

Parabolic orbifolds and the dimension of the maximal measure for rational maps

Anna **Zdunik**

Institute of Mathematics, Warsaw University, PKiN IXp, 00-901 Warsaw, Poland

§ 0. Introduction

Let $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ be a rational map of the Riemann sphere, deg(f) \geq 2. A natural invariant measure $m -$ the measure of maximal entropy was constructed by Ljubich [Lju] and independently by Freire, Lopes and Mañé [FLM].

The aim of this paper is to compare this measure with some Hausdorff measures. First recall the following definition. For a probability measure v on $\overline{\mathbb{C}}$ (or, more generally, on a smooth manifold) the Hausdorff dimension of v is defined by a formula

$$
HD(v) = \inf_{Y: v(Y) = 1} HD(Y)
$$

(where $HD(Y)$ is the Hausdorff dimension of Y).

It was conjectured by Ljubich [Lju2] that Hausdorff dimension of the measure *m* is strictly smaller than the Hausdorff dimension of the Julia set $J(f)$ (which is a support of m) except for some very special cases, called "critically finite with parabolic orbifold".

In the present paper we give a proof of this conjecture as well as some related results.

We shall compare the measure m with the Hausdorff measure A_n where $\alpha = HD(m)$.

Recall that a measure ν is said to be absolutely continuous with respect to $A_{\beta}(v \ll A_{\beta})$ if

for every Borel set
$$
E \subset \mathbb{C}
$$
 $\qquad A_{\beta}(E) = 0 \Rightarrow v(E) = 0;$

v is said to be singular with respect to $A_{\beta}(v \perp A_{\beta})$ if there exists a Borel set $F \subset \overline{\mathbb{C}}$ such that

 $\nu(F)=1$ and $A_{\beta}(F)=0$.

It is easy to see that

$$
\begin{aligned} v \perp A_{\beta} &\Rightarrow HD(v) \leq \beta \\ v &\ll A_{\beta} \Rightarrow HD(v) \geq \beta. \end{aligned}
$$

For the measure *m* and $\alpha = HD(m)$ we know that

$$
m \perp A_{\beta} \quad \text{for all} \quad \beta > \alpha
$$

$$
m \ll A_{\beta} \quad \text{for all} \quad \beta < \alpha
$$

(use the remark above and ergodicity of m).

The question of the relation between m and A_n remains open. The answer to this question turns out to be crucial for the proof of Ljubich's conjecture.

We prove the following

Theorem 1. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a rational map of degree $d \geq 2$, $m -$ the measure *of maximal entropy,* $\alpha = HD(m)$. Then *m* is singular with respect to the α -dimensional Hausdorff measure A_x except for the case when f is critically finite with parabol*ic orbifold.*

Theorem 2. We have $HD(J(f)) > HD(m)$ iff f is not critically finite with parabolic *orbifold.*

Remark 1. All maps with parabolic orbifold are classified in [DH], $\S 9$. In $\S 1$ we collect some useful facts on orbifolds.

w 1. Basic notations and definitions

Orbifolds. An orbifold is a useful tool of describing the dynamics of some rational maps. The notion of orbifold was introduced by Thurston (see $\lceil T \rceil$ for a general definition). We consider only orbifolds homeomorphic to the sphere S^2 . Such on orbifold can be understood to be the sphere $S²$ with a collection of "singular" points $p_1 \dots p_k \in S^2$ and positive integers $v(p_1) \dots v(p_k) > 1$ ascribed to these points.

We allow some $v(p_i)$ to be equal ∞ .

Such orbifold is denoted by $(v(p_1), \ldots, v(p_k))$.

A notion of Euler characteristic of an orbifold was introduced in IT]. For our type of orbifolds it is given by the formula

$$
\chi(\mathcal{O}) = 2 - \sum_{i=1}^{k} \left(1 - \frac{1}{v(p_i)} \right) \tag{*}
$$

An orbifold $\mathcal O$ is called parabolic if $\chi(\mathcal O)=0$. Using the formula (*) above, it is easy to write down all parabolic orbifolds homeomorphic to the sphere \mathbb{S}^2 : (2, 2, 2, 2), (3, 3, 3), (2, 4, 4), (2, 3, 6), (2, 2, ∞), (∞ , ∞).

Let f be a rational map such that the trajectories of all critical points are finite (such a map is called critically finite). There is a natural way of constructing an orbifold corresponding to f . The singular points are critical values of f (i.e. the points $f^k(c)$ for some critical point c and some $k \ge 1$). The numbers $v(p_i)$ are chosen so that $v(f(p))$ is a multiple of $v(p)$ deg_pf. There is exactly one "minimal" way of such a choice. In particular, the orbifold (∞, ∞) corresponds

to the map $z \rightarrow z^{\pm d}$, while (2, 2, ∞) corresponds to Tchebysheff polynomials (up to sign). These are (up to a conjugacy by a M6bius transformation) the only maps with parabolic orbifold and $J(f) = \overline{C}$.

Notations. Since we are dealing with maps of the Riemann sphere, we use usually the spherical metrics. Also, all the derivatives are computed with respect to this metrics.

If \overline{B} is a ball of radius r (in the usual or in the spherical metrics), then we denote by $\gamma \cdot B$ the ball with the same center and the radius $\gamma \cdot r$. The open unit disc will be denoted by D . λ denotes two-dimensional Lebesgue measure on the Riemann sphere (i.e. given by a spherical metrics).

By "critical value" we mean the image of a critical point under any iteration of f (for the first image we use rather a term "first critical value").

Very often we make use of the following Koebe Distortion Theorem:

Theorem (see [Go], Ch. 2, § 4). (1) *For very* $0 < \delta < 1$ *there exists* $C_{\delta} > 0$ *such that for every univalent function f defined in D*

$$
\log \left| \frac{f'(x)}{f'(y)} \right| \leq C_{\delta} |x - y| \quad \text{for } x, y \in D_{\delta}
$$

(where D_{δ} is a disc of radius δ , centered at 0).

In this formulation the usual derivative (rather than the spherical one) appears. It is easy to check, however, that for spherical metrics the following version is true:

(2) For every $\gamma > 0$ there exists a constant K_{δ} such that if $B \subset \mathbb{C}$ is a ball *of radius R (with respect to the spherical metrics), the map* $f: \gamma \cdot B \rightarrow \bar{\mathbb{C}}$ *is univalent and*

$$
\lambda(f(\gamma \cdot B)) < \frac{1}{2}\lambda(\mathbb{S}^2),
$$

then

$$
\log \frac{|f'(x)|}{f'(y)} \le K_{\gamma} |x - y| \quad \text{for } x, y \in B
$$

(where the distances and derivatives are computed with respect to the spherical metrics).

w 2. Idea of proof

We start with the well-known L.-S. Young's formula for Hausdorff dimension of an invariant ergodic measure v.

We have (see [Y]):

$$
HD(v) = \frac{h_v}{\chi_v} \quad \text{provided } h_v > 0.
$$

 χ_{ν} is the v-Ljapunov exponent of the map f; $\chi_{\nu} = \int \log|f'| dv$ (notice that $h_{\nu} > 0$ implies $\chi_v > 0$, by Ruelle's inequality [R] we have

$$
h_v(f) \leq \int \max(0, 2\chi(f)(x)) dv(x)
$$

where

$$
\chi(f)(x) = \lim_{n \to \infty} \frac{1}{n} \log |(f^n)'(x)|;
$$

this observation was done in $[P2]$).

Our measure m is the measure of maximal entropy, so

$$
h_m(f) = h_{\text{top}}(f) = \log d
$$

and

$$
\alpha = HD(m) = \frac{\log d}{\int \log |f'| \, dm}.
$$

Define the function

$$
\varphi = \alpha \log |f'| - \log d.
$$

We have $\int \varphi dm = 0$.

Now, we use the results of [PUZ].

Look at the partial sums

$$
S_n \varphi = \varphi + \varphi \circ f + \dots + \varphi \circ f^{n-1}.
$$

Notice that

$$
\exp(S_n \varphi(x)) = \frac{(|(f^n)'|(x))^{\alpha}}{d^n}.
$$

If B is a ball around x such that $f''(B)$ is univalent and $f''(B)$ has a big size, then $\exp S_n \varphi(x)$ equals (up to a bounded factor) $\frac{m(B)}{(1+|B|)^2}$. (Recall, that the Jacobian of m equals d , see [FLM].)

This observation suggests that examining of the partial sums $S_n \varphi$ is a good way of comparing *m* and Λ_n .

This was the way chosen in [PUZ] in an analogous situation. We check that $(\varphi \circ f'')_{n=0}^{\infty}$ is a sequence of weakly dependent random variables and that the Law of Iterated Logarithm holds under the essential assumption: φ is not homologous to 0 in $L^2(J, m)$. If this assumption is fulfilled, then, using the Law of Iterated Logarithm, one can prove the singularity of m with respect to A_{α} (and even a stronger singularity, see Theorem 6, \S 5 in [PUZ]).

So, we have to study a situation when φ is homologous to 0, i.e. when there exists a function $u \in L^2(J, m)$ such that

$$
\varphi = u \circ f - u.
$$

Sects. 5-8 are devoted to this problem.

First we show that u , which is a priori only a measurable function, must be actually much "better", i.e. continuous in domains not containing critical values (Lemma 2). Studying the possible singularities of u , we describe the behavior of trajectories of critical points in J (Proposition 4).

In the case $J(f)=\overline{\mathbb{C}}$ we conclude that f must be critically finite with parabolic orbifold.

The remaining case is treated in Sects. 6-8.

We already know (by Proposition 4) that f/J is an expanding or (so-called) subexpanding map.

Now, in order to control the behavior of remaining critical trajectories, (as it has been done in Prop. 4 for critical trajectories in $J(f)$), we extend u beyond $J(f)$, having still the homology formula (H) fulfilled.

Now, two cases can happen (they are treated in Sects. 7 and 8). In the first case our function can be extended to the open subset Γ of $\overline{\mathbb{C}}$ containing $J(f)$ (in fact Γ is the whole $\overline{\mathbb{C}}$ minus sinks and trajectories of critical values).

The only possibility which does not lead to a contradiction is $z \rightarrow z^{\pm d}$ (in expanding case) and Tchebysheff polynomial (up to sign) in subexpanding case. These two maps correspond to the orbifolds (∞, ∞) and $(2, 2, \infty)$ respectively.

The other case is when we manage only to extend our function u to a one-dimensional real-analytic set Γ , consisting of a finite number of curves. This case is eliminated again by studying the singularities of u in Γ .

In Theorem 2 we compare Hausdorff dimension of the Julia set J with Hausdorff dimension α of the measure m. Provided φ is not homologous to zero, we find a subset $X \subset J$ invariant under some iterate f'' of f, such that $f''|X$ is expanding and $HD(X) > \alpha$. Roughly speaking, the idea is to use only the "expanding (and rich enough) part" of the dynamics of f .

If $f|J$ is expanding, then it is easy to conclude the implication (φ not homologous to zero) \Rightarrow *HD(J)*> *HD(m)* from the well-known Bowen-Manning-McCluskey picture. Consider the function $t \to P(-t \log |f'|)$ where P is the usual topological pressure. This function is decreasing and convex. Moreover

$$
\frac{d}{dt}\Big|_{t=0} P(-t \log |f'|) = -\chi_m(f),
$$

$$
\frac{d^2}{dt^2}\Big|_{t=0} P(-t \log |f'|) = \frac{1}{\alpha^2} \cdot \sigma^2.
$$

(where σ^2 is so-called asymptotic variance for the sequence $S_n \varphi$, see Proposition 3, $\&$ 4; we have $\sigma^2 = 0$ iff φ is homologous to zero).

The point of intersection of a line tangent at 0 to the graph of this function with t -axis gives us the value

$$
t_0 = \frac{h(f)}{\chi_m(f)} = HD(m),
$$

while the point of intersection of the graph itself with t -axis gives the value $t_1 = HD(J)$.

These two values are equal iff $\sigma^2 = 0$.

w 3. Geometric coding tree

The geometric coding tree is a very efficient tool, which allows us to use the methods of symbolic dynamics. This construction was proposed in [J] for expanding maps, the usefulness for arbitrary maps was noticed in [P2]. The tree was the main technical tool in [PUZ]. The proof of convergence is motivated by ideas of [FLM]. Denote by Σ^d the set $\{1, ..., d\}^{\mathbb{Z}_+}$. Our aim is to use this space as a coding space for the dynamics of f on J. This can be done as follows (see also [PUZ], \S 4).

We choose a point $z \in \overline{C}$ not being a critical value and curves $\gamma_1, \ldots, \gamma_d$ joining z to all points of the set $f^{-1}(\{z\})$, such that $\gamma_i \cap \gamma_j = \{z\}$. These curves have to be chosen so that

$$
\bigcup_{n=1}^{\infty} f^{n}(\text{Crit } f) \cap \bigcup_{i} \gamma_{i} = \emptyset
$$

(where Crit f is the set of critical points of f).

Now, for every sequence $\eta \in \Sigma^d$ we define a sequence $(z_n(\eta))_{n=0}^{\infty}$ by induction. First, let $z_0(\eta)$ be the endpoint of γ_{n_0} different from z. Define also the curve $\gamma_0(\eta)$ to be γ_{n_0} . Now, assume that $z_n(\eta)$ and $\gamma_n(\eta)$ are already defined. We put

$$
\gamma_{n+1}(\eta) = f_{\nu(\eta)}^{-(n+1)}(\gamma_{\eta_{n+1}})
$$

where $f_{\nu(n)}^{-(n+1)}$ is a branch of $f^{-(n+1)}$ sending z to $z_n(\eta)$. The point $z_{n+1}(\eta)$ is defined to be endpoint of $\gamma_{n+1}(\eta)$ different from $z_n(\eta)$.

Obviously, the sum $\gamma(\eta) = (1 \gamma_n(\eta))$ is again a curve. The whole set $\Gamma = (1 \gamma(\eta))$ $n=0$ η

forms a tree (with branches possibly intersecting). **1**

There is a natural metrics in the space Σ^a : $d(\eta, \beta) = \frac{1}{\gamma i}$ where i $=\max\{j\in\mathbb{Z}_{+}\eta_{j}=\beta_{j}\}\$. Thus, a natural notion of Hausdorff dimension (with respect to this metrics) can be considered.

The following crucial lemma shows, that this tree is a good way of coding the dynamics of f .

Lemma 1. (Przytycki, [P 1], compare also [P 2]). *For every rational map of degree* $d \geq 2$ there exists a geometric coding tree Γ and a subset $E \subset \Sigma^d$ such that $HD(E) = 0$ *and for* $\eta \in \Sigma^d - E$ *the branch* $\gamma(\eta)$ *converges exponentially fast (i.e. diam* $\gamma_n(\eta)$) *converge to zero exponentially).*

In this way, we obtain a coding map $R: \Sigma^d - E \rightarrow \overline{\mathbb{C}}$. (It is denoted by R to underline the similarly to boundary value of the Riemann map from the unit disc onto a simply-connected domain). Let s be the left shift on Σ^d . Then (by construction) we have

$$
R\circ s=f\circ R.
$$

Let μ be the measure of maximal entropy on Σ^d , $h_{\mu} = h_{\text{top}}(s) = \log d$.

We have $HD(\mu) > 0$. By ergodicity of μ , this implies $HD(F) > 0$ for every set $\mathscr P$ of positive *u*-measure. Thus, $\mu(E) = 0$ (since $HD(E) = 0$).

This implies that the image $m = R_{\star}\mu$ is well-defined. Notice that supp(m) = J.

Proposition 1. *The measure m is the (unique) measure of maximal entropy on* J(f).

Proof is contained in fact in [P2], where one gets $h_m = h = \log d$. On the other hand, $h_{\text{top}}(f) = \log d$. Thus, m is the measure of maximal entropy. Proof of uniqueness is contained in [M] and [Lju]. \Box

§ 4. Singularity with respect to A_{α}

In this Section we collect some fact which have been proved (in a slightly different form) in [PUZ].

Proposition 2 (see [PUZ], \S 5, Lemma 4, 5, 6).

- (a) The function $\Psi = \log|f'| \circ R$ is in the class $L^p(\mu)$ for every $0 < p < \infty$.
- (b) *For every p* > 0 *there exist* K > 0, $\beta \in (0, 1)$ *such that for every n* ≥ 0

(1) 51 q'- E.(q' I~-~'.)1 p dg < K/~"

(where \mathscr{A}^n is a partition into cylinders of length n, $E(\Psi|\mathscr{A}_n)$ is the conditional *expectation),*

(2)
$$
\int |(\Psi - \int \Psi d\mu) \cdot (\Psi - \int \Psi d\mu) \cdot s^n| \leq K \beta^n. \quad \triangle
$$

Let $\varphi = \alpha \cdot \Psi - \log d$.

Using the assertion of Proposition 2 and the mixing properly of μ , we conclude (compare [Ph-St]. Th. 7.1, and [PUZ], Lemma $6, § 5$).

Proposition 3. *The limit (called: asymptotic variance)*

$$
\sigma^2 = \lim_{n \to \infty} \frac{\int (S_n \varphi)^2 d\mu}{n} \quad \text{exists.}
$$

Moreover, if σ^2 \neq 0*, then the sequence* $(\varphi \circ s^n)_{n=1}^{\infty}$ *satisfies the Law of Iterated Logarithm. If* $\sigma^2 = 0$, *then the sequence* $n \rightarrow ((S_n \varphi)^2 d\mu)$ *is bounded.*

Corollary. *If* $\sigma^2 \neq 0$, then $m \perp A_\alpha$ and even a stronger singularity (due to the Law *of Iterated Logarithm) occurs:*

$$
m \perp A_{n_c}
$$
 for $c > c_0$

where

$$
c_0 = \frac{2\sigma^2}{\int \log |f'| \, dm}
$$

and A_{n_c} is the Hausdorff measure corresponding to the function

$$
\eta_c(t) = t^{\alpha} \exp\left(c \log \frac{1}{t} \log \log \log \frac{1}{t}\right)^{\frac{1}{2}}. \quad \triangle
$$

Proof can be derived from [PUZ], Theorem 6. \Box

Now, we come back to the original space $L^2(J(f),m)$. Denote $\phi = \alpha \log|f'|$ $-\log d$; we have $\varphi = \phi \circ R$. Assume $\sigma^2 = 0$. Then by Proposition 3 we know that the integrals $((S_n \phi)^2 dm$ are bounded. Then, by standard consideration (quoted, for example, in [PUZ], Lemma 1, § 1) we conclude that ϕ is homologous to 0 in $L^2(J(f), m)$, i.e. there exists a function $u \in L^2(J(f), m)$ such that

$$
\phi = u \circ f - u.
$$

w 5. Properties of the function u

In this section we show that our function u , which was a priori only an element of L^2 , must be actually better. The following lemma is crucial for understanding when (H) can happen.

Lemma 2. Assume $\phi = u \circ f - u$ for some $u \in L^2(J(f), m)$. If p is not a critical value *(i.e.* $f''c \neq p$ for all $n \geq 1$ and all critical points c) then there exists a neighbourhood *U* of p and a continuous function w: $U \rightarrow \mathbb{R}$ such that $u = w$ m-almost everywhere *in U.*

Proof. In the case when f/J is expanding, one can use the ideas coming from [Li]. (The proof of a similar fact in the expanding situation was given in $[PUZ]$, Lemma $1, 8, 1$.

We try to use an analogous way of reasoning in non-expanding case.

We know that u is m-measurable, thus by Luzin theorem there exists a set F of measure m bigger than $\frac{3}{4}$ such that $u \mid F$ is uniformly continuous.

We claim that

$$
(*)
$$
 there exists $\delta > 0$ such that

if B is a disc (small enough) centered at p, then there exists a subset $E \subseteq B$ of full measure such that if $x, y \in E$, then one can find a sequence $m_i \to \infty$ and a holomorphic branch $f_v^{-n_i}$ defined on 2. B for which

$$
\begin{aligned} \operatorname{diam}(f_{\mathbf{v}}^{-n_i}(B) &\leq K \exp(-n_i \,\delta), \\ f_{\mathbf{v}}^{-n_i}(x) &\in F, \quad f_{\mathbf{v}}^{-n_i}(y) \in F. \end{aligned}
$$

 $(K \text{ is some constant independent of } i).$

Assume $(*)$ is true. Then we have

$$
u(x) - u(y) = \log \left| \frac{(f^{n_i})'(f_v^{-n_i} x)}{(f^{n_i})'(f_v^{-n_i} y)} \right| + u(f_v^{-n_i} x) - (f_v^{-n_i} y).
$$

The first summand can be estimated by $c \cdot |x-y|$, where c is some constant, by Distortion Theorem. The second summand tends to zero as $i \rightarrow \infty$, since $dist(f_v^{-n_i} x, f_v^{-n_i} y) \rightarrow 0$ and $u \mid F$ is uniformly continuous. Thus, it is enough to prove that (*) is true.

Proof of (*): We have to pass to the natural extension $(\tilde{J}, \tilde{m}, \tilde{f})$. Let $\pi: \tilde{J} \rightarrow J$ be the projection onto 0-th coordinate. We fix a ball B centered at p such that there are no critical values up to order M in $2 \cdot B$ (M is a positive integer to be specified later on). Fix also a positive number K .

Let f_v^{-n} be a branch of f^{-n} defined in a neighbourhood of p. We say that this branch is good if

(1)
$$
f_{\nu}^{-n}
$$
 is well-defined in $2 \cdot B$

$$
\text{(2)} \quad \text{diam}(f_{\nu}^{-n}(B)) < K \, \exp(-n\,\delta).
$$

We say that $(f_v^{-n})_{n=1}^{\infty}$ is a sequence of branches if

$$
f\circ f_{\nu}^{-(n+1)}=f_{\nu}^{-n}.
$$

The following lemma, motivated by the paper [FLM] was proved in [PUZ] (Lemma 8, \S 5). Here, we formulate it in a more convenient form.

Basic lemma. For every $\epsilon > 0$ there exist constants $M > 0$ (fixing the size of B), $\delta > 0$ and a subset $\tilde{K} \subset \pi^{-1}(B)$ such that $\frac{\tilde{m}(\tilde{K})}{m(B)} > 1 - \varepsilon$ and if $(...x_{-k},x_{-k+1},...,x_0,x_1,...)$ is an element of \tilde{K} , then $x_{-k}=f_{v}^{-k}(x_0)$ for some *good branch of* f^{-k} .

Proof. We sketch the proof here, since we shall need the explicit construction of \tilde{K} later on.

The idea is to remove consecutively "bad" branches f_v^{-n} .

We start with d^M branches of f^{-M} defined on $2 \cdot B$. We remove those branches for which $f_v^M(2 \cdot B)$ contains a first critical value. Thus, we remove at most $2d-2$ branches.

Assume that the good branches $f_y^{-(n-1)}$ have been already chosen and the images $f_v^{-(n-1)}(2 \cdot B)$ do not contain critical values. We consider all branches f_n^{-1} of $f_v^{-(n-1)}$ (i.e. good branches $f_v^{-(n-1)}$ are composed with d possible branches f_n^{-1} defined on $f_v^{-(n-1)}(2 \cdot B)$.

Among them the branches to be removed are those branches f_{ν}^{-n} for which

$$
\lambda(f_{\nu}^{-n}(B))\!>\!\exp(-2\,n\,\delta)
$$

or $f_{\nu}^{-n}(2 \cdot B)$ contains a first critical value.

We procede by induction.

A straightforward computation (compare [PUZ], \S 5, Lemma 8) shows, that the remaining set \tilde{K} (consisting of sequences $(...x_{-k}, x_{-k+1}, ..., x_0, x_1, ...)$ such that $x_0 \in B$ and $x_{-k} = f^{-k}(x_0)$ for some branch f^{-k} which has not been removed) has measure *m* as close to $\tilde{m}(B)$ as we want (if δ is small and M large enough). Notice, that every branch chosen in this way is good (use the Koebe Distortion Theorem). \Box

Notice that the set \tilde{K} has a natural product structure. There is a bijection $\varphi_{x,y}$ between the fibres $\pi^{-1}({x}) \cap \tilde{K}$ and $\pi^{-1}({y}) \cap \tilde{K}$, namely:

$$
\varphi_{x,y}((\ldots x_{-k}, x_{-k+1}, \ldots, x_0, x_1, \ldots)) = (\ldots y_{-k}, y_{-k+1}, \ldots, y_0, y_1, \ldots)
$$

if x_{-k} and y_{-k} are obtained by use of the same branch of f^{-k} defined in B. Moreover,

$$
(\varphi_{x,y})_* \tilde{m}_x = \tilde{m}_y
$$

where \tilde{m}_x , \tilde{m}_y are conditional measures on fibres of the partition into sets

$$
\pi^{-1}(\{x\}) \cap \widetilde{K} \quad (x \in B).
$$

Now, from the ergodicity of \tilde{m} it follows that there exists a subset $\tilde{E} \subset \tilde{K}$ of full measure such that for $\tilde{x} \in \tilde{E}$

$$
\widetilde{f}^{-n}(\widetilde{x}) \in \widetilde{F} = \pi^{-1}(F)
$$

happens with frequency $m(F)$ (bigger than $\frac{3}{4}$).

Since $\tilde{m}(\tilde{E}) = \tilde{m}(\tilde{K})$, for *m*-almost all $x \in B$

$$
\widetilde{m}_x(\widetilde{E} \cap \pi^{-1}(\{x\}) \cap \widetilde{K}) = \widetilde{m}_x(\pi^{-1}(\{x\}) \cap \widetilde{K}).
$$

Thus, for almost all $v \in B \cap \pi(\tilde{E})$

$$
\tilde{m}_v(\varphi_{x,v}(\tilde{E}\cap \pi^{-1}(\{x\})\cap \tilde{K})) = \tilde{m}_v(\pi^{-1}(\{y\})\cap \tilde{K})
$$

i.e. $\varphi_{x,y}(\tilde{E}\cap \pi^{-1}(\{x\})\cap \tilde{K})$ has a full measure in the fibre $\pi^{-1}(\{y\})\cap \tilde{K}$ (due to the product structure of \tilde{K}).

It follows, that for these x, y there exists a common sequence of branches f_y^{n} such that both $f_y^{n} (x)$ and $f_y^{n} (y)$ fall into F with a frequency bigger than $\frac{3}{4}$. Thus, one can find a sequence n_i such that

$$
f_{\nu}^{-n_1}(x) \in F \quad \text{and} \quad f_{\nu}^{-n_1}(y) \in F.
$$

In this way, (*) is proved, completing the proof of Lemma 2. \Box

As a corollary, we get an important

Proposition 4.

(1) If $f^k(d_1)=f^l(d_2)$ for some $d_1, d_2 \in J$, d_1, d_2 not being critical values, then

$$
\deg_{d_1}(f^k) = \deg_{d_2}(f^l).
$$

(2) If c is a critical point in J and $f^k(c) = f(x)$ for some x, then x is either *a critical point or a critical value.*

(3) *The trajectories of all critical points in J are finite.*

Proof. (1) It follows from Lemma 2, that u is bounded a.e. in some neighbourhood of d_1 . Using the homology formula (H) we conclude that u has a singularity

$$
\frac{s-1}{s}\log|y-f^k(d_1)| \qquad (s=\deg_{d_1}f^k)
$$

in the neighbourhood of $f^k(d_1)$, i.e. $u(y) - \frac{s-1}{s} \log |y - f^k(d_1)|$ is bounded for y close to $f^k(d_1)$. By the same reasoning we get a singularity

$$
\frac{t-1}{t} \log |y - f'(d_2)| \quad \text{where } t = \deg_{d_2} f'(1)
$$

in the neighbourhood of $f^l(d_2)=f^k(d_1)$. Comparing these two results we get $t=s$.

Now, (3) follows easily from (2) while (2) is a consequence of (1). \square

Remark 2. Denote $\mathcal{P}_f = \bigcup_{n \ge 1} f^n$ (critical points in *J*). Assume ϕ is homologous to zero. Then to every point $b \in \mathcal{P}_f$ we can ascribe a positive integer $v(b)$ such that

$$
(1) \t\t\t v(f(b)) = \deg_b f \cdot v(b)
$$

and

(2)
$$
u(x) \approx \alpha \left(1 - \frac{1}{v(b)}\right) \log|x - b|
$$

in the neighbourhood of b (the sign \approx means here: the difference is bounded).

This is possible by Proposition 4.

We get an important

Corollary. *If* ϕ *is homologous to zero and* $J(f)$ *is the whole* $\overline{\mathbb{C}}$ *, then f is critically finite with parabolic orbifold.*

Proof. The numbers $v(b)$ are precisely the numbers ascribed to critical values in the definition of an orbifold. Moreover Proposition 4 together with the property (1) of Remark 2 above show that $f: \mathcal{O}_f \to \mathcal{O}_f$ is a covering map of orbifolds (see $[T]$ for the definition; for our orbifolds it means just, that $v(f(b))$ $=$ deg_b $f \cdot v(b)$). Thus (as it is shown in [T])

$$
\chi(\mathcal{O}_f) = d \cdot \chi(\mathcal{O}_f)
$$
, hence $\chi(\mathcal{O}_f) = 0$. \Box

Next, we assume that ϕ is homologous to 0 and *J(f)* \oplus .

First, notice that there are neither Siegel discs nor Herman rings in the complement of $J(f)$ (since the boundary of such domain is contained in the closure of trajectories of critical points in $J(f)$ and here the trajectories of critical points in *J(f)* are finite.

Thus, there are only basins of sinks and their preimages in the complement of *J(f).* Moreover, parabolic basins are also excluded, since we have

Lemma 3. (a) If $p \in J$ is a periodic point of period n and there exists a "good *way back " from p (i.e. a sequence* $(x_i)_{i=1}^{\infty}$ *of points such that* $f(x_i)=p, f(x_{i+1})=x_i$ *. for i* \geq 1 *and none of x_i is a critical point*)*, then*

 $|(f^n)'(p)|^{\alpha} = d^n$ (thus, p is a source).

(b) If $p \in J$ is a periodic point of period n and $p = f^k(c)$, where c is a critical *point not being a critical value, then*

 $|(f^n)'(p)|^{\alpha} = d^{ns}$ *where* $s = \text{deg}_{\alpha} f^k$

(thus, p is also a source).

Proof relies on a straightforward computation and will be omitted. \Box

8.6. Case $J(f) \neq \mathbb{C}$

Here, we want to describe the trajectories of critical points outside *J(f).*

Our first step will be to extend u beyond $J(f)$ as far as possible; we require the extended function to satisfy the homology formula:

$$
u(f(x)) - u(x) = \alpha \log|f'(x)| - \log d
$$

whenever $u(f(x))$, $u(x)$ are defined.

We have two (slightly different) cases: either there are no critical points in J (expanding case) or critical points in J satisfy the statement of Proposition 4, in particular their trajectories are finite (subexpanding case).

For a subexpanding map it is convenient to introduce a new, "adapted" metrics (compare [DH 2]) defined by the function

$$
v(x) = \sum_{b \in \mathscr{P}_f} \frac{1}{|x - b|^{(1 - \frac{1}{v(b)})}}.
$$

The derivative in this new metrics is $Df = |f'| \frac{v}{v}$ and log *Df* is homologous to $\log d$, $\log D f = \log d + w \circ f - w$ where $w = \log v + u$.

The function w is bounded (see Prop. 4 for a discussion of singularities of u). In particular, we have *D* $f'' > 1$ for some *n* (since *D* $f'' = n \log d + w \circ f'' - w$).

Both cases (expanding and subexpanding ones) will be treated in the same way.

Parabolic orbifolds and maximal measure 639

First, remind that a sequence of branches is a sequence such that

$$
f(f_{v}^{-(n+1)}(x)) = f_{v}^{-n}(x).
$$

Define a set $\Gamma = \{x \in \overline{\mathbb{C}}: x \text{ is neither a critical point nor a sink and for } x_0 \in J\}$ not being a critical value and an arbitrary curve joining x to x_0 and not passing through critical values and sinks the formula

$$
(\#)\qquad \qquad \bar{u}(x) = u(x_0) + \alpha \sum_{i=1}^{\infty} (\log |f'(f_{v,y}^{-i} x)| - \log |f'(f_{v,y}^{-i} x_0)|)
$$

gives the same result (i.e. independent of the choice of x_0 , γ and a sequence of branches $f_{v, y}^{-i}$ along γ .

In the following lemmas we list some properties of the set Γ .

Lemma 4. (1) If $x \in J - \{critical \ values \ in \ J\}$ then $x \in \Gamma$ and $\bar{u}(x) = u(x)$. (2) $f^{-1}(\Gamma) \subset \Gamma$ and the function \bar{u} satisfies the homology formula (H) whenever $x, f(x) \in \Gamma$.

Proof. Let $x \in J$. Choose $x_0 \in J$ and a curve γ as in definition of Γ . We have

$$
f_{\nu,\gamma}^{-n}(\gamma) \rightrightarrows J
$$

Indeed, remind that there are only basins of sinks and their preimages in the complement of J. Hence, for n large $f_{y,y}^{n}(y)$ is contained in a neighbourhood V of J in which f is expanding with respect to the usual metrics or to the adapted one (in the subexpanding case).

In both cases we have

$$
diam(f_{\nu,\gamma}^{-n}(B)) \xrightarrow[n \to \infty]{} 0.
$$

It follows that

$$
u(f_{\nu,\gamma}^{-n}(x)) - u(f_{\nu,\gamma}^{-n}(x_0)) \xrightarrow[n \to \infty]{} 0.
$$

Thus,

$$
u(x_0) + \alpha \sum_{i=1}^{\infty} (\log|f'(f_{v,\gamma}^{-i}(x))| - \log|f'(f_{v,\gamma}^{-i}(x_0)|)
$$

\n
$$
= \lim_{n \to \infty} \left(\left(u(x_0) + \alpha \sum_{i=1}^n \log|f'(f_{v,\gamma}^{-i}(x))| - n \log d \right) - \left(\alpha \sum_{i=1}^n \log|f'(f_{v,\gamma}^{-i}(x_0))| - n \log d \right) \right)
$$

\n
$$
= \lim_{n \to \infty} (u(x_0) + u(x) - u(f_{v,\gamma}^{-n}(x)) - u(x_0) + u(f_{v,\gamma}^{-n}(x_0))) = u(x)
$$

and obviously the result does not depend on the way we have chosen.

Proof of (2) is based on a straightforward computation and will be omitted. \Box

Lemma 5. *Let Yo be neither a critical value nor a sink. Take a disc B around* y_0 containing no critical values. Then $\Gamma \cap B$ is

- (1) *the whole B or*
- (2) *an empty set or*
- (3) *the sum of a finite number of real-analytic curves and isolated points.*

Proof. Fix a point $x_0 \in J$ and a curve γ joining x_0 and y_0 as in the definition of Γ .

Notice that the formula (#) defines a harmonic function on B (where $f_{v,y}(y)$ is understood to be that branch of f^{-n} on B which maps y_0 to $f_{v,y}^{-n}(y_0)$.

Consider two such functions \bar{u}_1, \bar{u}_2 (obtained by a procedure above). Then the set

$$
V_{\bar{u}_1, \bar{u}_2} = \{ z : \bar{u}_1(z) = \bar{u}_2(z) \}
$$

is the set of zeros of a harmonic function, thus either the whole B or the sum of a finite number of real-analytic curves.

Now, take another pair $V_{\bar{u}_3,\bar{u}_4}$ and consider the set $V_{\bar{u}_1,\bar{u}_2} \cap V_{\bar{u}_3,\bar{u}_4} \cdot V_{\bar{u}_3,\bar{u}_4}$ is again a sum of a finite number of analytic curves $t_1 \ldots t_k$ (or the whole B). Moreover, if $s_i \nightharpoonup t_j$ has a condensation point then $s_i = t_j$. Indeed, t_j is described by the R-analytic parametrization $\phi = (\phi_1, \phi_2)$. Hence, the function $(\bar{u}_1 - \bar{u}_2) \circ \phi$ is R-analytic and equals zero on a set having a condensation point. Thus, it equals zero everywhere and $t_i \subset V_{\bar{u}_1,\bar{u}_2}$. It follows that $V_{\bar{u}_1,\bar{u}_2} \cap V_{\bar{u}_3,\bar{u}_4}$ is a sum of a finite number of real-analytic curves and isolated points (or the whole B). It is easy to see that the same is true for the full intersection $\Gamma = \bigcap V_{\bar{u}_1,\bar{u}_2}$ (the intersection is taken over all possible pairs as above). \Box ^(\bar{a}_1, \bar{a}_2)

Now, we have two cases which will be treated in \S 7, 8. In the first case the set Γ consists of a finite number of real-analytic curves. In the second case Γ is an open subset of $\overline{\mathbb{C}}$.

w 7. One-dimensional set F

In this section we assume that

$$
int \Gamma \cap J = \emptyset.
$$

Under this assumption we have

Lemma 6. (a) *Take a point* $y_0 \in J$ *not being a critical value. If a ball* $B(y_0, \rho)$ is small enough and does not contain critical values, then $\Gamma \cap B(y_0, \rho)$ is a real*analytic curve.*

(b) If $y \in \mathbb{C}$ and the ball $B(y, \rho)$ does not contain critical values, then $B(y, \rho) \cap \Gamma$ *contains at most one analytic curve or is a set (possibly empty) of isolated points.*

Proof. (a) Since $y_0 \in J$ and $J \subset \Gamma$, then y_0 is not an isolated point in Γ . Thus, one can assume that there are no isolated points of Γ in \overline{B} . We have to check that Γ cannot contain two analytic curves intersecting at ν . Assume that two such curves exist. But one can find an infinite number of branches $f_v^{-n_i}$ defined in B such that $f_v^{-n_i}(B) \subset B$ and the set of points $(f_v^{-n_i}(y))_{i=1}^{\infty}$ is infinite. All these points are in Γ (by Lemma 4) and all of them are points of intersection of curves contained in F. This contradicts Lemma 5.

(b) We fix a point $y_0 \in J$ and a ball B as in (a). There exists a branch f_n^{-n} such that $f_y^{-n}(B(y, \rho)) \subset B$. Since $B \cap \Gamma$ is an analytic curve, then $\Gamma \cap B(y, \rho)$ is contained in the analytic curve $f''(\Gamma \cap B)$.

Now, we describe connected components of F.

Lemma 7. Assume $y_0 \in J$ is not a critical value. If s is a connected component *of* y_0 in Γ , then \bar{s} is either an analytic Jordan curve, or an embedded closed *interval with endpoints being critical points or sinks.*

Proof. v_0 is not an isolated point in Γ . Thus, by Lemma 6 we conclude that s is locally a real-analytic curve. Notice that the curve s may have only two (perhaps coinciding) condensation points not belonging to s. (For, by Lemma 6 (b) a condensation point must be either a critical value or a sink). Thus, \bar{s} is an embedded closed interval (if such points exist) or an analytic Jordan curve $(\text{if } \bar{s} - s = \phi)$. \Box

Denote by S the set of all connected components of Γ intersecting J. S is a finite set (since in the neighbourhood of every point $y_0 \in J$ we have only a finite number of curves in Γ (even if y_0 is a critical value).

Lemma 8. Let p be an endpoint of the curve $s \in S$. Then $\overline{u}(x) = -\infty$. $x \rightarrow p$ *x~S*

Proof. Use the homology formula

$$
\bar{u}(x) = \bar{u}(f_v^{-n}(x)) + \alpha \log|(f^n)'(f_v^{-n}(x))| - n \log d
$$

for an appropriate branch of f^{-n} . \Box

Now, using singularities of \bar{u} we describe the dynamics of f on the curves belonging to S.

Proposition 5. $f|S$ is a permutation of curves, i.e. for every $s \in S$ \bar{s} is mapped *onto* \bar{s}' (for some $s' \in S$). Moreover, a curve of a given type (i.e. a closed one *or homeomorphic to the interval) is mapped onto a curve of the same type.*

Proof. Let $s \in S$. Obviously, there exists a curve $s' \in S$ such that $f(s) \cap s' + \emptyset$.

First we assume that s' is homeomorphic to the interval. If there exists a point $y \in s$ such that $f(y)$ is an endpoint of s' then y must be a critical point (because $\bar{u}(x)$ tends to $-\infty$ as $x \rightarrow f(y)$ and by the homology formula). Thus, $f^{-1}(s')$ contains an arc passing through the point y, hence a neighbourhood of y in Γ .

This implies that

$$
f(\bar s)\!\subset\!\bar s'.
$$

Actually, we have $f(\bar{s}) = \bar{s}'$, since otherwise some endpoint of $f(s)$ (being a critical value or a sink) would lie in s' . But there are neither critical values nor sinks in s'.

If s' is a Jordan curve, then s must be Jordan curve, too (since the endpoints of s are critical values or sinks and there are no such points in s'). As before, one can check that $f(s) \subset s'$. Thus, there are no critical points in s (since there are no critical values in s') and $f|s$ is locally one-to-one.

Hence, $f(s) = s'$.

Obviously, a curve s homeomorphic to the interval is mapped onto a curve of the same type. Thus, a Jordan curve $t \in S$ must be mapped onto a Jordan curve (because each curve is the image of some other curve). \Box

Corollary. *There exists a component t* \in *S periodic for f (i.e. f^k(t) = t and f^{* $-k$ *}(t) = t for some k).* \triangle

First, assume that t is a Jordan curve.

Proposition 6. *If there is a Jordan curve teS periodic under f, then f equals* $z \rightarrow z^{\pm d}$ *up to a Möbius transformation.*

Proof. Passing to some iterate of f, one can assume that $f(t)=f^{-1}(t)=t$. Then the Julia set is just our curve t. To see that, take a point $x \in J \cap t$. Then J $\mathcal{L} = cl(\frac{1}{2} \cdot f' \cdot y = t) \subset t$ since $f^{-n}(t) \subset t$. On the other hand, if $y \in t - J$ then $f^{(n)}(y)$ n

tends to a sink and belongs to t . This is impossible, since t is separated from sinks.

Thus, the situation must be as follows: J is an analytic Jordan curve dissecting S^2 into two simply-connected domains D_1, D_2 . One can assume (taking $f \circ f$) that $f(D_1) = D_1$, $f(D_2) = D_2$. Then f is conjugate by Möbius transformation to the Blaschke product and J is a circle (by the argument due to Sullivan $[Su]$).

Now, among these map there is only one (up to a conjugacy by a M6bius transformation) for which $\log|f'|$ is homologous to log d, this is $z \mapsto z^d$.

Since we have passed to some iterate f^k , we know up to now that f^k equals (up to a Möbius transformation) $z \rightarrow z^{d^k}$. But then f itself equals $z \mapsto z^d$ or $z \mapsto z^{-d}$ (up to a Möbius transformation). \Box

Now, we assume that there exists a curve $s \in S$ periodic under f and homeomorphic to the interval.

Suppose $f^k(s) = s$. Obviously, the endpoints of s are mapped by f^k to the endpoints. Thus, there exists an endpoint p of s periodic for f ; one can assume that f is a fixed point.

First, notice that p cannot be a superattractive fixed point. To see this, take a small annulus $\hat{\mathcal{P}}$ around p. Since p is the endpoint of s and Γ is invariant under f^{-1} , there exists a dense subset of $\mathscr P$ contained in Γ . This is a contradiction (we already know, that $\Gamma \cap \mathscr{P}$ consists of analytic curves).

Thus, $\lambda = |f'(p)| + 0$. We already know, that

$$
\lim_{\substack{x \to p \\ x \in S}} \bar{u}(x) = -\infty.
$$

It is easy to compute that in the neighbourhood of p

$$
\bar{u}(x) \approx \log|x - p| \left(\alpha - \frac{\log d}{\log \lambda} \right).
$$

On the other hand, p has a preimage q different from p and not being a critical value.

If $f''(q) = p$ and $\deg_q f'' = t$, then $\bar{u} \approx \alpha \left(1 - \frac{1}{t}\right) \log|x - p|$ in the neighbourhood of p (see Corollary after Lemma 2).

This gives $t = \alpha \frac{\log \lambda}{\log \lambda}$. Thus, $\lambda > 1$ and p is a source. As in the proof of

Proposition 6 we check that the curve s and the Julia set J coincide.

Obviously, we can assume that the endpoints of s are -1 , 1 and that $\infty \notin s$. Consider a two-sheet cover of S^2 ramified over 1, -1, given by the map π : $\overline{\mathbb{C}} \to \overline{\mathbb{C}},$

$$
\pi(z) = \frac{z+z^{-1}}{2}.
$$

The preimage of s under π is the piecewise smooth Jordan curve t dissecting $\overline{\mathbb{C}}$ into two topological discs D_1, D_2 , each of them being mapped by π onto the complement of s.

The map \tilde{f} defined by $\pi^{-1} \circ f \circ \pi$ on D_1 and D_2 extends to a continuous (and thus also analytic and rational) map on $\bar{\mathbb{C}}$ with $J(\tilde{f})=t$. Moreover, $\log|\tilde{f}'|$ is homologous to log d and we conclude from Proposition 6 that t is a geometric circle and \tilde{f} is conjugate to $z \to z^d$ by some homography \tilde{h} . Since $\tilde{f}\left(\frac{1}{z}\right) = \frac{1}{\tilde{f}(z)},$ *t* must be the unit circle S¹ and h may be taken as $\tilde{h}(z) = \frac{z-a}{1-\bar{a}z}$; $a \in D$ is the superattractive fixed point of f. The other fixed point is $\frac{1}{a}$ since $f\left(\frac{1}{z}\right) = \frac{1}{f(z)}$; it must be equal to $\bar{h}^{-1}(\infty) = \frac{1}{\bar{a}}$, hence $a \in \mathbb{R}$. Then $\bar{h}(\frac{1}{z}) = \frac{1}{\bar{h}(z)}$ and there exists a homography h such that $\pi \circ \tilde{h} = h \circ \pi$. This homography gives the conjugacy between f and the Tchebysheff polynomial.

In fact, we have only checked that some iterate of f is conjugate to Tchebysheft polynomial. But now we already know that $J(f)$ is an interval (since $J(f)$) $=J(f^k)$ and repeating the reasoning above we conclude that f or $-f$ is the Tchebysheff polynomial.

Thus, we have proved

Proposition 7. If there exists a curve $s \in S$ homeomorphic to the interval and periodic *under f, then f is conjugate by MObius transformation to the Tchebysheff polynomial (up to sign).*

Actually, it is easy to check that in both cases described in Propositions 6 and 7 the set Γ is two-dimensional (i.e. int $\Gamma \cap J = \emptyset$). Thus we have

Corollary. *If* α $\log |f'|$ *is homologous to* $\log d$ *then* int $\Gamma \cap J = \emptyset$.

So, it remains to consider the case int $\Gamma \cap J = \emptyset$. This will be done in the next section.

w 8. Two-dimensional set F

Throughout this section we assume that int $\Gamma \cap J = \emptyset$.

Lemma 8. If int $\Gamma \cap J + \emptyset'$, then Γ is an open connected set and every point in *OF is either a critical value or a sink.*

Proof. There exists $y \in J \cap \text{int } \Gamma$. Let s be (as before) the connected component of y in *F*. We claim that s is an open set. Indeed, the set $\{x \in s : x \in \text{int } \Gamma\}$ is open and closed in Γ . (If $x_n \in \text{int } \Gamma$ and $x_n \to x \in \Gamma$, then x must be in int Γ . Otherwise (by Lemma 5) in the neighbourhood of *xF* consists of a finite number of analytic curves, thus $x_n \notin \text{int } \Gamma$ for large n).

Now, let z belong to ∂s . We claim that z is a critical value or a sink. Otherwise, as $z \in \partial s \subset \overline{s}$, then $z \in \Gamma$ (by definition of Γ). Thus, in a small ball B around z the set Γ is a sum of a finite number of curves and isolated points (but then there are no points of $s=int(s)$ in B) or the whole B (but then $z \in \partial s$).

It follows that $s \cup \partial s = \bar{\mathbb{C}}$ (since ∂s is at most countable). This ends the proof. \Box

The next lemma is in fact a repetition of Proposition 4 of Sect. 5 and therefore the proof will be only sketched.

Lemma 9. If $c \notin J$ is a critical point then $c \in \partial s$ and c is periodic.

Proof. Since the function u can be extended to the whole set $s = \bar{C} - \partial s$, we can use the same method (studying of singularities of \bar{u}) as in the proof of Proposition 4, § 5. If $c \notin \partial s$, then the function \vec{u} is bounded in the neighbourhood of c and we conclude (as in Proposition 4 and Lemma 3b) that some image of c is a source. But there are no sources outside of J. Thus, $c \in \partial s$ and c is a critical value by Lemma 8 above. Since there are only finitely may critical points, it follows that c is periodic.

Take an arbitrary critical point $c_0 \notin J$. We can assume that $f(c_0) = c_0$ (replacing f by some iterate of f). We claim that $deg_{cg}f=d$. Otherwise, there exists a point $x + c_0$ such that $f(x) = c_0$. The point x must be a critical value (again by a reasoning like in the proof of Prop. 4). Thus, there exists a critical point $c_1 \neq c_0$ such that $f^k(c_1) = c_0$. Obviously, one can require that c_1 is not a critical value. But this contradicts Lemma 9 above. \Box

Now, we have again two cases. The first possibility is that there are no critical points in J . Then f must have two superattractive points with maximal degree. Then the Julia set is a circle and f is conjugate by a Möbius transformation to $z \mapsto z^d$ (compare the proof of Proposition 6). Since we have replaced f by some iterate \hat{f}^k , actually we know that f^k is conjugate to $z \mapsto z^{d^k}$. This implies that f itself is conjugate to $z \mapsto z^d$ or $z \mapsto z^{-d}$. Notice that the corresponding orbifold is $\mathcal{O} = (\infty, \infty)$ and $\chi(\mathcal{O}) = 0$, thus $\mathcal O$ is parabolic.

The second possibility is that there are critical points in J . Then there is only one critical superattractive point of maximal degree in $\partial \Gamma$ and (sending this point to ∞ by a rotation) we can assume that f is a polynomial.

Moreover, the map $f: \mathcal{O}_f \to \mathcal{O}_f$ is a covering map of orbifolds. It follows (as in the corollary after Proposition 4) that \mathcal{O}_f is parabolic. The only parabolic orbifold corresponding to the polynomial with critical points in the Julia set is $(2, 2, \infty)$. It corresponds to the Tchebysheff polynomial (up to sign). (Compare $[DH], § 9$).

We summarize the results of this section in

Proposition 8. If $\alpha \log|f'|$ *is homologous to* log *d and* int $\Gamma \cap J + \phi$, *then f is conjugate by a Möbius transformation to one of the following maps:*

$$
z \mapsto z^d \quad or
$$

$$
z \mapsto z^{-d} \quad or
$$

+_ Tchebysheff polynomial.

In this way, the proof of Theorem 1 has been completed.

w 9. Hausdorff dimension of the Julia set

In this section we shall prove

Theorem 2. *Hausdorff dimensions of the Julia set J and of the measure m are equal iff f is critically finite with parabolic orbifold (i.e.* α log $|f'| - \log d$ *is homologous to zero).*

Proof. We shall work in the natural extension $(\tilde{J}, \tilde{m}, \tilde{f})$.

Let B be a ball in $\overline{\mathbb{C}}$. Recall that in § 5 we introduced a notion of good branches of f^{-n} defined on B; a branch f_v^{-n} is good if

$$
f_v^{-n}
$$
 is well-defined in $2 \cdot B$

and

$$
\text{diam } f_{\nu}^{-n}(B) < K \, \exp(-n\,\delta).
$$

In the Basic Lemma (§ 5) we proved the following: there exists $\delta > 0$ such that for every $\tilde{\varepsilon} > 0$ there is $M \in \mathbb{Z}_+$ so that if there are no critical values up to order M in B then one can find a subset $\widetilde{K}_B \subset \widetilde{B} = \pi^{-1}(B)$ of \widetilde{m} -measure bigger than $(1-\tilde{\varepsilon})m(B)$ and consisting of "good" trajectories. (The trajectories $(\ldots x_{-k}, x_{-k+1}, \ldots, x_0, x_1, \ldots)$ is good if x_{-k} is an image of x_0 under some "good" branch of f^{-k} defined on B.)

Let $p_1, ..., p_s$ be critical values up to order M. Take $r > 0$ small and $\varepsilon > 0$.

Let B_1, \ldots, B_s be balls centered at p_i 's with radius r. Let $\mathscr B$ be a cover of the remaining set $\overline{\mathbb{C}} \cup B_i$ with balls of radius $\frac{r}{4}$. If r is small enough then

$$
\widetilde{m}(\bigcup_{B\in\mathscr{B}}\widetilde{K}_B) > 1 - \varepsilon.
$$

Fix a ball $B \subset \overline{\mathbb{C}}$.

Let \mathscr{F}_n be the set of branches f_v^{-n} defined in B such that f_v^{-n} is well-defined in 2. B, diam $f_v^{-n}(B) \leq \exp\left(-n\frac{6}{2}\right)$ and $f_v^{-n}(B) \subset \frac{1}{2}B$. For $t \in \mathbb{R}$ we define $\sqrt{2}$

$$
S_n^t(B) = \sum_{v \in \mathscr{F}_n} \sup_{x \in B} |(f_v^{-n})'(x)|^t.
$$

Assume that $\alpha \log|f'| - \log d$ is not homologous to zero. Then the asymptotic variance σ^2 (see Prop. 3, § 4) is non-zero.

Proposition 9. *If* $\sigma^2 \neq 0$, *then there exists a ball B such that the sequence* $S^*(B)$ *is unbounded.*

Proof. We know that the sequence ϕ , $\phi \circ f$, ..., $\phi \circ f^*$, ... satisfies the Central Limit Theorem, since σ^2 + 0 (compare Prop. 3, § 4), (recall that $\phi = \alpha \log|f'|$ **-** log d). It follows that

$$
\tilde{m}(\{\tilde{x}\in\tilde{J}:S_n\ \phi(\tilde{x})<-A\ \sigma\sqrt{n}\})\to \Psi(-A)
$$

where Ψ is the distributant of the normal distribution.

Obviously (if ε is small) there exists a ball B of our cover $\mathscr B$ such that the inequality

$$
\tilde{m}(\{\tilde{x}\in\tilde{J}:S_n\phi(\tilde{x})<-A\sigma\sqrt{n}\quad\text{and}\quad\tilde{f}^n(\tilde{x})\in\tilde{K}_B\})>\beta>0
$$

holds for some β and infinitely many *n*.

By the topological exactness of f we know that for some $l \in \mathbb{Z}_+$ $f^l(\frac{1}{4}B) \supset J$. Let $q_1 \ldots q_m$ be critical values up to order l.

Let D_i (i = 1, ..., m) be a ball of radius ρ around q_i .

Choose $\rho > 0$ small enough to have

$$
(*) \quad \tilde{m}\left(\{\tilde{x}\in\tilde{J}:\pi(\tilde{x})\notin\bigcup_{i=1}^{m}2\cdot D_{i},\,S_{n-l}\,\phi(\tilde{x})<-A\,\sigma\sqrt{n-l},\,\tilde{f}^{n-l}(\tilde{x})\in\tilde{K}_{B}\right)>\beta'\text{ for some}
$$
\n
$$
\beta'>0\text{ and infinitely many }n
$$

 β' > 0 and infinitely many *n*.

Denote by \mathscr{D}_n , the set of points satisfying the condition above. For every $\tilde{x} \in \mathcal{D}_n$ we choose a preimage of $x_0 = \pi(\tilde{x})$ under f^l lying in $\frac{1}{4}B$ (this can be done since $f'(\frac{1}{4}B) \supset J$. This preimage will be denoted by x^l .

The point x^i corresponds to some branch f_y^{n} defined on $2 \cdot B$; this is a composition of a branch $f_t^{-(n-1)}$ sending $x_{n-l}=\pi(f^{n-1}(\tilde{x}))$ to $x_0=\pi(\tilde{x})$ and a branch f_n^{-1} sending x_0 to x^l . This branch is well-defined on the image $f_i^{-(n-l)}(B)$ for *n* large, because $f_r^{-(n-1)}$ is a good branch, i.e. diam($f_r^{-(n-1)}(B)$) < K $exp(-(n-l)\delta)$. Since x_0 lies outside $2 \cdot D_i$, the whole image $f_i^{-(n-l)}(B)$ does not intersect D_i . Moreover,

$$
\begin{aligned} \operatorname{diam}(f_{\mathsf{v}}^{-n}(B)) &\leq \sup_{z \notin \cup D_i} |(f_{\mathsf{n}}^{-1})'(z)| \cdot \operatorname{diam}(f_{\mathsf{v}}^{-(n-1)}(B)) \\ &\leq \sup_{z \notin \cup D_i} |(f_{\mathsf{n}}^{-1})'(z)| \cdot K \exp(-\delta(n-l)) \leq \exp\left(-\frac{\delta}{2}n\right) \end{aligned}
$$

if *n* is large. Also, $f_v^{-n}(B) \subset \frac{1}{2}B$ for large *n*, since $x^l \in \frac{1}{4}B$ and $\text{diam}(f_{\nu}^{-n}(B)) \subset \exp\left(-\frac{\delta}{2}n\right).$

Thus, f_v^{-n} is in \mathscr{F}_n . Denote the set of branches obtained in this way by \mathscr{G}_n . We have

$$
\sup_{y \in B} |(f_v^{-n})'(y)|^{\alpha} \ge |(f_v^{-n})'(f^n(x^l))|^{\alpha} = \exp(-\alpha \log|(f^n)'(x^l)|
$$

+ $n \log d - n \log d) = \frac{1}{d^n} \exp(-S_n \phi(x^l)) \ge \frac{1}{d^n} \exp(A' \sigma \sqrt{n})$
= $m(f_v^{-n}(B)) \cdot \exp(A' \sigma \sqrt{n})$

(the constant $A' < A$ was introduced here to neglect the derivative of f^t). Moreover,

$$
m\left(\bigcup_{v\in\mathscr{G}_n}f_v^{-n}(B)\right)=\frac{1}{d^l}m\left(\bigcup_{v\in\mathscr{G}_n}f_v^{-(n-l)}(B)\right)\geq\frac{1}{d^l}m(\pi(\mathscr{D}_n))=\frac{1}{d^l}\cdot\beta'.
$$

Thus,

$$
\sum_{v \in \mathscr{F}_n} \sup_{x \in B} |(f_v^{-n})'(x)|^\alpha \geq \sum_{v \in \mathscr{G}_n} \sup_{x \in B} |(f_v^{-n})'(x)|^\alpha \geq \exp(A'\sigma)\sqrt{n}) \frac{1}{d^l} \beta'.
$$

and the sequence $S_n^{\alpha}(B)$ is unbounded. \square

Remark. In fact, $S_n^{\alpha}(B)$ grows exponentially with n. \triangle

We fix this ball B. (Actually, the statement of Proposition 9 is true for every small ball B). Keeping the assumption $\sigma^2 \neq 0$ we have

Proposition 10. *There exists a subset* $X \subset J$ *invariant under fⁿ* (*for some n* $\in \mathbb{Z}_+$) *such that fⁿ|X is expanding and* $HD(X) > \alpha$ *.*

Proof. Fix *n* large (to be precised later on). Define a set

$$
X_1 = \bigcup_{v \in \mathscr{F}_n} f_v^{-n}(B).
$$

Now, we define X :

$$
X = \{x \in B : \forall k \ge 1 \ f^{nk}(x) \in X_1\},\
$$

i.e. X is an intersection of a descending sequence of sets X_k ; every X_k is a sum of topological discs and

$$
X_{k+1} = \bigcup_{v \in \mathscr{F}_n} f_v^{-n}(X_k).
$$

The set X is invariant under forward iterations of $fⁿ$ and $fⁿ$ |X is expanding (by the definition of \mathscr{F}_n).

We estimate the usual topological pressure $P_x(-\alpha \log|(f^n)|)$ for the map $f''|X$ and the function $-\alpha \log[(f'')']$ (which is Lipschitz continuous on X).

In the following computation D is a component of X_k ; C is a component of X_1 .

$$
P_X(-\alpha \log|(f^n)|) = \lim_{k \to \infty} \frac{1}{k} \log \left(\sum_{D} \inf_{x \in D} \frac{1}{|(f^{nk})'|^{\alpha}(x)} \right)
$$

\n
$$
\geq \frac{1}{k} \log \left(\sum_{C} \inf_{x \in C} \frac{1}{|(f^{n})'(x)|^{\alpha}} \right)^{k}
$$

\n
$$
= \log \left(\sum_{v \in \mathscr{F}_n} \inf_{y \in B} |(f_v^{-n})'(y)|^{\alpha} \geq -\log L
$$

\n
$$
+ \log \left(\sum_{v \in \mathscr{F}_n} \sup_{y \in B} |(f_v^{-n})'(y)|^{\alpha} \right) \geq -\log L + \log S_n^{\alpha}(B)
$$

where L is an estimate of a distortion of f^{-n} in B (common for all branches, by the Distortion Theorem).

We fix n so that

$$
\log S_n^{\alpha}(B) - \log L > 0
$$

(this is possible since, by the previous Proposition, the sequence S_n is unbounded). By the variational principle we know that

$$
P_X(-\alpha \log|(f^n)'|) = \sup_{\kappa} (h_{\kappa} - \alpha \int \log|(f^n)'| d\kappa)
$$

where supremum is taken over all measures κ fⁿ-invariant and ergodic. Thus, there exists a measure $\kappa f''$ -invariant ergodic with supp $\kappa \subset X$ such that

 $h_{\kappa}(f^{n})-\alpha \int \log |(f^{n})'| d\kappa > 0.$

Hence, $HD(X) \geq HD(\kappa) = \alpha \frac{h_{\kappa}}{\log |f^{(n)}| \, d \kappa}.$

This completes the proof of Proposition 10. \Box

To finish the proof of Theorem 2, it remains to check that for maps with parabolic orbifold we have $HD(J) = HD(m)$.

For the map $z \mapsto z^{\pm d}$ *m* is just the Lebesgue measure on the circle. For Tchebysheff polynomials m is equivalent to the Lebesgue measure on the interval. Thus, we have $\alpha = 1 = HD(J) = HD(m)$.

If f has a parabolic orbifold and $J(f) = \overline{\mathbb{C}}$, then $\alpha = HD(m) = 2 = HD(J)$. It is so, because every parabolic orbifold can be obtained as a quotient space

of action of a subgroup of Aut(\mathbb{C}) on \mathbb{C} . The lifted map \tilde{f} : $\mathbb{C} \rightarrow \mathbb{C}$ is of the form $z \rightarrow az+b$, where $|a|^2 = \text{deg } f$ (see [DH], §9). The maximal entropy measure for f can be obtained as an image of the Lebesgue measure on $\mathbb C$ and is equivalent to the usual Lebesgue measure on \mathbb{C} .

Acknowledgement. I am very indebted to Feliks Przytycki who infuenced very much this work and to whom I owe many ideas.

References

- [DH] Douady, A., Hubbard, J.H.: A proof of Thurston's characterization of rational functions (Preprint Institut Mittag-Leffler)
- [FLM] Freire, A., Lopes, A., Mañé: An invariant measure for rational maps. Bol. Soc. Bras. Mat. 14 (1983)
- [Go] Goluzin, G.M.: Geometric theory of functions of a complex variable. Translations of Mat. Monographs 26, Am. Math. Soc. 1969
- \mathcal{U} Jakobson, M.Yu.: Markov partition for rational endomorphisms of the Riemann sphere (in Russian), Mnogokomponientnyje Slu~ajnyje Sistiemy, Izdat. Nauka, Moscow 1978
- $[M]$ Mañé, R.: On the uniqueness of the maximizing entropy measure for rational maps. Bol. Soc. Bras. Mat. 14 (1983)
- $[L_i]$ Livšic, A.N.: Cohomology of dynamical systems, Izv. Akad. Nauk SSSR, Ser. Mat. 36, 6 (1972)
- $[Liu 1]$ Ljubich, M.Iu.: Private communication
- $[L]$ u2] Ljubich, M.Iu.: Entropy properties of rational endomorphisms of the Riemann sphere. Ergodic Theory Dyn. Syst. 3 (1983)
- [Ma-Mc] Manning, A., McCluskey, H.: Hausdorff dimension for horseshoes. Ergodic Theory Dyn. Syst. 3 (1983), Errata 5 (1985)
- [P 1] Przytycki, F.: unpublished
- $[P2]$ Przytycki, F.: Riemann map and holomorphic dynamics. Invent. Math. 85, 439~455 (1986)
- [P3] Przytycki, F.: On holomorphic perturbations of $z \rightarrow z^n$. Bull. Pol. Acad. Sci. Ser. Math. 34, 127-132 (1986)
- [Ph-St] Philipp, W., Stout, W.: Almost sure invariance principles for partial sums of weakly dependent random variables, Memoirs of AMS 161 (1975)
- [PUZ] Przytycki, F., Urbafiski, M., Zdunik, A.: Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps. Preprint Univ. Warwick 1986; Part 1 in Ann. of Math. 130, 1-40 (1989)
- **JR]** Ruelle, D.: An inequality for the entropy of differentiable maps. Bol. Soc. Bras. Mat. 9 (1978)
- $[Su]$ Sullivan, D.: Seminar on conformal and hyperbolic geometry by D.P. Sullivan (Notes by M. Baker and J. Seade); Preprint IHES (1982)
- $[Y]$ Young, L.S.: Dimension, entropy and Lyapunov exponent. Ergodic Theory Dyn. Syst. 2 (1982)
- [DH 2] Douady, A., Hubbard, J.H.: Etude dynamique des polynomes complexes, l, Publications Math6matiques d'Orsay 84-02