
Invent math. 99,627-649 (1990) 
I~l ve?l tiones 
mathematicae 
�9 Springer-Verlag 1990 

Parabolic orbifolds and the dimension 
of the maximal  measure for rational maps 

Anna Zdunik 
Institute of Mathematics Warsaw University, PKiN IXp, 00-901 Warsaw, Poland 

w O. Introduction 

Let f :  G--*G be a rational map of the Riemann sphere, d e g ( f ) > 2 .  A natural 
invariant measure m - the measure of maximal entropy was constructed by 
Ljubich [Lju] and independently by Freire, Lopes and Mafi6 [FLM].  

The aim of this paper is to compare this measure with some Hausdorff  
measures. First recall the following definition. For a probabili ty measure v on 

(or, more generally, on a smooth manifold) the Hausdorff  dimension of v 
is defined by a formula 

HD(v) = inf HD(Y) 
Y : v ( Y ) = l  

(where HD(Y) is the Hausdorff  dimension of Y). 
It was conjectured by Ljubich [Lju2] that Hausdorff  dimension of the mea- 

sure m is strictly smaller than the Hausdorff  dimension of the Julia set J ( f )  
(which is a support  of m) except for some very special cases, called "critically 
finite with parabolic orbifold". 

In the present paper we give a proof of this conjecture as well as some 
related results. 

We shall compare the measure m with the Hausdorff  measure A, where 
~=HD(m). 

Recall that a measure v is said to be absolutely continuous with respect 
to At~(v~A~) if 

for every Borel set E c ~  At3(E)=O~v(E)=O; 

v is said to be singular with respect to A~(v_LA~) if there exists a Borel set 
F c ~ such that 

v ( F ) = l  and A~(F)=0. 

It is easy to see that 

v• 
v ~ A ~  HD(v) >=fl. 
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For  the measure m and ~ = HD(m) we know that 

mA_Aa for all fl > c~ 

m ~ A a  for all f l<~  

(use the remark above and ergodicity of m). 
The question of the relation between m and As remains open. The answer 

to this question turns out to be crucial for the proof of Ljubich's conjecture. 
We prove the following 

Theorem 1. Let f :  ~ ~ �9 be a rational map of degree d> 2, m - the measure 
of maximal entropy, ~= HD(m). Then m is singular with respect to the a-dimension- 
al Hausdorff measure A~ except for the case when f is critically finite with parabol- 
ic orbifold. 

Theorem 2. We have H D ( J ( f ) ) >  HD(m) iff f is not critically finite with parabolic 
orbifold. 

Remark I. All maps with parabolic orbifold are classified in [DH],  w 9. In w 1 
we collect some useful facts on orbifolds. 

w 1. Basic notations and definitions 

Orbifolds. An orbifold is a useful tool of describing the dynamics of some rational 
maps. The notion of orbifold was introduced by Thurston (see I-T] for a general 
definition). We consider only orbifolds homeomorphic to the sphere S z. Such 
on orbifold can be understood to be the sphere S z with a collection of"s ingular"  
points pl. . .  Pk ~ s2 and positive integers v (pl)... v (Pk) > 1 ascribed to these points. 

We allow some v(pi) to be equal ~ .  
Such orbifold is denoted by (v(pl) . . . . .  v(pk)). 
A notion of Euler characteristic of an orbifold was introduced in IT]. For  

our type of orbifolds it is given by the formula 

k 1 1 (,) 

An orbifold C is called parabolic if z(C)=O. Using the formula (*) above, 
it is easy to write down all parabolic orbifolds homeomorphic to the sphere 
Sz: (2, 2, 2, 2), (3, 3, 3), (2, 4, 4), (2, 3, 6), (2, 2, ~) ,  (~ ,  ~).  

Let f be a rational map such that the trajectories of all critical points are 
finite (such a map is called critically finite). There is a natural way of constructing 
an orbifold corresponding to f The singular points are critical values of f (i.e. 
the points fk(c) for some critical point c and some k > 1). The numbers v(pi) 
are chosen so that v(f(p)) is a multiple of v(p) .degpf  There is exactly one 
"minimal"  way of such a choice. In particular, the orbifold (0% ~ )  corresponds 
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to the map z ~ z +d, while (2, 2, oo) corresponds to Tchebysheff polynomials (up 
to sign). These are (up to a conjugacy by a M6bius transformation) the only 
maps with parabolic orbifold and J ( f ) ~  ~. 

Notations. Since we are dealing with maps of the Riemann sphere, we use usually 
the spherical metrics. Also, all the derivatives are computed with respect to 
this metrics. 

If B is a ball of radius r (in the usual or in the spherical metrics), then 
we denote by 7 'B the ball with the same center and the radius 7"r. The open 
unit disc will be denoted by D. 2 denotes two-dimensional Lebesgue measure 
on the Riemann sphere (i.e. given by a spherical metrics). 

By "critical value" we mean the image of a critical point under any iteration 
o f f  (for the first image we use rather a term "first critical value"). 

Very often we make use of the following Koebe Distortion Theorem: 

Theorem (see [Go], Ch. 2, w 4). (1) For very 0 < 6 <  1 there exists C~>0 such 
that for every univalent function f defined in D 

log f (y) <=Calx-y[ for x, yeDo 

(where Da is a disc of radius 6, centered at 0). 
In this formulation the usual derivative (rather than the spherical one) 

appears. It is easy to check, however, that for spherical metrics the following 
version is true: 

(2) For every 7 > 0  there exists a constant Ka such that if B cr is a ball 
of radius R (with respect to the spherical metrics), the map f:  7" B ~ ~ is univalent 
and 

then 

2 (f(7' B)) < �89 2 ($2), 

log If'(x)[ < K ~ l x - y l  for x, y~B 
f'(Y)l 

(where the distances and derivatives are computed with respect to the spherical 
metrics). 

w 2. Idea of proof 

We start with the well-known L.-S. Young's formula for Hausdorff dimension 
of an invariant ergodic measure v. 

We have (see [Y]): 

HD(v)= h~ provided h~>0. 
Z~ 



630 Anna Zdunik 

Z~ is the v-Ljapunov exponent of the map f ;  Zv=S log[f ']  dv (notice that h~>O 
implies Z~ > 0, by Ruelle's inequality [R] we have 

where 

hv(f) <S max(0, 2 z ( f )  (x)) dr(x) 

z(f)  (x):  lim 1 log I(f")' (x)l; 

this observation was done in [P 2]). 
Our measure m is the measure of maximal entropy, so 

and 

Define the function 

h,,(f) = htop (f)  = log d 

log d 
c~ = HD(m) = Slog ]f,j dm " 

go =~ log I f ' l - l o g  d. 

We have Sgodm=O. 
Now, we use the results of [PUZ]. 
Look at the partial sums 

S, go=go+goof+ ... + goof , - i  

Notice that 

(](f')'[ (x)) ~ 
exp(S, go(x))= d" 

If B is a ball around x such that f"[B is univalent and f"(B) has a big size, 
re(B) 

then exp S, go(x) equals (up to a bounded factor) . (Recall, that the 
Jacobian of m equals d, see [FLM].)  (diam B)" 

This observation suggests that examining of the partial sums S, go is a good 
way of comparing m and A,. 

This was the way chosen in [PUZ]  in an analogous situation. We check 
that (go~ is a sequence of weakly dependent random variables and that 
the Law of Iterated Logarithm holds under the essential assumption: go is not 
homologous to 0 in LZ(J, m). If this assumption is fulfilled, then, using the Law 
of Iterated Logarithm, one can prove the singularity of m with respect to A, 
(and even a stronger singularity, see Theorem 6, w 5 in [PUZ]). 

So, we have to study a situation when go is homologous to 0, i.e. when 
there exists a function udJ(J ,  m) such that 

(H) go = u o f -  u. 
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Sects. 5-8 are devoted to this problem. 
First we show that u, which is a priori only a measurable function, must 

be actually much "better",  i.e. continuous in domains not containing critical 
values (Lemma 2). Studying the possible singularities of u, we describe the behav- 
ior of trajectories of critical points in J (Proposition 4). 

In the case J ( f ) =  r we conclude that f must be critically finite with parabolic 
orbifold. 

The remaining case is treated in Sects. 6-8. 
We already know (by Proposition 4) that J'lJ is an expanding or (so-called) 

subexpanding map. 
Now, in order to control the behavior of remaining critical trajectories, (as 

it has been done in Prop. 4 for critical trajectories in J(f)),  we extend u beyond 
J(f) ,  having still the homology formula (H) fulfilled. 

Now, two cases can happen (they are treated in Sects. 7 and 8). In the first 
case our function can be extended to the open subset F of r containing J ( f )  
(in fact F is the whole ~ minus sinks and trajectories of critical values). 

The only possibility which does not lead to a contradiction is z ~ z  -+d (in 
expanding case) and Tchebysheff polynomial (up to sign) in subexpanding case. 
These two maps correspond to the orbifolds (oo, oo) and (2, 2, oo) respectively. 

The other case is when we manage only to extend our function u to a 
one-dimensional real-analytic set F, consisting of a finite number of curves. 
This case is eliminated again by studying the singularities of u in F. 

In Theorem 2 we compare Hausdorff dimension of the Julia set J with Haus- 
dorff dimension ~ of the measure m. Provided ~9 is not homologous to zero, 
we find a subset X a J  invariant under some iterate f "  of f such that f " [ X  
is expanding and HD(X)>~.  Roughly speaking, the idea is to use only the 
"expanding (and rich enough) part"  of the dynamics off .  

I f f l J  is expanding, then it is easy to conclude the implication (~o not homolo- 
gous to zero) ~ HD(J)> HD(m) from the well-known Bowen-Manning-McClus- 
key picture. Consider the function t ~ P ( - t  loglf ' l)  where P is the usual topo- 
logical pressure. This function is decreasing and convex. Moreover 

d t t=o  P ( - t  log l / ' ] )=  - ~,,(f), 

d~ 22 t=o P ( - t  l o g l f ' l ) = ) ~  .a 2. 

(where a 2 is so-called asymptotic variance for the sequence S, (p, see Proposi- 
tion 3, w 4; we have a z = 0  iff ~p is homologous to zero). 

The point of intersection of a line tangent at 0 to the graph of this function 
with t-axis gives us the value 

h(f)  
to = zm(f) = HD(m), 

while the point of intersection of the graph itself with t-axis gives the value 
t l = HD (J). 

These two values are equal iff a 2= O. 
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w 3. Geometric coding tree 

The geometric coding tree is a very efficient tool, which allows us to use the 
methods of symbolic dynamics. This construction was proposed in [J] for 
expanding maps, the usefulness for arbitrary maps was noticed in [P2]. The 
tree was the main technical tool in [-PUZ]. The proof of convergence is motivated 
by ideas of [FLM].  Denote by 2Y the set {1 . . . . .  d} Z+. Our aim is to use this 
space as a coding space for the dynamics of f on J. This can be done as follows 
(see also [PUZ],  w 4). 

We choose a point z e ~  not being a critical value and curves 7~ . . . . .  7a 
joining z to all points of the set f - l ({z}) ,  such that 7~m 7j = {z}. These curves 
have to be chosen so that 

0 f " ( C r i t f ) n  UT,=O 
n = l  i 

(where C r i t f  is the set of critical points o f f ) .  
z ~ by induction. Now, for every sequence qeX  d we define a sequence ( ,(q)),=o 

First, let ZOO/) be the endpoint of 70o different from z. Define also the curve 
7o(t/) to be 770. Now, assume that z,(q) and 7,(t/) are already defined. We put 

7n+ltq)--Jv(rl) ~,i'rln+l) 

where f~}- ], + l) is a branch of f -~ ,+ l )  sending z to z,(q). The point z.+ ~(q) is 
defined to be endpoint of 7,+ 1 (t/) different from z,(t/). 

Obviously, the sum 7(q)= 0 7,(t/) is again a curve. The whole set F =  ~7(q)  
n = O  q 

forms a tree (with branches possibly intersecting). 1 
There is a natural metrics in the space s d(q, f l ) = ~  where i 

=max{ j s ; g+  qj=flj}. Thus, a natural notion of Hausdorff dimension (with 
respect to this metrics) can be considered. 

The following crucial lemma shows, that this tree is a good way of coding 
the dynamics off .  

Lemma 1. (Przytycki, [P 1], compare also [P 2]). For every rational map of degree 
d > 2 there exists a geometric coding tree F and a subset E c S d such that HD (E) = 0 
and for r leSd--E the branch 701) converges exponentially fast (i.e. diamT,(t/) 
converge to zero exponentially). 

In this way, we obtain a coding map R: Sd- -E  ~Ii2. (It is denoted by R 
to underline the similarly to boundary value of the Riemann map from the 
unit disc onto a simply-connected domain). Let s be the left shift on s d. Then 
(by construction) we have 

R o s = f o R .  

Let/~ be the measure of maximal entropy on S d, hu = h top (S )=  log d. 
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We have HD(/2)>0. By ergodicity of/2, this implies HD(F)>O for every 
set ~' of positive g-measure. Thus, g (E)= 0 (since HD (E)= 0). 

This implies that the image m = R./2 is well-defined. Notice that supp(m)= J. 

Proposition 1. The measure m is the (unique) measure of maximal entropy on J(f) .  

Proof is contained in fact in [P 2], where one gets hm = h = log d. On the other 
hand, htop(f) = log d. Thus, m is the measure of maximal entropy. Proof of unique- 
ness is contained in [M] and [Lju]. [] 

w 4. Singularity with respect to A~ 

In this Section we collect some fact which have been proved (in a slightly different 
form) in [PUZ]. 

Proposition 2 (see [PUZ], w 5, Lemma 4, 5, 6). 
(a) The function T = l o g l f ' [ o R  is in the class LP(g) fi)r every 0 < p <  ~ .  
(b) For every p > 0  there exist K > 0 ,  tit(0, 1) such that for every n>=O 

(1) 51 q ' -  E . (q '  I~-~'.)1 p dg  < K/~" 

(where d "  is a partition into cylinders of length n, E(~]~4.) is the conditional 
expectation), 

(2) ~ l ( T - S T d g ) ' ( g / - ~ d / 2 ) o s " l < K f l L  A 

Let q) = e- 71 - log d. 
Using the assertion of Proposition 2 and the mixing properly of g, we con- 

clude (compare [Ph-St]. Th. 7.1, and [PUZ], Lemma 6, w 5). 

Proposition 3. The limit (called: asymptotic variance) 

o-2 = lim 5(S, q~)2 d/2 exists. 
n ~ o o  n 

Moreover, if a2#  O, then the sequence (q)os"),~=~ satisfies the Law of Iterated 
Logarithm. I f  a 2 =0, then the sequence n ~ ~(S, (p)2 d/2 is bounded. 

Corollary. I f  o-2 4=0, then mLA~ and even a stronger singularity (due to the Law 
of Iterated Logarithm) occurs: 

where 

m• for C>Co 

2 o  -2 

Co- ~ loglf'] dm 

and A.c is the Hausdorff measure corresponding to the function 

~ b ( t ) = t ~ e x p ( c l o g l l o g l o g l o g l )  ~. A 
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Proof can be derived from [PUZ],  Theorem 6. [] 

Now, we come back to the original space LZ(J(f),m). Denote q$=~ loglf ' [  
- l o g  d; we have ~o = 4b o R. Assume az= O. Then by Proposition 3 we know that 
the integrals ~(S, ~b) 2 dm are bounded. Then, by standard consideration (quoted, 
for example, in [PUZ] ,  Lemma 1, w 1) we conclude that 4> is homologous to 
0 in L2(j ( f ) ,  m), i.e. there exists a function u~I3(J ( f ) ,  m) such that 

(H) q~ = u o f -  u. 

w 5. Properties of the function u 

In this section we show that our  function u, which was a priori only an element 
of L 2, must be actually better. The following lemma is crucial for understanding 
when (H) can happen. 

Lemma 2. Assume ( ) = u o f  - u  for. some u~LZ(J(f) ,  m). I f  p is not a critical value 
(i.e. f " c  + p for all n > 1 and all critical points c) then there exists a neighbourhood 
U of  p and a continuous function w: U--+IR such that u= w m-almost everywhere 
in U. 

Proof In the case when f lJ is expanding, one can use the ideas coming from 
PLi]. (The proof  of  a similar fact in the expanding situation was given in [PUZ],  
Lemma 1, w 1). 

We try to use an analogous way of reasoning in non-expanding case. 
We know that u is m-measurable, thus by Luzin theorem there exists a 

set F of measure m bigger than �88 such that  u IF is uniformly continuous. 
We claim that 

(,) there exists ~$ > 0 such that 

if B is a disc (small enough) centered at p, then there exists a subset E c B  
of full measure such that if x, y eE, then one can find a sequence mi--+ oo and 
a holomorphic  branch f~-"' defined on 2. B for which 

diam (f~- "' (B) =< K exp ( -  nl 6), 

f~-"'(x)~F, f~-"'(y)eF. 

(K is some constant  independent of i). 
Assume (.) is true. Then we have 

u(x)-- u(y) = log (f"9'  (fv-"' Y) + u(fv-"' x ) - ( j ; - " '  y). 

The first summand can be estimated by c. I x - y l ,  where c is some constant, 
by Distort ion Theorem. The second summand  tends to zero as i-+oo, since 
dist(fv-" '  x, fv-"' y)-->O and ulF is uniformly continuous. Thus, it is enough to 
prove that (*) is true. 
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Proof of (*): We have to pass to the natural extension (j, r~,,,~). Let u: J--+J 
be the projection onto 0-th coordinate. We fix a ball B centered at p such 
that there are no critical values up to order M in 2. B (M is a positive integer 
to be specified later on). Fix also a positive number K. 

Let f~-" be a branch of f - "  defined in a neighbourhood of p. We say that 
this branch is good if 

(1) 

(2) 

f~Y" is well-defined in 2, B 

diam (f~-" (B)) < K exp ( -- n 6). 

We say that (J~-"),~= 1 is a sequence of branches if 

f o f - ( , +  1 ) = f - . .  

The following lemma, motivated by the paper [FLM]  was proved in [PUZ]  
(Lemma 8, w 5). Here, we formulate it in a more convenient form. 

Basic lemma. For every e > 0  there exist constants M > 0  (fixing the size of 

B), 5 > 0  and a subset K a n - l ( B )  such that rh(K) . . . . . . .  > l - e ,  and if 
m(~) 

( . . .X-k ,X-k+l  . . . . .  Xo, Xl . . . .  ) iS an element of Y-., then x k=J;-k(Xo) for some 
good branch o f f  -k. 

Proof We sketch the proof here, since we shall need the explicit construction 
o f / (  later on. 

The idea is to remove consecutively "bad"  branches fv-". 
We start with d M branches o f f -  M defined on 2- B. We remove those branches 

for which f~.-M(2.B) contains a first critical value. Thus, we remove at most 
2 d -  2 branches. 

Assume that the good branches f~ ("-1) have been already chosen and the 
images f , . - ( ' - l ) (2.B) do not contain critical values. We consider all branches 
f - l  of-( , -1)( i .e ,  good branches f~-("-1) are composed with d possible branches 
f -  1 defined on f~-( ' -  1)(2. B)). 

Among them the branches to be removed are those branches .f~-" for which 

2( f~ - ' (B ) )>exp( -  2n6) 

or f~-"(2. B) contains a first critical value. 
We procede by induction. 
A straightforward computation (compare [PUZ],  w 5, Lemma 8) shows, that 

the remaining set/~ (consisting of sequences ( . . .x_ ,, X_k +1 . . . . .  X0, X l . . . .  ) such 
that xo~B and X-k =f -k (Xo)  for some branch f - *  which has not been removed) 
has measure m as close to rh(B) as we want (if 6 is small and M large enough). 
Notice, that every branch chosen in this way is good (use the Koebe Distortion 
Theorem). [ ]  
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Not ice  that  the set /s has a natural  p roduc t  structure. There is a bijection 
~ox, y between the fibres n -  1 ({x}) c~ I(  and n -  l ({y}) c~/s namely:  

~0x, y(( ... x -k ,  x_~+ ~ . . . . .  Xo, xl . . . .  )) =( - - .  Y-k, Y-~+ ~ . . . .  , Yo, Yl . . . .  ) 

if X-k and Y-k are obta ined by use of the same branch o f f - k  defined in B. 
Moreover ,  

(q~x, y), ~x = r~y 

where rfix, rfiy are condi t ional  measures on fibres of the par t i t ion into sets 

~ - l ( { x } ) a R  (x~B). 

Now, from the ergodicity of N it follows that there exists a subset E c K  
of  full measure such that  for 2e/~ 

y - " ( ~ z ) e F = ~ - ' ( V )  

happens  with frequency re(F) (bigger than �88 
Since rh(/~)=r~(R), for m-almost all x e B  

,~.(~ c~ =-  1 ({x}) < g )  = ,~ . (~-  ~ ({x}) ~ g) .  

Thus, for almost all y e B  c~ n(/~) 

/~y (~Ox, y ( E  (5 7t - ' ({x})  (5 /~))  = ~/y (7c - 1 ({y}) ( '1/~) 

i.e. q ~ . y ( / ~ c ~ - ' ( { x } ) n / ( )  has a full measure in the fibre ~ - ' ( { y } ) c ~ / (  (due 
to the produc t  s tructure o f / ( ) .  

It follows, that  for these x , y  there exists a c o m m o n  sequence of branches 
f~-" such that  bo th  fv-"(x) and fv-"(Y) fall into F with a frequency bigger than 
�88 Thus, one can find a sequence ni such that  

f~-"'(x)eF and f~-"'(y)~F. 

In this way, (*) is proved,  complet ing the p roof  of Lemma  2. [ ]  

As a corollary,  we get an impor tan t  

Proposition 4. 
(1) I f  fk(dO=ff(d2) for some d~, dzeJ,  dl,  dz not being critical values, then 

dega, (fk) = dega~ (fl). 

(2) I f  c is a critical point in J and f k (c )= f (x )  for some x, then x is either 
a critical point or a critical value. 

(3) The trajectories of all critical points in J are finite. 
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Proof (1) It follows from Lemma 2, that u is bounded a.e. in some neighbourhood 
of dl.  Using the homology formula (H) we conclude that u has a singularity 

s - 1  
- - -  logly-fk(d~)J (s = deg,, fk) 

s 

s--1 
in the neighbourhood of fk(d O, i.e. u(y)-- logly-fk(dOI is bounded for 

s 

y close to fk(dl). By the same reasoning we get a singularity 

t - l  logly-ft(d2)l where t=degd2f t 
t 

in the neighbourhood of ft(d2)=fk(dl). Comparing these two results we get 
t = s .  

Now, (3) follows easily from (2) while (2) is a consequence of (1). [] 

Remark 2. Denote ~ i =  U f "  (critical points in J). Assume r is homologous 

to zero. Then to every point b e ~  I we can ascribe a positive integer v(b) such 
that 

(1) v(f(b)) = degb f-v(b) 

and 

(2) u ( x ) ~  l - - v (  ~ l og lx -b l  

in the neighbourhood of b (the sign ~ means here: the difference is bounded). 
This is possible by Proposition 4. 
We get an important 

Corollary. If  4) is homologous to zero and J(f)  is the whole ~, then f is critically 
finite with parabolic orbifold. 

Proof The numbers v(b) are precisely the numbers ascribed to critical values 
in the definition of an orbifold. Moreover Proposition 4 together with the proper- 
ty (1) of Remark 2 above show that f :  ~oi-~Cr) f is a covering map of orbifolds 
(see [T] for the definition; for our orbifolds it means just, that v(f(b)) 
-~degj.v(b)). Thus (as it is shown in IT]) 

Z(g)i)=d.g((gs), hence Z((gs)=O. [] 

Next, we assume that r is homologous to 0 and J(f)+-~. 
First, notice that there are neither Siegel discs nor Herman rings in the 

complement of J(f)  (since the boundary of such domain is contained in the 
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closure of trajectories of critical points in J ( f )  and here the trajectories of critical 
points in J ( f )  are finite. 

Thus, there are only basins of sinks and their preimages in the complement 
of J( f ) .  Moreover, parabolic basins are also excluded, since we have 

Lemma 3. (a) I f  p~J  is a periodic point of period n and there exists a "good 
way back " from p (i.e. a sequence (Xl)~: 1 of points such that f (x O= p, f (xi + 1 ) : X i  
for i > 1 and none of xi is a critical point), then 

I(f")' (P)I = = d" (thus, p is a source). 

(b) I f  p~J  is a periodic point of period n and p=fk(c) ,  where c is a critical 
point not being a critical value, then 

I(f")' (P)[ ~=d"S where s = d e g c f  k 

(thus, p is also a source). 

Proof relies on a straightforward computation and will be omitted. []  

w 6. Case J(f)  # 

Here, we want to describe the trajectories of critical points outside J( f ) .  
Our first step will be to extend u beyond J ( f )  as far as possible; we require 

the extended function to satisfy the homology formula: 

u (.f (x)) - u (x) = c~ log If '  (x)l - log d 

whenever u(f(x)),  u(x) are defined. 
We have two (slightly different) cases: either there are no critical points 

in J (expanding case) or critical points in J satisfy the statement of Proposition 4, 
in particular their trajectories are finite (subexpanding case). 

For a subexpanding map it is convenient to introduce a new, "adapted"  
metrics (compare [DH 2]) defined by the function 

1 v(x)= Z 
]X-- l -  

The derivative in this new metrics is D f =  ]f'l vof_ and log D f i s  homologous 
v 

to logd, l o g D f = l o g d + w o f - w  where w = l o g v + u .  
The function w is bounded (see Prop. 4 for a discussion of singularities of 

u). In particular, we have D f " >  1 for some n (since D f " = n  l o g d + w o f ' - w ) .  
Both cases (expanding and subexpanding ones) will be treated in the same 

way. 
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First, remind  that  a sequence of branches  is a sequence such that  

f (f~-(" + l ) (x))=f~-"  (x). 

Define a set F =  {xO~i: x is neither a critical point  nor  a sink and for XoeJ 
not being a critical value and an arb i t ra ry  curve joining x to Xo and not passing 
th rough  critical values and sinks the formula  

(~:) 
oo 

~(x)=U(Xo)+~ ( loglf  (,s x)[ Xo)[) - l o g U  (L,v 
i = 1  

gives the same result (i.e. independent  of the choice of  Xo, 7 and  a sequence 
of branches  f~7~ along 7- 

In the following lemmas  we list some propert ies  of the set F. 

L e m m a  4. (1) If  xeJ-{critical values in J} then xeF and 5(x)=u(x). 
( 2 ) f  I ( F ) c  F and the function (t satisfies the homology formula (H) whenever 

x,f(x)eF. 

Proof. Let xeJ. Choose  xoeJ and a curve 1' as in definition of F. We have 

f,7," e/) ~ J 

Indeed,  remind that  there are only basins of sinks and their pre images  in the 
- - n  , complement  of  J. Hence,  for n large .f~,7 (7) is conta ined in a ne ighbourhood  

V of J in which f is expanding with respect to the usual metrics or to the 
adap ted  one (in the subexpanding  case). 

In both  cases we have 

It follows tha t  

diam(f~7~(B)) - , O. 

- n  n u(L,, (x))-u(L,~. (Xo)) . . . . .  ,0 .  

Thus,  
oo 

- l o g l f  (f~,~ (Xo)l) ] f  (f~,~ (x))l U(Xo)+~ (log ' - i  , - i  
i = 1  (( , _ i  ) = l i m  u(xo)+~ loglf (f~,~(x))l-n logd 

t l ~ o O  i = I 

- ~ l o g l f  (f~,~(Xo))f-n l o g d  
i = 1  

�9 - n  U = h m  (u (Xo) + u ( x ) -  u (f~, ,  ( x ) ) -  (Xo) + u ( f ~ T  (Xo))) = u (x) 
? 1 ~ o o  
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and obviously the result does not depend on the way we have chosen. 
Proof of (2) is based on a straightforward computation and will be omit- 

ted. [] 

Lemma 5. Let Yo be neither a critical value nor a sink. Take a disc B around 
Yo containing no critical values. Then F n B is 

(1) the whole B or 
(2) an empty set or 
(3) the sum of a finite number of real-analytic curves and isolated points. 

Proof  Fix a point Xo~J and a curve ? joining Xo and Y0 as in the definition 
of F. 

Notice that the formula ( # )  defines a harmonic function on B (where f ,  Tff(Y) 
is understood to be that branch o f f - "  on B which maps Yo to f ~ ( Y o ) .  

Consider two such functions ul, u2 (obtained by a procedure above). Then 
the set 

v~,,,~ = {z: ~,  (z) = a2 (z)} 

is the set of zeros of a harmonic function, thus either the whole B or the sum 
of a finite number of real-analytic curves. 

Now, take another pair Va~,a4 and consider the set Va .... n Va~,a4" Va~,a4 is 
again a sum of a finite number of analytic curves t l . . . tk  (or the whole B). 
Moreover, if si n t] has a condensation point then si= tj. Indeed, tj is described 
by the R-analytic parametrization ~b = (~b~, 4)2). Hence, the function ( ~ -  u2) ~ q~ 
is R-analytic and equals zero on a set having a condensation point. Thus, 
it equals zero everywhere and t i c  Va,,a~. It follows that Va,,,~n V~,~, is a sum 
of a finite number of real-analytic curves and isolated points (or the whole 
B). It is easy to see that the same is true for the full intersection F =  n v~,,~ 

(the intersection is taken over all possible pairs as above). [] ~a,.~) 

Now, we have two cases which will be treated in w167 7, 8. In the first case 
the set F consists of a finite number of real-analytic curves. In the second case 
F is an open subset of ~.  

w 7. One-dimensional set F 

In this section we assume that 

int F n J = 0 .  

Under this assumption we have 

Lemma 6. (a) Take a point yo~d not being a critical value. I f  a ball B(yo,p)  
is small enough and does not contain critical values, then F n B ( y o , p )  is a real- 
analytic curve. 

(b) I f  y E ~  and the ball B(y, p) does not contain critical values, then B(y, p ) n  F 
contains at most one analytic curve or is a set (possibly empty) of isolated points. 
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Proof (a) Since yoeJ  and J c F ,  then Yo is not an isolated point  in F. Thus,  
one can assume that  there are no isolated points  of F in B. We have to check 
that  F cannot  contain two analytic curves intersecting at y. Assume that  two 
such curves exist. But one can find an infinite number  of branches  f,, "' defined 
in B such that  J~-"'(B)~B and the set of points (f~-",(y))~~ 1 is infinite. All 
these points  are in F (by L e m m a  4) and all of them are points  of intersection 
of curves conta ined  in F. This  contradicts  L e m m a  5. 

(b) We fix a point  yoeJ  and a ball B as in (a). There exists a b ranch  J~.-" 
such that  f~-"(B(y, p ) )cB.  Since B n F is an analytic curve, then F n B(y, p) 
is conta ined in the analytic curve f " ( F  n B). [ ]  

Now,  we describe connected componen t s  of F. 

L e m m a  7. Assume yoeJ  is not a critical value. I f  s is a connected component 
of Yo in F, then ~ is either an analytic Jordan curve, or an embedded closed 
interval with endpoints being critical points or sinks. 

Proof Yo is not  an isolated point  in F. Thus,  by L e m m a  6 we conclude that  
s is locally a real-analytic curve. Not ice  that  the curve s may  have only two 
(perhaps coinciding) condensat ion  points  not  belonging to s. (For,  by L e m m a  6 
(b) a condensa t ion  point  must  be either a critical value or a sink). Thus,  g 
is an embedded  closed interval (if such points  exist) or  an analyt ic  Jo rdan  curve 
(if # - s  = ~b). [ ]  

Denote  by S the set of  all connected componen t s  of F intersecting J. S 
is a finite set (since in the ne ighbourhood  of every point  yoeJ  we have only 
a finite n u m b e r  of  curves in F (even if Y0 is a critical value). 

L e m m a  8. Let p be an endpoint of the curve seS. Then lim ~i(x) = - oo. 
X ~ p  
x ~ S  

Proof Use the homology  formula  

fi(x) = ~i(f~- "(x)) + ~ log ](f")' (f~-" (x))] - n log d 

for an appropr i a t e  branch o f f  ". [ ]  

Now,  using singularities of ~ we describe the dynamics  of  f on the curves 
belonging to S. 

Proposit ion 5. f I S  is a permutation of curves, i.e..for every seS  g is mapped 
onto ~' (for some s'eS). Moreover, a curve of a given type (i.e. a closed one 
or homeomorphic to the interval) is mapped onto a curve o f  the same type. 

Proof Let s e S. Obviously,  there exists a curve s ' e  S such that  f ( s ) n  s'+-O. 
First  we assume that  s' is h o m e o m o r p h i c  to the interval. If  there exists 

a point  yes  such that  f (y)  is an endpoint  of  s' then y must  be a critical point  
(because ~i(x) tends to - o o  as x-~ f (y )  and by the homology  formula). Thus,  
f - l ( # )  contains  an arc passing through the point  y, hence a ne ighbourhood  
of y in F. 
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This implies that 

f (~)=g ' .  

Actually, we have f(s-)= g', since otherwise some endpoint o f f ( s )  (being a critical 
value or a sink) would lie in s'. But there are neither critical values nor sinks 
in s'. 

If  s' is a Jordan curve, then s must be Jordan curve, too (since the endpoints 
of s are critical values or sinks and there are no such points in s'). As before, 
one can check that f ( s ) c  s'. Thus, there are no critical points in s (since there 
are no critical values in s') and f [s is locally one-to-one. 

Hence, f (s) = s'. 
Obviously, a curve s homeomorphic  to the interval is mapped onto a curve 

of the same type. Thus, a Jordan curve t~S  must be mapped  onto a Jordan 
curve (because each curve is the image of some other curve). [] 

Corollary. There exists a component t~S periodic for f (i.e. f k ( t )  = t and f -k(t) = t 
for some k). 

First, assume that t is a Jordan curve. 

Proposition 6. I f  there is a Jordan curve t e S  periodic under f, then f equals 
z ~ z +-d up to a M6bius transformation. 

Proof  Passing to some iterate of f, one can assume that f ( t ) = f - l ( t ) =  t. Then 
the Julia set is just our curve t. To see that, take a point x~Jc~t .  Then J 
= c l ( 0  { y : f " y = t } ) c t  since f - " ( t ) c t .  On the other hand, if y ~ t - J  then f " (y )  

n 

tends to a sink and belongs to t. This is impossible, since t is separated from 
sinks. 

Thus, the situation must be as follows: J is an analytic Jordan curve dissect- 
ing S 2 into two simply-connected domains D1, D2. One can assume (taking 
f o f )  that f ( D O  = D1, f ( D 2 ) =  Dz. Then f is conjugate by M6bius transformation 
to the Blaschke product and J is a circle (by the argument  due to Sullivan 
[-Su]). 

Now, among these map there is only one (up to a conjugacy by a M6bius 
transformation) for which log[f ' ]  is homologous to log d, this is z~--~z d. 

Since we have passed to some iterate fk ,  we know up to now that f~ equals 
(up to a M6bius transformation) z-- ,  z d~. But then f itself equals z ~  z d or z ~ z -  ~ 
(up to a M6bius transformation). []  

Now, we assume that there exists a curve s~S  periodic under f and homeo- 
morphic  to the interval. 

Suppose f k ( s )=s .  Obviously, the endpoints of s are mapped by f k  to the 
endpoints. Thus, there exists an endpoint p of s periodic for f ;  one can assume 
that f is a fixed point. 

First, notice that p cannot  be a superattractive fixed point. To see this, 
take a small annulus ~ around p. Since p is the endpoint of s and F is invariant 
under f -  1, there exists a dense subset o f ~  contained in F. This is a contradiction 
(we already know, that F c~ ~ consists of analytic curves). 
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Thus, 2 =  ]f'(p)] 4:0. We already know, that 

lim ti(x)= - oo. 
X ~ p  
x 6 S  

It is easy to compute that in the neighbourhood of p 

[ log d~ 
u ( x ) ~ l ~  Pl lC~- l~g ~). 

On the other hand, p has a preimage q different from p and not being a critical 
value. 

If f " (q )=p and degq f '= t ,  then ~ i ~  ( 1 -  1 ) l o g l x -  p[ in the neighbourhood 
1 

of p (see Corollary after Lemma 2). 
\ 

log 2 
This gives t=C~logd. Thus, 2>1  and p is a source. As in the proof of 

Proposition 6 we check that the curve s and the Julia set J coincide. 
Obviously, we can assume that the endpoints of s are - I, 1 and that oo Cs. 

Consider a two-sheet cover of ~2 ramified over 1, - 1 ,  given by the map ~: 
(E --. I~, 

zWz 1 
~(z ) -  2 

The preimage of s under ~ is the piecewise smooth Jordan curve t dissecting 
into two topological discs D1, O2, each of them being mapped by ~r onto 

the complement of s. 
The map 27 defined by ~z-aofo~ on D1 and Dz extends to a continuous 

(and thus also analytic and rational) map on ~ with J(27)=t. Moreover, logb~'l 
is homologous to log d and we conclude from Proposition 6 that t is a geometric 

circle and 2 7 is conjugate to z ~ z d by some homography h'. Since j 7 = 27(z)' 

z - a  ; aED is the t must be the unit circle S 1 and h may be taken as h ' ( z ) = ~ _ -  z 

superattractive fixed point of f. The other fixed point is -1 since 27 - = ; 
a 

it must be equal to h'- (oo)= a ,  hence aelR. Then ~" = ~  and there exists 

a homography h such that ~ o h = h o m  This homography gives the conjugacy 
between f and the Tchebysheff polynomial. 

In fact, we have only checked that some iterate o f f  is conjugate to Tchebys- 
heft polynomial. But now we already know that J ( f )  is an interval (since J ( f )  
=j ( fk ) )  and repeating the reasoning above we conclude that f or - f  is the 
Tchebysheff polynomial. 

Thus, we have proved 
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Proposition 7. I f  there exists a curve s6S homeomorphic to the interval and periodic 
under f, then f is conjugate by MObius transformation to the Tchebysheff polynomial 
(up to sign). 

Actually, it is easy to check that in both cases described in Propositions 6 
and 7 the set F is two-dimensional (i.e. int F c~ J 4: 0). Thus we have 

Corollary. I f  c~ log If'l is homologous to log d then int F c~ J + 0. 
So, it remains to consider the case in tF~J : t=0 .  This will be done in the 

next section. 

w 8. Two-dimensional set F 

Throughout  this section we assume that int F c~ J + 0. 

Lemma 8. I f  int F c~ J =g 0', then F is an open connected set and every point in 
OF is either a critical value or a sink. 

Proof There exists yoJc~in t  F. Let s be (as before) the connected component 
of y in F. We claim that s is an open set. Indeed, the set {xes: x~int  F} is 
open and closed in F. (If x , ~ i n t F  and x , ~ x ~ F ,  then x must be in intF.  
Otherwise (by Lemma 5) in the neighbourhood of xF consists of a finite number 
of analytic curves, thus x , r  F for large n). 

Now, let z belong to t? s. We claim that z is a critical value or a sink. Otherwise, 
as z~Oscg,  then z~F (by definition of F). Thus, in a small ball B around 
z the set F is a sum of a finite number of curves and isolated points (but 
then there are no points of s=int(s)  in B) or the whole B (but then ze(?s). 

It follows that su~s=f fJ  (since c~s is at most countable). This ends the 
proof. [ ]  

The next lemma is in fact a repetition of Proposition 4 of Sect. 5 and therefore 
the proof will be only sketched. 

Lemma 9. I f  c~J is a critical point then caOs and c is periodic. 

Proof Since the function u can be extended to the whole set s = ~ - c ? s ,  we 
can use the same method (studying of singularities of ~) as in the proof  of 
Proposition 4, w 5. If c~gs, then the function ti is bounded in the neighbourhood 
of c and we conclude (as in Proposition 4 and Lemma 3b) that some image 
of c is a source. But there are no sources outside of J. Thus, ce~s and c is 
a critical value by Lemma 8 above. Since there are only finitely may critical 
points, it follows that c is periodic. 

Take an arbitrary critical point Conj. We can assume that f (co)= Co (replac- 
ing f by some iterate of f ) .  We claim that degcof=d.  Otherwise, there exists 
a point X+Co such that f ( x )=co .  The point x must be a critical value (again 
by a reasoning like in the proof of Prop. 4). Thus, there exists a critical point 
cl +c0 such that f k ( c l )=c  o. Obviously, one can require that cl is not a critical 
value. But this contradicts Lemma 9 above. []  

Now, we have again two cases. The first possibility is that there are no 
critical points in J. Then f must have two superattractive points with maximal 



Parabolic orbifolds and maximal measure 645 

degree. Then the Julia set is a circle and f is conjugate by a MObius transforma- 
tion to z~--~z d (compare the proof of Proposition 6). Since we have replaced 
f by some iterate fk, actually we know that fk  is conjugate to z~--~z dk. This 
implies that f itself is conjugate to z~--,z d or zw-,z -~. Notice that the correspond- 
ing orbifold is ~ =(oo, oo) and Z(C~)=0, thus (9 is parabolic. 

The second possibility is that there are critical points in J. Then there is 
only one critical superattractive point of maximal degree in ~?F and (sending 
this point to oo by a rotation) we can assume that J" is a polynomial. 

Moreover, the map f :  (9 z~(91 is a covering map of orbifolds. It follows 
(as in the corollary after Proposition 4) that [c I is parabolic. The only parabolic 
orbifold corresponding to the polynomial with critical points in the Julia set 
is (2, 2, oo). It corresponds to the Tchebysheff polynomial (up to sign). (Compare 
[-DH], w 9). 

We summarize the results of this section in 

Proposition8. I f  ~loglf ' l  is homologous to logd and intFc~J4:q~, then f is 
conjugate by a MObius transformation to one of the jbllowing maps: 

Zb--~Z d o r  

Zb--~Z d o r  

+_ Tchebysheff polynomial. 

In this way, the proof of Theorem 1 has been completed. 

w 9. Hausdorff dimension of the Julia set 

In this section we shall prove 

Theorem 2. Hausdorff dimensions of the Julia set J and of the measure m are 
equal iff f is critically finite with parabolic orbifold (i.e. c~ log i f ' [ - l o g  d is homolo- 
gous to zero). 

Proof We shall work in the natural extension (J, r~,~). 
Let B be a ball in ~. Recall that in w 5 we introduced a notion of good 

branches o f f - "  defined on B; a branch f~-" is good if 

and 

L "is well-defined in 2. B 

diam fv-"(B) < K exp( - n 6). 

In the Basic Lemma (w 5) we proved the following: there exists 6 >0  such 
that for every g>0 there is Me;g+ so that if there are no critical values up 
to order M in B then one can find a subset /~n= /~=~- l (B)  of rh-measure 
bigger than (1-g)m(B) and consisting of "good"  trajectories. (The trajectories 
( . . .X_k,X_k+ ~ . . . . .  Xo,Xl . . . .  ) is good if X-R is an image of x 0 under some 
"good"  branch o f f  -k defined on B.) 

Let Pl . . . . .  Ps be critical values up to order M. Take r > 0  small and e>0. 
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Let B~ . . . .  , B~ be balls centered at p~'s with radius r. Let ~ be a cover of 
r 

the remaining set ~ u B~ with balls of radius ~. If r is small enough then 

a( U 

Fix a ball B ~ ~. 
Let ~ ,  be the set of branches f~-" defined in B such that f~-" is well-defined 

. 6 
in 2-B, diam f~- (B) < exp { -  n 6~ and f~-"(B)~ �89 B. 

For t e n  we define \ 2] 

S~(B)= ~ supl(L-9'(x)B 
v ~ ' n  xcB 

Assume that ~ log]f  ' l - l o g  d is not homologous to zero. Then the asymptotic 
variance a 2 (see Prop. 3, w 4) is non-zero. 

Proposition 9. I f  (72:#0, then there exists a ball B such that the sequence S~,(B) 
is unbounded. 

Proof We know that the sequence ~b, (p of  .... (pof", ... satisfies the Central 
Limit Theorem, since (72+0 (compare Prop. 3, w (recall that (p=~ log[f'] 
- log d). It follows that 

where ~ is the distributant of the normal distribution. 
Obviously (if ~, is small) there exists a ball B of our cover ~ such that 

the inequality 

and 

holds for some fl and infinitely many n. 
By the topological exactness o f f  we know that for some l~_~ f~(kB)~ J. 
Let qm ... q,, be critical values up to order l. 
Let D~(i= 1 .. . . .  m) be a ball of radius p around qi. 
Choose p > 0 small enough to have 

(*) rh({ffeJ: zr(ff)r 0 2.Di, S,_, ~b(~)< - A a / n - - - l ,  jT"-~(Yc)eRs})>fl ' for some 
i = l  

/~'> 0 and infinitely many n. 

Denote by 9 ,  the set of points satisfying the condition above. For every 
f fe~ ,  we choose a preimage of Xo=~(~) under f l  lying in �88 (this can be 
done since fz(�88 B)~J. This preimage will be denoted by x l. 

The point x ~ corresponds to some branch fv-" defined on 2.B;  this is a 
composition of a branch f -~ , - l )  sending X,_l----~(f"-l(~)) to XO=~Z(2) and a 
branch f,-~ sending Xo to x t. This branch is well-defined on the image f~-(" -~)(B) 
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for n large, because f -~ , - l )  is a good branch, i.e. diam(f~-I"-Z)(B))<K 
exp( - (n - - l )  6). Since x o lies outside 2. O~, the whole image f~- ~"- ~)(B) does not 
intersect D~. Moreover, 

diam(f~-"(B)) < sup I(L-t) ' (z)]. diam(fi -~"-t)(B)) 
zC u Di 

_-< sup I(f,~- l), (z)l" K e x p ( -  6 (n - l)) < exp - 
zCu  Di 

if n is large. Also, f~- "(B) C�89 for large n, since x'e�88 and 
. 6 

Thus, f~-" is in ~ .  Denote the set of branches obtained in this way by 
fr We have 

sup I(f~- ")' (Y)f~ > I(f~-")' ( f"  (xi))l ~ = exp ( - c~ log I(f")' (x~)l 
y6B 

1 exp (A, 6[//~) +n  log d - n  log d ) = ;  e x p ( -  S, q~(xl)) > d~ 

= m (f~-" (B)). exp (A' 6 ~ )  

(the constant A' < A was introduced here to neglect the derivative off~). 
Moreover, 

1 l)(B))>~tm(g,(~n))_=~.f l~" m( U f~-"(B))=dTm( U f~-t"- 
VEin vein 

Thus, 

Z supl(f~-")'(x)l~= > ~. supl(f~-")' (x)l~>=exp(A'a~)lf l  '. 
v e o ~  x~B vef~,~ x e B  a 

and the sequence S~(B) is unbounded. [] 

Remark. In fact, S~(B) grows exponentially with n. A 

We fix this ball B. (Actually, the statement of Proposition 9 is true for every 
small ball B). Keeping the assumption 62=t = 0 we have 

Proposition 10. There exists a subset X c J  invariant under f"  (for some ne7Z+) 
such that f " I X  is expanding and HD (X)> ~. 

Proof Fix n large (to be precised later on). 
Define a set 

X1 = U fv-"(B). 
VE~,~ n 

Now, we define X: 

x =  {x~B: vk>= 1 f"k(xt~Xl},  
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i.e. X is an intersection of a descending sequence of sets Xk; every Xk is a 
sum of topological discs and 

X k + l =  t2 L-"(Xk).  
V ~ n  

The set X is invariant under forward iterations of f "  and f n [ X  is expanding 
(by the definition of ~n). 

We estimate the usual topological pressure P x ( - 7  logf(f")'l) for the map 
f "  [X and the function - ~  log l(f')'l (which is Lipschitz continuous on X). 

In the following computation D is a component of Xk; C is a component 
of X1. 

1 1 log fy '  inf ) P x ( - a  log I(f")'l) = lira-~- \ . .~ /~  

>--  log 
= k \ c x~c I(f"); (x)l = 

=log(  ~ infl(f~-")' (y)l => - l o g  L 
v~.~::n y~B 

+log(  ~ supl(f~-")' (y)V)= > - l o g  L + l o g  S~(B) 
V~,~n yeB 

where L is an estimate of a distortion of f - "  in B (common for all branches, 
by the Distortion Theorem). 

We fix n so that 

log S~(B) - log L > 0 

(this is possible since, by the previous Proposition, the sequence S, is unbounded). 
By the variational principle we know that 

Px( - ~ log I(f")' l)= sup(h~ -- c~ ~ log I(f")'l d ~c) 
K 

where supremum is taken over all measures ~: f"-invariant and ergodic. Thus, 
there exists a measure t~ f"-invariant  ergodic with supp ~ c X such that 

h , , ( f ' ) - e f  log I(/')'[ d~c > 0. 

hE 
Hence, HO (X) > HD (to) = c~ log [(f")'l d ~c" 

This completes the proof of Proposition 10. []  

To finish the proof of Theorem 2, it remains to check that for maps with 
parabolic orbifold we have HD(J )=  HD(m). 

For the map z~---~z +a m is just the Lebesgue measure on the circle. For  
Tchebysheff polynomials m is equivalent to the Lebesgue measure on the interval. 
Thus, we have c~ = 1 = HD (J) = HD (m). 

If f has a parabolic orbifold and J ( f ) = ~ ,  then c~=HD(m)=2=HD(J) .  It 
is so, because every parabolic orbifold can be obtained as a quotient space 
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of action of a subgroup of Aut(C) on 112. The lifted map s~: ~---}112 is of the 
form z ~ a z + b, where [a [2= deg f (see [DH] ,  w 9). The maximal entropy measure 
for f can be obtained as an image of the Lebesgue measure on 112 and is equivalent 
to the usual Lebesgue measure on ~.  

Acknowledgement. I am very indebted to Feliks Przytycki who infuenced very much this work and 
to whom I owe many ideas. 
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