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Abstract. The implications of flexible appendages on the attitude dynamics of a space vehicle are 
examined in general terms. Two families of natural vibration modes, referred to as 'constrained' and 
'unconstrained', are discussed and the relationships between them derived. The incorporation of 
either set of modes into a simulation of the general attitude motion (under the influence of perturbing 
torques and control torques) is explained. The influence of rotors on these results is also explored. 

1. Introduction 

The importance of structural flexibility in the attitude stability and control of space- 
craft has been recognized since the earliest actificial earth satellites. Typically, the 
spacecraft consists of a 'main body', B, and one or more flexible appendages, A. As 
space hardware has become more sophisticated, the geometrical detail of the appen- 
dages has become more complex. And, as attitude control system design has evolved 
from entirely 'passive' to entirely 'active', the emphasis has shifted accordingly from 
the influence of flexibility on stability to its significance for control system performance. 
Specific examples have been documented by NASA (1969) and Likins and Bouvier 
(1971). 

For many purposes the extra degrees of freedom attributable to structural deflections 
may be considered under two headings: excitations of external origin, and excitations 
of internal origin. There are instances in which the former are of great importance; 
however the discussion below will deal with only the latter. The aim of the following 
development is to present the flexibility/control-system interaction in a quite general 
way. As will become apparent, there are certain relationships which govern this 
interaction and which are independent both of the geometrical details of the structure 
and of the techniques employed by the analyst. 

Thus in the ensuing discussion the distributions of mass and elasticity throughout 
the vehicle are specified in a general way. Referring to Figure 1 (for the present ignoring 
the modal comments at the base of the figure), let r represent the components of the 
position vector as expressed in the main-body-fixed frame. Then the mass density 
of a volume element dr, at r, can be specified by a scalar function: 

mass density distribution: a (r) (1) 

where r r = ( r l ,  r2, r3). Thus, for example, the mass of all the appendages is found 
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from 

mA = f a( r )dv .  
A 

(2) 

Next, specify the elasticity distribution by a matrix function: 

elasticity distribution: F (r, rl) (3) 

which gives the deflection at r due to a unit force at rl. Thus all the flexibility properties 
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of the spacecraft are implied by F. In particular, for a force/volume distribution f(rl ), 
the distribution of elastic displacement, 6 (r), is given by 

6(r)= f F(r, rl)f(rl)dv'.  (4) 
A 

The function F has two important properties, namely 

(r r) = V (r, r , )  

F T (r, r 1) = F (r, r 1).  

(5) 

(6) 

The integral equation approach to structural analysis used here is convenient 
because it specifies the linear elastic properties in a general manner, Bolotin (1964). 
At the same time, details relating to boundary conditions, etc., which are explicitly 
specified in a differential formulation, are automatically incorporated in F. 

It is emphasized that the results below are quite independent of the formulation 
used to cope with elasticity. Thus, although equations such as Equation (4) imply 
continuous distributions of force and displacement, completely analogous relations 
exist for a discretizing procedure, such as the method of finite elements; see, for 
example, Zienkiewicz (1971). The operation ~a ( . ) d r '  is simply replaced by a arith- 
metic sum which has a quite similar appearance if written in matrix notation. 

2. Motion Equations 

The character of the generality sought relates to a general specification of mass and 
elasticity properties, as by Equations (1) and (3); no attempt is made to represent all 
conceivable spacecraft subject to the totality of possible torques. The class of vehicle 
for which the results below are applicable is the non-spinning, three-axes-controlled 
class. Two other assumptions are made, viz., that the period of all natural structural 
vibrations is much shorter than the orbital period, and that motions of the vehicle 
centre-of-mass and attitude motions are uncoupled. The latter assumption is valid if 
certain geometrical properties are present, and is often satisfied in practice. The former 
assumption allows the local orbiting reference frame to be taken as inertial in the 
appendage motion equations. In any case, either assumption can be relaxed without 
difficulty and the additional terms carried in the equations to follow. 

Considering first the appendage motion, the force distribution f(r , t )  is due to 
'inertial forces': 

f(r, t) = -  a (r) {6 (r, t ) -  rX0} (7) 

w h e r e  0 T = ( 0 1 ,  02 ,  03) are the three rotations of the main body with respect to the 
reference axes, and it is noted that 0 is of first order smallness (as is ~i) in all of the 
following. The notation 
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0 - - r  3 r_~7. ) 
r x = r 3 0 1 

r 2 r I 

(8) 

has been adopted because of its kinship to the vector cross-product. The equation 
governing the flexible motions of the appendage(s) is then obtained by inserting 
Equation (7) in Equation (4): 

~i(r, t) + I F(r,  ra) {g(rl, t ) -  r~O} a ( r l ) d r '  = 0 .  (9) 

A 

Several remarks are appropriate in connection with Equations (7) and (9). A basic 
assumption is that the origin in Figure 1 is essentially an inertially fixed point. This 
is justified in the following stages. First, the attitude motion of the spacecraft is 
assumed to be uncoupled from its orbital (translational) motion. This assumption is 
an extremely good one, especially for actively controlled vehicles. A recent examina- 
tion of this question for uncontrolled (natural) motions has been given in this journal 
by Mohan et al. (1972). 

There remains the force fields associated with gravity-gradient and other environ- 
mental sources. For normal active attitude control systems however, these fields 
may be taken as quasi-steady. This latter assumption is perhaps more easily under- 
stood in the frequency domain, where the significant frequency content of these 
external influences are only at the extreme lower end of the controller pass-band. 
The structural frequencies are, if anything, even higher. Therefore any external 
force field as may be present leads to a quasi-steady deflection in the flexible appen- 
dages. The latter may be superimposed on the dynamic deflections considered below 
since we are dealing with a linearized analysis. Consistent with this framework, 
the analysis to follow assumes that the control torques are generated entirely on the 
rigid part of the spacecraft. If, for example, a gas jet was located out on one of the 
appendages, other terms would be required in (7) and (9). 

A further clarification of (7) and (9) can be made by an amplification of the 
statement made earlier that the motions of the vehicle center of mass are assumed to 
be uncoupled from attitude motions. Whether this assumption is tenable or not 
depends on the existence of certain symmetry properties for the vehicle. Many 
spacecraft are members of this class; many others are not. Since this paper is focussed 
on other aspects of the dynamics, we shall avail ourselves of this simplifying restriction 
on spacecraft configuration. Taken alongside the earlier assumptions, it allows us 
to treat the vehicle center of mass as an inertially fixed point. If this assumption were 
removed, as indeed it must be for many vehicles, then several other terms would 
appear in (7) and (9). An exposition of this more general case has been given by 
Likins (1970). 

As a final comment on Equations (7) and (9), the absence of damping terms should 
be explained. Dissipative influences are usually treated somewhat heuristically, 
despite their importance. Thus, a linear rate-dependent damping term, 0, is frequently 
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inserted in the equations of motion although it is well known that structural dissipa- 
tion does not obey such a law over a significant frequency band. Therefore such terms 
can as well be inserted at a later stage, specifically, in the modal equations to be 

derived presently. 
Turning next to the spacecraft as a whole, the angular momentum, to first order in 

small quantities, is given by 

h--- f  XrX ,r,d O+f 
A + B  A 

r*6 (r, l) a (r) dr. (1o) 

The inertia matrices 

Ic = - f rXr~a (r) dv (C = A, B, A + B) (11) 
C 

are now introduced, whence 

h=10+ j" 
A 

rX6 (r, t) a (r) dv (12) 

and IA+B is written I for simplicity. The motion equation is then found from 

l~ + 0Xh = T (t) (13) 

wherein the external torques (including control torques) appear on the right side. 
Noting the the second term on the left side is of second order (and is dropped) the 
result is obtained: 

I0 + f rX6 (r, t) a (r) dv = T (t). (14) 

A 

Certain solutions of these equations are now examined. 

3. Natural M o t i o n s -  Constrained 

If no external influences are present (T=0)  the motion may be termed 'natural. 
Such motions are evidently of interest in themselves, but they take on added distinc- 
tion inasmuch as the general motion may be viewed as a superposition of natural 
motions wherein the contributions of the latter to the former vary in time. This 
approach (i.e., natural modes) is mathematically sound and highly successful because, 
in practice, an acceptable accuracy can be achieved with only the first few modes. 

Often the 'natural' motions are constrained to be those of the appendages when no 
main body attitude motion is allowed. 
case 

This is depicted in Figure 2. Since in this 

0 (t) =_ 0 (15) 
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by hypothesis, the spacecraft motion equation, (14), is not needed and only the appen- 
dage motion equation, (9), is used. It is well known that the resulting motion is 
sinusoidal, 

(r, t) = A n (r) cos f2nt (16) 
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Fig. 2. Illustration of constrained modes. 

and that the nth mode shape, A n (r), and frequency, f~., 
value problem; in the present case, the problem is 

are the solution of an eigen- 

f A n (r)  = ~Q2 F (r, r l )  A. 
A 

(r l) ~ (r,) d~'. (17) 
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These mode shapes are orthogonal. The proof follows well-trodden paths and is 
omitted for brevity; Equations (5) and (6) are summoned during the proof and the 
outcome is 

f an r (r) A m 

A 

(r) ~ (r )  dv = 0 (Qn ~- I2=). (18) 

The modes are therefore specified to within a constant multiplier. A unique definition 
is secured by selecting a normality condition. The one chosen here is 

f A  r An ~ (r) Ia (r) (r) dv 

A 

where I a is characteristic of the appendages, and has 
moment of inertia. 

This section is concluded by the observation that 

(19) 

dimensions corresponding to 

0t3 

F (r, r l) = Am (r) Am T (r t) 
ia~22m (20) 

m = l  

expressing the flexibility kernel in terms of the constrained natural modes. 

4. Natural M o t i o n s -  Unconstrained 

If the spacecraft as a whole is allowed to oscillate, Equation (15) no longer applies 
and only external influences are prohibited: 

T(t)  = 0. (21) 

The situation corresponds to Figure 1. In addition to Equation (9), the motion equa- 
tion for the spacecraft, (14), is also needed. The solution is constructed from 

5 (r, t) = 6. (r) cos cont 

0 (t) -- 0n c o s  COnt 
(22) 

which, when inserted, generates the following eigenvalue problem: 

2f ,5,, (r) - ~,, F (r, r~) ~i,, (r ,)  o" (r , )  dr' = 

A 

I0n = a. 

2 f  x - o9,, F (r, r~) rio" (r~) dr' 0,, 

A 

(24) 

where the definition 

a n ~ f rX , 
A 

(r) o (r) dv (25) 
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is convenient. The solution may be expressed in terms of an auxiliary matrix function 
X (r, 092) defined as the solution to the integral equation: 

Then 

X (r; co 2) - o92 f 

A 

F( r ,  r l ) X ( r l ;  CO2) 6 ( r l )  dr '  -- 

m 
m CO2 ( F (r, rl) r~a(r~) dr'. 

I 0  

A 

~. (r) = Xn (r) o. 

where the notation X n (r) =X (r" 2 ,COn) has been adopted. 
Placing Equation (27) in Equation (25), Equation (24) becomes 

[I + B (co#)] 0n = 0 
where 

P 

B (co ~) = | rxx (r; ~o ~) ~ (r) Ov. 
A 

This shows that the natural frequencies are the zeros of the equation 

d (co2) _ det [I + B (co2)3 = 0 

and the participation of the main body in the nth mode, O n, is also 
Equation (28). The mode shape is finally obtained from Equation (27). 

By using customary procedures the orthogonality condition 

f f i r  (r) tim (r) (r) dv = 0Tl0m (CO n -7/: COrn) O" 

A 

may be verified. It may be also expressed in the equivalent form 

f [8. (r) - rXOn] r [tim (r) - rXOm] o" ( r )  dv  -- 0 (COn -~ COrn) 

(26) 

(27) 

(28) 

(29) 

(30) 

obtained from 

(31) 

(32) 
A + B  

in which its role as an orthogonality condition is more clearly seen (~=0 over B). 
The modes are rendered unique by the aid of the normality condition 

I _ ~r (r) ~n (r) a (r) dv = Ia (33) 
a 

where Ia is a moment of inertia characteristic of the appendages. This latter condition 
also may be expressed in an equivalent form: 

.f. [~n (r) - rXOn] T [~n (r) -- rXOn] cr (r) dv = I a - 0 T l 0 n  . (34) 
A + B  
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This section is concluded by noting that 
OO 

F (r, ra) - V [~m (r) -- r~Om] [~m (r~) - r ~ O m ]  T 

2 ([a Umlu)~T'ttm" ( 3 5 )  La 0.) m 
m = l  

which is interesting to compare with Equation (20). 

5. Natural Frequencies 

Natural frequencies of both the constrained and unconstrained modes were defined 
above. They were denoted f2, and o9,, respectively, and the corresponding eigenvalue 
problems formulated. Certain relationships between these frequencies exist and these 
are now derived. First, expand r ~ in terms of constrained modes, 

CO 

rX = Z Am (r) b~ 
m = l  

(r~A) (36) 

where, using Equations (18) and (19), the constants bn can be calculated flom 

b. = Ia rxAn (r) a (r) dv. (37) 

A 

Next, expand X also in terms of constrained modes 

O0 

T X (r; o9 2) -- ~ Am (r) C m (0.) 2 )  

m = l  
(38) 

and substitute both Equations (36) and (38) into Equation (26). After calling upon 
the definition of Am, Equation (17), and the orthogonality and normality conditions, 
Equations (18) and (19), c, is found in terms of b,, 

) Cn --" __ b n . 
09 2 

A more explicit form for B(o) 2) is now facilitated. If Equations (36) 
inserted into the definition of B, Equation (29), there follows: 

(39) 

and (38) are 

B T ___ 

m 

- f XrrXa (r) dv = 

A 
o0 

m = l  k = l  A 

m = l  

(40) 
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Since the last expression is clearly a symmetric matrix, it is also an expression for B. 
It is now plain that  the determinant  in Equat ion (30), whose zeros are the (uncon- 
s t r a i n e d )  n a t u r a l  f r e q u e n c i e s ,  w i l l  h a v e  t h e  g e n e r a l  c h a r a c t e r  
where 

~21 ~< col ~< ~22 ~< co2 ~< "'" ~< Q, ~< co. ~< "'" �9 

sketched in Figure 3, 

(41) 
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Fig. 3. Plot  of  the determinant  d(co2). 

The physical significance of B(co 2) is seen by impressing a sinusoidal torque on the 
spacecraft: 

T ( t ) =  To cos cot. (42) 

This gives rise to the steady-state response 

where 

6 (r, t) = 6o (r) cos cot 

O(t) = 0 o coscot 

- c o 2 0  o = [I + B (co2)]- 1 To. 

(43) 

(44) 

Thus l + B ( c o  2) may be interpreted as the 'effective' inertia at frequency co. In par- 

ticular, if co , co, then 0o , ~ (resonance) and if co ~ ~ ,  then 0o ,0 (the appendages 
combine to act as a vibration adsorber). 
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6. General Motion in Terms of Constrained Modes 

A foundation has been laid for an examination of the more general spacecraft motion 
in response both to perturbing external torques, T e, and to the compensating control 
torques, Tc. The use of constrained natural modes will be illustrated in general 
terms. To this end, form the expansion 

O0 

6 ( r , t ) =  L Am(r) Qm(t) 
m = l  

(45) 

where the Qm a s s u m e  the role of generalized coordinates characterizing the additional 
degrees of freedom attributable to structural flexibility. This expansion is now sub- 
stituted in the motion equations, (14) and (9). The former becomes 

O0 

m=l  A 

(46) 

and, noting that r x is skew-symmetric, Equation (36) together with Equation (18) and 
(19), this reduces to 

O0 

I O -  I a Z bm(~m-- T (t)" 
m = l  

(47) 

The appendage equation of motion, Equation (9), when subjected to a similar series 
of operations yield 

(3O 

(Qm -{- ~'-~2mQm) Am ( r )  - -  rXO. (48) 
m=l 

A set of uncoupled differential equations for the 'elastic' degrees of freedom is 
obtained by performing the operation ~aA r (r){-}a (r)dr.  This leads to 

2 O.n+ ~nQ,,=br, 0 ( n =  1, 2, ...). (49) 

These results form the basis of an explicit relationship between torque and main- 
body attitude response. Such a relationship is particularly attractive from an attitude 
control standpoint. A convenient means of expressing this relationship is in terms of 
Laplace transformed variables; these will be identified by an overbar (-). The entries 
corresponding to initial conditions will be omitted in the interests of succinctness. 
The relationship, which follows from Equations (47) and (49), is 

i e (S)  $20  = Y (S)  (50) 

where the 'effective' inertia matrix with flexibility 
(1 is the unit matrix): 

oO S2Km  
i e (S) -'- 1 - +  22m J I .  

m = l  

present, 1 e, has been defined as 

(51) 
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The contraction in notation 

Kn = iabnb Tn I -  1 (52) 

has been employed. 
Equations (50) and (52) are equivalent to Equations (298) and (9) given by Likins 

in (1970) and (1971), respectively. 
The manifestation of Equation (51) in a block diagram is shown in Figure 4. 

Dissipative influences may be incorporated at this stage by replacing the denominators 
(s 2 + f2 2) by (S 2 71- 2~nf2nSa t- (2 2). It can be seen that the interaction between the 
attitude control system and structural flexibility will be negligible if the following 
relationships hold: 

IIKnll Bw < 1; n - -  1, 2,... (53a) 
On 

CONTROL 

SYSTEM 

Te 

r V j _  

sZK3 
s 2 + ~, 

s2K2 
s 2 + ~ 

s z K~ 

sZ + ~,2 

0 

s20 
:2 K- 

Fig. 4. Block diagram using constrained modes. 

where ~OBW is the band-width of the controller. Equation (53a) combines a limitation 
on the degree of structural flexibility (it normally need be applied only for n = 1) with 
a limitation on the ratio of the flexible appendage inertia to the vehicle inertia. This 
last statement is substantiated by Equation (63) below. If any of the conditions in 
Equation (53a) are violated then structure/controller interactions are likely to be 
significant. 

7. General Motion in Terms of Unconstrained Modes 

The general motion of the spacecraft may also be expressed in terms of the uncon- 
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strained modes. More precisely, the following expansions are appropriate: 

O0 

6(r , t )=  Z 6m(r)  qm(t )  
m = l  

Or3 

O ( t )  -- Z Omqm (t) + O ( t )  . 
m = l  

(54) 

The spacecraft motion equation, (14), then becomes 

IO = T (t) (55) 

after Equations (24) and (25) have been recognized. Thus O (t) is simply the response 
the spacecraft would have if it were rigid. The appendage motion equation, (9), 
under the influence of these expansions becomes 

O0 

Z (qm -~- (D2qm) [~m (r) - r~O~] = rXO 
m = l  

(r~A). (56) 

To decouple these differential equations for the 'elastic' degrees of freedom, perform 
the operation ~a [6, (r) -- rX0,]T{ -} a(r) dv on Equation (56), and bear in mind 
Equations (31), (33), (25) and (24). The result is 

2 
qn + O)nqn = 

0TI 

I a -- 0 r l 0 n  
O. (57) 

An explicit result again can be written between torque and main-body attitude 
response. The Laplace-transformed versions of Equations (54), (55) and (57) may be 
combined to verify the result: 

i e (S )  $ 2 0  - -  T ( 5 8 )  

where the 'effective' inertia matrix with flexibility plesent, i e, has been defined as 

oo 

i e ( s ) =  1 + s z + m I 

m = l  

and the definition 

(59) 

lOnOn r 
kn = (60) 

Ia -- orion 

has been introduced. That the denominator in this equation is always positive may 
be seen from Equation (34). 

A block diagram corresponding to Equation (59) is shown in Figure 5. It is inter- 
esting to compare this diagram, in which the modal contributions are feed-forward 
loops, with Figure 4, where we have feed-back loops. Damping terms, 2~,O~nS, may 
easily be inserted in the denominators of these loops. Conditions for negligible 
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structure/controller interaction are seen to be 

( D B w ' ~  2 
I[k, II ~ 1; n = 1, 2, ... (53b) 

\COn/  

which are comparable to those in Equation (53a). The squared factor is a limitation 
on the degree of structural flexibility, while ]]knl] is directly xelated to the iatio of 
the flexible appendage inertia to the rigid body inertia. The latter assertion is justified 
by Equation (66) below. 

CONTROL 

SYSTEM 

sZk3 
S 2 + o,)2 

r 

sZkz 
S 2 + (,O2 

sZk, 
2 

S 2 + ~ t  
, r 

0 

Fig. 5. Block diagram using unconstrained modes. 

8. Relationships Concerning K~ and k,, 

A formula for the sum of the K, is useful since the remainder after N terms can 
quickly be estimated. To derive such a formula, select Equation (48), and perform 
the operation ~Arx{ �9 } a ( r )d r .  Using Equations (11) and (36), an intermediate result 
is found: 

O0 

Ia E (Qm "at- a2mQm) bm -- Ia0.  
m = l  

(61) 

�9 " 2 However since Qm + QmQm is known from Equation (49), we have 

O0 

I~ ~ bmbmrO= IA0. 
m = l  

(62) 

o o  

Recognizing Equation (52), and that 0 is not in general zero, one has 

O0 

Km = IA I -  1. 
m - ' - I  

(63) 
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A similar formula may be found for the sum of the kn. The derivation is initiated 
by performing the operation ~A r* {" }a(r) dv on Equation (56). Using Equations (11), 
(24) and (25), an intermediate result in found: 

0(3 

(I -- IA) E 
m=l 

(qm "+" C02mqm) 0m --- IAO. (64) 

However, since qm"l-O')m2qm is known from Equation (57), we have 
oO 

~ ( O m O m T '  
( I -  IA) ia =-~miOm/ 0--  IaO. 

rn=l 

Recognizing Equation (60), and that I~ is not in general zero, one has 
oO 

E km = (1 -- Ia I -1)  -1 h i  -1 = ( I I ;  1 - 1) -1 = IAI~ ~ . 

(65) 

(66) 
m=l 

Assuming that K m ( o r  km) (m = 1, 2, ..., M )  have been calculated, Equation (63) (or 66) 
provides a useful upper bound for KM + 1 (or ku+ 1)- 

Further relationships may be discovered by recognizing the equivalence of the two 
expansions for the 'effective' inertia, I e, as given by Equations (51) and (59). This 
equivalence may be written as 

O0 O0 

s2km 
S 2 -I- Om2J S = 1. (67) 

m=l m=l 

If one evaluates Equation (67) at s=iOn (where i 2 _ _  1) it is learned that 
OO 

{ ~-~ On2km ~ 
det 1 -  ~ - - - 2  = 0  

09 m -- (2nJ 
m=l 

( n =  1, 2, . . .).  (68) 

If one evaluates Equation (67) at s - - i o  n , on the other hand, one obtains 
oO 

{ X det 1 + ~- - - 2 
f2 m -- r 

m-'l  

(69) 

which is a recovery of Equation (30). Thus, as has been pointed out earlier, if the 
appendages are characteiized (i.e., K m and f2 m are known) the system frequencies o), 
can be found from Equation (69). Information also is available on the parametels 
kn from Equation (68); in fact if planar rotation is under consideration, Equation 
(68) may be regarded as linear equations in the unknown scalars k,. 

9. Stored Angular Momentum - Constrained Modes 

There are many directions in which the preceeding results can be extended. The 
remainder of this paper will be confined to one such extension- a treatment of flexible 
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spacecraft motions when there is within the main body, a stored angular momentum, 
h~. The physical origin of this angular momentum might be a momentum wheel, 
control moment gyros, etc., or possibly other internal or external rotors. The column 
matrix h~, whose elements are components along body axes, is taken to be essentially 
constant over a time interval of interest from a structural vibration standpoint. 

This additional ingredient does not affect the appendage motion equation, (9), 
nor the constrained mode shapes and frequencies. However the spacecraft motion 
equation, (14), must be re-examined. The expression for total system angular momen- 
tum, given previously by Equation (12) must now be augmented thus: 

h = IO + f r ~  
A 

(r, t) cr (r) dv + h s (70) 

whence the new spacecraft equation of motion becomes 

IO + f rXg (r, t) cr (r) dv + OXhs -- T ( t ) .  

A 

(71) 

If it is desirable to use constrained modal amplitudes as generalized coordinates, the 
substitution of Equation (45) is made into Equations (9) and (71), leading to 

(~. + ~22Qn = b~rO (n = 1, 2, ...) 
O(3 

I O -  I.  ~ b ~ ( ~  + OXh~ = T (t) 
m = l  

which is identical to the earlier situation (hs -0)  except for the new torque - 
transfer function from torque to attitude is then found from 

{S2~e (S) -- S]i x} 0 = Y (S) 

(72) 

(73) 

0~hs. The 

(74) 

where I e is the expansion in Equation (51). 
The natural frequencies of the overall spacecraft are now found from setting T - 0 ,  

s=iCO in Equation (74). The characteristic equation, whose zeros are the natural 
frequencies COrn, m -  1, 2, ... is thus shown to be 

det {COI + COB (0) 2) + ih~} = 0. (75) 

This result has a more explicit form which does not contain i: 

CO2 det {I + B (CO2)} _ h r {I + B (CO2)} hs _. 0. (76) 

It should be borne in mind that effects attributable to flexibility enter exclusively via 
B. If the spacecraft were entirely rigid, B - 0 ,  then there would exist only one natural 
frequency, namely that corresponding to precession, 

CO 1 = COp = ~/det I (77) 

and COp will accordingly be called the rigid precession frequency. 
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To ascertain the interaction between stored angular momentum and structural 
flexibility requires, in general, the solution of Equation (76). It can be said, however, 
that when the appendages are sumciently rigid that 

O t >> COp (78) 

then B (o9~,) will make an insignificant correction to I, and the first natural frequency 
will still be given by Equation (77). 

10. Stored Angular Momentum- Unconstrained Modes 

Since the unconstrained modes are, by definition, modes of the main-body/appendage 
system, their modal frequencies co, and parameters k, will be dependent on hs. The 
last two paragraphs contained in effect, a discussion of o9, (hs). It is of interest to 
investigate the mode shapes defined in this way. The equation governing such shapes 
are found by making the substitutions 

O0 

6(r, t ) =  Z 6m 
m = l  

oO 

O ( t )  = Z Om 

(r) exp (iOgmt) 

exp ( icOmt) 

and putting T( t )=0 .  The results are 

m=l  

into Equations (9) and (71), 

(79) 

(80) 

~n (r) -- O~n F (r, r~) ~n (r , )  ~ (r~) d~' - - ~ .  F (r, r~) r io  (r~) d~' On 

A A (81) 

(as before) and 

.f o9~210. + COn rX6. 

A 

(r) cr (r) dv + i~onh~On = O. 

Then following the development of Section 4, 

6. (r) = Xn (r) 0. 

{O~nI + conB (o9. z) + ih~} O. = O. 
and 

(82) 

(83) 

(84) 

Here B and X are real matrices but 6n and 0, are complex 
replaced by 

(I + io9~-lh~)0, = an 

in general. Equation (24) is 

(85) 

which, unfortunately, also changes the property of orthogonality, and Equation (32) 
now becomes 

I flThXfl* 
[~n (r) - rXOn] T [~m ( r )  --  r X 0 m ]  * O" ( r )  dv = i - n - s ~ m  (CO n ~= O)n) 

(.O n -a t- (.0 m 
a+B (86) 

where ( )* denotes the complex conjugate. Although Equation (56) is still valid, the 
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decoupling into separate differential equations for the modal coordinates as was done 
in Equation (57) is not facilitated by Equation (86) unless 0The0 * =0  which is true 
only if the 0m and hs aie all coplanar; in particular it is true if the flexibility is about a 
single axis. In the general case, the modal coordinates satisfy a coupled set of differ- 
ential equations of the form 

Mq + iGq + Kq = y r ~  

where M and K are symmetric and G is a skew-symmetric matrix. 

11. Concluding Remarks 

The representation of elastic flexibility in the context of attitude dynamics and control 
has been discussed in considerable generality. In fact, two approaches were considered 
in parallel and many of the interrelationships between them were noted. The question 
naturally arises as to which is the best representation. Actually both the 'constrained' 
and the 'unconstrained' modal expansions have points in their favour. Both are 
mathematically equivalent if an infinite number of terms are taken in each of the two 
expansions. In practice, however, only a finite number of terms are included in the 
sum and therefore the nature of the approximation thus made is of interest. If it is 
important that the dynamic response be accurately modelled in frequency bands of 
large response, then M unconstrained modes will be more accurate than M constrained 
modes. 

Accuracy in frequency bands of small response will favour the constrained expan- 
sion. These observations are true whether one is simulating 'flexible' attitude dynamics 
prior to flight, or analyzing flight data. 

However the constrained modes have advantages also. If ground tests are done on 
the appendages alone then it is the constrained modal information which is learned. 
The use of constrained modes is also much more straightforward and makes fewer 
demands on the analyst. In more complicated situations where the appendages are 
not rigidly fixed to the main body but are, for example, articulated, unconstrained 
modes may not even be defined. Finally, it was seen that when rotors are included on 
the main body constrained modes are much easier to use especially since the un- 
coupling of unconstrained modal equations is not straightforward. 
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