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I. Introduction 

This paper presents a relatively simple example of a bifurcation of a central 
izonfiguration in the four body problem. There have been several indications in the 
literature that bifurcations can occur, but no one has carried the analysis to 
completion. Smale (1970) offers a good introduction to the importance of bifur- 
cations of central configurations in the n body problem. 

Palmore (1976) gives an example of a degenerate central configuration of the 
N (N > 3) body problem. His example is nested in a one-parameter family of central 
configurations, but he does not show that the degeneracy gives rise to a bifurcation. 
Simo (1977) presents a complete numerical study of the central configurations in the 
4 body problem. His numerical studies find degeneracies and bifurcations, which he 
discusses in detail. 

Arenstorf (1982) defines a restricted 4 body problem for each central configuration 
of the 3 body problem. He gives a complete analysis of the critical points of the 
potential the restricted problems. It is easy to see that a non-degenerate critical point 
of this potential gives rise to a central configuration of the full 4 body problem with 
one small mass. He finds that the potential corresponding to the Lagrange tri- 
angular configuration has a degenerate critical point for some values of the masses 
of the primaries. He conjectures that this degenerate critical point can not be 
continued into the full 4 body problem. 

Both Simo (1977) and Arenstorf (1982) found a degenerate central configuration 
in the restricted 4 body problem. We take an approach between those of the purely 
numerical approach of Simo and the purely analytic approach of Arenstorf. Our 
goal is to give a simple proof that the bifurcation that they observe actually occurs 
in the full 4 body problem with one small mass. First we give a mathematical proof 
of a theorem that gives conditions when a degenerate critical point of the restricted 
problem can be continued into the full 4 body problem as a degenerate central 
configuration. The theorem proves that the degeneracy is actually due to a 
bifurcation provided other partial derivatives of the potential be non-zero. This is a 
special case of a theorem in catastrophe theory. Finally we use numerical methods 
to verify the hypotheses of the theorem in the restricted 4 body problem. 
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2. Notation and Background 

The general reference for this section is Wintner (1941). Consider the N-body 
problem in the plane R 2. Thus, the position of the particles is specified by 
q = ( q l , . . . , q N ) e  R2N where qi=(q~,  q2)e R 2 for i =  1 , . . . , N .  Let A =  {qeRZN: for 

some i:#j,  qi = qs}- The self-potential of the N-body problem is 

U N(q)= ~ mimj 
l<i<j.<.Nllqi--qsll 

(1) 

where m i > 0 for i = 1 , . . . ,  N. Clearly UN is a smooth function o n  R 2 NN A. 

A central configuration is a solution q = ~ of the system of equations 

_ )~miqi =--,c?U N. i = 1, . . . ,  N (2) 
c3qi 

m 

for some constant 2. If ~ is a central configuration corresponding to 2 then ~ . , m i q  i - -  0 

and 2 = UN(dl)/2I(dl)> 0 where 21 = Zmillq/ll 2. 

By the Lagrange multiplier theorem, equation (2) can be interpreted as the 

equations for a critical point of UN restriced to the set where I = 1. From the form of 

U U it is clear that if 0 is a central configuration and A is a 2 x 2 rotation matrix then 
A~ = ( A q l , . . . ,  Aqu) is a central configuration also. 

The concept of a non-degenerate central configuration takes into account all the 
observations given above. Let M = {qe RzN: Ymiqi = 0}, S = {qe M" l (q)= 1} and 
5, ~ = S / ~  where ~ is the equivalence relation q ~ q* if q = Aq* where A is a 2 x 2 

rotation matrix. Let [q] = {q* ~ S" q* --~ q}. Since UN is invariant under rotations, we 

can define a function ~//'u:5r A , R by ~//'u[q])= UN(q). It turns out that 5r is a 

smooth manifold and q/} is a smooth function because the graph of the group action 

is closed (see Abraham and Marsden (1978)). A central configuration c] is called non- 
degenerate if the Hessian of 6//' u at q is non-singular. 

Quotient spaces are awkward to work with in perturbation arguments, so we 

shall use a slightly more pedestrian but equivalent definition of non-degenerate 
central configuration. Let c] be a central configuration. Then [~] is the set of all 

central configurations obtained from q by a rotation. We will select a unique 

representative from Fq] as follows. Since not all the ~ are zero, we may assume that 

Cll 4=0. There is a unique rotation matrix A such that Ac]~ = ( q l ,  0), i.e. A~l points 
1 along the abscissa. Let q*=Adl .  Define N - { q e R 2 N : q ~ = ( q ~ , O ) } ,  ~ = S ~ N  and 

~ll N= UNIS. Note that q is a central configuration if and only if q* is a critical point 

of ~//N. We shall say that 0 is a non-degenerate central configuration if the Hessian of 

~//N at q* is non-singular. The reader should check that the definition is independent 

of which q~ was chosen to point along the abscissa and that the two definitions of 
non-degenerate are equivalent. 

Now consider the ( N +  1)-body problem with mu+ 1 --e and qN+l---U. The 
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equations for a central configuration become 

SUN 
- = + 0 ( ~ ) ;  2miqi c~qi i = I , . . . , N  

8W 
m 2 U ~ w  

8u 

(3) 

where W = E~=~(mj/[lu-qj[I). When ~ = 0 ,  a solution to (3) is an (N + 1)-tuple 

(ci~,. . . ,  C~N, if) where (c~ , . . . ,  C~U) is a central configuration of the N-body problem 
and 0 is a critical point of 

N 
V(u)= ~ m; 

; = ,  llu - q,  II + 2 Iluli~" 

Note that the value of 2 is determined by the condition that the ( q l , . . - ,  qN) are a 

central configuration of the N-body problem. The function V(u) is called the self- 

potential of the restricted (N + 1)-body problem corresponding to the central 
configuration ( q l , . . . ,  qN). 

If (q l , . . . , qu )  is a non-degenerate central configuration and fi is a non-degenerate 

critical point of V, then a simple application of the implicit function theorem proves 

that ( c~ , . . . ,  C~U, if) can be continued into the (N + 1)-body problem for small e. In 
this case no bifurcation occurs, so we must consider degenerate critical points of V. 

Let us assume that we have a one parameter family of central configurations of 
the N-body problem. Let the parameter be ~, so q~ , . . . ,  qu and 2 depend on ~. Let 
u = ( x ,  y )  s o  V(u, ~) = V(x, y, ~). 

From catastrophe theory, the simplest bifurcation that can occur is when two 

critical points collide and disappear as the parameter passes through a critical value. 

This is called a fold catastrophe or a fold singularity. The amount  of catastrophe 
theory that we shall need for our example is so minimal that we shall reproduce all 
that is necessary. We shall say that V has a fold for x = ~, y = f , / ~ - / / i f  

Vxx 4:0, v,.eo, Vyyy 4: O. 
(5) 

This is not the definition of a fold as found in catastrophe theory, but a special case 

of a fold. One of the main theorems of the theory applied to this example states that 
there is a change of coordinates such that in the new coordinates V - x 2 + #y + y3. 

Another theorem holds that folds are stable under small peturbations. A special case 
of this theorem in the context of central configurations is: 

T H E O R E M :  Let (c~l(p),...,qu(#)) be a smooth one parameter family of central 
configurations of the N-body problem which is non-degenerate when la =ft. Let 
V(x, y, l~) be the potential of the restricted (N + 1)-body problem correspondin9 to this 
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central configuration. Let V have a fold at ~ = (.~,)7) when la = ft. Let Vru. Vyry < 0 
(resp. > 0). 

Then there exist ~o > 0, r />0 ,  a neighborhood 0 of (ql(fi),- . . ,  qua) ,  ~i) in R 2N+2 

and a smooth function /~*'[0, eo) ~R1,/~*(0)=fi such that when e~(0,  eo) and 
<rt ,  

(i) The (N + 1)-body problem has a degenerate central configuration in 0 when 
# = 

(ii) The (N + 1)-body problem has no central configuration in 0 when # > #*(~) 

(resp. ~ < #*(e)). 

(iii) The (N + 1)-body problem has two central configurations in 0 when l~ < t~*(e) 

(resp. # > ,u*(e)). Moreover, these two tend to the degenerate one of (i) as 

# , #*(e)from the left (resp. right). 

Proof'. The equations to solve are 
8 W  (a) - 2 u = ~  
8u 

SUN 
(b) - 2miqi = i- 0(e); i = 1 , . . .  ,N 

c3qi 
N 

(c) 21 =  llull 2 + Z m~llqil[ 2 = 2 (6) 
1 

N 

(d) e,u + ~ m~q~ = 0 

(e) q2 =0 .  

When e = 0 ,  these equations have a solution u - - 0  and qi = c~i. Moreover, since the 

central configuration ( q l , . . . ,  tiN) is non-degenerate we can solve the last 4 lines of 
equations for q~ = ~(u,/~,e). In order to see this consider the process of constructing 

local coordinates on 5 r at el. The equations (6c, d, e) can be used to express four of 
the q components in terms of the other qs and u. Having solved for these 
components the corresponding equations in (6b) must be discarded. For example, 
(6e) tells us to set q2 = 0 everywhere and discard the equation of the first component 

of (6b). The important  thing to note is that this process can be carried out by solving 
for q components  and eliminating q equations. Therefore, the process yields 

equations which are well defined when e = 0. Having done this reduction, the fact 

that ~ is non-degenerate for # = / t  and ~ = 0  means that the implicit function 

theorem can be applied to solve the remaining equations in (6b) for the qs as 

functions of u, ~t and e. Substituting these values into V yields a function 
V= [" + 0(e). The equation Vx = 0 can be solved for x as a function of y, # and 

since at e - 0  we have V x ~ - V ~ x - 0 .  Substituting this function into V gives a new 

function H(y, lz, e) which satisfies Hy = O, Hyr = 0, Hyyy 4:0 and H,y 4:0 when y = fi, 

# -  fi and e -  0 by the assumptions in (5). 

Since H,y 4:0 we can solve Hr = 0 for # as a function of y and e, i.e. there exists 
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q5 (y, ~) such that  

Hy(y, dp(y, e), ~) - O, 4,(#, o)= #. (7) 

Differentiate this expression with respect to y to find 4~y(#, O)= O. Differentiate again 

to get ckry(f, O) = - Hyyy/Huy" 5~ O. Assume 4)yy(f, O) > O. 
Thus for e = O, the function ~b(y, O) has a non-degenerate  min imum at y. Since 

~)yy(.)7,0)~-O we can solve ~by=O for y, i.e. there is a function y*(e) such that  

~by(y*(e), e) - O. Define/~*(e) = ~b( Y*(O, 0. 

For  fixed small e, the function ~b (y, e) has a local m in imum at y*(e) with min imum 

value #*(e). Moreover,  this is a non-degenerate m in imu m since Ckyy(y*(e),e) is 

positive for small e. Thus if # > #*(e) but close, then there are two values y say Y l 

and  Y2 such that  # = ~b(y i, e), i -  1,2 (see Figure 1). Thus 

H,(y,, u, ~)= H,(y~, 4,(y,,  ~), e) = O. 

When # = # * ( e )  there is precisely one nearby y namely y = y * ( e )  such that  

# = ~b(y,e). When/~  <#*(e )  there are no nearby y such that /~  = ~b(y,e). II  

I I 
I I 
I t 

"I" I 

I I I 

I I 
I I ' 
I I I 

' I 
I I 
i I 
I l I 

Y* Y2 

Fig. 1. 
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3. The Example 

Consider the restricted 4 body problem corresponding to the Lagrange equilateral 
triangular central configuration of the three body problem (Figure 2). Assume that 
two of the primaries have equal mass say 1 -  ~, 0 < / t  < 1, and that the third has 
mass 2/t so that the total mass of the system is 2. Let the y-axis be the line of 
symmetry. Specifically, let 

m~ = 1 - /~ ,  ci~ = (1, - ~3M),  Iql 12 - 1 + 3/~ 2 

m 2 =  l - M ,  ~2 = ( - 1 , - v " 3 M ) ,  110211 z - -  1 + 3M z (8) 

m 3 = 2/z, q 3  = (0, x//3(1 - ~)), IIq3[I 2 = 3(1 - / z )  2 

IIq,-  qjll = 2, 2 = 1/4. 

The potential is 

Since 

1 - #  1 - ~  
V =  + + 

X//(X -- 1) 2 + (Y + x/'3,u) 2 x//(x + 1) 2 + (Y + x/3/.t) 2 

2~ + + ~(X 2 + y2) .  
x / x  2 + (y _ x /3(  1 _/./))2 

(9) 

V is even in x, we have Vx(O,y ) = Vxy(O, y ) =  0, therefore we shall search for 
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Fig. 2. 
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critical points on the y axis. Let U(y,  #) = V(0, y, #) so 

2(1 - # )  2/~ 
U = - + ~y2 (10) 

w/1 + ( y  + ~-3-#) 2 ~ / y - ~ - 3 ( 1  - # )  

for y < x/~(1- /~) .  Note that the terms in V and U are positive and so the second 

term in U must have a negative sign when y is in the range y < x / ~ ( 1 - / 0 .  Now 

U , oo as  y , - o o  a n d  as  y 

( -  oo, x/~(1 - #)). In order to 

, x ~ ( 1 - / ~ ) - ,  so U has at least one minimum in 

find a degenerate critical point, we solve U y = O ,  

Uyy=0  for y and # by Broyden's method (see Dennis and Schnabel (1983)). The 
calculations were carried out at double precision until the absolute values of Uy and 

Uyr were less than 10 -15. These values of y and # where substituted into the 
remaining derivatives to yield: 

Vx = O, Vxy = O, V r ~ 0.00 000, Vyy ~ 0.00 000 

Vxx ~ 1.80 616, Vry r 3.26 104, Vrr 1.01 715 

when 2 = 0, )7 ~ -0 .45  286 3 and ~ ~ 0.42 344 8. Thus numerically, the hypothesis of 
the theorem of the previous section have been verified. 

The three-dimensional plots (3a) for /~ =0.2  and (3b) for /~ =0.5  illustrate the 

Fig. 3a. ~ = 0.2. 
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Fig. 3b. ~u = 0.5. 
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Fig. 4a. # = 0 . 1 .  
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Fig.  4b.  ~u = 0.3. 

bifurcation. The viewer is situated above the negative y-axis at a point that is on a 

line that makes  a 60 ~ angle withe the V or z-axis. That is, the spherical angular 

coordinates  of the viewer are 0 = - 9 0  ~ ~b = 60 ~ There are several critical points in 

these figures, but the ones of interest can be seen in (3a). Looking  down the line of 

symmetry one can see a min imum in the foreground, then a saddle approximately 

between the two symmetric singularities, then a min imum and finally the other 

Liy 
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Y~ 

Fig .  4c. ~u = 0.423.  
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UY 

4 
Ym 

Fig. 4d. /~ = 0.6. 

singularity. In figure (3b) one sees that the first minimum remains but the saddle and 
the other minimum have disappeared. 

The graphs in figure (4) are of the function Vy(y, lu)=Vy(O, y, u) for different 
values of p. These plots are self-explanatory. 
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