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Abstract .  For each compact Lie algebra g and each real representation V of g we construct a 
two-step nilpotent Lie group N(9 , V), endowed with a natural left-invariant riemannian metric. 
The main goal of this paper is to show that this construction produce s many new Gelfand pairs 
associated with nilpotent Lie groups. Indeed, we will give a full classification of the manifolds 
N(9, V) which axe commutative spaces, using a characterization in terms of multiplicity-free 
actions. 

In troduct ion  

Let N be a simply connected nilpotent Lie group and let K be a compact group 
of automorphisms of N. We say that  (K, N) is a Gelfand pair when the convolution 
algebra L~ (N) of K-invariant integrable functions on N is commutative. If H = K ~< N, 
then L I (H/ /K) ,  the convolution algebra of K-bi-invariant integrable functions on H, is 
isomorphic to L~(N)  (see [L1], for instance). Thus (K, N) is a Gelfand pair precisely 
when (H, K) is a Gelfand pair in the usual sense (see [GV], p. 36). Gelfand pairs 
associated with nilpotent Lie groups have been studied in [B JR1, Ki, BJLR, B JR2], for 
instance, and they are related to the representation theory of groups K,  N and H. 

A commutative space is a connected riemannian homogeneous space M whose alge- 
bra of I(M)~ differential operators is commutative, where I(M) ~ denotes the 
connected component of the full isometry group I(M). Commutative spaces have been 
studied in several articles; see for instance [BTV, KoP, KoPV, KoV, KaR, R, AV]. 

If ( , )  is an inner product on the Lie algebra n of N, we endow N with the riemannian 
left-invariant metric determined by ( , ) .  The isometry group of the resulting riemannian 
manifold (N, ( , ) )  is given by I(N, ( , ) ) = K  x N, where K = Aut(n) N 0(n, ( ,  }) is the 
isotropy subgroup and N acts on itself by left-translations (see [Wi]). In this case, we 
have the following nice relationship between the commutativity of invariant differential 
operators and the commutativity of invariant integrable functions (see [H], p. 485): 

(K, N) is a Gelfand pair if and only if (N, (,  }) is a commutative space. 

In this work, we study Gelfand pairs associated with the following nilpotent Lie 
groups. Starting from a faithful real representation (~r, V) of a compact Lie algebra 

* Supported by a fellowship from CONICET and research grants from CONICOR and SeCyT 
UNC (Argentina). 

Received March 18, 1999. Accepted May 19, 1999. 



308 J. LAURET 

9, we construct a two-step nilpotent Lie algebra n = ~ | V with center g and the Lie 
bracket defined on V by (Iv, w], x} = @(x)v, w} for all v, w �9 V, x E fi, where ( , } is a 
fixed g-invariant inner product on n. We denote by N(g, V) the simply connected Lie 
group with Lie algebra n = ~ | V and we endow N(g, V) with the left-invariant metric 
determined by ( , }. By a result due to C. Gordon [Go1], the spaces (N(g,V) ,  ( , )) 
have a neat geometric characterization within the class of homogeneous nilmanifolds: 
they are precisely the naturally reductive ones (see [L3]). The isotropy subgroup K 
of the isometry group of N(~, V) is given essentially by K = G x U, where G is the 
simply connected Lie group with Lie algebra [t~,1~] and U is the group of orthogonal 
intertwining operators of V. The group U acts trivially on the center g and each g E G 
acts on n = g | V by (Ad(g),~r(g)), where we also denote by ~r the corresponding 
representation of G on V. 

Let T be any maximal torus of G and let 1) denote a T-invariant complement in V 
of the zero weight space V0, regarded naturally as a complex vector space. We give in 
Section 2 the following necessary condition: 

I f  ( G x U, N (~, V) ) is a Gelfflnd pair', or equivalently, N (g, V) is a commutative space, 
then the action of T x U on V is multiplicity-flee. 

In Section 3 and Section 4 we shall obtain a complete classification of the Gelfand 
pairs of the form (G x U, N(t?, V)), determining explicitly the multiplicity free actions 
given above. This produces many new families of Gelfand pairs associated with nilpotent 
Lie groups (see Theorem 16). Up to now, relatively few examples were known and in 
such examples N is one of the following: a product of Heisenberg groups and abelian 
groups, a free two-step nilpotent Lie group, or an H-type group of a special kind (see 

[RD. 
A connected riemannian manifold M is said to be weakly symmetric if for any two 

points p, q �9 M, there exists an isometry of M mapping p to q and q to p. These spaces, 
introduced by A. Selberg in [S], have been studied for instance in [BRV, BTV, BV, 
KoPV, Z, AV]. It is proved in [S] that  any weakly symmetric space is a commutative 
space (with respect to I(M)-invariance; this coincides with I(M)~ for homo- 
geneous nilmanifolds [BJR2]). In [S] Selberg remarks that  he does not know whether 
weak symmetry is necessary for the commutativity of a space. It has been proved in 
[AV] that  for homogeneous spaces of reductive algebraic groups, the answer is affir- 
mative. On the other hand, certain modified H-type groups provide counterexamples 
ILl, L2]; however, none of these is naturally reductive. This motivated the study in [L4] 
of the weak symmetry condition in the class of manifolds N(9 , V), obtaining that  all 
the commutative spaces found in the present paper are weakly symmetric as well. 

Acknowledgements. I wish to express my deep gratitude to Isabel Dotti, for her invalu- 
able guidance. I am also grateful to Roberto Miatello, Jorge Vargas, Nao Nishihara, 
Chal Benson and Gaff Ratcliff for helpful observations. 

1. Prel iminaries  

We consider a simply connected real nilpotent Lie group N endowed with a left- 
invariant riemannian metric, denoted by (N, ( , }), where ( , } is the inner product  
on the Lie algebra n of N determined by the metric. The full group of isometrics of 
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(N, ( ,  }) is given by 

I(N, ( , ) )  = K x N (semidirect product), (1) 

where K = Aut(n) n O(n, ( , }) is the isotropy subgroup of the identity and N acts 
itself by left translations (see [Wit). Thus, the structure of I(N, ( , }) is completely 
determined by K.  Note that  since we always assume that  N is simply connected, we 
make no distinction between automorphisms of N and n. 

In this section, we shall give some properties of the two-step nilpotent Lie groups 
constructed as follows�9 All of the results in this section are proved in [L3]. 

Def in i t i on  1. We say that  a triple (ft, V, ( , ) )  is a data set if 
(i) g is a compact Lie algebra, i.e., g = [g, ~] | r where r is the center of g and [g, g] 

is a compact semisimple Lie algebra, 
(ii) (Tr, V) is a real faithful representation of g without trivial subrepresentations, i.e., 

~ c ~  KerTr(x) = 0, 
(iii) ( ,  } is an inner product (positive definite) on n = 9 | V satisfying that  {, }~ := 

( ,)]~x~ is adg-invariant, ( ,  }v := ( ,  }lv• is ~r(fl)-invariant and {g,V} = 0. Such an 
inner product will be called ~-invariant. 

A data set (0, V, ( ,  }) determines a two-step nilpotent Lie group denoted by N(g, V) 
having Lie algebra n = g | V, with Lie bracket defined by 

{ [0, = v ] ,  = 0, IV, v ] .  c (2) 

Finally, we endow N(g, V) with the left-invariant metric determined by {, ). 
Note that  In, n], = g is the center of n. The construction of the group N(g,V) 

does not depend on the chosen fl-invariant inner product ( , ) (up to a Lie group 
isomorphism). Moreover, if g is a compact Lie aIgebra, V and V' are representations 
of g as in Definition 1,(ii) and there exist r E Aut(g) and T : V -+ V ~ such that  
TTr(x)T -1 = ~r'(r V x E ~t, then N(g, V) - N(g, V') (Lie group isomorphism)�9 In 
particular, if V is equivalent to V ~, then N(~, V) _ N(g, V~). We shall now describe the 
isometry group of N(g, V). Note that  by (1), it suffices to compute the isotropy subgroup 
K of the isometry group. We first consider the group U := {T C K : T]~ -- I}�9 It is easy 
to see that  U = End~ (V)n O(V, ( ,  }), where End~ (V) denotes the algebra of intertwining 
operators of the representation (~r, V) of ;t. If V = V[ 1 |174  ~ is the decomposition of 
V into isotypic components, then End 9 (V) = g[(rl, F1 ) |174 Fk ), where Fl = ]R, C 
or 1HI depending on the type of ~ ,  and gl(r, F) denotes the Lie algebra of (r x r)-matrices 
with coefficients in the ring F (we refer to [BtD] for definitions and properties of the 
diferent types of real and complex representations). Each A = (aij) E gI(rl, Fl) acts on 
Vl r' by the matrix 

allIl �9149 alrlI1 ] 

�9 . . .  ' , ( 3 )  

arz l Il "'" arl rz Il 

where I~ denotes the identity transformation of Vl. This implies that U = U1 x . . .  x Uk, 
where Uz = O(rz), U(rl) or Sp(rz) depending on the type of V~. 
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T h e o r e m  1. [cf. [L3]] I f  N(g,  V) is the two-step nilpotent Lie group corresponding to 
the data set (9, V,( , )) (see Definition 1), we put g = ~ | r with ~ = [9,g] and c the 
center of g. 

(i) The Lie algebra t~ = Der(n) Mz0(n, ( , ) )  of the isotropy subgroup K of the isometry 
group o f ( N ( g , V ) ,  ( , ) )  is given by t~ = ~|  [g,u] = O, where u = Endg(V) Oso(V, ( , ) )  
and-g acts on n = ~ | V by (adx ,~(x) )  for all x C -g. 

(ii) The connected component of the identity of K is K ~ = G x U ~ where U = 
End~(V) N O(V,( , )), G = a/Ker~r and a is the simply connected Lie group with 
Lie algebra -~. The group U acts trivially on ~ and each g C G acts on n = g | V by 
(ad(g), ~(g)), where we also denote by 7r the corresponding representation of G on V.  

(iii) I f  V = V[ ~ | . . .  | V[  k with Vi irreducible and V~ r Vj for all i r j ,  then 
U = U1 x . . .  x Uk, where Ui = O(ri), U(ri) on Sp(ri) depending on the type of V~, and 

acts on as in ( 3 ). 
(iv) I f  Aut(g) = Inn(~l), then K = G x U. 

2. C h a r a c t e r i z a t i o n  o f  Gelfand pairs of  the f o r m  (G x U, N(9, V)) 
via multiplicity-free actions 

Let N be a nilpotent Lie group and let K be a compact group of automorphisms. It 
is shown in [B JR1] that  if (K, N) is a Gelfand pair, then N must be two-step nilpotent 
(or abelian). We will thus assume that  N is a two-step nilpotent Lie group. In the 
following theorem, the relationship between commutativity and Gelfand pairs is given. 
We shall first recall some preliminary facts and introduce some notation. 

If K C Ant(N) ~ Ant(n) (we always assume that  N is simply connected), we en- 
dow n with a K-invariant inner product ( , } and we take n = ~ | V the orthogonal 
decomposition, where ~ denotes the center of n. For each nonzero x C ~, we consider the 
Lie algebra nx = ~ | V.~, with Vx = {v E V : [v, V] • x} • = (Ker J~)• and defining 
Lie bracket [v, wJx = ([v, w], x)x  for all v, w E V~, where Jx : V ~ V is defined by 
(Jxv, w) = (x,[v,w]) for all v , w  C V,  x C 3. It is clear that  the group Nz = expnx is 
isomorphic to a Heisenberg group, unless J~ = 0 (i.e., V~ = 0), where N~ _~ R. We have 
that  K~ := {k C K : kx  = x} C Aut(N~). Since Jx : V~ --+ V~ is invertible, there exists 
an orthogonal decomposition V~ = 1/1 | . . .  | Vr such that  dim V /=  2 and 

J~lv~ = ci 0 ' c i r  0, V i = 1 , . . . , r .  (4) 

If we take J : V~ --+ V~ given by J[v~ 1 j j2  = N x]y~, then = - I  and thus J defines 

a complex structure on V~. We denote by l)x the corresponding complex vector space 
(V~, Y). It is easy to see that  the elements of Kx commute with J~ and hence theya l so  
commute with J; this implies that  K~ acts by complex linear transformations on Vx. 

Finally, for each v C V we consider the subgroup of Kx given by 

K x , ~ = { k e  K : k x = x ,  k p ~ ( v ) = p ~ ( v ) } ,  

where Px : V ~ Ker J~ is the orthogonal projection. 
A complex representation W of a compact Lie group K is said to be multiplicity free 

if the action of K (or equivalently of its complexification Kc)  on the polynomial ring 
C[W] given by (k.p)(w) = p ( k - l w )  is multiplicity free, i.e., its isotypic components are 
all irreducible (see [K, Ho] for further information). 
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T h e o r e m  2. If N is a two-step nilpotent Lie group, K is a compact subgroup of An t (N)  
and H = K ~< N ,  then the following conditions are equivalent. 

(i) The algebra of H ~ differential operators on N is commutative. In par- 
ticular, if K is the isotropy subgroup of the isometry group of (N, ( ,  }), this means that 
(N, ( ~ }) is a commutative space. 

(ii) (K  ~ N)  is a Gelfand pair. 
(iii) (K, N)  is a Gelfand pair. 
(iv) (I(x,~, Nx) is a Gelfand pair for all x E 3, v E V. 
(v) The action of Kx ~ (or o , Kx,~) on the complex vector space ~x defined in (4) is 

multiplicity free for all x E 3, v E V. 

It is well known that  (i) is equivalent to the commutativity of the algebra L 1 (H ~ I lK ~ 
(see [HI, p. 486); thus the equivalence of (i) and (ii) follows from the isomorphism 
Ll(H~176 ~_ L~:o(N). It is proved that  (ii) and (iii) are equivalent in [BJLR] and 
[B JR2]. The equivalence of (iii) and (iv) is called localization, and it has been proved in 
[Ki] and [B JR2]. The description of the localization procedure in terms of the operators 
J~ considered here is proved in [N]. Finally, conditions (iv) and (v) are equivalent by 
[BJm]. 
Def in i t i on  2. (N, ( , )) is said to be an almost-commutative space if (Kx, N~) is a 
Gelfand pair for all x E 3, where K = Ant(n) M O(n, ( , ) )  is the isotropy subgroup. 

We consider this weaker notion of commutativity (i.e., v = 0 in (iv) of the above theo- 
rem), just because in the particular case N = N(9, V) (see Definition 1) and K = G • U 
(see Theorem 1), we have the following neat characterization in terms of multiplicity 
free actions. 

T h e o r e m  3. [cf. [L3]] A group N(9, V) with 9 semisimple is an almost-commutative 
space if and only if the action of e ~(t) • U ~ on f/ is multiplicity free, where t is any 
maximal torus of g and V is the complex vector space fib defined in (4) for any h E t 
satisfying A(h) ~ 0 for all nonzero weights ~ of V. Note that V = V | Vo, where Vo 
denotes the zero weight space of the representation V with respect to t. 

We note that  if t denotes a maximal torus of 9 (maximal abelian subalgebra), then 
E t* is called a weight of a real representation (7~, V) of ~ if there exist v, w E V such 

that  7~(ht)v = A(h')w and 7~(h')w = -A(h ' )v  for all h' E t. We shall now give, using 
the characterization in the theorem above, two families of examples of groups N(g, V) 
that  are almost-commutative spaces. We first need to recall a well known lemma about 
multiplicity free actions of a torus, which is proved in [L3] for instance. 

L e m m a  4. Let C* denote the multiplicative group C. - {0}. A complex representation 
W of an n-dimensional torus T n is multiplicity free if and only if the set of weights 
P ( W )  C t* of W is m-linearly independent. In particular, if W is multiplicity free, then 
dime W ~ n. 

E x a m p l e  1. Consider the group N(su(n), Ca), n > 2, where C n is the standard re- 
presentation of ~u(n) regarded as a real representation. The subspace t of ~u(n) given 
by diagonal matrices is a maximal torus of ~u(n). The representation C n is of complex 
type; thus e ~(t) x U ~ = e ~(t) • S 1. Furthermore, since (Ca)0 = 0, we have that  V = C n. 
The Lie algebra of e ~( t )  • S 1 can be identified with t ~ ~, and thus the weights of C ~ 
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are given by P ( C  ~) = {A1 + A,. . .  ,As + A}, where )~i(H,r) = ihj and )~(H,r) = ir 
for all H C t, r C 1I~. Since P(C ~) is a linearly independent subset of (t | R)*, we 
obtain from Lemma 4 that  the action of e ~(~) x S 1 on C n is multiplicity free, and hence 
N(su(n),  C n) is an almost-commutative space by Theorem 3. We shall prove in Section 
4 that N(su(n) ,  C ~) is actually a commutative space. 

E x a m p l e  2. We consider the group N(so(n),  ]~n), n > 2, where 1R n denotes the stan- 
dard representation of so(n). In this case e ~(t) x U ~ = e ~(0, since IR n is of real type. 
If n = 2k + 1 or n = 2k, we choose the standard maximal torus of so(n) (see [Kn], 
p. 63). It is clear that  in both cases we have to analyze the action of e ~(t) on V = C k 
given by e € ek) = ( ih~e~,. . . , ihkck) (see (4)). The Lie algebra of e "(t) is t 
and P(C k) = {A~,... ,Ak}, where ,~j(H) = ihj; thus P(C k) is a linearly independent 
subset of t*. By Lemma 4 we have that  the action of e "(t) on C k is multiplicity free and 
thus N(so(n),  R ~) is an almost-commutative space (see Theorem 3). We shall prove in 
Section 4 that  N(so(n),  R n) is actually commutative. 

Remark 1. It is easy to see that  the group N(~o(n), It~ n) is precisely the so-called free 
two-step nilpotent Lie group on n generators. The almost-commutativity of these groups 
has been proved in [B JR1]. Moreover, it was also proved in [BJR1] that  the only Gelfand 
pair of the form (K ,N(so(n) ,R~) )  is (SO(n) ,N(so(n) , ]~) ) .  The weak symmetry of 
these groups has been proved in [Z]. 

3. C lass i f i ca t ion  o f  t h e  g r o u p s  N(ft, V) w h i c h  are a l m o s t - c o m m u t a t i v e  spaces  

In this section, we shall give an explicit classification of the almost-commutative two- 
step nilpotent Lie groups N(9, V) (see Definition 2), using the characterization in terms 
of multiplicity free actions given in Theorem 3 (see Theorems 14, 15). 

If V is a real representation of 9, we denote by Vc its complexification C| V, which 
is naturally a complex representation of 9- If W is irreducible and W = Vc, we shall 
put W~ = V and sometimes we shall regard a complex representation W as a real 
representation denoted also by W. 

T h e o r e m  5. Let g be a compact Lie algebra and let V be a representation of ~ as in 
Definition 1, (ii). If-~ = [g, 9] and N(g, V) is an almost-commutative space then N(~, V) 
is so, where we also denote by V the restriction of the representation V to ~. 

Proof. Suppose that  N(9, V) is almost-commutative. If h E g, then the action of K ~ 
on Vh is multiplicity free by Theorem 2. The group K preserves g and it is clear that  
KIg| C / ( ,  where K denotes the isotropy subgroup of N(g, V). Thus the action of 

on V is also multiplicity free, as it has to be shown. [] 

In view of the result above, we first analyze the groups N(O, V) with ~ semisimple. 
We shall now deduce necessary conditions for the almost-commutativity of N(g, V) 
with V irreducible, depending on the type of V. In the quaternionic case, the condition 
obtained is also sufficient (we refer to [BtD] for definitions and properties of the diferent 
types of real and complex representations). We first give a lemma about multiplicity 
free representations, which will be useful in all the classification. 

L e m m a  6. (i) Let G be one of the classical groups S0(k,C) ,  Sl(k,C), GI(k,C) or 
Sp(k,C),  where k >_ 2 and in the last case k is even. If C k denotes the standard 
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representation of G, we consider the action of ((;*)~ x G on ((;k)~ = Ck | . . .  | (;k 
given by 

p ( a l , . . .  , a n , A ) ( v l , . . . , V n )  : ( a l A V l , . . . , a n A v n )  V a i e  (;*, A E G. 

I f  G = Sl(k,C),  Gl(k,(;)  or S p ( k , c ) ,  then this action is multiplicity free if and only if 
n = 1, 2. For G = S0(k ,  (;) the action is multiplicity free if and only if  n = 1. 

(ii) The action of C* x C* x Sp(k, C) on (;2 | (;2k @ (;2k given by 

p ( a , b , A ) ( v ~ , v 2 , v , w )  = (aVl,bV2, aAv,  bAw),  a,b C (;*, A e Sp(k, ( ; ) ,  

is not  multiplicity 
(iii) The action 

. . .  e (cn~ e C ~ )  

p(a, A, B~,..., B~) 

for all a E (;*, A 
and r = 1. 

free for all k > 1. 
OfC* x SO(k,C)  x G l (n l , ( ; )  x . . .  x GI(n~,C) on(; a @ ((;/q,1 @C'P'l) @ 
given by 

(v, Vl, wl ,  . . . , v~, w~) = (aAv,  aBly1 ,  a - l  B l w l ,  . . . , above,  a - l  B r w r )  

C SO(k,( ; ) ,  Bi E Gl(ni,(;),  is multiplicity free if and only if k = 0 

Par t  (i) follows direct ly f rom [BR], T h e o r e m  2 or [Le], T h e o r e m  2.5. I t  is easy to 
prove pa r t s  (ii) and (iii) using [BR], T h e o r e m  7. [] 

Case V of quaternionie type. We take  the complex  represen ta t ion  W of ~ such t h a t  
V = W, regarded  as a real representa t ion .  We have t ha t  e ~(t) x U ~ = e ~(t) x Sp(1). If  
V = 1) | 17o as in T h e o r e m  3, then  there  exists a real basis of 1) denoted by 

? : {Vl, iv1, jVl, - - i jv l , . . . ,  Vn, ivy, jvn, --ijVn}R, 

where i, j : V --~ V are the  complex  and quaternionic  s t ruc tures  of W respectively,  such 

0 -~k(h) 
ak(h) 0 

7r (h)  I{v ~ ,iv~,r }~ = 

that 

0 -~k(h) 
ak(h) 0 

v h e t. (5) 

Thus ,  1) as a complex  vector  space has a basis 1~" = {Vl, j r 1 , . . . ,  v~, j v ~ } c  and each 7r(h) 
with h C t acts  on l) by 7r(h)l{v~,yv~}: = i)~k(h)I. If  T E Sp(1), then  T acts  diagonal ly  

on 1) = (;2 |  |  (n copies) and in the  s t anda rd  way on each copy C 2 = {vk , jvk}C.  
By T h e o r e m  3 we have t h a t  if N(I~, V) is a lmos t - commuta t ive ,  then  the  act ion of the 
complexif icat ion (e ~(~) x Sp(1))c  = (C*)dim t X 5~(2, (;) on V ---- ((;2)n is mult ipl ici ty  free. 
This  implies t ha t  the  act ion given in L e m m a  6,(i), mus t  be mult ipl ic i ty  free and  thus 
d i m t  = 1 or d i m t  = 2. 

If  d i m t  = 1, then  fl = su(2) and  thus V = (;2, obta in ing  the  group N(su(2) ,  (;2 ). 
If  d im t = 2, we have t ha t  tl = ~u(2) | ~u(2) or g = sp(2). I t  follows f rom dim W = 
4 + d i m  Wo t h a t  the  only possibi l i ty is 1~ = sp(2) and  V = (;4, the  s t anda rd  represen ta t ion  
of sp(2). 

We then obtain the following result. 
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T h e o r e m  7. I f  g is semisimple and V is irreducible of quaternionic type, then N(g, V) 
is an almost-commutative space if  and only if  g = ~u(2) and V = C 2 or g = sly(2) and 
V = C 4, where C 2 and C 4 denote the corresponding standard representations. 

Case V of real type. In this c a s e  e It(t) X U 0 = e or(t) . If V = 1) | V0 as in Theo- 
rem 3, we take a real basis 1) = { v l , w l , . . .  ,v~,w,~}~ of l) such that  lr(h)l{~j,~j}~ = 

[ 0 -AJ(h)  ] V h C t. Thus 1) = { v l , . . . , v ~ } e  and the action is given by 
 j(h) 0 

L J 

7r(h)vj = i)~y(h)vj for all h E t. Suppose that  N(g, V) is almost-commutative. Since the 
action of e ~(t) on l) is multiplicity free, we obtain from Lemma 4 that  n _< dim t and 
{,kl,. �9 �9 A~} is a linearly independent subset of t*. If W = Ve, then dime W - d i m e  W0 = 
dim V - dim V0 = dimR 1) = 2n <_ 2 dim t. We thus obtain that  the complex representa- 
tion W of g of real type satisfies 

dim W _< 2 rank(g) + dim Wo, 
dimWx = 1 V A C P ( W )  - {0}, 

(6) 

where Wx denotes the A-weight space of W. 

Case V of complex type. Let W be the complex representation such that  V = W, 
regarded as a real representation. We have that  e ~(t) x U ~ = e ~(t) x S 1. Consider, as 
in the cases above, a real basis ~" = { v l , i V l , . . .  ,Vn,iVn}R of ~ , where i : W ~ W is 

[ 0 - ~ j ( h )  I V h E t .  W e the complex structure of W such t h a t  7r(h)l{v~,ivj}~: = ,~j(h) 0 

then have that  1) = { v l , . . . , v n } c  and ~r(h)v i = i)~j(h)vj for all h C t. Analogous to 
the previous case we obtain that  if N(g, V) is almost-commutative, then n _< dim t + 1 

1 dim V - �89 dim V0 = and )~i # ),j for all i # j .  This implies that  dime W - dime Wo = 
�89 dima 1? = n _< dim t + 1. Thus we obtain that  the complex representation W of g of 
complex type satisfies 

dim W _< rank(g) + 1 + dim TWo, 
d i m W ~ = l  V ) , c P ( W ) - { 0 } .  

L e m m a  8. Let W be a complex representation of g such that dimW~ = 1 for all 
E P ( W )  - {0}. Then dim Wo < rank(g). 

Proof. If r = rank(g), we take A = {C~l,..., a~} the set of simple roots of g. Denote by 
~ I c P ( W )  the maximal weight of W and let wIEW~ 1 -{0} .  If x_o~l.., x _ ~ w ~  CWo with 
x__~. Eg a. , then x__~ . . . .  x ~ w l C W ~  , and thus z_~ . . . .  x_~. WlEX--c~. Wc~.. Since 
W0 is C-linearly generated by the elements of the form x__~ . . .  x__~ wl we have that  
l/Vo = (x ~ W~I U . . .  U x _ ~  W ~  )e. Now, using that  dim Wa~ < 1 for all i we obtain 
that  dim W0 < r. [] 

Case g simple and V irreducible. In view of (6),(7) and Lemma 8, we should compute 
all the irreducible complex representations W of any simple Lie algebra g satisfying 
d i m W  < 3rank(g). Using tables of representations of simple Lie algebras (see for 
instance [MPR]), one can check that  such representations are precisely the following: 
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8u(2) : C 2, C3,__ __ 80(5) : C 5,/xs, 

8u(3) : C 3, C 6, C 6, C a , 80(7) : C 7, At, 
8u(4): C4,A2C4,C u 8 0 ( 2 n + 1 ) :  C 2n+1, n > 4 ,  
8u(5) : C 5, A2C 5, AaC 5, C --T, 8p(n) : C 2~, n > 3, 
8u(6): C6,AUC6,A4C6,Cg, so(8): Cs,A~_,A4_, 

~u(n) : C *~,C '~, n___7, zo(2n): C 2~, n_>5, 

(8) 

where C a denotes the only 3-dimensional representation of su(2) and C 6,C 6 are the 
representations of zu(3) corresponding to the dominant weights (2, 0) and (0, 2) respec- 
tively. The representations denoted with A are spin representations and bar denotes 
the dual representation. 

The representation C 3 of su(2) is of real type and it corresponds to the group 
N(80(3),]R3), which is commutative by Example 2. Since C 6 and C 6 are of complex 
type, we should have by (7) that 6 < 2rank(g) + 1 = 5, which is a contradiction. 
Similarly, we can disregard the representations A2C 5 , A3C 5 of 8u(5) and A2C 6 , A4C 6 of 

8u(6). 
It is easy to see that  A2C 4 = (R 6)c, where ~6 denotes the standard representation of 

80(6) = 8u(4); thus N(su(4), (A2C4)R) --N(8o(6), ~6) is an almost-commutative space 
by Example 2. 

Since A5 = (;4 the standard representation of 8p(2) = 8o(5), we have by Theorem 7 
that  N(z0(5), C 4) = N(sp(2), C 4) is an almost-commutative space. The representation 
A7 of s0(7) is of real type and satisfies (AT)0 = 0 (see [BtD], p. 280), by (6) we should 
have dime A7 = 8 < 2 rank(g) + dim W0 = 6, which is a contradiction. 

The representation C 2n of zp (n) is of quaternionic type for all n > 1; thus N(zp (n), C 2n) 
is an almost-commutative space if and only if n = 1, 2 (see Theorem 7). 

( -)R) are pair- Finally, the groups N(80(8),~s), N(zo(8),(A~_)R) and N(s0(8), A 4 
wise isomorphic, since A~ and A 4 can be obtained from C s composing with an outer 
automorphism r of 8o(8) (see Section 1). Furthermore, it is easy to see that  the re- 
presentations C n and C '~ of zu(n) are equivalent, regarded as real representations, thus 
N(su(n), C n) and N(zu(n), C n) are isomorphic (see Section 1). 

We have obtained the following classification. 

T h e o r e m  9. The groups N(g, V) with g simple and V irreducible that are almost- 
commutative spaces are 

(i) N ( s n ( ~ ) , C n ) ,  ~ _> 2, 
(ii) N(zo(n), R~'), n > 3, n # 4, 

(iii) N(sp(2), C4). 

Case g semisimple, nonsimple and V irreducible. Let g = ~l �9 . . .  | gk (k _> 2) be 
the decomposition into simple ideals of g. As in the above case, we shall first compute 
all the complex representations W of g satisfying (6) or (7). There exist representations 
Wi of gi such that  W = W1 | . . .  | Wk (see [BtD], p. 82); thus it follows from Lemma 
8 that  

dim W1. . .  dim Wk <_ 3(rl + . . .  + rk), (9) 

where ri = rank(gi). Since dim Wi _> ri + 1 for all i (see (8)), we obtain from (9) that  

(rl + 1) . . .  (rk + 1) < 3(rl + . . .  + rk). (10) 
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It is easy to see tha t  if (10) holds, then k = 2, 3, and fur thermore ,  the only 3-tuples 
(rt,r~, r3) with r l  > r2 > r3 satisfying (10) are (1, 1, 1) and (2, 1, 1). For (1, 1, 1) we 
have tha t  g = zu(2) |174  and d i m W  < 9, thus W = C 2 |  2 |  2 . But  W0 = 0 
in this case, and this implies tha t  if (6) or (7) hold, then 8 = dim W < 2 rank(g) = 6, 
which is a contradict ion.  In a similar fashion we can disregard the 3-tuple (2, 1, 1). 

We now consider the case k = 2. It is easy to prove tha t  under  the assumption 
(W1)0 = 0 or (W2)0 = 0 then  (W1 | W2)o = 0; thus (6) or (7) imply tha t  

dim W1 dim W2 <_ 2(rl  + r2). (11) 

Since dim l/Vi >_ ri + 1 we have tha t  (r~ + 1)(re + 1) _< 2(rl  + r~), rlr2 - (rl +r2) + 1 < O, 
( 1 - r t ) ( 1 - r e )  _< 0, and if we suppose r l  > re, then  r2 = 1. Moreover,  it follows 
from (11) tha t  dimW1 = r l  + 1 and dimW.2 = 2, and thus the only possibility is 
g = ~ u ( n ) |  and W = C n |  2, with n >_ 2. If n > 3, since C n r C n and 
C 2 ~_ C-if, then  W ~ W,  i.e., W is of complex type  and thus (7) must  hold. Therefore  
2n = d i m W  _< rank(g) + 1 + dimW0 = n + 1, which is a contradict ion.  Thus  n = 2, 
g = su(2) |  = ~o(4) and W = C 2 |  2, which is of real type.  We have tha t  
(C 2 | C 2)R = R a, the s tandard  representa t ion of so(4), and thus we have obta ined the 
group N ( , u ( 2 )  | ~u(2), IR 4), which is an a lmost -commuta t ive  space by Example  2. 

Finally, we suppose tha t  (W1)o r 0 and (W2)0 r 0. It follows from (8) tha t  d imWi  >__ 
2ri; thus we obtain from (9) tha t  

4rlr2 < 3(r i  + r2). (12) 

Assuming r l  >_ r2 it is easy to see tha t  (12) implies r2 = 1, and thus g2 = su(2) and 
dimW2 _> 3. Using (9) again we have (dimW1)3 <_ 3(rl + 1); thus dimW1 _< rl  + 1, 
which is a contradict ion since (W1)0 r 0. 

We then  obtain in this case the following result. 

T h e o r e m  10. The only group N(g, V) with g semisimple, nonsimple and V irreducible 
which is an almost-commutative space is N( ,u (2 )  | su(2) ,R4) ,  where ]~4 denotes the 
standard representation of so(4) = ~u(2) | ~u(2). 

Case g semisimple and V isotypic nonirreducible. Suppose tha t  V = V1 | . . .  @ Vk 
(k > 2) with V/ _~ Vj for all i, j = 1 , . . . ,  k. We assume tha t  the corresponding group 
N(g, V) is an a lmost -commuta t ive  space and we shall use constant ly  the character izat ion 
given in Theorem 3. 

For each j = 1 , . . . ,  k consider the decomposi t ion 

Vj = {vl,J wl , . . . , J  v3n, w3n}R �9 (Vj)0 (13) 

such tha t  7r (h)4# # ~  = [ 0 -A i (h )  ] - ~ ~ ~ Ai(h) 0 J V h E t. Note  tha t  the nonzero weights 

{ A I , . . . ,  An} C t* of Vj do not  depend on j .  The  complex vector  space 1) in Theorem 3 
is given by 1) = {v~, . . .  , vnicl | . . .  �9 {vk , . .  ., vnk}c, and 7r(h)v j = x/'L--fAi(h)v~ for all 

v 1 v? .,v/k}C for all i 1, . , n ,  h C t, 1 <  i < n, 1_< j < k. If we define Wi = { i ,  ~,- . . . .  
then  the decomposi t ion of t)  into irreducibles as a representat ion of e ~(~) x U ~ is t) = 
W~ | . . .  �9 Wn, assuming tha t  V is of real or complex type.  In the  case when V is of 
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quaternionic type, we have that  n is even and furthermore, we can choose the vectors 
J J in (13) such that  A1 = A2, An-1 = An (see (5)). Thus the decomposition into Vi, Wi . . . ,  

irreducibles is 1~ = (W1 �9 W2) e . . .  �9 (Wn-1 �9 Wn). 
Note that  in any case the group U ~ = SO(k), U(k), Sp(k) acts diagonally on T~ and 

via the standard representation on each irreducible component. Moreover, 7c(h)lwl = 
~/L--lAi(h)I for all h E t and i = 1 , . . .  ,n.  

If V is of real type, then the action of the complexification (e ~(t) x SO(k))c = 
(C*)dim t X SO(]~, C) on V : (C k )n must be multiplicity free. This implies that  the action 
of (C*)n x SO(k, C) on (C k)~ given in Lemma 6,(i) is multiplicity free and hence n = 1. 
This implies that  9 = su(2) and Vj = IR 3 , obtaining the two-step group N(su(2),  (]~3)k). 

We now suppose that  V is of complex type. Thus the action of the complexification 
(e ~(t) x U(k))c = (C*) dimt x Gl(k,C) on l}" = (Ck) n must be multiplicity free. It 
follows from this that  the action of (C*) ~ x GI(k,C) on (ck)  ~ given in Lemma 6,(i) 
is multiplicity free, therefore n = 1 or n = 2. Since (Tr, V) is faithful, we have that  
dim t = 1 or dim t = 2, and it is easy to check that  there are no representations of 
complex type satisfying any of the above conditions. 

Finally, if V is of quaternionic type, then the action of the complexification (e n(t) • 
Sp(k))c = (C*)dim t X Sp(k, C) on ~" = (C2k)~ must be multiplicity free, and this implies 
that  the action of (C*)~ x Sp(k, C) on (C 2k) ~ given in Lemma 6,0) is multiplicity free, 
and thus n = 2 or n = 4. We then obtain that  d i m t =  1, i.e., g = su(2) and Vj = C 2, 
or d i m t =  2. It is easy to see that  the only possibility in the last case is g = sp(2) and 
Vj = C 4, obtaining the group N(bp(2), (C4)k). 

We have the following result in this case. 

T h e o r e m  11. A group N(g,  V) with 9 semisimple and V isotypic, nonirredueible is an 
almost-commutative space if and only if it is one of the following groups: 

(i) k _> 2, 
(ii) N(su(2),  (C2)k), k > 2, 

(iii) N(sp(2),  (c4)k), k ~ 2. 

Case ~ simple and V nonisotypic. We suppose that  Y = V k~ O . . .  �9 Vr k" (r ~ 2), 
with Vi irreducible representations of ~ and Vi ~ Vj for all i ~ j .  If N(~, V) is an 

almost-commutative space, then the groups N(9, V;  r are as well, since the isotypic 

components V;  j = Vj Q . . .  | Vj are (e ~(t) • U~ (see Theorem 3). It then 
follows from Theorems 9,11 that  we are in one of the following cases: 

(i) 9 = su(2) = ~0(3), V = (I~3) k | (C2) '~, k ,n  > 1, 
(ii) ~ = su(4) = ~o(6), V = C 4 Q ]~6, 

(iii) 9 = 5p(2) = ~o(5), V = I~ 5 | (C4) k, k _> 1. 

Case (i). S incee  ~(~) •  ~  1 •  •  a n d V = C  k |  2n , we have that 
the action p of the complexification (e n(t) • U~ = C* • SO(k, C) • Sp(n, C) on 
is given by p(a, A, ]~) (Vl ,V2)  ---- (aAvl,  aBv2), and so it is multiplicity free (see [BR], 
Theorem 7). We then obtain from Theorem 3 that  the groups N(su(2),  (~3)k | (C2),~) 
are almost-commutative spaces. 

Case (ii). In this case e ~(t) • U ~ is a 4-dimensional torus and ~" = C 4 | C 3. This 
implies that  the corresponding action cannot be multiplicity free (see Lemma 4). 



318 J. LAURET 

Case (iii). We have that  the action of (e ~(t) x U~ = C* x C* x Sp(k, C) on l) = 
C 2 | C 2k | C 2k is the given in Lemma 6, (ii) and thus it is not multiplicity free. Hence, 
this group is not almost-commutat ive.  

We have obtained in this case the following result. 

T h e o r e m  12. A group N(B, V) with ~1 simple and V nonisotypic is commutative if and 
only i f9 = s u ( 2 )  and V = (R3) k | (C2) ~, with k ,n > 1. 

Case g semisimple, nonsimple and V nonisotypie. Let 9 = 91 | .. �9 | 9m (m > 2) be 
the decomposition of g into simple ideals and suppose tha t  V = V~ z |  | V~ ~ (r >_ 2) 
is the decomposition of V into isotypic components V~ k~ . 

D e f i n i t i o n  3. We say that  a group N(g,  V) is indecomposable if there are no nonzero 
ideals 01,112 of g and nonzero subspaces 171, V2 of V such that  9 = t)1 O 112, V = V1 | V2 
and 7r(0~)lv ~ = 7r(02)lv1 - 0. Otherwise, we will say that  N(9,  V) is decomposable. 

Note that  if N(B, V) is decomposable, then 

N(g,  V) = N(~I ,  V~) x N(fJ2, V2) (14) 

is a direct product  of Lie groups, since nl = 01 (~ V1 and n2 = 1~2 | V2 are Lie subalgebras 
of n such that  n = nl | n~ and [nl, n2] = 0 (see Definition 1). Moreover, nl and n2 are 
orthogonal subspaces with respect to any ~l-invariant inner product  on n = g | V; thus 
(14) is also a direct product  of r iemannian manifolds. This implies that  N(g,  V) will be 
an almost-commutat ive space if and only if both  N(th,V1 ) and N(O2,V2 ) are as well. 
We then assume that  N(g,  V) is an indecomposable almost-commutat ive space. 

If 0 C 9 is an ideal and W C V is an 0-invariant subspace of V where b acts 
faithfully and without trivial subrepresentations on W, then N(0,  W) is also an almost- 
commutat ive space by Theorem 3. In fact, 17V- = 17 N W and 

x U ~  c e x Ug, w: FV, (ZS) 

where UO,w = End0(W ) Q 0 ( W )  and t is a car tan subalgebra of g such that  t n 11 
is a cartan subalgebra of 0, obtaining that  the action of e ~r(tn0) x U~, W on l~ is also 
multiplicity free. 

We fix a simple ideal ~li of ~t. If  Wi denotes the subspace of V where gi acts without 
trivial subrepresentations, then Wi is a sum of certain isotypic components of V. From 
(15) we have that  the two-step groups N(fJi, Wi) and N(0i ,  Wi) are a lmost-commutat ive 
spaces, where 0i is the maximal  ideal of ~ acting faithfully on Wi. 

Suppose tha t  ~i 76 su(2),sp(2).  Thus it follows from Theorems 11 and 12 that  Wi 
is gi-irreducible. Since 9i C 0i we have tha t  Wi is 0i-irreducible too, and thus 9i = bi 
by Theorem 10. This implies that  g~L acts trivially on Wi, and since 9i acts trivially on 

N J- • W~,  we can decompose N(9,  V) = N(gi ,  Wi) x (gi , W~ ) (see Definition 3), which is 
a contradiction. 

Thus 9i = su(2) or sp(2) for all i = 1 , . . . ,  m. Fix an isotypic component V? J of V 

and let I?j denote the maximal  ideal of ~1 acting faithfully on V? j . Since N(Oj, V~ j ) is 
an almost-commutat ive space (see (15)), we obtain from Theorems 9, 10, 11 that  one of 
the following conditions must hold: 

(i) [Jj = ~i11(2), Vj • ~[~.3, 
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(ii) 0j = ~U(2), 1/3 = C 2, 
(iii) 0 j = ~ u ( 2 ) |  (C 2 |  2 ) R = R  4 , k j  =1,  
(iv) t]j =~it0(2), Vj = C 4. 

If (iv) holds and l~j acts nontr ivial ly on some Vz k', then  0~ must  act trivially on V~ k~ by 

Theorem 11 and thus j = 1. This implies tha t  0j acts tr ivially on (V;~) • and hence we 

can decompose N(~,  V) = N(Oj, V;  ~) x N(O~, (V;~)•  which is a contradict ion.  Thus  
~ti = ~u(2) for all i = 1 , . . . ,  m. We can deal with the case (i) similarly to (iv); therefore 

V = N  4 e . . . O I I {  4 |  k l e . . . @ ( C 2 )  k'-~' 

with r '  copies of I~ 4 . If 9i acts tr ivially on all isotypic components  N 4 , then g~ must  act 
tr ivially on Wi = (Nxc~  KerTr(x)) • This implies, as before, tha t  we can decompose 

and this is a contradict ion,  obtaining tha t  g acts faithfully on R 4 e . . .  | IR 4 (r '  copies). 
Hence N(g,  II{ 4 | . . .  | 1I{ 4) is a commuta t ive  space (see (15)) and thus the action of 
e ~(t) = T ~ on (C 2)r' is multiplicity free. We then  obtain from Lemma 4 tha t  2r '  _< m, 
and since at  most  two ideals gi can act nontrivial ly on each copy of R 4 , we also have 
m < r '  + 1. Hencefor th  r '  = 1 and m = 2. 

Thus  we have obta ined in this case tha t  the only indecomposable  possibility is 
N(~u(2) | zu(2),(C2)1 kl | ~4 @ (C2)ik2), where the first copy of su(2) acts only on 
((22) kl and the second one only on ((22) k2. This group is almost-commutative since 
the  action p of (e ~(t) x U~ = C* x C* x Sp(kl)  x Sp(k~) on 1) = C 2kl @ C 2 @ C 2k2 
is given by p(a, b, A, B)(v,  Vl , v2, w) = (aAv, avl , by2, bBw) is multiplicity free (see [BR], 
Theorem 7). 

T h e o r e m  13. A group N(g,  V) with g sere• nonsimple and V nonisotypic is an 
almost-commutative space if and only if it is 

(i) N ( s u ( 2 ) |  ~u(2), (C2) k~ | 11{ 4 e (C2)k2), where the first copy of~u(2) acts only 
on ((;2) k~ and the second one acts only on ((;2) k2, 

(ii) a direct product of some of the groups listed in Theorems 9, 10, 11, 12 and part (i). 

It would be appropr ia te  now to summarize  the results obta ined in the cases above, 
see Theorems  9, 10, 11, 12, 13. 

T h e o r e m  14. The two-step nilpotent Lie groups N(g, V) with 9 sere• that are 
almost-commutative spaces are 

(i) N(su(2) ,  (IR3) k | (C2)n), k ,n  >_ O, 
(ii) N(su(2)  | su(2),  ((;2) k~ �9 R 4 | (C2)k2), kl,  k2 >_ O, where the first copy ofsu(2)  

acts only on ((22) ~ and the second one only on (C2) k~, 
(iii) N(sp(2) ,  (C4)k), k _> 1, 
(iv) N(~u(n) ,  (2n), n _> 3, 
(v) >_ 5, 

(vi) a direct product of some of the two-step nilpotent Lie groups above. 

Case g nonsemisimple. By Theorem 5, we have tha t  if N(9,  V) is an almost- 
commuta t ive  space, then  N@,  V) is so, where ~ = [~, 9]. Thus  N(g,  V) must  be one of 
the groups listed in Theorem 14,(i)-(vi),  unless g = 0. Each one of these cases will be 
analysed separately. 
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Case (i). Suppose tha t  N(~u(2) | c, (II~3) k | (ca)~)  is an a lmost -commuta t ive  space 
with center c r 0. Since R3 is of real type,  the center c must  act tr ivially on (Rs) k. 
We consider the decomposi t ion ((;2) n = (Ca) nl | . . .  | (Ca) ~ | (ca)n '  such tha t  
Ir(e)l(c2)~ = ~i(c)3i for all c E c ()~i E c* - {0}), where Ji is a skew-symmetr ic  transfor-  
mat ion  satisfying J~ = - I ,  and 7r(c)[(r = 0. We have tha t  Endu(2)((Ca) n*) = 

g[(ni ,C),  since C a is of complex type  as a representa t ion of u(2). Henceforth,  if 

0 _ v z - ~  C ~u(2), then  K ~ = e ~(Rh) x SO(k) x U(nl)  x . . .  x U(nr) x Sp(n') ,  

(see Theorem 1), and it follows from Theorem 2 tha t  the action of ( K ~  = C* x 

so(k ,  c)  x G, c) •  • Gl(nr, C) x Sp (n', c) on Yh = e . . . e ( C  e c a  n' is 
multiplicity free. This implies tha t  the action of C* x SO(k, C) x GI (nl ,  C) x . . .  x fil(nr, C) 
on C k | (C n~ )a @ . . .  @ ( C ~ ) 2  given in Lamina 6,(iii) is multiplicity free as well, hence 
r = 1, k = 0. We then  conclude tha t  the only possibility in this case is a group N(~u(2) |  
R, (C a )~1 | ((;2)~), where I~ acts only on (C a )nl. These  groups are a lmost -commuta t ive  
spaces for all n l ,  n _> 0 since for all h C ~u(2) | 1I{ there  exists a compact  subgroup 
e ~(Rh~) x U(nl)  x Sp(n) C K ~  whose complexification C* x ~] (n l ,~ )  X Sp(n,C)  acts 
on C TM | C n~ | C 2n by p(a, A, B)(vl, v2, v3) = (aAvl, a-tAv2, aBv3) and such act ion is 
multiplicity free (see [BR], Theorem 7). 

Case (ii). We now suppose tha t  a group N(~u(2) @su(2) @ c, (ca)k @ R4 @ (Ca) , )  is 
a lmost -commutat ive .  If e acts nontrivial ly on some copy of C 2 , we obtain analogously 
to the case above tha t  a certain action of C* x C* x C* on Ca | Ca must  be multiplici ty 
free, which is a contradict ion by Lemma  4. This implies tha t  c = 0. 

Case (iii). If N(sp(2)  | c, (C 4)k) is an a lmost -commuta t ive  space, then  we take the 
decomposi t ion (C4) k = (C4) k~ |  @ (C4) k" | ((;4) k' as in (i). Similarly, we obta in  
tha t  the action of C* x C* x GI(ki,C) on  (C4) k' ~- C kl @ C kl @ C kl @ C kl given by 
p(a,b,A)(vl,v2,v3,v4)(aAvl,a-lAva,bAva,b-~Av4), for all a,b e C*, A �9 GI(k,C), is 
multiplicity free. It is easy to see tha t  this action is equivalent to the one given in 
Lemma  6, (i) with G = Sl(ki, C) and n = 4, which is a contradict ion if ki _> 1. This 
implies tha t  c = 0. 

Case (iv). The  only group of the form N(~u(n)  | r C ~) is N(u(n ) ,  ca), which is an 
a lmost -commuta t ive  space. In fact, for all h �9 u(n) there  exists an n-dimensional  torus  
e r(t) x S ~ C K~[ I2 whose action on 1) = C n is multiplicity free. 

Case (v). Since ]R ~ is of real type,  there  are no groups of the form N(so(n) @ c, ~ )  
with c ~ 0. 

Case (vi). Suppose tha t  a group N(g~ | 174162  V1 O. . . |  is an indecomposable  
a lmost -commuta t ive  space (see Definition 3), where each N(g~, V/) is listed in Theorem 
14 and gi acts trivially on Vj for all i ~ j .  If r denotes the maximal  subspace of 
r acting nontrivial ly on V~, then  N(gi  | r V/) is also a commuta t ive  space. In fact,  
for all h ~ gi �9 ci the group K ~ preserves (l)/)h and thus the corresponding i 0 ( K ) h  acts 
multiplicity freely on (~ )h .  Since r 74 0 we have tha t  N(g~ �9 q ,  Vi) must  be N (u(n), Ca) ,  
n > 3, or N(u(2) ,  (Ca) ~ | ( ca )n)  and hence dimr = 1 (see the cases above ( i)-(v)) .  It 
is easy to  see tha t  the a lmost -commuta t iv i ty  of a group satisfying the propert ies  above 
follows from the a lmost -commuta t iv i ty  of the groups N(~ti | c~, V~). 

Finally, if ~ = 0 then ~t is abelian. Since V is a faithful representat ion we have tha t  
1~ = I~, yielding the Heisenberg group, denoted by N(R,  C |  | C). 
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T h e o r e m  15. The two-step nilpotent Lie groups of the form N(g, V) with nonsemisimp- 
leg  that are almost-commutative spaces are 

(i) the Heisenberg group N(R, C k), k > 1, 
(ii) N(u(2),  ((22) k | (C2)n), k > 1, n >_ O, where the center of u(2) acts nontrivially 

only on (C2) k, 
(iii) N(u(n ) ,Cn) ,  n > 3, 
(iv) N(su(ml)  |174 | c, 151 |174  V~) with the following actions: su(mi) acts 

trivially on l~ for all i C j and dim ci = 1, where ci denotes the maximal subspaces 
of c acting nontrivially on �89 Moreover, if mi  -- 2, then Vi = (C 2)k~ | ((;2)~ as 
in (ii), and iS mi >_ 3 then Vi = C m~ , 

(v) a direct product of some of the above groups. 

4. C las s i f i ca t ion  o f  t h e  g r o u p s  N ( g ,  V )  w h ich  a re  c o m m u t a t i v e  spaces  

We shall give in this section an explicit classification of the two-step nilpotent Lie 
groups N(g, V) which are commutative spaces, or equivalently by Theorem 2, of the 
Gelfand pairs of the form (K, N) = (G x U, N(g, V)). 

We have obtained in Theorem 14 and Theorem 15 all the pairs of this form for 
which (Kx ,Nx)  is a Gelfand pair for any x E $ = g (see Definition 2). In view of 
Theorem 2,(iv), we have to check along the groups listed in these theorems, which of 
them satisfy the condition that  (Kx,v, Nx) is a Gelfand pair for all x E g, v E KerTr(x); 
or equivalently, the action of Kx,v on l~-x is multiplicity free (see Theorem 2,(v)). 

We have that  Kx = Co(x)  x U, K~,v = {(g,T) E CG(x) x U:  TTr(g)v = v}, and the 
Lie algebra of K~,~ is given by t~,~ = {(y, A) E Cg(x) | u : (A + ~r(y))v = 0}, where C 
denotes 'centralizer', ~ = [g, g] and G is a Lie group with Lie algebra ~ (see Theorem 1). 

In the next, we will consider case by case the items (i) (v) of Theorem 14, by giving 
the action of (K~,~)c on 1)~ for a generic x E g with Ker lr(x) r 0 and a generic nonzero 
v E KerTr(x). 

Case (i). C* x SO(k - 1, (2) x Sp(n, C) on C k O C 2n. This action is multiplicity free 
if and only if k = 0, 1. 

Case (ii). C* x Sp(ki, C) on C 2k~ | C, which is always multiplicity free. 
Case (iii). C* x Sp(k - 1, C) on C | C 2(k-l) . It is multiplicity free for every k _> 1. 
Case (iv). (C*)k on C k for some k < n, and it always satisfies the multiplicity free 

condition of Lemma 4. 
Case (v). (C*) k on C k for some k < [~], always satisfying the multiplicity free 

condition of Lemma 4. 
Now, we shall do the same for items (i)-(iv) of Theorem 15. 
Case (i). Ker 7r(x) = 0 for any nonzero x E g = II{. 
Case (ii). C* x U ( k -  1) x Sp(n,C) on C |  k-1 |  am . This action is always 

multiplicity free. 
Case (iii). (C*)k on C k for some k < n, and it always satisfies the multiplicity free 

condition of Lemma 4. 
Case (iv). H1 x . . .  x g r  on 1)1 |  | l)r, where Hi = C* x U(ki - 1) x Sp(ni,C) 

and 1)/= C |  |  2~ i f m i  = 2, and Hi = (C*) j~, ~ = C j~ for some ji  < mi when 
mi > 3. Thus this action is always multiplicity free. 

We then have finished the proof of the following result. 
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T h e o r e m  16. The two-step nilpotent Lie groups N(~,10 that are commutative spaces are 

(i) all the groups listed in Theorem 14, except for the case (i)~ k _> 2, 
(ii) all the groups listed in Theorem 15, 

(iii) direct products. 

Remark 2. The analysis we have made in this section on which of the almost-commuta- 
tive spaces classified in Theorems 14,15 are really commutative spaces, can be conside- 
rably simplified in the following way: the elements ~ = x + v E a = a (9 V which appears 
in Theorem 2, (iv), are identified via the fixed inner product on n with elements in 
n*, and so by Kirillov theory with unitary representations of N. It is well known (see 
[B JR2]) that  for the commutativity of (N, ( , }) it suffices that  (K, ,  N , )  = (Kx#, N~) 
is a Gelfand pair for any family of functionals u E n* that  yield a set of representations 
~r, with full Plancherel measure in N. Since for all the spaces listed in Theorems 14,15, 
except for case (i) of Theorem 14, there is an open dense subset of n* with Ker~T(X) = 0, 
this implies that  we can assume v = 0 in all the cases except one. In other words, we 
only should check case (i) of Theorem 14, all the other almost-commutative spaces listed 
are automatically commutative by the observation given above. 

Remark 3. ( A note on Gelfand pairs) We now enumerate the indecomposable Gelfand 
pairs (G x U ~ N(g, V)) obtained in the classification: 

(I) (SU(2) x Sp(n),N(~u(2),  (C2)n)) , n ~ 1 (Heisenberg-type), 
(II) (SO(2) x Sp(n),N(~u(2),]R 3 | (c2)n)) , n > 0, 

(III) (Spin(4) • Sp(kl) • Sp(k2) ,N(su(2) |  (C2) kl | ]~4 (~ (c2)k2)), kl_~_k 2 ~ ] ,  

(IV) (Sp(2) X Sp(]~),N(~qp(2)t(C4)k)), k > 1. 

(v) (SU(n) x s~ , ; v (~ (~ ) , c~ ) ) ,  n > a, 
(vI )  (so(~),  N(so(~), R~)) ,  ~ > 4 (free two-step nilpotent Lie groups), 

(VII)  (U(k), N(R, C ~ ) ) ,  k > 1 (Heisenberg groups), 
(VI I I )  (SU(2) • U(k) x Sp(n),N(u(2),  (C2) k �9 (C~)~)),  k > 1, n > 0, 

(IX) (SU(n) x S1,N(u(Tt),cn)) , n ~_ 3, 
( x )  (SO(m1)  x . . .  x S 0 ( m r )  x U1 x . . .  x U~, 

N(~u(m,)  |  | ~U(mr) | r V1 |  | Vr)) with Ui = S* if mi > 3 and Ui = 
U(k~) x Sp(n~)  if . ~  = 2. 

It is proved in [B JR1] that  a free two-step nilpotent Lie group N(~0(n), IR n) does not 
admit any proper subgroup K'C SO(n) such that  the corresponding pair (K',N(so(n),IR'~)) 
is a Gelfand pair. This is also true in cases (V) and (IX). In fact, in these cases we 
have that  K~ is a maximal torus of U (n) for all regular h E ~u(n) and lPh = C n. Thus, 
if (K' ,  N) is a Gelfand pair, then K '  should contain all maximal tori of U(n), and this 
implies that  K '  = U(n). 

However, this does not hold in general. For example, we can take K '  = SU(2) x 
S p ( n l )  x . . .  X Sp(nr) in case (I) if n > 2, with n l  + . . .  + nr = n, and analogously for 
cases (III), (VIII), (X). Since (VII) corresponds to the Heisenberg groups, any K '  C U(k) 
acting multiplicity freely on C ~ can be taken. 
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