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w Introduction 

Given a family of complex projective hypersurfaces in CP", the Torelli problem 
studied by P. Griffiths and his school asks whether the period map is injective 
on that family, i.e., whether the family of complex hypersurfaces can be distin- 
guished by means of their Hodge structures. A complex projective hypersurface 
in CP" can be viewed as a complex hypersurface with isolated singularity 
in C "+ t. Let V= {z~C "+1 : f(z)=O} be a complex hypersurface with isolated 
singularity at the origin. The moduli algebra of (V, 0) is A(V) 

/(f, Of ~?f). It is a finite dimensional commutative local �9 "=C{zom .... z,} ~?Zo' "" '  0z, 

algebra. In [2], Mather and the second author proved that the complex struc- 
tures of (V, 0) determines and is determined by its moduli algebra. Subsequently 
the second author [6] introduced the Lie algebra L(V) to (V, 0), which is the 
Lie algebra of derivations of A(V). He proved that L(V) is solvable if n < 5  
(cf. [7]). The natural question arises: whether the family of isolated complex 
hypersurface singularities can be distinguished by means of their Lie algebras. 
The family of hypersurface singularities here is not arbitrary. First of all, as 
in projective case, we are really studying the complex structures of an isolated 
hypersurface singularity. In view of the theorem of Ld and Ramanujan [1], 
we require that the Milnor number # is constant along this family. Recall that 
the dimension of the moduli algebra (denoted by r) is a complex analytic invar- 
iant. So it suffices to consider only a (p, z)-constant family of isolated complex 
hypersurface singularities. 

Let (V, 0) be an isolated hypersurface singularity with C*-ac t i on .  Let S~ 
be the (p, r)-constant strata in the semi-universal deformation of (V, 0). In w 1, 
we shall show that (SE, 0) is isomorphic to (C", 0). In w 2, we construct a family 
of Lie algebras L(Vt) over SE. In w 3, we shall prove a Torelli type theorem 
for simple elliptic singularities /~7 and/~8. There are several advantages of our 
approach. First of all, it works for general complex hypersurface singularities 

* This research is supported partially by N.S.F. 
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which are not necessarily homogeneous. Second, it allows us to construct a 
continuous invariant explicitly. Third, it gives a general method for producing 
a continuous family of nilpotent Lie algebras. 

w 1. (p, ~) Constant deformation for hypersurfaee singularities 
with C *-action 

Let (V, 0)___ (C", O) be an isolated hypersurface singularity with the local defining 
equation f ( x l  . . . . .  x.) = 0. Then the semi-universal deformation of (V, 0) is given 
by 

W, 0) ,(C" x Ck, 0)(xl . . . . .  x , , q ,  ...,t~) 

(s, o ) - -  (c  ~, o) (t, ,  . . . ,  t~). 

Here ~U={(x,, ..., x , ,  t~ . . . . .  tk): f (x)+ ~ t, gi(x)=O}, where g~(x) . . . . .  gk(x) are 
i = l  

monomials in xl . . . . .  x. which represent a linear basis of the complex vector 

~ / ( f a J "  ~x,).  We are particularly interested in space A(V)=C~x l  . . . . .  x, OXl . . . .  ' 

the case when f is weighted-homogeneous, i.e. when there exist positive integers 
ql, ..., q, and d such that for any teC* = C - { 0 }  

f (t q~ x1, t q2 x 2 . . . . .  tq"Xn) = ta f (xl . . . . .  X.). (1.1) 

In the rest of this paper, we shall always assume that f is weighted homogeneous. 
Let us give the variable xi the weight qi. Then each monomial x~' x~. . .x .  ~" 

which appears in f has total weight d = al q 1 + a2 q2 + . . .  + ~, q.- 

Theorem 1.1. Let f be a weighted homogeneous polynomial with isolated singularity 
at the origin as above. Then 

{(x, . . . . .  x,, t, . . . . .  tin): f ( x )  + t, g, (x) +.. .  + t., g,,(x) = 0}, 

where gl . . . . .  g,, are monomials in a basis for the moduli algebra 

A (V)=C~x l  . . . . .  x,  Oxl ' " . . . .  

is a (#,v)-eonstant deformation of V={x:  f (x)=O} if and only if weight (gi) 
=weight( f  ) for  all 1 <i<m. 

Proof " ~ "  For each fixed t = (t 1, t2 . . . . .  tm), ft (X) = f (X) + t 1 g 1 (X) + . . .  + t,, gm (X) 
is a weighted homogeneous polynomial total weight equal to that of f Since 
by [3], the Milnor number of a weighted homogeneous polynomial is determined 
by q~, ..., q, and d, we conclude that the Milnor number # is independent 
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of t= ( t  I . . . . .  tin). Since ft(x) is weighted homogeneous for all t, z =/~ is indepen- 
dent of t=( t l  . . . . .  t,,) also. 

" ~ "  If {(x, t ) } : f ( x ) + t l g l ( x ) + . . . + t m g , , ( x ) = O }  is a (#, ~)-constant defor- 
mation, then in particular ~(Vt) is independent of t=( t l  . . . . .  t,,) where 
Vt= { x e C " : f ( x ) + t l  g(x)+ ... +tm g(x)=0}. 

This implies that C{Xl ,  .. . ,  x , ,  t~ F, Oxl . . . . .  ~xx, is flat over C{tl} where 

0 0 
F (x, ti) = f (x) + ti gi(x). Let D = q 1 xi ~ +. . .  + q, x ,  ~ be the Euler derivation. 

Since f is weighted homogeneous with total weight d, D f = d f  Hence O F - d F  
= D f - d f + t i ( D g ~ - d g ~ ) = t ( D g ~ - d g O  is in (ti), the ideal generated by ti in 

. . . ,  . C{x~ . . . .  ,x~, ti}. Clearly D F - d F  is in F, 0x~' So D F - d F  is in 

( OF 0~-xF) As 
(tl)~ F, a X l ' "  . . . .  

0 --~ C {t,} _5~ C {ti} 

is exact, so is 

2~,C / /  OF OF (1.2) 

by the flatness of C{x, ti} OXl . . . . .  over C{ti}. 

It follows that 

OF OF ~-(ti) F, Oxi . . . ~  (ti)c~ F, Oxi . . . . . .  

Therefore we have 

t i ( D g i - d g i ) = D F - d F e ( t i )  F, O x l ' " "  " 

There exist bij(x)eC {x} such that 

t i (D gi - d gi) = (b 01 (x) ti + bo 2 (x) t 2 + bo 3 (x) t 3 +. . . )  ( f  (x) + ti gi (x)) 
) { O F  ~g,] 

+(b l l (X ) t i+b l z ( x ) t i+b la (x ) t 3+  ... \ 0x l  +t{  0X1] 
- ~ -  . . .  

0g,  

= 0  in C{xl . . . . .  x,} 0xl . . . .  ' " 
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On the other hand 

Dgi-dg i  = q l x i ~ x l + . . . + q , x ,  (gi)-dgi=(wt(gi)-d)gi .  

Since gl is a basis element in C{xL . . . .  , x,} 0x~ . . . .  ' ~-x. ' we conclude that 

wt(gi)=d. This is true for all 1 <_i<m. Q.E.D. 

Remark. Since the initial fiber is weighted homogeneous, we know that /~ = z. 
Hence we see immediately that f (x) = f (x) + t ~ g~ (x) + . . .  + t,, g,. (x) is quasi-ho- 
mogeneous for each t. By a theorem of Saito [4], f (x)  is weighted homogeneous 
with respect to a certain coordinate system. The point of the above theorem 
is that ft(x) is weighted homogeneous with respect to Xl . . . . .  x, for all t. 

It is well known that the (#,z)-constant s t r a t a  SE={t~ck:(II(Vt),z(Vr)) 
= (#, z)} forms a subvariety in the parameter space of the semi-universal defor- 
mation of (V, 0). In case (V, 0) has a C*-action, we shall show that (SE, 0) is 
isomorphic to (C", 0), where m is the dimension of An (elements in the moduli 
algebra A(V) of weight d). 

Theorem 1.2. Let f be a weighted homogeneous polynomial with isolated singularity 
at the origin as in (1.1). Let g~, ..., gm be elements in a monomial basis of the 

moduli algebra A(V)=C~xi  . . . . .  x,~ Oxl' ""' 

=weight(f) for all l <_i<_m. Then the (l~, z)-constant strata S~ is C" and the 
equitopological deformation (~, ,0)~ (Sg, O) of (V, O) is given by 

(~ ,  0) , (~, ,  0) - -  ( c "  x c k, 0) 

t Pr~ 
(s~, 0) , (s, o) - -  ( c  k, 0) 

where ~//'= {(xl . . . .  , x,, tl ,  ..., t,,): f ( x ) + q  gl(x)+ ... + t,. g,,(x) = 0} 

(Pr 2 = projection onto the second factor) 
and 

(SE, O) = (C", 0). 

Proof By Theorem 1.1, we know that (C",0)_(SE, 0). Suppose that (C",0) 
+(SE, 0). Then by the theorem on resolution of singularities, we can find a 
curve ~: (C, 0)~(SE, 0) such that u(t)=(~l(t), 0~2(t) . . . . .  O~k(t)) lies in S E - C "  for 
any t in C - { 0 }  and ~(0)=(0, . . . ,0). (i.e. there exists i > m + l  such that ~i(t) 
is not identically zero.) The proof of Theorem 1.1 shows that for any non- 
negative integer p 

( O F  ~x,)  = (tp) (F,OF OF , ..., ~ x , ) V p > =  0 d F  " (t.3) 
(tP)n F, ~ x l ' " "  0xl 
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where ( t0 is the ideal generated by t p in C {x, t}. Let r be 

min  {o (am +1 (t)), o (am + 2 (t)) . . . . .  o (~k (t))} 

where we denote  o(Ti(t)) to be the vanishing order  of  ~i(t) at origin. Observe  
that  l < r < o o  because cq(t) is not  identically zero for some i between m + l  

0 
and k. Let  D =ql xl ~Tx+  ... + q , x ,  ~ be the Euler  derivation.  Then  

D F (x) - dF (x) = Df  (x) - d f  (x) + ~ 1 (t) (O g 1 (X) - -  d g i (X)) -]-... 

+ ~k (t)(O gk (X) -- d gk (X)) 

:s l O~m+ l(t)gm+ l(X)+Cm+ 20~m+ Z(t)gm+ 2(X)+... 

+ ck ~k(t) gk(x) 

where c~, for m + 1 < i < k, are nonzero  constants .  Wri te  . , .  + ~ (t) = t '  fl,. + 1 (t), 
.m+2(t)=t'fl=+2(t) . . . . .  ~k(t)=t'flk(t). Then  fli(O) 4:0 for some m +  1 < j < k  by our  
choice of  r. 

D F ( x ) -  dF (x) = t" [cm + 1 t im + 1 (t) gm + 1 (x) +. . .  + Ck flk (t) gk (X)] 

e ( t ' ) n  F, Ox~' " " '  

=(t r F, Oxl . . . . .  

by (1.3). We can  write 

t" [era +1 fl,. +1 (t) gm + 1  ( X )  q'- . . .  -]- Ck flk (t) gk (X)] 

( ~F t, ~3ff~x,) = t t b o F + t ' b l ~ x  + . . . +  b. 

where bi is in C{xl ,  ..., x, ,  t} for all O<_i<_n. Expand ing  by powers  o f t ,  compa r -  
ing the coefficient of t" on bo th  sides and then setting t = 0 ,  we get 

cm + ~ tim+, (0) g~ + 1 (X) + . . .  + Ck ilk(O) g~(x) 

=bo(O)f+b,(O) ~--~fx+.. +b.(O) 
0S 

�9 ~ X  n 

---0 in C{XI,  . . . ,  Xn} r . . . . . .  

Since {g,, + 1 (x), . . . ,  gk(X)} is a linearly independent  set in 

/ ( f ,  c~f o ~ , w e  havec~fl~(O)=O for a l lm+l<i<_n .  This C { x , ,  . . . ,  x,} a x l '  " " '  

contradic ts  to our  previous  assert ions that  ci 4 = 0 for all m + 1 _< i_< k and flj(0) 4 = 0 
for some m +  1 < j  < k. Q.E.D. 
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w 2. Construction of a family of solvable Lie algebras 
over the (p, O-constant strata SE 

Let (V, 0) be a hypersurface singularity defined by a weighted homogenous poly- 
nomial f ( x l  . . . . .  x,). In w 1 we have shown that S~ = C" and the equitopological 
deformation is given by 

{(Xl , . . . ,x , ,  t l ,  . . . , tm) : f (x )+ t  l g l ( x )+ . . .+ tmgm(x )=O}  ~ C "  x C" 

Prz 

S~ C m 

where g~ are those monomials in a monomial basis of 

/ ( f ,  ~?f ~ f x , ) s u e h t h a t w t ( g i ) = w t ( f ) . i n t h i s s e c t i o n w e s h a l l  C { X 1 ,  . . - ,Xn}  aX  1 '  ' " '  

construct a family of solvable Lie algebras over SE. Recall that in [6], we have 
associated to an isolated singularity (V, 0) a finite dimensional Lie algebra L(V), 
which is defined to be the algebra of derivations of the moduli algebra A(V).  
L(V) is solvable if n < 5  [7]. We shall define a Lie subalgebra L(V) of L(V). 
This Lie subalgebra L(V) admits a natural deformation over the parameter 
space SE. Recall that by Theorem 1.2, SE is isomorphic to C" with coordinates 
t l ,  . . . ,  t m. 

Definition. A derivation DoeL(V  ) is liftable to SE if there exist differential opera- 
tors D,, such that 

D = D o +  ~ :'D~,+ ~ t*2D~2+... 
[~'t[ = 1 1t2]=2 

leaves the ideal (fx, + t t g l x, + . . . + tm g ...... f*2 + t l g l x2 + " " + tm g . . . . . . . .  f~,, 
+ t l  g l~ .+  "'" +t , , x , )  in C { x l ,  ..., x.,  tx, ..., t,,} invariant. (By differential opera- 

tor, we mean operator of the form d l(x) ~-xl + ... + d,,(x) with dj(x) a linear 

combination of monomial basis elements of the moduli algebra A(V).) 
Here we use the standard notation for multi-indices. For  example if 

c~=(~ 1 . . . . .  c~.), then [~J=cq + ...c~. and 

t" D~ = t]'...t~" (d] (x) ~ + . . .  + d ix) 

Definition 2.2. The Liftable Lie algebra L,(V) is defined to be the set of those 
D o l L ( V )  such that D O is liftable to St. 

Clearly L(V) is a Lie subalgebra of L(V) and has a natural deformation 
over the parameter space SE. Let D be an operator as above. To say that 
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D is a lifting of  Do, for all 1 < i < n there must  exist ia{ ~C {X1,  . . . ,  Xn} for 1 < i, < n 
and I v l > 1 such that  

D(f~, + tl gl.~, + t2 g2x, +. . .  + 6. g,,~,) 

= ( f l ~ +  Z ,a~, t~'+ ~ ia~2V~+'")(f~, + E (gx, t)"9 
[ V l [ = l  I v 2 1 = 1  I/.L, [ = l 

+(ia2+ ~ ia~,t~'+ ~ ia~V~+.. .)(f~.+ ~ (gx, t) ~) 
I v 1 1 = 1  I v 2 1 = 2  l U 2 1 = l  

"q-- . . .  

+( i a~+  ia"~,V'+ ~'. ~a"~V~+.. .)(f~.+ ~ (g~t )  u") (2.1) 
Iv,I = 1 Iv21 = 2 lull = 1 

where #~ is a multi- index with m entries. We use the nota t ions  (g~, t) ~~176 1.o ..... o) 
to denote  g3x~ t3 and g~x ~ o. 1. o ..... o) to denote  g3x,, for example. 

The left hand  side of (2.1) is given by 

D o f f , +  ~ (Dog~',+D~,fx):' 
Iv, l=1 

+ ~ [ ~ (O,,g~]-~')+D~fxi]t  '~ 
1~21=2 I*,1=1 

~2>=t, 

while the right hand  side of  (2.1) is given by 

,a~ fx, + ,  a2 f.= + . . .  + ia~ fx. 
"]- E 1 v I 2 v l  n v 1 - -  1 2 n [,aogx, + + . . . +  fx ,+ L 2 + . . . +  f j  tv' iao gx2 iao gx.-t- iav, iav, iav, 

Iv, l=l 
+ ~ [ L ' ( ~  V2-~'4-'n21~ V2-~ . . . .  -~' iav, ,e,x,: --,-v, ,e, x2, W... 4- lay, (gx.) 

1~:1=2 Iv, l=l 
V2~V,  

+ (,a~ fx, 2 + iav~f~ + . . .  + i % f ~ . ) ]  t ~ + . . . .  

By compar ing  the coefficients of t, we conclude that  

iao f~, + ~ao L~ + . . .  + ia~ fx. (0) D o f x =  1 2 

.f~, - (i% fx, + ia~, ia,, D~, 1 2 fx~+. . .+ . f~.) 
- -  V 1 1 v ,  2 v ,  1 v ,  -- --Dogx,+(iaog~,+iaog~2+...+iaogx.) V l v l I = I  (1) 

1 2 n O j x , -  (~% L, + ~% L~ +... + ~% L )  
=--  Z Ov, g~ -~'+ Z t 1 ~-~,4- 2 ~-~, qav,  gx,  - -  lay, gx2 

I v 1 1 = 1  Iv ,  l = 1  
v2=_.v, 9 2 ~ v 1  

/1 v2v , +...+,a~,gx. ) Vlv21=2 (2) 

etc. If Do is in L(V), then there exist iaJo such that Eq. (0) is satisfied. In order  
to show that Do is liftable, the first step is to find D~, and ia{, such that  Eqs. (1) 
are satisfied for all I v t l  = 1. The second step is to find Dv~ and ~a{~ such that  
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Eqs. (2) are satisfied for all I vzl = 2, etc. (Actually we can use this the definition 
o f  liftability for Do.) Restricting ourselves to the three variable case with m = 1 
( i .e .  1-parameter family of deformations), the above equations read as follows: 

Oo(fx)=a~ f x + a  z fy+a 3 fz 

Do(fy) = b~ L + b o  2 fy+bo 3 f~ 

Do(f~ ) = c~ f~ + c~ f~, + c 3 f~ (0') 

Ol ( fO- (a~  fx+aZ fy+a3 fz)= -Dogx+(a~gx+a~gy+a3 gz) 

D1 (L)-  Cbl L + b~, L + b~ L) = -Do gr + (b~ g. + b~ gr + b~, g~) 

Dl(fz) - (c]  f~ 2 3 + c l f y + e ~  Z ) =  -Dogz+(C~gx+c2gy+e~gz) (1') 

D 2 ( L ) - ( a ~ f x + a ~ f r + a 3 Z ) = - D ~ g ~ + ( a l g , +  a 2~ g4 + a 3~ g~) 

D2 (L)-  (b~' L+b~fr+b~ L) = -D ,  gr +(b~ g~+b~ g~+ b ~, g~) 

D2(L)-(e~L+c~L+e~L)= -D~g~+(c~gx+cZg4+c3g~) (2') 

etc. 

Example. Let V= {(x, y, z): f ( x ,  y, z )=x  3 +y3 + z  3 =0}. Then the moduli algebra 
is given by the vector space spanned by 1, x, y, z, xy, yz, zx  and xyz.  

The weight of g(x, g, z ) = x y z  is three, which is exactly the weight of f. In 
view of Theorem 2, the equitopological deformation of V is given by 

Vi={ (x , y , z ) : x3+y3+z3+txyz=O}  t3 +27=1=0. 

It is easy to see that the Lie algebra L(Vo) associated to V= Vo is given by 

L(Vo) = x , y , z ~zz' x y  0~' z x  Ox-' xy  --Oy' yz  Oy ' 

Y Z ~ z , Z X  ~ z , X Y Z  ~xx,XYZ--Qy,XyZ oz~ 

d . 
We claim that x ~ is not liftable. To see this, we observe that 

O 
X ~x (L)= 2L +oL +O.fz 

~ a o  1 =2, at =0,  ao 3 =0. 

Suppose that there exist a~, a 2, a 3 and 

Dl=(O~lX+O~2y+o~3z) -{-(fllX-{-flzy+fl3 z) +(71x+])zY+73z)~z z 
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such that (1') is satisfied. Then 

al L + a  2 L + a  3 f~=D, L+Dogx-(a~g~+a~gr+a3g~) 

=6cq xZ +6~z x y+ 6c% x z -  2 yz. 

Because of the appearance of - 2 y z  on the right hand side, there is no choice 
of a l ,  a l  2, a 3 , ~1 ,  ~2 and c~ 3 which makes above equations true. 

8 8 8 
On the other hand, we claim that Do=x ~ x + y  8 y + Z  8 z  is liftable. In fact, 

Do itself preserves the ideal generated by 3 x 2 + tyz, 3 y2 _{_ txz,  and 3 z 2 + txy. 
We can see that 

8 8 8 8 8 8 8 L(Vo)= x ~ + y - b y + ~ - -  z x - -  x y - -  y z - - -  8z'XY-Ox ' 8x '  8y'  8y'  

yz (?~, zx  8~' xyz  8~' xyz  --By' xyz  ~zz/" 

Indeed, the equitopological deformation {V t} gives the following deformation 
of L(Vo). 

8 8 8 8 t 8 8 t 8 
L(v,)= x ~xx +y ~ + z  ~z' xy  ~ x - g  zx - -  zx ay' ~ x - ~  xY ~ ' 

t 8 8 t 8 8 t 8 
xy  ~ - ~  yz ~ ,  yz ~ - ~  ~y ~z '  yz ~z 6 z~ --Oy, 

8 t 8 8 8 8 \  
ZX~zz -~yZ~x ,XYZSx ,XYZ- - - - - -  (?y, xyz  ~z~" 

This deformation is actually a trivial family (as a family of Lie algebras). 

w 3. Torelli type problems 

In w we have constructed a family of Lie algebras L(Vt) over SE. It is natural 
to study the following Torelli type problem: If L(V~,)~L(Vt2) as Lie algebra 
tl,  t2 in SE, is Vt biholomorphically equivalent to V,. In what follows, we 
shall study this problem for simple elhptic smgularltles E v and Es. 

Definition. Let {(x t, Yl), (x2 :Y2), (x3 :Y3), (x4 :Y4)} be an ordered set of four distinct 
points in CP  1. The cross-ratio associated to this ordered set is 

(Xl Y3 -- X3 Yl)(X2 Y4 -- X4 Y2) 
i ' m  

(xl Y4 -  x4 Ya)(x2 Y3-- x3 Y2)" 
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Remark. Consider a point in CP 1 as a line in C 2. Given 4 lines, choose a 
basis vector for each. Write (x3, ya)=a(xl, yl)+b(x2, Y2), (x,, y4)=c(xl, YO 

bc 
+d(x2, Y2). Then the cross-ratio is in fact equal to a--d-" 

Remark. Under all possible orderings of four distinct points {(xl:Yl), (x2:Y2), 
(x3:Y3) , (x4:y4) } in CP 1, six cross-ratios occur, four times apiece. The set of 

six cross ratios is I t ,  r - l '  r - l ' r  r-r  1 ' 1 - r ' l  1 - r  t .  The ratios occur in pairs 

(inverses of each other) and the Klein-4 subgroup of $4, acting as permutations 
of the four points, leaves the cross-ratio unchanged. 

The following proposition is easy to prove and is well-known. 

Proposition 3. Let A= {(xl :YO, (x2:Y2), (x3"Y3), (x4:y4)} and B =  {(zl :wO, (Z2:W2), 
(Za:W3), (z4:w4)} be two sets of four points in CP 1. Then there exists a linear 
automorphism of CP 1 which carries the set A to the set B if and only if the 
sets of  six cross-ratios associated to A and B respectively are the same: i.e. 

{ rA r A - - 1 1 ' l - - r A  t 
rA, rA 1, rA_ 1, r A ' l _ rA  

={re , rb 1 r B rB--1 1 ,1--rB}. 
' r n - -  i ' r B ' 1 - -  r B 

Let ff~7 be a simple elliptic singularity defined by {(x, y, z)e C3: x4+  y4+ Z2 -~-0}. 
It is clear from Theorem 1.2 that the (kt, z)-constant family is given by 

Vt={(x ,y ,z ) : f (x ,y ,z )=x4+y4+tx2y2+z2=O} with t 2#4  (3.1) 

Hence SE = C -- { + 2}. 

Theorem 3.1. A Torelli type theorem holds for simple elliptic singularities ff~7. 
I.e., L(Vt, ) = (Vt~) as Lie algebras for tl 4= t2 in SE if and only if Vtl is biholomorphi- 
cally equivalent to Vt 2. 

Proof. Recall that by Mather-Yau [2] there is a one to one correspondence 
between the complex structure of the singularity V, and its moduli algebra 

At=C{x'Y 'Z} ' 8y' Oz] 

= (1, X, y, X 2, xy, y2, x2y, xy2, x2y2) 

with multiplication rules 

t 
x3= - ~  xy ~ 

t 
y3 = _ 2- X 2 y. (3.2) 

x a y = x y  3 =0 



Variation of complex structures and variation of Lie algebras 555 

We now compute a basis of L(Vt):=Derc(At). Observe that A, = C {x, Y}/lt where 

~=~x- '  =(4x3+2txy2,4y3+2txZy). Any element DeDerc(A,) can be 

written as 

D=(aoo +alox +aol yq-a20x2 +all xy+ao2y2 +a21 x2 y 

+a12xyZ+CzzxZy2) ~---~W(boo+bloX+bol y+bzoxZ+bll  xy  

+bo2Y 2+b21x 2 y + b 1 2 x y  2+b22x 2y2) O~y 

<invari nt. which leaves ' c3y] 

D(~x)=D(4x3+2txy2) 

-= [12 aoo ] x 2 + [2 t aoo-] y2 q_ [4 t boo ] x y 

+[(12-t2)aol +4tb~o]X 2y+[-4ta~o+4tbo~]xy 2 
+ [ -  4 t a2o + (12 - t2)ao2 -? 4 t b, a] x 2 y2 

- 0 (mod It). (3.3) 

Interchanging x and y yields similar facts. Setting the coefficients of each 
basis vector in At equal to 0, using t 24=0, 4, 36, restricts the values of the 
a~fs and b;Ss. We find that a basis for L(Vt) is then the following: 

0 
eo=x  -x+y 

z ~ e l = X -~x -b x y ~y , 

e 3 -----(t 2 -  12)xy ~--~-F4tx 2 t3y' 

O 
es=xZY ~ ,  e6=xY 2 -  c~y' 

3 
e2 = x y  ~ x + y  2 ~yy 

__O_ + 0 
e4=4tyZax (t2--12)Xy oy- 

ev=xYz ~N' e8 =x2y -~-y- 

e9=xZy 2 0 y2 0 ~ ,  elo =x2 ~y .  

t=0,  eol is replaco by{x ,  } 
For t=6 ,  {eo} is replaced by eo, yff~x+X~y t = - 6 ,  {eo} is replaced 

0 .{eo 
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The Liftable Lie algebra L(vt) defined in the previous section is spanned 
by (eo, el, ..., elo). The nilradical Nt of L(Vt) is of dimension 10 spanned by 
(e l ,  ..., el0). We shall show that the mapping {V,} ~ {L(Vt)} gives a one-to-one 
correspondence between the complex structures of Vt and isomorphism classes 
of the solvable Lie algebras L(Vt). For this purpose it suffices to show that 
the natural mapping {Vt} --* {N,} gives a one-to-one correspondence between 
the complex structures of V, and isomorphism classes of the nilpotent Lie alge- 
bras N,. Using equations (3.2), we have the following multiplication table 

[el,  e2]  = 0  

[ e l ,  e3]  = - -  3( t  2 - - 4 ) e 6  

[el,  e4] = 3(t 2 -4)es  

Eel, es] = - e l o  

[el,  e6] =2e lo  

[ej,  e7] = e9 

[el,  es] = 0  

[-e 3 , e4]  = (t 2 + 36)(t 2 -- 4)(e5 - -  e6) 

[-e 3 , es] = - - ( t  2 + 12)e9 

[e3 ,  e6] = ( - -  t 2 + 12)e9 

[e3 ,  e73 = - - 8  t e t o  

[e3, es] = - 2 4 e l o .  

All brackets among es, e6, e7,  e8,  e9, elo are zero because A t has no nonzero 
monomials of degree bigger than 4. Brackets incolving e2 and e4 can be copied 
from the above using x,--*y symmetry, which induces el~-~ez, e3~-~4 . . . . .  e9 

~-*elo .  
We now simplify the multiplication table by introducting a more convenient 

basis. The factor ( t2-4)  which appears in all brackets among e l, e2, e3, e4 
can be eliminated, as can a few other unpleasantries. Replace e5 by ( t2-4)  
(e5 + 2 e6) and e 6 by (t 2 -  4) (e 6 + 2 es). (These are linearly independent.) Multiply 

t z + 36 
each of e7, es,  e9, and elo by t2 -4 .  Replace e 3 by e 3 W ~ e  2 a n d  e4 by 

t2+36 
e 4 +  ~ e~.  

The multiplication table with respect to this new basis is: 

[el,  e 3 ] = e 6 - 2 e 5  [e2, e3]=3e7 

Eel, e4]=3ea [e2, e 4 ] = e s - 2 e 6  

[el, e s ]= 3e to  [e2, e6]=3e9 

[el,  eT]=e 9 [e2, e s ]=e lo  

Ee3, es] = - 3(t2-4)e9 I-e~, e5] = - 2 ( t  2-12)e lo  

I-e3, e63 = - 2 ( t  z -  12)e9 [e,,  e63= - 3(tz-4)e10 

[e3, e7] = - 8  t e lo  [e4, eT] =�89 2 - 36)e9 

[e3, e s ] = � 8 9  [e4, es] = - 8 t e 9  

other brackets are zero. 
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Let 

Z.'=center(N3 = (e9, elo ) 

Z 2 .'= {n eNt: Image(ad,)  _~Z} 

= (es ,  e 6 ,  . . . ,  e l o )  

Z 3 .'= {neNt: Image(a d,) _~ Z ~} 

= N  t. 

Although (es ,  e6, ev, es)  is not an invariant subspace under Lie algebra 
automorphisms, the quotient space Z2/Z (on which Lie algebra automorphisms 
of Nt act) has a basis represented by es, e6, e7 and e8. 

For  t = 0, Image(a deT) = C e 9 and Image (a d j  = C el o. Generically, 

Image (a da~ e~ + . . . .  + . . . .  + ~8 es) = C e9 -~ C e 1 o. 

We shall see that for most values of t, there are exactly four vectors, unique 
up to scalar multiple modulo Z, which lie in Z 2 and have one-dimensional 
adjoint image. These vectors are linearly independent and form a basis for Z2/Z. 
Each of the four one-dimensional images is of course in Z. These four lines 
in C 2 have a cross-ratio, relative to a choice of order. The 4! possible orderings 
yield (in general) six different cross rations. These six numbers are continuous 
invariants of Nt. It will thus be seen that seen that Ns= Nt if and only if 
is biholomorphically equivalent to Vt. 

{ \ ~ " - '  / \ [ 1 2 - 2 t \  +/12+2t~'~2_t ] J  We will show that As~'At---*Ns~-N~---~se + t , + _ [ ~ ) , _ ,  
-~ A~_ At. 

It is clear that Nt depends on the analytic type of the singularity (i.e. N t 
is an analytic invariant), hence first implication. The last is easy to check. (E.g. 
f ( x ' , y ' , z )=f l z+2t (x ,y , z  ) where x ' = k x + k y ,  y ' = i k x - i k y ,  i 2 = - 1 ,  and k 4 

2 - t  
1 

- Also f ( x ,  iy, z)=f_t(x, y, z). These two substitutions of s for t generate 
2 - t "  

all six such substitutions.) 
We shall now see that the second implication holds. Therefore for /~7 

singularities the isomorphism classes of Nt differ for singularities which are not 
of the same analytic type. Consider ad~e~+be6+ceT+ae8 acting on the left. Its 
kernel includes the span o f % ,  e6, eT, e8, e9, elo; it sends 

--el v--*c e9 + 3 ae~o 

-e2~-* 3 be9 +delo 

- e3 ~ - , ( -  2(t 2 - 12)b - 3 ( t  2 -4 )a )e9  + (�89 ( t 2 -  36)d - 8 tc)elo 

-e4~--,(�89 36)c-8  t d)e9 + ( -  2(t 2 -  12)a- 3(t2-4)b)e~o . 
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We shall find tile 4-tuples (a, b, c, d) for which the image of adaes+be6+ceT+,les 
is oneodimensional. The following fractions must be equal, or of the form 
(corresponding to 0 e9 + 0 el o): 

c 3b - 2 ( t 2 - 1 2 ) b - 3 ( t 2 - 4 ) a  � 8 9  

3a d � 8 9  --2(t  2 - 1 2 ) a - 3 ( t  2 - 4 )  b'  

A laborious calculation leads to the following (easily verifiable) result for the 
case a, b, c and d=#0 and t2+0,  4, 20, 36. Choose a branch for the square 
root function. Let 

t 2 - 2 0  

Two choices of coefficients are 

and 
a = l ,  b=B, c=C, d = 9 B C  -1 

a = l ,  b=B, c = - C ,  d = - - 9 B C  -1. 

The other two, corresponding to a =  1 and b = B - 1 ,  can be renormalized so 
that 

and 
a=B, b = l ,  c = 9 B C  -1, d= C  

a=B, b = l ,  c = - - 9 B C  -1, d = - C .  

The x, y symmetry, which interchanges e2i-1 and e2i; i=  1, 2, 3, 4, 5, is apparent. 
If one of the coefficients a, b, c, or d is zero t z must equal 0 or 20. For  

t z= O, 36 there are only two special vectors. 
In summary 

j(t) = 1 

t = O  e7 ,  e 8 

t = 6  e s + e 6 + 3 e v + 3 e 8  

e5 + r 3 e 7 -  3 e8 

t = - - 6  es+e6+3iev+3ie8  

es + e 6 -  3ieT+ 3ie8 

two distinct special vectors 

two distinct special vectors 

two distinct special vectors 
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t = 2 1 / 5  

J( t)= 2~ 
t =  - 2 l / 5  

3 
e s + z ~  e7 

3 
e5 - - ~  

3 
e6 + ~  e8 

3 
e6 - - ~  e8 

3 
e5 + 7 , ~  

3 
es-TT~ iev 

V 5 
3 

e 6 + T 7  ~ ies 

3 
e6 - ~ i e s . 

V5 

e 7 four distinct special vectors 

ie7 four distinct special vectors 

The first two special vectors for t =  -t- 2]$55 are the limiting cases for b=0 ,  white 

the last two special vectors for t = + 2 ] ~  are the limiting cases for c = 0. Other 
t (t2 ~e0, 4, 20, 36) yield 

9B 
f+ =es + Be6+C e 7 + ~  e8 

9B 
f -  = e s + B e 6 - C e T - - ~ -  e8 

9B 
g+ =Bes+e6+~c-ev+Ce8 

9B 
g- =Be5 + e 6 - ~ -  e7 - Ce8. 

four distinct special vectors 

The image of the adjoint action of a special vector is spanned by its value 
on e 1 or  e 2 

- [ f+,e l]=Ce9+3elo  = X +  

- - [ f - ,  e l i  = - C e 9 + 3 e l o = X -  

-[g+,e2]=3e9+Celo =Y+ 

- - [ g - ,  e2]=3eg-Celo = -- y_. 
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These four vectors X+, X_,  Y+, and Y_, are unique up to scalar multiples, 
and are pairwise linearly independent for t2@0, 4, 36 (i.e. for C24=0, +9). Any 
linear combination of two or more of the four special vectors has a two-dimen- 
sional adjoint image. This shows that there are no more than four special vectors 
modulo scalar multiplication. 

Generically, the six cross-ratios associated to the four vectors are 

6, b' 1 - 6  6 -  1' where 

{9+c212 ( 9 + 9 ( 6 t + ~ ) )  2 

6=\67-c ] = 3 6 ( 9 ( 6 + ~ ) )  

( t + ( 6 + ~ ) )  z _ 7 2 + 1 2 t + ( 1 2 + 2 t )  3]/36--t--t 2 
4 t ( 6 + ~ t  2) 4 t ( 6 + ] / ~ - - t  2) 

6 + t  
2t 

By Proposition 3, N, ~- Ns implies 

6 + t  2t 6 + t  2t t - 6 }  
2 t  ' 6 + t ' 6 - - 1 ' t - - 6 '  

_,~6+_s 2s 6+s  6 - s  2s 2s s - 6 ~  
( 2 s  ' 6 + s ' 6 - s ' 6 + s ' s - 6 ' s - 6 '  2ss ] 

+ ( 1 2 - 2 t ~  / 1 2 + 2 t \  
which is equivalent to s= _+ t, _ \  2 + t  ] or _ + ~ 7 7 -  }. But as shown before, 

the latter condition implies that 14, is biholomorphically equivalent to 
Vs. Q.E.D. 

4(62 - 6 +  1) 3 
Remark. Let J(6)=(b_2)2(b+l)Z(2b_l) 2. It is easy to check that J(6) 

= J ( a - 1 ) = J ( ~ l - ) = J ( ~ a ~ ) = J ( 1 -  b)= J ( 1 ~ _  6). Recall that N, gN, if s=  _+t, 

+ { 1 2 - 2 t ]  + ( 1 2 + 2 t ]  
- \  2+ t ] or _ \ ~ ] .  Then J is a function of the cross ratios and hence 

is well-defined on isomorphism classes among the N,'s. It is clear that a(a(t)) 
(t 2 + 12) 3 

is a modulus for the family {N,} and hence {14,}. This agrees --108(t2 4)2 
with the work of Saito [5]. He found that the j-invariant of the elliptic curve 
which is the exceptional divisor in the resolution of singularity for each value 

(t 2 + 12) 3 
of t is j ( t ) -  108(t2 _4)2. 
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Further investigations into the structure of N~ show how to continue to 
find a more canonical basis unique up to scalar multiplies modulo the invariant 
subspaces Z(Nt) and ZZ(N~). Each o f f+ ,  f_ ,  g +, g_ has a 3-dimensional adjoint 
kernel in NdZ 2. These kernels are pairwise disjoint. Taking intersections, three 
at a time, gives a set of four invariant vectors (up to scalar multiplies) expressed 
as linear combinations of el,  e2, e3, e4. The multiplication table can then be 
completed (if need be) by computing Lie brackets among these four new vectors. 
This approach yields the best basis for studying the structure of Nt. 

Let /~a be a simple elliptic singularity defined by {(x, y, z)eC3: x 6 + y 3 +  z 2 
= 0}. It is clear from Theorem 1.2 that the (/t, r) constant family is given by 

vl  = {(x, y, z) e c 3 :  f , (x ,  y, z) = x 6 + y3 + z2 + t x ~y = 0} 

with 4t3 + 2 7 + 0 .  Hence S E = C - { t ~ C :  4t3 +27=0}.  

Theorem 3.2. A Torelli type theorem holds for simple elliptic singularities Ea. 
I.e., L,(Vt~)~ r,(Vr~) as Lie algebra for tl + t2 in Se if and only if Vt, is biholomorphi- 
cally equivalent to Vt~. 

Proof. By the theorem of Mather-Yau [2] there is a one to one correspondence 
between the complex structure of the singularity V~ and its moduli algebra 

At=C{x'Y'Z} ' Oy' ~?z] 

=(1, x, xZ, y, x3, xy, x4, x2y, x3y, x4y) 

with multiplication rules 

y2 = t 4 - ~ x  

2 t  
x 5 - -  x 3 y  

3 

At is a graded algebra with d e g x =  1 and degy=2 .  Observe that At=C{x,  y}/It 

�9 [Of O f~ft]=(3xS+Ztx3y ' 3y2+tx4)" Any element D~Derc(A,)can be where , t = ~ x ,  cy/  

written as 

D =(ao +al x-k-a2x 2 +a~y+a3x3 +a~xy+a4 x4 

+a~x2y+a~x3y+a~x4y)~-x+(bo +blx  +b2x2 +b~y +b3 x3 

+b~xy+b4x4+blx2y+b~xay+b~x4Y) (?~" 

1 b] the coefficients of The subscripts refer to degrees of monomials, with a~, 
a monomial containing y. 
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(Computations, similar to those in the/77 case, have been omitted.) A basis 
for Lt is, for t+0 ,  the following: 

deg0 

deg 1 

deg 2 

deg 3 

deg 4 

deg 5 

0 
e~ a-y 

el=x2 +2xy O~c3y' ez=2ty +(2t2x3--15xy) #~ 

e3=(2tZx4 9xZy ) ~ ~ t~ - -  e4=9x 3 + 4 t 2 x  4 -  
c3y' Oxx cgy 

es=-3XY~x+2txa ~y 

e6 = x4 c3~' e7 = X2 y , e8 = x 3 y ~ 

~X X4 e9=x3y , e lo=  Y~yy 

ell=x4y OX" 

For t=0 ,  {eo} is replaced by x 0-x' y . The Lie algebra Lt defined in the 

previous section is spanned by (Co, el . . . . .  e,1). The nilradical Nt of L,t is of 
dimension 11, spanned by (e l ,  e2 . . . . .  e l l  ). We shall show that the mapping 
{V t} ~ {L,} gives a one-to-one correspondence between the complex structures 
of V~ an the isomorphism classes of the solvable Lie algebras Lt. Again, we 
will do this by studying the nilradical Nt. 

Eel, e2]=~e3 
(8t+54) 

[el '  e3]= 3 e8 

54+16 t  3 
lea, e4]=9e6 

3 
4 t  2 

[e, ,  e s ] = - - ~ e 7 - - - ~ - e 8  

4t 
[el, e6] = - - ~ -  e9--2 elo 

4t 2 
[el,  e7] = 2 e 9 - ~ - -  elo 

[el,  eg]=3e lo  
[el,  e g ] = 3 e l ,  

[e3, e4] =(24 t3 + 162) elo 
[e3, es] =(4 t 3 + 27) e 9 

4 t3+27  
[e3, e7] = ell  

3 

e8 

[e2, e3] = -- 4 t 3 e 6 + 18 t e7 

[e2, e4] = -- 8 t z e 6 + 54 t e 7 + (135 + 28 t 3) e8 

[e2, es] = --8 tZe6+45eT+4tZe8 

[e2, e6]=8teg+(15+4t3)elo 

135+4t  3 8t 2 
[e2, ev] -- 9 e 9 - ~ -  elo 

[e2, eg]=-2te9 

[e2, e 9 ] = - 1 5 e l l  
[e2, eao]=-2tell 

[e4, es] =(8t3+54)e9 
[e4, e 6 ] = - 6 t e l l  

27+8 t 3 
[e4, eT] = 3 ell  

[es, e 6 ] = - 9  ell  
[es, eT] = - 2 t 2  ell  

[es, e8]=3 e~  
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Other  brackets  [e~, ej], i< j  are zero. There  are some invar iant  subspaces  which 
show explicitly the s tructure of  N,. Let 

Z..= center  (Nt) = (e~ 1) 

Z2 ,={xeN~:  Image(adx)c-Z} = ( e 9 ,  e t o ,  el 1) 

Z 3 :---~ { x ~ N t  : Image(adx)~-Z 2} = (e6,  e7, e8, e9, elo,  el 1) 

Z4. '={xENt:  Image(adx)C-Z 3} = ( e 3 ,  e4, es, e6, e7, es,  e9, elo,  e11) 
Z 5 := ( x  e Nt: Image  (ad~) ~_ Z 4} = N, 

N ( I ) = [ N , N ] = ( e a ,  e6, e7, es, e9, elo,  e11) 

N(a)=[N, N~I)] = e T - - ~ -  e6, es, e9, elo,  e l l  

N~3)=[N, N~2)] = (e9,  elo,  e11) 
N ~4) = [N,  N (3)] = (e l  1 ). 

The quot ient  space Z2/Z  = N(3J/N ~4~ is two-dimensional ,  spanned  by the images  
of e9 and  e~o. There  are four invar iant  lines in this space (i.e. each is preserved 
under  all a u t o m o r p h i s m  of  N). Their  ordered  cross-rat io  is a complex  n u m b e r  
which is also invar iant  under  all au tomorph i sms ,  and will therefore distinguish 
N, f rom N~ unless N ~ N~. Let  

11 = Z4/Z  a c~ N(1)/Z 3 = C e3 ~- Z4/Z3 

P2 = ker  (adtl) = C e6 t~C Fs _c Z 3 / Z  2 

where adll : Z 3 / Z  2 -~ Z 

P3 = Image  (adll) = C e8 t~ C (9 e7 - 2 t 2 e6) -~ Za/Z  2 

where adtl : Z~/Z  4 ~ Z3/Z2 
14 = P2 n Pa = C  ~a ~_Za/Z 2 

15 = {:x e Z~/Z4: adtl ( s  14} = C el ~ Z5/Z4 

where ad, 1 : Z~/Z 4--* Z3 /Z  2 

/6 = [/4, 15] =C~loC-Z2/Z  

17=ker(ad t~)=C(e6+~ - e T - t 8 t 3 + 5 4  ) 81 es ~-Z3/Z 2 

where adl,: Z3 /Z  2 --* Z2 /Z  

18 = {~ ~Z4/z3:  ad~, (~) _ 17} = C (4 e 3 - 3 e4 + 6 t es) 

where adt~: Z4/Z  3 --* Z3 /Z  2 

19 = 1-/1,/8] = C (t e 9 - 3 el 0)-~ Z 2 / Z  

11 o = ker  (adz~) = C (3 el + e 2 ) -  Z s / Z  4 

where adz~: Z s / Z  4 ~ Z 

111 = [/1o, 1 4 ] = C ( - 2 t e g + 9 e l o ) ~ Z 2 / Z  

/12 = [-11,/10] = C(2 t 3 e 6 - 9  te7 +(4  t 3 + 27)ea)~_Za/Z2 

/~3=[/~o,  ll2] =C(t  e9 +(2 t3 + 9)e~o)C-Z2/Z. 
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It is clear that any Lie algebra isomorphism from Nt to N~ induces an isomorph- 
ism from zZ/z ,  to Z~/Zs which sends the ordered set {/6(t), 19(t), Ill(t),/13(t)} 
to the ordered set {l 6 (s), 19 (s), 111 (s), 113 (S)}. The cross ratios of these two ordered 
sets are 2(2t3+ 12) and 2(2s3+ 12). Consequently Nt~Ns implies that s 3 = t  3. 
Conversely if s3=t  3, then s=pt  for some p with p3= 1 and Vt is biholomorphi- 
cally equivalent to Vs. The biholomorphism is given by f (x ,  py, z)=f,(x, y, z). 
In particular Ns is isomorphic to Nt as a Lie algebra if s 3= t 3. Thus t 3 can 
be considered as the modulus of the analytic type of the/~8 singularities. Q.E.D. 

4t  3 
Again this agrees with the work of Saito [5]. He found that j ( t )= 4t  3 

which is a one-to-one function of our modulus t 3. + 27' 
Remark. A complete basis for N~ of/~8 can be obtained (for t3#0,  _2~) by 
defining two more lines ll4 , and 115 below, and choosing representative vectors 
for 15, 110, 11, 18, /14, 14, 17, 112, 16, 19, /15- These vectors will be unique, up 
to scalar multiples, modulo higher centers Z i. 

114 = {2eZ4/Z3: adl~('2) ~_ 112 } 

= C ( ( - ~ + 3 6 t 3 + 8 1 )  e316 t6+108 t39  e4-(24t4+162t)eQ 

c_ Z4/Z 3 
where ad,,: Z4/Z 3 --* Z3/Z 2 

/ 1 5 = C e l l = Z .  

Two sets of Lie algebra generators are easily seen to be {el, e2, ea, es} and 

el, 3el 4e3-3e4+6te5 ,  +ca, 

(~_32 t 6 \ /16t  6 
+ 36 t 3 +  81)e  3 - - ~ -  + 12 t 3) e4--(24 t 4 + 162 t) es}. 

The second set represents {15, llo, ls, l~a}. 
Notice that Lt is a graded Lie algebra. In fact each e~ is of pure degree 

acting on At. For example el 1 = x4Y v _  raises degree by 5 = 5 deg x + deg y 
GX 

eo 

el �9 15 �9 11o 
e2 

deg2 e 3 �9 la �9 18 �9 lx4 
e4 

e5 P 2 ~  ~ P 3  deg 3 e6 
e: / i ( / 4  �9 17 �9 II 2 
e8 

deg4 e 9 �9 16 �9 19 �9 111 �9 113 
elo 

deg5 ell  �9 115 

- -  deg x. 

deg 0 
deg 1 
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A dot �9 represents a complex line and a segment - -  represents a complex 
plane. Notice that, for instance, Z z is the span of the degree 4 and degree 
5 derivations, although the degree 4 subspace is not invariant under all 
automorphisms of Nt. 
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