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ABSTRACT. In the following paper we tried to apply the Lie-formalism 

to the regularized restricted three body problem. It will be shown 

that this algorithm leads to a very simple structure program which 

is also fast. 

i. INTRODUCTION 

The application of Lie-series to the n-body problem in celestial 

mechanics has been first investigated by W. Gr~bner (1967), especially 

the acting of the "Kepler operator" to the coordinate and velocity 

vector for the two body problem. In two earlier works recursion 
formulae for the solution of the n-body problem have been derived 

by means of Lie-series ( Hanslmeier 1983; Hanslmeier, Dvorak 1984). 

With these formulae we have a rapid numerical integration procedure. 
The structure of the computer program is very simple, so that any 
modification (e.g. automatic step adaption) can be done without 

great difficulties. 
In this work we will try to show how it is possible and useful 

from the practical point of view to apply this algorithm to the 

regularized plane restricted three body problem. It will be seen 

that in this case too Lie-series provide a fast and very clear 
method for solving the regularized differential equations. Since 

regularization theory plays an important role when studying motions of 
natural and artificial bodies as well as for investigations concerning 
stability problems of dynamical systems, our investigations may also 

be of prattical interest. 

2. SHORT REMARKS ABOUT LIE-SERIES, REGULARIZED TWO BODY PROBLEM 

The Lie-operator cons~ts of partial derivatives and holomorphic fun- 

ctions 8~ (z), z being a complex variable. It is defined according 
to Gr~bner (1967) 
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D =  e (z) ~ + e2(z) ~ + . . .  + en(Z) ~z n 
(I) 

We can act this linear differential operator on any function f(z) which 

has to be holomorphic within the same domain as are the functions 8 (z). 
1 

Thus we can write (i) as: 

t 
L(z,t) = ~ ~T DVf(z) (2) 

~=O 

where D~f(z) = D~-l(Df(z)) (2a) 

Symbolically eq. (2) can be written in the form 

etnf(z) = f(z) + tDf(z) + t2D2f(z) + ... (3) 
2! 

The proof of con~mgence of L(z,t) can be found in Gr~bner (1967) 

where it is also shown that Lie-series are a generalization of Taylor- 
series. Let us demonstrate hown one can solve differential equations 

by means of Lie-series; as an example we solve the equations of 

the regularized two body problem (a detailed description of the regulari- 

zed two body problem is given in Stiefel (1921)). 

Let x = (Xl,X2,X.) be the position vector of mass m~ with respect 
5 

to the mass ml, r being their mutual distance, t the real time, s the 

fictitious time. If we look at the ordinary equations of the two body 

problem, we see that they become singular at the point r=O which corres- 

ponds to a collision. Therefore we regularize the equations of motion 

in two steps: 

l)Transformation of time: 

t = /rds 

2)Transformation of coordinates and velocities according to Kustaanheimo 

and Stiefel : 

= L(u)u (4) 

where L(]) is the well known K-S matrix. 

In the following sections " denotes differentiation with respect to s. 

The differential equations for the regularized two body problem are 
then: 

u'' +h 
3 ~ uj = O j=l,2 .... 4 (6) 

h is the "Kepler energy": 

2 
_ K2 ~i .2 2 k 2 (m 1 h x , K = + m 2) (7) 

The solution of eq. (6) by means of Lie-series is found by determining 

the functions 8. (z) : 
l 
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8. : u[ 
3 3 

@' u' ' h 
: , = -- -- U .  

3 3 2 ] j = 1 .... 4 

Now we can write the Lie-operator (i) as: 

4 
D= ~ { u' ~ h uj 

�9 2 ~-77 } 
j=l ] ~u] 3 

The solutions of eq. (6) with Lie-series are then: 

tD 
uj : (e uj) (O) 

D(uj) = U[ 
] 

2 h 
O (uj) = - ~ uj 

h D3(uj) = - ~ D(uj) 

137 

(8) 

(9) 

D n (u~j ~-h Dn-2 ) = - (uj) n = 4,5 ..... k 
j = 1 ..... 4 (io) 

The CPU-time in this simple case is for numerical integration about 

1/3 than that needed for the ord~na~ql two body problem and can be com- 
pared with the CPU-time needed for the integration with Stumpff- func- 

tions (Lichtenegger 1984). 
Of course no automatic step adaption process is required when 

integrating very excentric orbits. In the next section we try to 
apply this formalism to thepLane restricted three body problem. 

3. REG~IZED PLANE RESTRICTED THREE BODY PROBLEM 

We consider three masses ml, m_, mr, where m_ does not have any 
�9 Z 5 5 

gravitational influence on the two other masses. We further use the 

well known rotating coordinate system where the distance mlm 2 remains 
fix. The units used are then: 

unit of mass: ml+m2, m2=P, ml=l- ~ 

unit of length: distance mlm 2 

unit of time: i period of revolution of m 2 about m I divided by 
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2n (il) 

With these units chosen the value of the gravitational constant will be 
i. Before applying the Lie-series let us briefly recall the Hamiltonian 
formalism. 

Let H be the Hamiltonian function, x and y be the coordinates, 

Px' Py the momenta. The equations of motion are then: 

SH ~H ~= ~ - 
~Px x 3x 

~H ~H 
= f)y = - 3--~ 3Py 

(12) 

In this case, the Lie-operator (i can be written in the following 
form (Giacaglia, 1981): 

~H 3 ~H 
D : E { -- } = [ ,HI 

i ~Pi ~qi ~qi ~Pi 
(13) 

qi ... generalized coordinates 

Pi "'" generalized momenta 

[ ]... Poisson brackets 

If we acD D on a function f(z), we get: 

D(f) = If,H] 

D2(f) = [[f,H],~l] 

D3(f) = [[[f,H],H],H] (i4) 

We follow the regularization with parabolic coordinates as has been 
given by A. Deprit and R. Broucke (1964). 

Let x, y be the coordinates of the massless body m3, Pl be the 

distance to m I, P2 be the distance of m 3 to m 2. 

2 1 2 2 
Pl = ( x +  7 ) +y 

2 1 2 2 
P2 = ( x - ~ ) + y (15) 

We finally derive that the Hamiltonian function H is equal to the 
expression : 
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1 2 2 
= - x py ) - ( 1 - p ) / Pl - H 2 ( Px + Py ) + ( y Px 

i 
- ( ~- - ]~ ) x - ]J / P2 

(16) 

From (13) we can deduce the equations of motion for the plane restricted 

three body problem. 

It is obvious that we have two singular points now at m.land m 2 . The 

regularization is a conformal mapping of the complex pl&ne z = x + i y 

to the complex plane ~ = ~+ i N . 

If we consider regularization with respect to ml, using parabolic 

coordinates, the conformal mapping has the form: 

1 2 
z = - ~ + ~i (17) 

whereas if we regularize with respect to m 2, we have to use the mapping 

1 2 
z = ~ + ~2 (18) 

We can treat both cases if we introduce at the beginning of the 

program the following parameters: 

Table I: List of parameters 

Parameter at m I at m 2 

e -1 1 

P Pl P2 

P2 Pl 

i-~ p 

We have the following relations: 

1 ~2 2 
X = ~s - 

2pp x = ~p~- qpq 

P = ~2 + n 2 

a = (p2  _ 2 (~2 _ n 2)  + 1 ) 1 / 2  

y = 2~q 

2ppy = nP~ + ~Pn 

(19 )  

The Hamiltonian function is then: 
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1 2 2 1 1 
H = ~ (p~ + pn) + 2 {(p - 7)np~ - (p + 7) ~pR} 

1 1 ~2 
4a - 4(1 - ~) (p/o) - 4 (~- ~) (7 + - n2)p 

- 4hp 

The Lie-operator is finally found according to (13): 

D = [Pc + (20 - ~)n]~ - [4~np~ - 4~2pn - 2(p + ~) Pn 

- A ( 2 ~ o - i ( 1  - p2 o - 2  + p o - 2 ) )  _ M(463  + s ~ )  - 8 h ~ ]  - -  

+ [Pn -(2p + e)6]~ - [4~2p~ - 4~p n + 2(p - 21--e) p~ 

(20) 

3 
~P~ 

- A(2no -I (i - p2o-2 - O-2p)) - M(en - 4n 3) - 8hn] -- 
~p 

n (21) 

Here we introduce the abbreviations: 

A : 4(I - e) 

I 
M:4 (~- ~) (22) 

The solutions are of the form: 

tD 
: etD ~ n = e n (23) 

(o) (o) 

The first term of the Lie-series can be found very easily. 

D~ = p6 + (2p - s)r] 

D~ = Pn - (2p + e)~ (24) 

Since the equations are similiar for the x and the y coordinates, 

we consider here only the Lie-series for x! 

We also can evaluate the second Lie-term: 

D2~ = Dp~ + D~(2p - e) + n2Dp (25) 

We see that: 

Dp~ = 8 2 (26) 

At th~ point, we are able to give some kind of recursion relation 
for the Dn+z~, n=1,2,...: 
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n n 

n+2 (n D~6Dn-~ (n)D~[2Dn-~ D [ = - {4 I ~) p~ - 4 Z ~ Pn - 
~=o 9=o 

n n 

- 2 I (n)v D~(p + ~)Dn-gpn 2A [~ (~n) D~<Dn-~o-I _ 

~)=O D:O 

n n 

(n)D~~ M (4Dn< 3 + 
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n 

+ Dn~) - 8hDn~} + Z 

~=o 

For brevity we introduced: 

n 
s : ~ (~) 

V 
~:O 

(n) D~(2p _ e)Dn-~ n (27) 

The expression (27) contains the following "derivatives" for which 
recursion relations can be found: 

D n6 = D n(~n) = S DV~Dn-~ (28) 

n+l [2 Dv~Dn-~+I~ D =2S (29) 

Dn+ip~ = - {4 S D~6Dn-mp~ - 4 S D ~ ~2Dn-gpn - 

- 2 S Dg(p + 21--r Dn-~pn - 2 A IS D~Dn-~o -I - 

S D 9 2 n-~ n-~ ~3 - p D ~ + S DVpD o~] - M (4D n + eDna) - 

8hDn~} (30) 

Dn+l(p + ~)i = 2 (S DV~D n-~+l ~+ S D~nDn-~+in) (31) 

Dn+l 2 DDODn-9+I p = 2 S p (32) 

The only remaining problem is to find a recursion relation for 
the Dn~ which seems to be impossible. But it is not difficult to 



142 A. HANSLMEIER 

evaluate the terms: 

a : (p2 _ 2 (~2 + n 2) + I)i/2 

-i 
Da = a (pDp -2~D~ - 2TIDT]) 

2 -2 
D a : -a Dq(pDp - 2~D~ - 2nD~) + a-ID(pDp - 2~D~ - 24D~) 

-i 
= a (-(D~) 2 + D(pDp - 2~D~ - 24Dn)) 

nBa = a -I (-3I>~D2a + D2(pDp - 2~D~ - 2nDn)) (33) 

_~t is evideDt, how the higher derivatives are evaluated. The terms 

D n ~ and D n -I can be derived and the term appearing in (27) stands 

for : 

a t = a-36 

Dna~ : S D~o-3Dn-~ (34) 

With these relations, we can in principle calculate all Lie-terms 

up to the n-th order. In the next section we show that for practical 

uses it will be sufficient to work with 5 terms. 

4. DISCUSSION 

If we use the appropriate unit system (see section 3.), than the 

numerical values of ~,~, p~,p ,p for a typical Trojan orbit are less 

or equal i, o being greater th~n i. So the convergence of the Lie-series 

depends mainly on 

n 
s 

n! 

where dt = 4 p ds. 

It will be sufficient to work with 5 Lie-terms, where the computipg- 

time needed to evaluate the terms will not be great. The advantage of 

this solution is that we avoided trigonometric series and that the 

solution itself is very simple in structure. The program works very 

fast and can be changed easily. A detailed description of the 

regularization of the restricted three body problem has been given by 

V.Szebehely (1967). In a future work we plan to give some numerical 

tests and we want to compare this method to other numerical integration 

techniques. 
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