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Abstract. In this work we have performed a systematic computation of the homoclinic and heteroclinic 
orbits associated with the triangular equilibrium points of the restricted three-body problem. Some 
analytical results are given, related to their number when the mass ratio varies. 

I. Introduction 

From the time of Str6mgren [4] it has been known that some families of periodic orbits 
of the restricted three-body problem end at an 'orbit' formed by a pair of heteroclinic 
orbits connecting the two triangular equilibrium points. In fact, and for the value of the 
mass parameter equal to 1/2, Str6mgren computed five symmetric heteroclinic orbits, 
some of whose combinations by pairs are natural endings of well-known families of 
symmetric periodic orbits (see [5]). Some homoclinic orbits (or asymptotic-periodic 
orbits, according to the classical nomenclature) were computed by Str6mgren too. 
Families of periodic orbits ending at some of these last ones were given by Danby [ 1], 
Szebehely and Nacozy [6], and Szebehely and Van Flandern [7] for the mass ratio 
kt =0.5. 

In the framework of analytic Hamiltonian systems, Henrard !-3] proved Strrmgren's 
conjecture, according to which a class of doubly asymptotic orbits are limit members of 
families of periodic orbits. Further results of Devaney [2-1 prove that this phenomenon 
occurs in both Hamiltonian and reversible systems. 

In this work we have done a systematic computation of the homoclinic and 
heteroclinic orbits associated with the triangular equilibrium points of the restricted 
three-body problem. For that purpose a preliminar numerical study of the invariant 
stable and unstable manifolds related to those equilibrium points, has been done. Some 

Celestial Mechanics 44 (1988), 239-259. 
�9 1988 by Kluwer Academic Publishers. 



240 G. GOMEZ ET AL. 

results about the number and shape of the homoclinic and heteroclinic solutions are 
obtained when the mass ratio varies. 

As a result of the work it is found that the total number of symmetric heteroclinic 
orbits for # = 0.5 intersecting the x axis only once perpendicularly is four. This result 
was known to Strrmgren. Two of these orbits are natural terminations of families of 
symmetric periodic orbits of classes (k) and (/) in Strrmgren's terminology (see [5] pp. 
484-5). 

For a value of the mass ratio in the interval [0.1, 0.2] it has been found that the 
number of heteroclinic solutions with only one orthogonal cross with the x axis 
becomes infinite. An explanation of the mechanism that produces this phenomenon, 
and which is also valid for homoclinic solutions, is given in Proposition 2 and 3. 

2. Local Study of the Invariant Manifolds of the Triangular Equilibrium Points 

If p is an equilibrium point of a vector field X defined on a certain manifold M, the 
stable and unstable manifolds of p (which are usually denoted by WS(p), W"(p) 
respectively) are defined by: 

W (p) = M,  0(t, x) > p} 
t--. oo 

W"(p) = {x ~ M, q~(t, x) > p} 
t--~ --oO 

where q~(t, x) denotes the flow associated with the vector field X which passes through x. 
If the manifold M, where X is defined, is 4-dimensional the vector field is called 

R-reversible 

(i) 
(ii) 
(iii) D R ( X ) =  - X R  

[2], if R is a diffeomorphism of M satisfying: 

R 2 =  Id (R is an involution), 
dim Fix(R) = 2 (where Fix(R) = {pc M, R(p) = p}), 

(Where D stands for the differential). 

It is well known (see [5]) that the restricted three-body problem is reversible by 

(a) Rl(ql ,q2,pl ,p2)=(ql , -q2, -pl ,p2) ,  
(b) for # = 1/2, R2(ql, q2, Pl, P2) = ( - q l ,  q2,P~, - - P 2 )  

where qi and pi stand for the coordinates and momenta of the third body. 
Using the above symmetries for the triangular equilibrium points L 4 and L 5, we find 

that: 

R~(W'(L4)) 

R~(WU(L,)) 

= 

= WS(Ls) ,  

for # = 1/2, R2(WS(L~)) = W"(L~) for i= 4 ,5 .  

These facts will be useful in the computations. 
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We have used in this work the same system of units and coordinates as in [5]. So if we 

perform a translat ion from the origin to L 4 and then a rotat ion of angle ct given by tan 
2~ = 31/2(1 - 2#), where # is the mass ratio, the equations of mot ion  become: 

2 = 23~ + f~x, (1) 

j) = - 22 + f~r, 

where 

3 ~ 2 2  ~ - 1 2  D.(x, y) = ~ + -~-x + -~-y + 0(3) 

with 

X 1 = 2all + (1 - 3/.t(1 - kt))l/2], 

X 2 = 2all - ( 1  - 3,u(1 - t . / ) ) 1 / 2 ] .  

The eigenvalues 

+_ (~ +_ ifl) with 

of the linear part  of (1) ( D X ( L 4 ) )  at the equilibrium point  L 4 are: 

[(27#(1 - #)1/1 _ 1]~/2 [(27/~(1 - #)1/1 + 111/2 
e =  and /3= 

2 2 

Note  that, due to the reversibility, DX(Ls)  has the same eigenvalues. 
So if # > #R (where #R stands for Routh 's  mass ratio), the equilibrium is hyperbolic, 

and the fact that fl 4= 0 implies that the orbits spiral a round it. 
The solution of the linear part  of (1) is: 

x(t)  = e " ( a l  

y(t) = e~'(b x 

COS fit + a 2 sin fit) + e 

cos  fit + b 2 sin fit) + e 

-~t(a 3 cos  fit + a 4 sin fit) 

-~t(b 3 cos  fit + b4 sin fit) 
(2) 

with some relations between the integration constants ai, bi. In fact the b~ are functions 

of the a~ so we have only four independent constants. (see I-5] pp. 261-264). 

It happens that if a 1 = a 2 = 0, then b 1 = b 2 = 0, so in this case the solution of the 

linearized equations give an approximat ion  of WS(L4) if  we are close enough to the 

equilibrium. Analogously, if a 3 = a 4 = 0 then b 3 = b 4 = 0 and we get the approxima-  
tion to WU(L4).  

3. Numerical Globalization of the Invariant Manifolds 

Looking towards a numerical  global view of W"(L4) and WS(L4), we need an adequate 

set of initial conditions giving us the orbits on these manifolds. 

F rom the preceeding section it follows that the linear approximat ion  to W"(L4) is 
given by: 

x(t)  = e~t(al cos fit + a 2 sin fit), 

y(t) = e~t(b 1 cos fit + b 2 sin fit). 
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At t = 0 we have, also taking account 

x(O) = al,  

y(0) = b I = a 1~' + a2//', 

~c(O) = a i  o~ + azfl 

where 

of the relation between a i and bi [5]: 

.9(0) = a l  (~' ~ - f i r ' )  + az(af l '  + a' fl) 

(3) 

21212 (12 - ~ 2 )  

i 21,~12 (12 + 

121 = 
1 
,-~_ E27p(1 -/~)]1/4 = I~ + i/3l 

,/2 

~-2 = 2a[ 1 - (1 - 3/~(1 -/0)1/2].  

The notation used follows I-5] (pp. 2 6 1 -  264). 

A good set of initial conditions can be obtained for our purposes, taking al,  a2 in such 

a way that when t = 0 then (x(0), y(0)) describes a circle, (r cos 0, r sin 0), small enough 
around the equilibrium on the linear part of the manifold. Since the orbits on this 
manifold spiral from the origin, and the manifold has dimension two, we can be sure 
that for values of r small enough any orbit going to it has a least one 0 associated with it. 
This can be obtained taking: 

a I = r COS 0, 

r sin 0 - r~' cos 0 
a 2 = 

0e [0,2n] 

For  the globalizations of WS(L4) things are quite similar. After some trials, the 
computations have been carried out taking r = 10 -4 and taking a finite set of values of 

0 in the whole interval I-0, 2hi. Using a Runge-Kut ta-Fehlberg  (7-8) algorithm for the 
integration of the equations of motion (1), regularized when needed due to close 
encounters with one of the primaries, the variations of the value of the Jacobian integral 
have been less than 10-13 from the value of this integral at the equilibrium point, which 

is equal to 3, and which must be, of course, also the value of the Jacobi constant along 
the orbits on the invariant manifolds. 

Using the method just mentioned, the first intersections of WU(L4) and WS(L4) with 
the x axis have been computed for the following values of the mass ratio:/~ = 0.5, 0.4, 
0.3, 0.2, 0.1. In fact, and due to the symmetries mentioned, for/z = 0.5 only one of the 

above manifolds must be computed. Those manifolds associated with L 5 are also 
obtained by symmetry, in all the cases. 
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The intersections with this axis can be represented in the (x, ~) plane, since y = 0 and 

the value of )~ can be obtained via the Jacobian integral, the graph determines the 
manifold at the first cut with the x axis. In Figures 1-10 the curves associated with the 

first intersection are represented for both the stable and the unstable manifold of L 4. 
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Fig. 2. W~(L4) at the first cut for # = 0.4. 
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Fig. 4. W"(L4) at the first cut for # = 0.2. 

It must be noted that the curves appearing in the figures have two kinds of 

discontinuities, one near the primaries due to the possible collision orbits, and a second 

one due to the non-global character of y = 0 as a surface of section. Due to this last fact 

any tangent orbit produces a discontinuity, on the representation of the manifold, with 
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Fig. 6. WS(L4)  at the first cut for/~ = 0.5 

regard to nearby initial conditions, as can be seen in Figure 11. Anyhow, both these 
facts do not affect our purpose at all. 

It must also be said that in the Figures corresponding to the mass parameters 
ranging from 0.5 to 0.2 the graph of the invariant manifolds has three continuous 
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Fig. 8. WS(L4) at  the first cut  for # = 0.3. 

branches. For # = 0.1 (Figures 5 and 10) the apparent diffusion that can be observed in 
the representation of the manifolds must be understood as an accumulation of the 
different branches of them. It is difficult to give a good picture representing these 
manifolds if we join the computed points by smooth curves, so we have prefered to 
represent them discontinuously. An explanation of the behaviour of these manifolds is 
given in the next section. 
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4. Homocl in ic  and Heterocl inic  Orbits 

Let p,q be two hyperbolic epuilibrium points of a vector field X as before. If 

x e WS(p)n WU(p) then the orbit that passes through x is called homoclinic. If 
x ~ W"(p)n  WS(q) then it is called heteroclinic from p to q. A homoclinic orbit, ~,, is said 
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Fig. 11. Behaviour of the orbits near a tangent one which produces a discontinuity on the representation, in 
the (x,~) plane, of the invariant manifolds. 

to be non-degenerate if 

dim(TWS(p)n TW"(p))= 1 

where TWS(p) and TW"(p) are the tangent spaces to W~(p) and W"(p) on the points of 7. 
An analogous definition can be used for a non-degenerate heteroclinic orbit, (see [3, 2] 
for their properties). 

We have classified the homoclinic and heteroclinic orbits attending to their number 
of intersections with the x axis. In this way, given xe  WU(Li) n WS(Li), ie {4, 5}, we say 
that the orbit 7 that passes through x is a 2k-homoclinic one, if its (x, y)-projection has 
2k-crosses with the x axis, k =0,  1, . . . .  If the orbit has some tangency then the 
multiplicity is taken into account. Analogously we can define (2k + 1)-heteroclinic 
orbits if we look to WU(Li)n WS(Lj), i 4: j. 

If X is R-reversible and p is an equilibrium point of X, then p is said to be symmetric if 
pe  Fix(R). An orbit 7 of X is symmetric if R(7)= 7. 
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In the restricted problem due to the symmetry mentioned in Section 2, we have that 

WS(Ls)= RI(WU(L4)) and W"(Ls)= RI(WS(L4)), so if we want to compute all the 

1-heteroclinic orbits from L4 to L 5 (resp. from L 5 to L4) we have to compute all the 
intersections between the graph corresponding to W"(L4) (resp. WS(L4)) and its 

symmetry with respect to the x axis (2 = 0). So a point (x, 2) on the graph of the 

manifold corresponds to a 1-heteroclinic orbit if the point ( x , -  2) also belongs to the 

graph. 
The next proposition summarizes the numerical results obtained for the 1-hetero- 

clinic orbits. 

P R O P O S I T I O N  1. For the mass ratios 
given in the following table. 

studied the number of 1-heteoclinic orbits is 

# W~(Ls)n WS(L4) 

0.5 4 4 
0.4 3 4 
0.3 2 2 
0.2 2 2 
0.1 9 ? 

W'(L5)~ W~(L4) 

Remark 1. For the value of ~ = 0.1 infinitely many 1-heteroclinic orbits apparently 

appear. An explanation of the number of these orbits, for values of # less than 0.2, is 

given later. 

Remark 2. The orbits found for the case p = 0.5 were well known to Str6mgren [4]. 

Remark 3. For the values of the mass parameters ranging from 0.5 to 0.2 the 

intersection of the manifolds happens when y = 2 = 0 so all the 1-heteroclinic orbits are 

symmetric. For other values of # (i.e. p = 0.14) some non-symmetric 1-heteroclinic 

L 5 ~ L 4 orbits appear. 

In Figures 12-19 the heteroclinic orbits computed have been represented for the first 

four mass parameters. In Figures 20-23 some typical cases of heteroclinic orbits 

corresponding to WU(L4) when # = 0.1 have been plotted, as well as a 0-homoclinic 

orbit. 

The numerical study for p = 0.5 of the unstable manifold around L 4 at the second cut 
(Figure 24) presents two parts that are well differentiated. A 'proper' one which has been 
represented by continuous curves, and a second one which is an accumulation (in the 

sense previously mentioned at the end of Section 3) around the unstable manifold of L 5 

at the first cut (symmetrical to Figure 6). In this way, for the 2-homoclinic orbits 

L 4 , L 5 obtained by the intersection W ~ ( L 4 ) ~  W](Ls), leaving aside some isolated 
proper ones, there appears an infinite number of them which 'remember' essentially the 

shape of a pair of 1-heteroclinic orbits. This fact gives us the next Proposition. 
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Fig. 20. The simplest 1-heteroclinic orbits L 4 ~ L 5 for # = 0.1 

P R O P O S I T I O N  2. For a fixed value of #, the existence of a pair of non-degenerate 

1-heteroclinic orbits, one from L 5 to  L 4 and the other from L 4 to L 5, implies the existence 

of an infinite number of2k-homoclinic (L4 to L 4 and L 5 to L 5) and (2k + 1)-heteroclinic (L 4 

to L 5 and L 5 to L4) orbits for k = 1, 2, 3, . . . .  
Proof Let C1 and C 2 be two small circles of radius r around the equilibrium points, 

L4, L 5 respectively, parametrized by the angles 01 and 0 2 respectively. 

Let ), be some 1-heteroclinic orbit from L 4 to L 5 and r/some 1-heteroclinic orbit from 

L 5 to L 4. Assume that the first intersection between 7 and C 1 takes place for a value of 

the parameter  equal to 0~. Consider ( 0 ~ -  e, 0~ + e), we know that dim WU(Li)= 
dim WS(Li) = 2, i = 4, 5. By virtue of the continuity with respect to the initial conditions, 

and due to the fact that 7 spirals infinitely around L 5, we can take an orbit, ,;,, on 

WU(L4) and close to 7 in such a way that, inside C 2 and before leaving it, it turns 

clockwise around L 5 exactly n times. If we denote 0~. the value of the parameter  
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Fig.  21. 0 - h o m o c l i n i c  o rb i t  L 4 ~ L 4 for  # = 0.1. 

corresponding to the first intersection of Vn with C 1 

e we have 

, we can assume that for an adequate 

- ~  + 0~ < 01 1 

In the same way we can say that there exists an orbit 7,+ 1 o n  WU(L4) that inside C 2 

turns exactly n + 1 times clockwise around L 5 and with 0~ < 01 < 0~ ~ n +  1 

If n is large enough, say n >~ n o the orbits of WU(L4) that leave L 4 between 01 and 

01 after going outside C 2 , fall in a nel"ghbourhood of WU(Ls) and so they 'reproduce' ~ n + l  ~ 

W"(L 5) in the sense that these orbits form a two-dimensional manifold that, when going 

outside C2, can be considered as a small perturbation of W"(Ls), say W"'n(Ls) (see 

Figure 25). 
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Fig. 22. Exampleofa 1-heteroclinicorbitL 4~LSfor#=0 .1  involving the shape of the 0-homoclinic orbit. 

Since r/is non-degenerate W"(Ls)n WS(L4) is transversal, and so will W"'"(Ls)n 

WS(L4) be for n > no, since as n ~ oe then W"'"(Ls) approaches W"(Ls). 
In this way we have a set of 2-homoclinic non-degenerate orbits, 72, from 

L 4 , (Ls)--* L 4 for n > no. 
Taking any of these 2-homoclinic orbits, 72, we can repeat the arguments considering 

the value of the parameter 0~ at the first intersection of 72 with C2, when 72 spirals 

clockwise around L5. Between ( 0 ~ -  e, 0~ 2 + e)we can find an infinite number of 
3-heteroclinic orbits L 4 ~(L 5 , L4) ,L  5 in the same way. 

Starting with a 1-heteroclinic orbit L 5 ---~L 4 we should get the families of 
2k-homoclinic (L 5 ~ Ls) and 2k + 1-heteroclinic (L 5 , L4) orbits. 

Using the same kind of arguments we can prove 
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P R O P O S I T I O N  3. Under the same hypothesis as Proposition 2, the existence of  

a O-homoclinic non-degenerate orbit (L 4 ~ L 4 o r  L 5 ~ L5) implies the existence of  an 

infinite number of  O-homoclinic orbits L 4 ~ L 4 or L 5 , L  5 and an infinite number of  

1-heteroclinic orbits (L 4 , L  5 or  L 5 , L  4 respectively). 

Remark 1. This explains the situation observed numerically for # = 0.1. 

Remark 2. It has been computed numerically that the first non-degenerate 0-homo- 
clinic orbit appears for a value of # in the interval (0.1108, 0.1109). For values of the 
mass parameter less than this critical one and greater than the Routh's value 

= 0.03852. . .  ), there are, according to the last proposition, an infinite number of 
0-homoclinic orbits and 1-heteroclinic orbits. 
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