  p(  a ) .  On t h e  o t h e r  h a n d ,  i f  x �9 [ y ,  max ( y ,  a -~ p ( a ) ) ] ,  t h e  f u n c t i o n  t o  be  i n t e g r a t e d  
in the first integral is nonpositive. Therefore, we have the estimate 

0 (a) [.' (y) -- .' (a)] < I + ~[ (u' (y) - u' (x)) d= 
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Similarly, we can obtain an estimate for the second summand in (2) 

p (b) [u' (b) -- u' (Y)] / I § (u' (x) -- u' (y)) dx. 

From the last two inequalities and (2) and the definition of p(y) we obtain the de- 
sired inequality A ~ 4. 

LEMMA 2. Let u(x) be a convex function defined on R, u(x) ~ cx + d, u(t) is Young's 
conjugate function of u(x). Then for t such that u(t) < ~, we have the inequality 

e -~<  exp (-- 2ff ( t ) ) f : :  exp (2tx -- 2u (x))p (x)du' (x) < 2 e2. 

Proof of Lemma 2. Without loss of generality we may assume that t is an exterior 
point of the integral on which u(t) < =. Then we can find at least one point x 0 satisfying 

the equality u(t) = tx 0 - u(x0). 

By the choice of the point t the equation zt - u(z) - u(t) = -n for any n > 0 has 

exactly two solutions z = x n and z = X_n, and X_n. z < x. n < x 0 < x n < Xn+ I. By the defin- 

ition of the sequence Xn, n > 0, we have the equality 

*~ ( u ' ( x ) - - t ) d x = i  (n = 1 , 2  . . . .  ). 

Le t  Xn* = (x n + Xn+l ) /2 .  Because  f o r  n > O, u ' ( x  n) ~ t ,  we have 

T~+I ~n+l 

1 "  ~%+~ ~ ' ' * ~ (u' ( x * ) -  u' {x.O) dz. , ,  ( u ' ( x ) - - t ) d x > ~ ,  . -I  ( u  (x )  - -  u ( z . ) )  d z  + ~ , 
xn x n x n  

Using the definition of P(Xn*) and the monotonicity of u'(x), we obtain the inequality 

> Sx: " (., + S ( .  
x n x n 

From this and the definition of P(Xn*) we have 

p (z~') ~ z ~  - -  z , ,  = x . §  - -  zL 

C o n s e q u e n t l y ,  by the  a s s e r t i o n  o f  3) o f  Lemma 1 we have t h e  e s t i m a t e  

i 
~ n + l  

= 9 (x) du' (x) < 4. 

On t h e  i n t e r v a l  (x n,  Xn+ 1) t he  f u n c t i o n  t x  - u ( x )  - / , ( t )  does  n o t  exceed  - n .  Thus t h e  
inequality 

l :~exp(2tx--2u(x)--2~(t))p(x)du'(x)  < 4  Z L o e x p ( - - 2 n ) ~ <  + e '  

holds. 

Similarly we obtain the estimate 

8 

Therefore, the right inequality in Lemma 2 is proved. 

We now prove the lower estimate 

s?, S2', ~+~exp(2tx_ff( t)_u(x))p(x)du'(x ) ~ exp(2tz--ff(t)--u(x))p(x)du'(x) >/e -~" p(x) du'(x). (3) 
~ - - o o  

Suppose that x I - x 0 ~ x 0 -- x_ z and x' = x 0 - (x z - x0). Then by the definitions of the 
points x I and x' we have the inequality 

I ~ .  (u' (x) - -  t) dx " (t - -  u' (x)) dx 
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or 

~ A .  ~ 

By the same token, from the definition of 0(x 0) we have 0(x 0) ~ x I - x 0 = x 0 - x' _< x 0 
From this and (3) we have the inequality 

Xo+P(xo) 
"~+~ exp (2tx - -  ~ (t) - -  u (x)) p (x) du" (x) ~"~ e-2~ ~ p (x) du'(x), 

_ ~ a ' , - - p ( x , )  

which together with the assertion of 3) of Len~na i gives the desired lower estimate. 

-- X. 1 �9 

3. Proof of Theorem i. Let us prove the first assertion of Theorem i. Let S be a func- 

tional on L2(I, W), generated by the function f e L2(I, W):~(z) = I1/(t) exp(zt)/W(t)dt. 

The analyticity of ~(z) on C follows from the Paley-Wiener theorem, since ~(z) is the class- 
ical Fourier transform of the function f (t)/W(t). From the Cauchy-Bunyakovski inequality 
we have [~(z)] < NflIL2(I,W ) exp(h(x))~il i. By the elancherel-earseval formula 

~ : :  [ S(x + iy) I ~ dy = 2g~i [/(t)[~ exp (2xt)/W 2 (t) dr. 

From this we obtain the inequality 

I[ S' [[2 d e f f : :  ~_r (x + iy)I' exp (--2h'(x)) 9~ (x)dy dl? (x)= 2n $1 I] (t)]=/W' (t) ~_:  exp (2xt--  2h (x))p~ (x)d'/z' (x)dr. (z*) 

From this, by applying the assertion of Lemma 2 to the function u(x) = 2h(x) and the point 
2t, we have the estimate 

[l (~e)" 1"i I/(t)I = exp (2~(t))/W (t) dt, I[ = 

where ~(t) is Young's conjugate function of h(x). Since ~(t) ~ in ]/W(t), the last inequal- 
ity gives Assertion i) of Theorem i. 

We turn to the proof of the second assertion of the theorem. If inW(t) is a convex 
function, then ~(t) ~ in~~W(t). Therefore, Ineq. (I) follows from Eq. (4) and Lemma 2 
applied to the function 2h(x) and the point 2t. 

Suppose now that F(z) is an entire function of exponential type and satisfying the 
conditions of Theorem I. From the convergence of the integral 

I + ( -  

we see that there exists a pont x 0 such that 

By the Paley-Wiener theorem [2] and the uniform estimate on IF(z)[ we can find a function 
g(t) e L2(1) such that 

F (x o -t iy) = Ii g (t) exp [(x o + iy) t] dt. 

def 
The function F1(x + iy) =~ig(t) exp [(x 0 + iy)t]dt is an entire function and F1(x 0 + iy) =-- 

F(x 0 + iy) Vy~R,; therefore F(z) = Ilg(t) exp(zt)dt. Let f(t) = g(t)W(t). Then 

F (z) -~ I~ / (ti exp (zt)/W (t) dr, 

and it remains to be shown that f(t) E L2(I, W). By the Plancherel-Parserval formula 
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therefore 

I ~ :  ! : : [  F (x § iy)]z exp (--:2~ (x))p~ (x)dy d~' (x)= 2~ fl [] (t)]2/WZ (t).I: ~ exp (2xt -  2~ (x))p~ (x)d~' (x)dt. 

From this and the lower estimate in Lemma 2 we have 

I, li( )j /w < f S . . . . .  ] F (.r + iy)I: exp (--  2~ (x)) 9~ 60 dy d~' (x). 

This proves the second assertion. 

The third assertion follows from Eq. (4), in which we should let exp (-2h(x))p~(x)) x 

dh'(x) = d~(x). The proof of Theorem 1 is completed. 

In conclusion the authors express their deep appreciation to V. V. Napalkov for his 
attention to this work and useful discussions. 
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COMPLETENESS OF A SYSTEM OF EXPONENTIALS ON THE HALFLINE 

A. M. Sedletskii 

I. The problem of determination of conditions for the completeness of the systems of 
exponentials 

(exp (--  X.t)),,~_-1, Re i .  > O, ( 1 ) 

in  t h e  spaces  LP = LP(O, ~) ( I  ~ p < | i s  e q u i v a l e n t  to  t h e  c l a s s i c a l  H~ntz-Szasz problem 
of determination of conditions for the completeness of the systems of powers (x~n)n=1 ~, 
Rein > -i/p, in the spaces LP(0, i) [under the substitution x-= exp(-t)]. By the Szasz 
theorem [I] (see also [2, p. 283]), the criterion for the completeness of system (I) in L 2 
is that 

Z.) / ( i  + I .I = ( 2 )  

For the completeness of system (I) in LP, condition (2) is sufficient for p ~ 2 and is 
necessary for 1 ~ p ~ 2 [3]. This proposition reverts if 

f~ (i + y2)-~logdist(iy, A)dy .~ - -~ ,  A = (Xn) 

[4,  5 ] ,  and t h e n ,  c o n s e q u e n t l y ,  sys t em (1)  i s  e i t h e r  comple t e  in  a l l  t h e  space  LP, 1 ~ p < 
~, or incomplete in all of them. In this situation we say that the property of completeness 
of system (i) in LP does not divide the exponents p ~ [i, =). However, for an arbitrary 
disposition of the points %n in the right halfplane, conditions (2) is not sufficient for 
the completeness of system (i) in LP, 1 ~ p < 2 [3, 6]. The search for sufficient cond- 
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