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w Introduction 

Let d/o  be the moduli  space of smooth  curves of genus g a n d , / / u  the moduli  space 
of stable curves of genus g; and let E be the cone of effective divisor classes in 
P = Pic ( o~0 ) |  ~ - - t h a t  is, the saturat ion of the semigroup of effective divisors in 
P. The object of this paper  is to bound the cone E from without and to obtain 
geometric informat ion abou t  divisor classes near  its boundary.  

We begin by recalling some facts abou t  the divisor classes on ~ g  necessary to 
state our  results. Let A = ~/~q/~#o_denote the locus of singular curves in ~/70 and 6 
the corresponding class in P i c (~ ' o )  or in P. The divisor A has [ 9/2] + 1 irredu- 
cible componen t s  Ao . . . . .  Ai,o/zl determined by the condit ion that  a generic point 
[ C ]  in Ai corresponds,  i f / =  0, to an irreducible curve C with a single node and, if 
i > 0, to a curve C which is the join at one point  of a pair  of smooth  curves of 
genera i and 9 - i respectively. Let 51 be the class in P determined by At and let 2 be 
the class of the Hodge  line bundle (loosely put, 2 is the class of the line bundle 
whose fibre over [ C ]  is Agno(C, r A first fundamental  result, due to Mumford  
and Hare r  (cf. [Ha]) ,  asserts that P is generated by 2 and the boundary  classes 6~, 
with no relations i fg > 2. ( If9 = 2, we have the relation 102 = 5 o + 261 ). A second 
is that  the class 2 is birationally ample: i.e. the m a p  to projective space associated to 
a sufficiently large multiple of 2 is birat ional  onto  its image. This follows, for 
example, f rom the construct ion of the Satake compact i f icat ion as the projective 
model of "/if0 associated to a sufficiently large multiple of 2. For  technical reasons, 
we find it convenient  to work on the moduli  functor rather  than on the moduli  
space (see [-Mu] for a discussion of the Picard group  of a moduli  functor, and 
[ H M ]  for an example  of  how this will affect our  results). In practice, for g > 3, the 
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only difference this introduces in the description above is that the divisor we refer 
to as 61 will correspond to one-half the divisor class of the locus A 1 ~ dTg. 

Let 7 be an effective sum of the boundary classes. Our goal is to try to describe, 
for each such ~, the intersection of E with the plane in P spanned by ,~ and ~. Since )~ 
is birationally ample, there will be a positive constant s~, with the property that for 
a > st, the ray spanned by a2 - 7 contains effective divisor classes while for a < s~ 
it does not. Viewing 2 as the unit vector in the y-direction and - 7 as the unit vector 
in the x-direction sr is the slope of the ray which bounds the cone E c~ P from 
below. We therefore call sr the slope o f  the effective cone at ~. The problem we treat 
in this paper is that of estimating these slopes from below. 

In order to motivate this study, we wish to make a few comments and a 
conjecture about the most important of these slopes, s o := s6. Let us first consider 
the problem of estimating s6 from above. One approach is to find an effective 
divisor D, with class [D] ,  such that the difference (a2 - b6) - [D]  is an effective 
sum of boundary components. When b is chosen to be as large as possible, we shall 
denote the ratio a / b  by s D. By the definition of s o, each such D yields the estimate 
s~ < s o. The difficulties arise in expressing [ D ]  in terms of the standard classes. 
Usually, such an expression can be obtained only by intersecting D with enough 
"test curves", or by a Grothendieck--Riemann-Roch computation. The success of 
either of these methods depends on having a sufficiently strong geometric charac- 
terization of the curves C whose moduli points lie in D. Harris and Mumford [H M] 
and Diaz [D]  first carried this out for the divisor D which is the closure of the locus 
of curves of odd genus 9 expressible as a simply branched (9 + 1)/2 sheeted 
covering of P 1, and the divisor E which is the closure of the locus of curves with a 
Weierstrass point with first non-gap 9 - 1, respectively. The computation in [HM]  
yields the estimate sg < 6 + 12/(9 + 1) (the divisor E dealt with by Diaz has larger 
slope). Subsequently, Eisenbud and Harris [EH]  refined these ideas to show that 
essentially the same estimate as in [ H M ]  could be obtained for all 9 such that g + 1 
is composite by using divisors D consisting of curves C possessing a y] with 
Brill-Noether number p = g - (r + 1)(9 - d + r) = - 1. We worked out the 
simplest examples when r = 2 and arrived once again at the same estimate for s 9. 
These results lead us to conjecture: 

Conjecture 0,1 s 9 > 6 + 12/(( /+ 1) with equali ty when 9 + 1 is composite. 

A principal result of this paper is to prove this conjecture for 9 between 2 and 5. 
In particular, we show that s 4 > 8.42 and hence that s o can be strictly greater than 
6 + 12/(9 + 1) when (9 + 1 ) is prime. We shall give a more precise statement in a 
moment  in Theorem 0.4 but first we wish to discuss three nice consequences of(0.1) 
and related conjectures. 

The first depends on Harris and Mumford's expression for the canonical class 

K on d/g: 

K + 61 ~ 132 - 26 (0.2) 

In view of this and the calculations of [EH],  the conjecture would show that the ray 
spanned by K is ineffective, and hence that the Kodaira dimension of dog is - c~, 
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exactly when g < 23. (This is known today except for g = 14 and for g between 16 
and 22 [Severi, Arbarello, Sernesi, Chang-Ran 1 and 2, etc.]). 

The second stems from the work of Freitag [Fr ]  on au tomorphic  forms for the 
symplectic group Sp(2g, Z). These, as outlined by Mumford  in [Mu2] ,  may be 
viewed as effective divisors on partial compactifications of the moduli  space of 
principally polarized abelian varieties and then as divisors on J/Tog via the Torelli 
map. As g approaches .~, it is conjectured that there are many such divisors with 
3o-slope arbitrarily close to 0. The related conjecture that the slope Soo associated to 
the divisor class 6 o is likewise bounded from below by 6 + 12/(9 + 1) would imply 
that each such divisor must contain ,'fro and hence give rise to a new Schottky 
relation. 

Finally, the conjecture (0.1) is related via string theory to problems in physics. 
In [ M J N S ]  it is argued that the so-called cosmological constant  c~ 0 i.e. the 
vacuum amplitude of the heterotic string of perturbat ion order g in a flat back- 
g round- -van i shes  for any g for which the slope s o is at least 4. The conjecture 
would therefore imply this statement for all orders. In fact, the vanishing of ct 0 
follows from a weaker non-effectiveness result which Chang and Ran [ C h a n g - R a n  
3] were able to verify after this paper was completed. 

The slope 4 also has a geometrical significance which was pointed out to us by 
Beauville. If Z is a curve of genus z lying on ,,/70 and ~" S ~ Z is the universal curve 
over Z (i.e. its minimal semi-stable model), let rs denote the signature of S. We claim 

= 42z - 6z and hence that .s o > 4 if through a generic point [ C ]  of ,.//7 o there 
passes a curve Z such that r < 0. This follows from the equality rs = 4X((C's) 

- Z,op(S) and two straight-forward calculations: first, that ;(((9 s) 
= degz(~*(~J)s/z)) + (z - l )(g - 1) = ,:-B + (z - 1)(g - 1); and second, viewing 
5 z as the number  of exceptional curves in the fibres of ~ as in Theorem 3.1, that 
Xtop(S) = 6z + 4 ( z -  1)(g - 1). 

If one believes the conjecture, then the known upper bounds  for s o are sharp. It 
is therefore natural to concentrate on trying to get lower bounds. Indeed, some 
information on the Schot tky problem would follow from any positive lower bound 
independent of g. At this point, we must confess that we have been unable to obtain 
such a result. The statement of our main estimate (3.15) involves some com- 
binatorial functions whose definitions we do not wish to pause to give here. Indeed, 
these functions are sufficiently intractable that we have not at tempted to evaluate 
our estimates in closed form for general g. Their main thrust is that 

s o > O(1 /g)  as g --, oo . (0.3) 

An heuristic argument  suggests that  our  estimates yield, more precisely, 

s o = 576/5g + O(1/g)  

but numerical evaluation shows only that s o > 13/2 for g < 10, so we are unable to 
determine the Kodaira  dimension of og0 for any new values ofg. These calculations 
also show that  s o > 4 for g < 20 and hence yield in this range the vanishing of the 
vacuum amplitude of  the heterotic string mentioned above. 

We are, however, able to give algorithms for these functions which enable us to 
evaluate our  estimates when g is small. These show, 
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Theorem 0.4 (cf. 3.30).1) For g = 2, 3 and 5, s o has the value 6 + 12/(9 + l) 
predicted by Conjecture (0.1). 

2) For g = 4, 53/6 _-> s4 _-> 46,759,680/5,550,633 ~ 8.42. In particular, when 
(g + l)  is prime, s o may be strictly greater than 6 + 12/(g + 1). [] 

We also believe that  irreducible divisors of slope s o should consist of curves 
having some special geometr ic  character.  We will deliberately leave this last 
adjective vague but our  pro to types  here are the loci of curves possessing a linear 
series of Bri l l -Noether  number  - 1. We are able to verify this belief in two cases. 

Corollary 0.5 (cf. 3.30). I) For g = 3, the only effective irreducible divisor o f  slope 
less than 28/3 is the divisor o f  hyperelliptic curves. 

2) For g = 5, the only divisor o f  slope less than 29524/3659 ( ~ 8.07) is the divisor 
o f  trigonal curves. '~ 

Let us next briefly explain our  approach.  Suppose that  Z a curve in ~ ' 0  and set 
2z = degz 2 and 6z = degz 6. Our  method  is based on the simple remark that: 

I f D  is an effective divisor with class a2 - b6 and Z *  is a deformat ion  of 
Z, then either D . Z *  = a2z - b6z > 0 or Z *  is contained in D. (0.6) 

Hence if the union Z of the deformat ions  of  Z is an open subset of  Jg0, 
a/b  > Sz:= 6z/2z.  But sg is the infimum of such a/b so s o > 6z /2  z. The curves we 
use in this paper  are obta ined by taking a general b-tuple of sections of P 1 x P 1, 
blowing up their points  of intersection, and letting Z be the locus of all k-sheeted 
branched covers, admissible in the sense of [ H M ] ,  of the resulting family of b- 
pointed stable curves of genus 0. We find (3.22) that 6z /2  z is approximate ly  

72(b - 1 ) 
(0.7) 

(b - 1)(2k + 5) - ( 9 / 2 ) ( k ) ( k  - 1) 

The bound (0.3) on sg follows by using the R iemann-Hurwi t z  relation 

b = 2g + 2k - 2 (0.8) 

and choosing k to maximize (0.7) subject to the constraint  that  Z~ be dense. 
If Z~ is not  dense we still get some information:  the a rgument  in the preceding 

pa ragraph  actually shows that  if D is an effective irreducible divisor then either 
s o > s z or D contains Z,. Applying this to the curves Z above gives bounds which, in 
particular,  imply 

Corollary 0.8 (cf. 3.25). l f  g >> k and so < 72/(2k + 5) then D contains the locus of  
k-gonal curves. 

Combin ing  this with [ H M ]  we obtain perhaps the most  picturesque result of 
our  investigation: 

Theorem 0.9 (cf. 3.29). The common base locus o f  the pluricanonical linear systems 
on Jff  e contains the hyperelliptic and trigonal loci. 

The gulf which separates  our  results from our  conjecture for large g can be 
explained in several ways which we shall briefly indicate in what  we feel is 
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increasing order of likelihood. The first is that the conjecture is false and our  
bounds are in fact reasonably sharp. In other words, there are effective divisors of 
small slope but we simply do not know them. We doubt  this to be the case for the 
same reasons which lead to make the conjecture. The second possibility is that 
estimates close to or equal to that of the conjecture could be obtained by using 
other curves Z by the method of this paper. We have tried some variants on this 
a p p r o a c h - - f o r  example, by constructing Z from a family of covers of ~P 1 with other 
than simple branch points or from a family of plane curves with n o d e s - - b u t  in 
each case the bounds obtained were as best equal to those provided by the Z ' s  
constructed here. (Of course, this may be evidence more of our  lack of  ingenuity 
than of the non-existence of such Z's.) The final explanation, and the one which we 
tend to credit, is that  the gulf is an inherent defect of our  method. Another  way to 
view (0.6) is as saying that the cone E of effective divisors on ,~7o is contained in the 
dual Z* to the cone Z spanned by those curves Z such that Z = ~/7~. But there is 
no reason to suppose that Z* is not much larger than E. Consider, for example, the 
analogous cones in the Neron-Severi  group of a surface X. Then Z x is spanned by 
those irreducible curves Z such that Z . Z  > 0, and (0.6) says that an irreducible 
curve D on X must  satisfy D . Z  > 0 for all such Z. In fact, we know that for any 

Z, D.  Z can be negative only if D has negative self-intersection and Z = D. This 
analogy suggests a more promising alternate strategy for proving (0.1) towards 
which Corollary 0.7 may be considered as a first step. First, construct other curves 
Z for which the degrees 2 z and 6 z can be computed and for which 2 is either all of 
'JJff'0 or is a geometrically defined locus and then by estimating the Sz'S, show that 
any divisor D ~ a2 - b6 of small slope must contain lots of these geometrically 
defined loci. (For the Z ' s  constructed here the ] , 's  are either ~g70 or the k-gonal 
locus and Corol lary 0.8 shows that these loci are contained in divisors of small 
slope). Finally, use the geometric information so obtained about  divisors of small 
slope to estimate the coefficients a and b directly by intersecting them with test 
curves as in the [HM] .  

We conclude this introduction by describing briefly the remainder of  the paper. 
Our  geometrical results are entirely contained in w167 3. In the former, we construct 
the curves Z on which we base our  estimates and various related varieties which are 
needed to compute  2 z and 6z. In the latter, we compute  these degrees and obtain 
from them the basic estimate (3.15) and the principal results referred to above. We 
have written up these estimates only for the slope s o:= s6 but our  methods lead 
easily to estimates applicable to any effective sum 7 of boundary  classes. Indeed, to 
estimate s t, it suffices to replace the numera tor  ~z of the basic estimate (3.15) by ~z 
which can be computed  directly from the coefficients of the 6i's in 7 using 2) of 
Theorem 3.1. We leave the details to the interested reader. 

Section 1 is concerned with certain combinatorial  functions which arise in our  
expressions for 2z and 6 z. We suggest that the reader use this only as a reference for 
these combinatorial  definitions and results; indeed, the reader who is willing to take 
our arithmetic on faith needs only a few definitions which are repeated at the start 
of w 

This work was begun while the authors were visitors at the University of Rome. We would like 
to thank the C.N.R. for making our visit possible, and Enrico Arbarello for making it a pleasure. 
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w Combinatorial preliminaries 

In this section, we will define certain purely combinatorial functions associated 
with the symmetric groups which appear in our estimates for sg, and give an 
algorithm for computing them. Our treatment is somewhat more general than will 
be needed for most of the sequel. We have chosen to work in this generality because 
we feel, as outlined in the introduction, that these functions have additional 
applications to the geometry of moduli spaces of curves. We note also that the 
combinatorial analysis of certain closely related functions is the key ingredient in 
Harer and Zagier's beautiful computation [HZ]  of the Euler characteristic of 
J/t'0-cf. the remark following the proof of (1.18). In part A, we introduce a general 
class of functions Sc.o and show how to compute them in terms of simpler 
functions S c. In part B, we show how to compute the Sc's directly and also how 
they may be expressed in terms of characters of symmetric groups. Lastly, in part C, 
we define the functions which appear in our estimates for s 0 and show how to 
express these in terms of the Sc.o's. 

A. The functions Sc, Q 

First some notation. Let P be a partition: P is the set of equivalence classes of some 
equivalence relation =p on N + such that almost every equivalence class is a 
singleton. Let supp (P), the support of P, be the union of the non-singleton classes 
of = p and let [ P I be the order of supp (P). We let ~ denote the set of all partitions 
and ~ ( k )  the set of partitions whose support lies in { 1 . . . . .  k }. We say P < P '  if P 
is a refinement of P '  and say P ~ P '  if there is an isomorphism of N + trans- 
porting = p into = p'. We call a partition standard and usually denote it by a Q if 
its cycles are intervals of non-increasing length and let ~ and ~(k)  respectively 
denote the set of all standard Q and of all standard Q in ~ (k ) .  The set Y is a section 
of the equivalence relation ~ on ~ .  Each Q ~ ~ is determined by the sequence 
AQ = (a z , a 3 . . . . .  ai . . . . .  ) in which al is the number of cycles of length i in Q. We 
shall frequently deal with the standard partition with a single non-trivial cycle of 
length k Which we denote (k). 

Let S k denote the symmetric group on the letters { 1 . . . . .  k }, let S ~ be the 
union ofaU the Sk's considered as a set of permutations of N +, and let e denote the 
common identity element of all these groups. If V is a finite subset of S ~, write 
i - vJ if some element of V takes i to j. Let Pv be the partition this generates on 
N + - t h e  Pv cycles are just the orbits in N + of the subgroup generated by V- - and  
let Qv be the corresponding standard partition. Let C denote a conjugacy class in 
S | Consider the map q: S ~  ~ given by s--+ Q~s~. The fibre C(s) of this map 
containing the element s is the conjugacy class ofs  in S ~, and by restriction we get a 
map q k : S k ~ . ~ ( k )  whose fibres are the conjugacy classes of S k. By abuse of 
language, we will often speak of the conjugacy class Q e ~  meaning the class 
q -  I(Q): especially, (k) will denote the conjugacy class of a k-cycle, and (1) that of 
the identity. 
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Let [ T(k, b)] be the set of ordered b-tuples of transpositions in S k with typical 
element t = (t 1 . . . . .  tb). We will be concerned with enumerating certain subsets of 
[ T(k, b)] and will adopt the convention that if such a set is denoted IN ], then its 
order is N. Thus for example 

If te  [ T(k, b)] write 
b 

/7,= [ I t ,  
/ = 1  

and define P, = Pc, . . . . . .  tbl and Q~ = Q/t . . . . . .  ,b/as above. 
If Q is a standard partition and C is a conjugacy class let 

[Sc, Q(b)] = {te[T(lQI, b)][II, eC, P, = Q} 

[Sc, Q(b)] = {te[T(IQI,  b)]IFI, EC, P, ~ Q} . (1.1) 

with the usual convention when b = 0 the empty product is assigned to the set 
[S(1), (1)(0)]. Observe that both of these sets are empty unless Qc < Q and unless b 
has the same parity as C. The choice, for each P ~ Q, of a bijection realizing this 
equivalence induces a surjection -:[Sc, Q(b)] ~ [Sc, Q(b)] with fibres of order 
~(Q), the number of partitions P ~ ~(1Q 1) such that P ~ Q. Hence 

Sc, Q(b) = c~(Q)Sc.o(b) for all C and b .  (1.2) 

Since e(Q) is the order of the S lel orbit of Q in ~'(I Q I) and since Q has stabilizer in 
S IQI of order 

f i  E(i!)a'(h,)!] 
/ = 2  

we obtain 

Now let us define 

and 

~(Q) = (1.3) 

lmI [(i!)a'(a,)!] 
i = 2  

[Sc, Q(k, b)] = { te[T(k ,  b)]lII~eC, Q ,  = Q} (1.4) 

[Sc(k, b)] = { tE[T(k ,b ) ] IFI ,  E C } .  (15) 

Note that [Sc, o(IQ[, b)] as defined by (1.4) equals [Sc, Q(b)] as defined by (1.1). 
For simplicity, we use the latter notation whenever possible. Note further that each 
of the subsets A of {1 . . . .  , k} of order IQI, the set of t in [Sc, e(k,b)] with 
supp(Pt) = A has order Sc, Q(b). Therefore, 

[Sc(k,b)] = U [Sc, e( b)] (1.6) 
Q<(k) 
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which yields 

Sc(k 'b )= ~ ( k ) ]QI (1.7) 

If P and P '  are non-trivial partitions we denote by ( P I P ' )  their concatenation: 
i -= le'IQ")J if and only if either i =-e'J or (i - I Q't) - 0 " ( J  - I Q'l). If Q' and Q" are 
standard we write {Q'}Q"} for the standard partition equivalent to (Q'IQ")- If 
Q = { Q'IQ" }, we claim that for any conjugacy class C there are recursion formulae 
(depending only on C) expressing Sc, o in terms of functions of the form So, o' and 
Sc,,,o,,. We shall give such formulae in a moment for certain simple C's in a way 
which will make it clear how to obtain them in general. 

Let us first, however, suppose that 

for each C in a collection 
formulae with C'  and C" 

We then obtain an algorithm to 
First note the trivial formulae 

S~1~'(21(b) = if 

{10if 
S ( 2 ) ' ( 2 ) ( h )  : if 

J of conjugacy classes, we have such 
also in , r  (1.8) 

compute the functions Sc, Q for all C ~ ,,r as follows. 

b is even 

b is even 

b is odd 

b is even 

S C , ( 2  ) = 0 for all other C (1.9) 

Next observe that every standard partition Q except the partitions (k) may be 
written in the form {Q'IQ"} with each of ]Q'l and q Q"l smaller than I QI. For 
example, if Q = (1234)(56), then Q = (Q'IQ") with Q' = (1234) and Q" = (12). 
Hence the set of Sc. Q's with C e , J  and I Q I < k, determine the set of Sc, e's with 
C ~,r and I QI < k but Q 4: (k). By (1.7), these functions together with the functions 
Sc(k, b) for all C e , J  determine the functions Sc.lk~(b ) for all C~,J .  Theorem 1.21 
gives a formula expressing the functions So(k, b) in terms of the characters of S k 
and Lemma 1.16 computes these functions in elementary terms yielding the 
claimed algorithm. 

Unfortunately the calculations required to bring the recursions for Sc, o given 
by an expression Q = { Q'I Q" } into closed form become intractable very quickly as 
the complexity of the cycle structure of C increases. For our application all we need 
are recursions meeting the condition of (1.8) for the set J = {(1 ), (3)} which we 
now give. Let 

fl(Q) - (1.10) 

~I (ai)! 
i = 2  

Proposition i.11. / f  Q = { Q'[ Q" }, then 

[~(Q) m lt2m I 
i) S~l,.Q(2m) - fl(Q,)fl(Q,,) j~:l 2j S~l~'e'(2J) S~I~,Q,,(2(m - j)) 
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ii) S(z),e(2m ) - fl(Q')fl(Q') ~=1 2j 

SI3}'e'(2J) S(l l 'e"(2(m - J ) ) l  + 

Proof. First, a general observation. If t e [ r(I @ I, m)] and Qt = Q = { Q'I Q" }, then 
each t~ in t transposes either two elements of { 1 . . . . .  I Q'I } or two elements of 
{I Q'I  + 1 . . . . .  I Q'I  + I Q'I} .  Suppose there are j  of the former: since Q' and Q" are 
non-trivial, 1 __< j < m - 1. Let t' be obtained by taking the formerj  of the t~'s in the 
order they occur in t, and let t" be the product of the latter (m - j ) .  We call the pair 
(t', t ' )  the unshuflting of t corresponding to the concatenation Q = { Q'IQ" }- The 
first key property of this operation is that //, =/7,,H,,, .  The second is that t '  is 
naturally an element of [ T(IQ'I,j)] and that, by shifting down by I Q'I  the indices 
in its transpositions, t" may be identified with an element of [ T(IQ'I,  m - j ) ] .  (In 
the sequel, we continue to tacitly make this identification.) 

Now suppose that t e [ , g ~ . e ( 2 m ) ] ;  that is / 7 , = e .  Then we must have 
/7,, =/7,,, = e, Q,, = Q', and Qc' = Q'.  Since e is even, each of t' and t" must 
involve an even number of transpositions. Therefore, unshuflting gives a map 

m - 1  
[~I) ,Q( 2m)] ---' U ( [ - S ( 1 ) , Q  ' ( 2 j ) ]  X [S~I),Q,,(2(m--j))]) (1.12) 

j = l  

This map is surjective and the order of its fiber over an element of thej  'h term of the 
union is (2:) 
the number of shufflings of t' and t". Now observe that (c~(Q)/fl(Q)) = (:~(Q')/ 
fl(Q')).(~(Q')/fl(Q")). Using this and (1.2), we compute 

S~I},Q(2m ) = 7(Q)~I~,Q(2m) 

c~(Q')7(Q") ~ I  ( 2 m )  
= fi(Q)/,r ~ ,i=~ 2j S ' I"~ S ' l " ~  

fl(Q) m ~ l (  2m ) 
-- f l(Q')B(Q') ~=~ 2j s~}'e'(2J) s ~ J ' e ' ( 2 ( m - J ) )  

which is i). 
If te[S~zl.e(2m)] and t unshuffles to ( t ' , t " ) ,  then as above Qt, =Q'  and 

Q,,, = Q". But now either// , ,  = e and H,,, e (3), or H,, e (3) and/7,,, = e. Unshuffling 
therefore s urjects [ g~ z ~. o (2m) ] onto 

trt-- 1 

U [([~g~1),q'(2J)] x [~31. q , , (2 (m-- j ) ) ] )  
j = l  

w([g~a).Q,(2j) ] x {S~l) ,q , ,{2(m-j))])}  
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(2~ 
with fibers of order  2j over the j th  term in the union. N o w  an a rgument  exactly 

like the one above  proves ii). [] 

B. The functions S c 

We now wish to study the functions Sc(k, b). It will be convenient  to introduce the 
space V k of Z-valued class functions on S k which we identify as usual with the 
center of  the integral group ring of S k. Let  Yc be the characteristic function of 
the conjugacy class C and i f f ~  Vk, write 

f =  E Jcyc. 
Ce~(k) 

Now, viewing C and C' as conjugacy classes in S k define 

Uc, c, = I{(t, c ' )~ (2 )  x C'ltc' ~C}l 

Wc, c, = Uc, c,/IC'[ . (1.13) 

Then for any c'~C', Wc, c, ~-[{te(2)[tc'~C}l. We let W(k) be the I~(k)l by 
I-~(k)[ matrix whose (C, C ' )  entry is Wc, c,, and define a vector S(k, b) by 

S(k, b) = W(k)~71~). (1.14) 

L e m m a  1.15. S(k,b) = ~ Sc(k,b)yc 
Ce~(k) 

Proof. The case b = 0 is clear as Sc(k, b) is 1 if C = (1) and is 0 otherwise. The 
l emma will therefore follow by induction if we show that  

Sc(k ,b )yc=W(k)  ~ S c ( k , b - 1 ) y c  
Ce~(k) Ce~(k) 

or equat ing coordinates  that  

Sc(k,b )=  ~, Wc, c, S c , ( k , b -  1) .  
C'e~(k) 

If t~[Sc(k, b)]  write t = ( t l ,  t'). The m a p  t --* t '  sends [Sc(k, b)]  to 

U [ S c , ( k , b - l ) ] .  
C'e~(k) 

The fiber of this map  over  an element t '  of the C '  term of the union has order  
]{te[T(k,  1)]ltIlt, eC}[. As FlreC', this order is wc, c, and summing  completes 
the induction. [] 

The  l emma reduces the computa t ion  of the Sc's to that  of the Wc. c,'S. To  find 
these, let Q = Qc and Q ' =  Qc, with Q and Q'  in ,~(k). Write A e = (a2 . . . . .  
ai . . . . .  ) and AQ, =(a~ . . . . .  a'i . . . . .  ) and  set at  = k - I Q l- We omit  the straight- 
forward p roof  of  the 
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Lemma 1.16. Unless we are in one of  the four cases below, Wc, c' = O. 

Case Relation of  A c and A c, Wc, c" 

ai = a'i + 1 i + j  
i) a j = a ~ +  1 ( i + j ) a ~ + j  

a t +  j = a ' i +  j - -  1 
a t = a '  l l : # i , j , i + j  

it) 

a i = a '  i - -  1 
t - -  aj = aj l i ~ j  

a i +  j = a ' i +  j -t- 1 

a l = a '  1 l + i , j , i + j  

ija'ia} 

a i = a i + 2  

iii) a 2 i - = - a ~ i  - 1 ia~i 
a t = a  j t@-i, 2i 

a i = a I - -  2 
iv) a2i = a'2i + 1 iZa'i(a'i-  1)/2 [] 

a l = a '  t 1=I =i,2i 

This result completes our algorithm for computing the functions S c and hence 
the functions Sc, Q. We would like to conclude with one complement which allows 
us to express Sc(k,  b) in a closed form involving only the characters orS k. We index 
the irreducible characters Z of S* as usual by the elements of ~ (k ) - - c f .  
[ J a m - K e r ] - - a n d  considering these as elemets of Vk, write 

Then set 

zo = Z z~(C)~c 

(k) 2 ZQ((2)) 
Ce= ~ IClzo(C)~c and # o -  (I.17) 

Ce~lk) )~Q((1)) 

Proposition 1.18. W(k) ~Q --/~Q ~q. 

Proof  This is a mild twist on standard results in character theory; we sketch the 
proof referring the reader to [Burnside, w for more details. For a moment let S 
be any finite group and let ~ index its conjugacy classes with (1) denoting the class 
of the identity and 7c ~ Z [ S ] the characteristic function of the class C. In 2 [ S ], the 
equations 

7c"7c = Y'. ~c,c ' ,c"Yc'  (1.19) 
C ' ~ 3  

are uniquely solvable because the 7c'S form a basis of the center of • [ S ]. In fact, 
tOe, c, c,, = ( 1 / 1 C ' [ ) 1 { ( 9 , 9 ' , 9 " ) ~ C  x C' • C " l o " g = g ' } l  is easily seen to be an 
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integral solution. Since the 7c'S are central they act as scalars on any irreducible S- 
module. Applying an irreducible representation with character Z to (1.19) and 
taking traces gives 

( ,CIz(C) ~ (tC",z(C") 

which after rearrangement becomes 

~Oc.c, c,,IC',z(C') = ( 'C' ' IZ(C') ) c'~-~ Z((1)) (ICIz(C)) (1.20) 

Now suppose that C" is a class of elements of order 2 and g" ~ C". Then the 
equations g"g = g' and g = g"g' are equivalent so 

~Oc, c,,c,, =(1/[C'[)I{(g,g',g")~C x C' x C"lg = g"g'}[ 

=(1 / IC ' l ) l { (g ' ,g " )~C '  x C"Jg".q' eC} l  . 

In  part icular,  i f  S = S k and C"  = (2), this shows that ~c,c,,c,, = Wc, c, and i f  we 
substitute in (1.20) the quantities defined in (1.17) it becomes the assertion of the 
proposition. [] 

Remark. The ~o's have appeared in other geometric contexts. In S 2k, suppose that C 
denotes the class of a (2k) cycle and C" that of k disjoint transpositions. Then if we 
sum e)c,c,c,, over those C' which have exactly k + 1 - 2g cycles, we obtain, up to 
trivial factors, the function %(k) analysed by Harer and Zagier in [HZ]. 

Let us now obtain the promised closed form for So(k, b). Let, for a moment, [ ,  ] 
denote the inner product on Vk for which the 7c's are of length 1/f C I and pairwise 
orthogonal. Then 

[ ~ Q , ~ e ' ] = [  ~ tCIze(C)Tc, ~ IC'lze,(C')Tc,] 
C ~ 3(k  ) C'~ 3(k  ) 

= ~ IC lzdC)zQ' (C)=(k ! )6Q,  Q' 
Ce ~3(k) 

by the usual orthogonatity relations for irreducible characters. The ~t2 therefore 
form a basis of V k. Let a e for Q ~ ( k )  be the coordinates of 7~1~ in this basis. Then 

~,,, = ~ ao~Q= ~, ao( ~ IClzQ(C)Tc) 
Q e 3 ( k )  Q~Y(k)  Ce ~(k) 

In other words, we may characterize the a o as the unique solutions of the equations 

aeze ( ( l ) )  = 1 and ~ ae)~e(C ) = 0 for C 4= (1) .  
Q e ~ ( k )  Q e ~ ( k )  
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Now recall that 

! 1 

�9 Q e J ( k )  

k! c ~(k} Q6~2(k) 

We must therefore have a o = Zo((l))/k!,  and hence 

S(k, b) = W(k)b?(1) 

= W(k) b 
Qe~(k) 

zQ((1)) 
k! 

za (( 1 )) 
= y ~ y - ,  ~Qby(1.18) 

Q e ~ ( k )  

k )b ICl( b 

Equating the coefficients of 7c in this expression and in Lemma 1.15 yields 

Theorem 1.21. Sc(k,b) - ICIQ~mI~It_Z~ ~ Ze((1)))~e(C) [] 

Remark. After we had completed this work, Basil Gordon pointed out to us that 
this result for S~1) was already known to Hurwitz [Hu].  He was actually inter- 
es ted--as  we will be in part C and in the applications--in the function S~t). t~(k, b) 
which counts the number of k-sheeted connected coverings of P ~ simply branched 
at b fixed points; the function S~n(k, b) counts all such covers connected or not. A 
now standard combinatorial argument (cf. [Gou-Ja] )  shows that in such a 
situation the exponential generating function for S~I), ~ is the natural logarithm of 
the exponential generating function for S~1). (Warning: the corresponding state- 
ment is not true for any other conjugacy class C.) Hurwitz discovered this relation 
by elementary considerations and to our knowledge his paper is the earliest 
example of this principle in the literature. Our proof of (1.21) is shorter than 
Hurwitz's and is couched in terms more familiar to the modern reader so we have 
chosen to include it here. 

One corollary of the Theorem is that the asymptotic behaviour in b of Sc(k, b) 
is what one would expect. 

Corollary 1.22. As b increases keepin9 the same parity as C, 

Sc(k, b) 21Cl 
(k2) b approaches k, 
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Proof When b and C have the same parity, the terms in the sum in 1.21 
corresponding to the trivial and sign characters o fS  k each contribute 1 to that sum. 
If g is any irreducible character of sk then I gcJ < deg X = Z((1)) with equality if and 
only if elements of C act by homotheties in the corresponding representation p. The 
characters o fS  k are integer valued [ JK]  so such a homothe ty  can only be _ Id. The 
transpositions generate S k so if p acts by + Id on (2), then it does so on all of Sk: i.e. 
p is the trivial or  sign character. Hence for all other ;~, the Z th term of the sum in 1.21 
tends to zero as b increases from which the corollary follows. [] 

C. Related functions that count admissible covers 

Here we shall define the functions which arise in our estimates for sg from counting 
certain types of admissible covers and express them in terms of the functions Sc, Q. 
We shall be interested in subsets of [ S~1~. Ik)(b)] which to simplify notat ion we shall 
rename [ N(k, b)]. While our  approach will be purely combinatorial ,  the geometric 
interpretation of  these functions being postponed until w we mention that 
N(k,  b)/k!  counts the k-sheeted connected covers of P 1 simply branched at b fixed 
points. Since this set is empty unless b is even we shall suppose this henceforth. We 
make three other notat ional  conventions. First, in equations between sets or 
functions depending on k and b, we suppress these variables if they are equal for all 
terms. Second, when a conjugacy class or partit ion (k) is used to subscript a subset 
of  N we drop the brackets, writing, for example, N a for Nt3). Lastly, in a similar 
vein we will use (k, j)  to denote the concatenat ion of  a k-cycle and a j-cycle and 
abuse this notat ion by allowing k o r j  to equal 0 or 1: when, say, j is 0 or 1, (k,j)  is to 
be interpreted as a k-cycle. Before turning to these new functions, we note one fact 
which will be needed in w 

Lemma 1.24. The action o fS  k on IN(k ,  b)]  by simultaneous conjugation of the b- 
tuples of  transpositions is trivial for k = 2 and has trivial stabilizers for k > 3. 

Proof The case k = 2 is clear. If k > 3 and t ~ [ N ( k , b ) ] ,  then Qt = (k) so the 
subgroup of S k generated by { tl . . . . .  t b } is transitive. Now consider the graph F 
with vertices 1 . . . . .  k in which an edge joins i a n d j  if and only if some t 1 = (ij). 
Transitivity means that F is connected and since k > 3 this forces F to have a vertex 
i of valence more than 1. If a permutat ion stabilizes t then it must either fix or 
exchange the ends of each edge of F. Therefore any vertex i of valence more than 1 
must be fixed and so must any vertex connected to i. Since F is connected, the 
permutat ion is the identity. [Z 

We begin to break up IN(k ,  b)]  by classifying the elements t according to the 
conjugacy class of the product  of the first pair of transpositions in t. We fix k and b 
once and for all. Write t = (t~, t2, t*)  and let 

I N 1 ]  = { tE[NJ l t~ t2~(1 ) }  = { t ~ [ N ] l t l  -- t2} 

[N2 .2 ]  = { t ~ [ N ] l t t t 2 6 ( 2 , 2 ) }  = { t e [N] l t~  ~ t  2 = ~ }  (1.25) 

I N 3 ]  = { t e [ U ] l t l  t2e (3)  } = { t e [ N ] l l t l  c~ tel = 1} 

and say that the t in each set are of type 1, (2, 2) or 3 respectively. (In the right hand 
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column of (1.25), we have abused notat ion by writing t to mean supp(P,).  By 
definition 

N = N 1 + N2, 2 + N3 - (1.26) 

If t = ( t l ,  ta, t*) is of type (2, 2) and t i = (Piqi) then l i , . ( P i ) =  qi. There- 
fore ---,and - , . a r e  the same and Q,. = (k). Since H~. = ( t i t 2 ) -  1 ~(2, 2), t* lies in 
[S(2.21,(k)(b -- 2)]. Conversely, such a t* determines tl and t z up to order so 

N2,2(k ,  b) = 2" S(2, 2),{t)(k, b - 2) (1.27) 

Remark .  To use (1.27) to compute  N2, 2, we would need to give an analogue of 
Proposi t ion 1.11 for the class (2, 2). Although this is not  difficult, we have chosen to 
proceed as follows: we shall see below how to express N 1 and N 3 in terms of the 
functions treated in (1.11) and N is by definition such a function; we can therefore 
use (1.26) to evaluate N2, 2' 

If t is of  type 3, arguments like those in the preceding paragraph show that 
Q,. = (k) and that/-/,, e (3), hence that t* e [_S(3),(k)(b - 2)]. For  each such t*, there 
are three pairs (t 1 , ta) such that t~t  2 = ( l i t . ) -  1 so 

N 3 ( k  , b) = 3 S ( 3 ) , ( k ) ( b  - 2) . (1.28) 

The t of type 1 are more complicated and to analyse them we introduce, for 
0 < j  < [ k / 2 ] ,  the sets 

[ M j ]  = { t ~ [  N~ ]t Qt, = (k - j , j )  } . (1.29) 

Note  that if t is of type 1, then H,, = e and that since t~ = ta at most  one pair of 
cycles in Q,, can coalesce in Q,. Either Q,, = (k) and te  [ M o ]  or two cycles of  
lengths j and (k - j )  with 1 =<j < [ k / 2 ]  do coalesce and then t E [ M j ] .  

[k/2] 

i.e. [ N 1 ]  = U [ M j ]  (1.30) 
j=O 

Now if t e [ M j ]  then t *e [S (1 ) . ( k_ j , 3 ) ( k ,  b - 2)]. I f j  = 0, t~ is arbitrary so 

M o ( k , b )  = 2 S(1),(k)(b--  2) (1.31) 

I f j  > 1, tl must  connect the j-cycle and the (k - j ) - c y c l e  of P~. so there a re j (k  - j )  
choices for t 1. If j = l ,  then S( l l , ( k_ l ,  l l ( k , b - - 2 ) = S ( ~ l , ( k _ l ) ( k , b - - 2 ) =  
kS(1),(k _ ll(b - 2) so 

M l ( k , b )  = k ( k -  1)S(1),(k_ 1)(b--  2) . (1.32) 

I f j  > 1, S(~),(k _ j , j ) (k ,  b - 2) = S(II,(R - j , j ) (b  - 2), so 

M s ( k , b ) = j ( k - j ) S ( ~ l , ( k _ ~ , j l ( b - 2 ) ,  f o r 2 < = j < = [ k / 2 ] .  (1.33) 

Combining these we find that 

N ~ ( ~ , b ) = ( ~ ) S ( ~ ) , ( k ) ( b - 2 ) + k ( k - 1 ) S ( ~ , , ( k - ~ ) ( b - 2 )  

[k/21 

+ ~, j ( k  - j ) S ( 1 ) , ( k _ j , j ) ( b  - 2) (1.34) 
j = 2  
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In w we will need to part i t ion N~ in one other  way. Define a function 
g = g(k, b) = b/2 - k + l - - r e c a l l  b is even. In the applications, 9 will be the genus 
of a connected k-sheeted cover  of P 1 simply branched at b points  so this definition 
just translates the R iemann-Hurwi t z  formula.  Conversely,  each element of  
[ N (k, b) ]  defines, by Hurwitz 's  construction, an irreducible cover of p1 of genus g 
= g(k, b). Since such a cover  has non-negat ive genus, we see that  if IN(k ,  b)]  is 
n o n - e m p t y - - a n d ,  a fo r t i o r i ,  if [N~(k, b)]  is n o n - e m p t y - - t h e n  b > 2 ( k -  1). If 
t e [ M j ]  and j > 2 ,  let ( t ' , t")  be the unshuffting of t* corresponding to the 
concatenat ion  Qt, = (k - j , j )  as in the proof  of Proposi t ion 1.11. Suppose that  t '  
has length b'  and t" has length b" and let g' = g(k - j ,  b') = b'/2 + (k - j )  + 1 
and g" = g(j, b") = b"/2 - j  + 1. Note  that  b '  + b" = b - 2 and that  g'  + 9" = g. 
N o w  if 0 < i < g, let 

[M*/,,] = {t~[m*/]19'= i, g" = g - i} 

= { t m [ M * / ] [ b ' = Z ( k - j ) + Z i - 2 ,  b " = 2 j + Z ( g - i ) - 2 } .  (1.35) 

Then [ M o ]  = [mo ,o ] ,  [ M 1 ]  = [ m l , g ]  and f o r j  > 2 

0 
[My]  = U [Mj . , ]  (1.36) 

i = 0  

If 1 < i < [ g / 2 ] ,  let 

and let 

Finally, let 

[k/2] 

[ O i ] =  U ( [ M * / . , ] u [ M J , 9 - , ] )  (1.37) 
j = 2  

[k/2] 

lOg~ 2] = U [Mj, i] i f g  i s even  and 
*/=2 

[ O o ] = [ M , ] w  ~ ([Mj,  o ]w[M*/ .o ] )  �9 
, i=2 

(1.38) 

[ m , , , , ]  = [ M o ] u  [ O , ]  . (1.39) 
i=1  

Recall that  the unshuffling corresponding to the concatenat ion Q = ( k - j , j )  
takes [S~l).lk _ j.j)(k, b - 2)] onto  

g 

~.) [St,).(k_i)(2(k - j  + i - 1))] x [g(1),{j)(2(j + g - i - 1))] 
i = 0  

with fiber over  the elements of  the ith term of the union of order  

2 ( k  - j  + i - 2)  

(In the p roof  of (1.11), we took  the union over a larger range for i, but the discussion 
above shows that  all the terms we have d ropped  are empty.)  If t e [ M*/, i(k, b )],  then 
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t* will lie in [S~.~k_j . j ) (k ,b-2)] .  For  any choice of the surjection -:  
[Stl).lk,-i.jl(k,_ b -  2)] ~ [S~al.~k-j.jl( k , b -  2)] discussed above (1.2) the 
unshuffling of t* will lie in the ith term of the union above. Define ) , (k, j ) := 
j(k - j )7 ( ( j ,  k - j ) ) .  Then we have shown f o r j  > 2 

Mj, i (k ,b)=7(k, j)  2 ( k - j + i - 1 )  N ( k - j ,  2 ( k - j + i - 1 ) ) N ( j ,  2 ( j + g - i - 1 ) )  

Reassembling these values we obtain 

Oi(k,b)= ?(k,j) N ( k - j ,  2 ( k - j  + i - 1 ) )  
j=2 2 ( k - j + i -  1) 

x g( j ,  2 ( j + 9 - - i - - 1 ) ) +  2 ( k - j + g - i - l )  

x N ( k - j ,  2 ( k - j + g - i - l ) ) N ( j ,  2 ( j + i - 1 ) )  1 (1.40) 

if i < g/2 and to one half this sum if g is even and i = g/2. Finally, 

Nsi.,(k,b) = N(k,b-  ~=1 j~=2 ~('J) k " . _ 

x N ( k - j , Z ( k - j + i - l ) ) N ( j , Z ( j + g - i - l ) ) ] )  (1.41) 

since the i ~h and (g - i) 'h terms in the last sum give the right hand side of (1.40). 

w The basic construction 

In this section, our  goal is to outline the construct ion of certain curves in Z in ~#0. 
We mainta in  the nota t ion  developed in w for the combinator ia l  functions dis- 
cussed there. (For  the benefit of the reader who has turned directly to this section, 
we repeat  a few definitions. We denote by I N ]  and N a finite set and its order 
respectively. If t = (tl . . . . .  tb) is an ordered b-tuple of simple t ransposi t ions in S ~, 
the symmetr ic  group on k-letters, then let H, = t l  �9 �9 �9 �9 tb, let P, be the part i t ion of 
{ 1 . . . . .  k } into orbits under the action of the subgroup  generated by the t;'s, and 
let Qt be the corresponding s tandard part i t ion obtained by conjugat ing P, so that 
its cycles are intervals of decreasing length. Let (k) denote  a k-cycle and define 

IN(k, b)]  = {t = (t,  . . . . .  tb)l/-/, = e, Q, = ( k ) } .  

We fix k and b once and for all and will suppress them when possible, writing, for 
example,  N for N(k, b).) 

If [ M ]  is a subset of I N ]  and is invariant  under  the action of S k by 
s imultaneous conjugat ion of the ti's, we will denote the quotient  [ M ] / S  k by [ M ]. 
By L e m m a  1.24, this act ion is free if k > 3 and trivial for k = 2 so M = k ! 1~ if k > 3 
and M = M if k = 2. 
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To begin with we take X to be any smooth  complete curve. On  P 1 x X, let fx 
denote the fibre over a point x e X, let f be the numerical equivalence class of a 
general fiber and let s be the class of a horizontal  section (so s 2 = 0). Fix an even 
integer b = 2m and let o i ~ s + c i f ,  i = 1 . . . . .  b be b sections of P l  • X which 
meet transversely everywhere and such that each fibre f x  contains at most  one of 
these intersections. Let c = ~/b=~ ci and a = ~ ~ a i ~ bs  + ~ f  Let [ I x ]  be the set 
of nodes of a, or equivalently the set of intersections of the cS's. Then 

I x  = ~ (ci  + c j )  = ( b -  1)c (2.1) 
i < j  

We let B x  be the blow-up of p l  x X at [ I x ]  and denote by B x its fibre over x e X  

and by ffl the proper transform of oi on B x .  

Let JgO,b be the moduli  space of b-pointed stable curves of genus 0 - a s  usual, 
the b marked points are required to be smooth  - and let ~: X --+ J/O,b be the map 
which sends a point x e X  to the class of the fiber Bx  marked by its b points of 
intersection with the ff~'s. Next let fl: Hk. b ~ J/go, b be the Hurwitz scheme of 
admissible covers of stable b-pointed curves of genus 0 constructed in [ H M ]  to 
which we refer for details on what follows. The points of fig, b over the moduli point 
[ B ]  in JTo, b of  a curve B are the c o n n e c t e d  k-sheeted covers of n: C --+ B which are 
unbranched except over the nodes and marked points of B and which have a single 
simple branch point over each of the b marked points of B. 

To see what  the covering fl looks like, suppose that B is a smooth curve with 
marked points P1 . . . . .  Pb" We call the data  consisting of a choice of an unmarked 
base point P ~ B, pairwise disjoint loops 71 . . . . .  ?b so that 7i has winding number  
6ij about  Pj, and a numbering Q l . . . . .  Qk of the fiber of C over P a d e s c r i p t i o n  of ~. 
We then view the m o n o d r o m y  of ~ a round  7~ as an element t~ in the symmetric 
group S k on k letters: the simple branching hypothesis on ~ means that each tl is a 
simple transposition. A covering with m o n o d r o m y  data t = ( t l  . . . . .  tb) exists if 
and only if, in the notat ion o f w  t l "  �9 �9 �9 �9 tb = e and is connected if and only 
Q, = (k). Moreover,  two such sets of data  yield isomorphic covers if and only if the 
corresponding transpositions are simultaneously conjugate in S k. In fact, the 

restriction fl: Hk, b--+ JIgO, b of fl to the locus of smooth  curves is an N = ~7(k, b) 
sheeted unramified cover whose general fibre is naturally identified with [~7]. Note  

H -  ~'G ~ F  

Bv ' A ~ P i x Y  

P l x X  - -  

y - , fl~,~ 

X ~ "r b 

(2.2) 
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however t h a t / i  is branched over the boundary  of J/7O,b:in the next paragraphs we 
will in effect determine the branching over codimension one strata. At this point we 
pause to insert a diagram of our  basic construction after which we will precis it. 

First we let Ybe the fiber product  o f~  and/J so that the map p: Y--* X is again 
an N-sheeted cover. We let [ l r ]  := v * ( [ l x ] )  be the set of singularities o f t  := v*(cr) 
on p l x Y and let [ Jy ]  be the projection to Y of [-I r ]. Now, over the complement  
of [ Jr ] in Y, we have a nice family of branched covers of P 1; we would like to 
complete this family of covers to a family of curves 0o: G ~ Y over Y inducing the 
map p: Y ---, Z c ~#g, and we would like to do so in a way that makes it possible for 
us to calculate readily the numerical invariants of the family G: in practice, this 
means we want the family G --* Y to factor as a finite branched cover G ~ A --* Y of  
a family A --* Y of rational curves over Y. 

There are a priori two "extreme" ways to do this. The largest would be the 
family O n: H -~ Br ~ Y of admissible covers, where B r was the blow-up of  P 1 x Y 
at the points of [ I r ] and where the fiber of H --* Br over each y was the admissible 
cover C~, ~ By represented by the image of y in/4k, b" The smallest (with smooth  G, 
at any rate) would be the family OF: F ~ Y of semistable curves obtained by taking 
the surface whose fiber over y was the stable model of C~, (that is, the curve obtained 
by repeatedly blowing down all rational curves of Cy passing only once or twice 
through nodes of Cy) and minimally resolving the singularities (all rational double 
points) of this surface. There are, unfortunately, difficulties involved with each of  
these choices: H has the defect that (as we shall see) it does not exist; and F, though 
it does (as we shall see) exist, is not  readily described as a branched cover of a family 
of rational curves over Y. Instead, we will construct and describe a family 
06: G ~ A --* Y that will be intermediate between these two (that is, G will be 
obtained either by blowing up F or blowing down "H",  and A by blowing up 
p l  x Y at a subset of the points of [ I r ] ) .  

The main task in working out this description will be to understand the 
geometry of  diagram (2.2) near a point  of [ Jy ]. Because this geometry is indepen- 
dent of which point we choose, all the formulae will also be of a local character on 
Y. This local character can be varied by allowing more special singularities on a or  
equivalently by allowing X to approach more special boundary  points of  "#O,b" 
Our  bound  comes from an analysis of the unique codimension 1 stratum of ,~o, b 
but generalizes straightforwardly to yield bounds for other strata. We worked out  
the case where 0. has an ordinary point of total ramification but found the bound 
obtained inferior to the one we shall now outline and we suspect that this is more 
generally true. 

The first step in our analysis is to determine the branching of Y over X. We 
know that g is unramified except over points of X in [ Jx].  Suppose therefore that 
~1 and 0 2 meet on ./.~ and that p(y)  = x. We will abuse language slightly and call 
such points boundary points of Y. Pick a small loop F, with parameter  ue  [0, I ]  
based at a point x* near x in X and going once positively around x, a point y* near 
y on Y and lying over x*, and a lift 0 of F to a path based at y*. Choose a 
continuous family of descriptions of the cover C, of B n , )  parameterized by 0(u). As 
we move a round  F in X, the points P~ (u) and P2(u) in B/~,~ will circle each other 
once as shown on the left in Diagram 2.4. 
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cry(u) 
112 ,,fr, *r ] I ~  

llttltllllllllll I f  ................ ,J" 
- 2 ~ 1 0  ,,,j' 

1/2 

u=0 

u : l / 2  

(2.4) 

The resulting pictures of the loops ~1 and 75 at times u = 0 and u = 1/2 is then 
shown on the right. Homotopically, 

71(1/2) ~ 72(0) 

and (2.5) 

7 5 ( 1 / 2  ) ~ ~)2(0)- 1 , 7 1 ( 0 ) , 7 2 ( 0 )  . 

Going completely around F has the effect of iterating this transformation twice so 
that 

71(1) ~ ~2(0)- t "71 (0 ) ' 72 (0 )  (2.6) 

and 

75 (1) ~ (7~ 1,71 * 72)- 1 (0 ) ,  75 (0 ) ,  (7 2 1,71 * ~5)(0) 

Let tl and t 5 be the transpositions which describe the branching of the cover Co 
parameterized by y* = 0(0) over the points where Bx, meets al and as,  and let t'l 
and t~ be the new transpositions obtained by following the descriptions of the 
covers Cu to time u = 1. The equations above then say that 

t ,  1 = t 2  1 t l  t2 (2.7) 

and 

t~ = ( t  21 t  l t z ) - l t z ( t  21t lt2). 

We say that an element t ~ [N  ] is of type/7  if the product t 1 t 2 , or equivalently 
t 3" . . . " tb, lies in the conjugacy c lass /7  and let [Nn] denote the set of such t. 
Corresponding to the cases where tl and t 2 have 0, l, or 2 letters in common we 
have a decomposition by Sk-invariant subsets 

[ N ]  = [ N 1 ]  w [ N 3 ]  w [N2,2]  (2.8) 

For  any point y ~ [ J r  ] c Y, if the monodromy data near y is ordered with t 1 and t5 
as above, we will say that y is of type/7 if its monodromy data is of type/7.  This 
property is independent of the choice of a description of the cover associated to y. 
We will denote by [ Jr, n] the set of such points, and corresponding by [ It, n] the 
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set of points of r ig]  c [p1 x Y lying over points of [Jr ,  hi .  The branching of Y 
over X is then described by 

Proposition 2.9. 1. The cover I~: Y ~  X is unramified at boundary points of Y of 
types (1) and (2, 2) and is triply branched at points of type (3). 
2. I r = (N1 + Nz.z + N3/3)( b -  l)c. 

Proof. The equality in 2) follows directly from 1), the definition of I r, and the 
decomposition (2.8). As for 1), the order of branching of/~ at y is the number of 
times that we must iterate the map ( t l , t z)--*( t '  ~, t'2) before we again obtain 
(t~, t 2). Equations (2.7) show immediately that if tl and t z commute--i .e,  in types 
(1) and (2, 2)-- then this order is 1. For type (3) points, (2.7) shows that if t~ = (12) 
and t2=(23),  then the monodromy is {(12), (23)} --, {(13), (12)} ~ {(23), (13)} 

{(12), (23)}. [] 
Next we would like to sketch the admissible covers Cy ~ By for y E [ Jr ]- The 

fiber By is then always the join of two smooth rational curves, one with (b - 2) 
marked points which we have placed on the left and one with 2 marked points 
which we have placed on the right. The diagrams below show the branching over 
the right component and in a neighborhood of the node on the left one in the style 
developed by Diaz. An oblique line segment represents each sheet and the abut- 
ment of two such segments represents a node at which the left and right curves 
meet. Thin vertical strokes denote ramification between the corresponding sheets 
of the indicated fiber. A thick vertical bar joins sheets which are connected by 
ramifications occurring outside the drawing on the left component and a boxed 
number on top of such a bar indicate the number of simple ramifications it 
represents. (The branch points in By are not indicated). At the same time we show 
the semi-stable reductions of the curves Cy obtained by contracting all extraneous 
components, that is, chains of smooth rational components meeting the remainder 
of the curve in only one point. For  these, we give a graph describing the topological 
type. In both pictures we indicate the genus of each component of the curve 
sketched by a numbered oval. For each of the types (2, 2) and (3) all the covers are 
described by a single picture--Diagrams 2.10 and 2.11 be low--and the semi-stable 
reduction is a smooth curve. 

(2,2) 
(2.1o) 
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(3) / (2.11) 

The  situation for type (1) covers is more  complicated.  Write the m o n o d r o m y  
data  of such a cover as t = ((nm), (nm), t*) with t* = ( t  3 . . . . .  tb). We recall first 
the combinator ia l  decomposi t ions  (1.30) 

[ N I ]  = [ M o ]  w [ M 1 ]  u . . .  w [Mr,/21] 

according to whether  the part i t ion Qt, is (k), (k - 1, 1 ) . . . . .  or (k - [g /23,  [g /23)  
respectively. Next  for j > 2 recall the decomposi t ion  (1.35) 

[M l = [Mj.o] [Mi . , l  [Mj, , ]  
where [Mi,  i] is the subset of  [ M  r]  for which number  of  transposit ions in t* with 
suppor t  in the j-cycle of Qt, is (2i + 2j - 2), or equivalently for which the number  
with suppor t  in the ( k - j )  cycle is ( 2 ( y -  i) + 2 ( k - j )  - 2). (When j = 1, i is 
always 0). These sets are all Sk-invariant and we will say that  a cover is of type (1 x) 
or type (1j, i) if its m o n o d r o m y  data  lies in [ M r ]  or [Mj, i]. F rom the 
R iemann-Hurwi t z  formula  it follows that  at a point  of type (1o), the left hand  side 
of the cover  is a curve of genus (9 - 1) expressed as a k-sheeted cover of ~ 1  
Similarly, at a point of  type (l j, ~) wi th j  > 0, the left hand side becomes the disjoint 
union of two curves one of genus i expressed as a j-sheeted cover and the other  of 
genus (9 - i) expressed as a (k - j )  sheeted cover. This  leads to the pictures in 
D iag ram 2.12. Recalling the definitions of the sets [O~] (1.37) and [Ns ing  ] (1.39), we 
summar ize  the foregoing discussion in the 

Corollary 2.13. 1. The number of  covers C r of  a f ixed B x with x ~ [  Jx]  whose stable 
model lies in Ao is ffI o. 

2. I f  1 < i < [ 9 / 2 ] ,  the number of  Cr whose stable model lies in A i is 0 i. 
3. The number o f  Cy whose semi-stable reduction is singular is ]V~ing and each such 

reduction contains precisely two nodes. [] 

We now turn to the description of the family of  curves 0~: G -* A --* Y. Over  the 
complement  Y' of [ J r ]  in Y the surface H may  be constructed by pulling back the 
sm oo t h  universal admissible cover  

O:~k,b ~ P  1 x Hk.b--*Hk, b 

parameter ized  by Ilk, b whose existence is shown in [ H M ] ;  the fibers of H being 
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~;,~ j,0 / \ 
I=0 0 ~  

I~ I~(g-1) 

Loll 

343 

(2.12) 

stable, F has to be equal to H over Y'; we will take Gr, equal to both and A r, equal 
to P l  x Y'. But the map 0 does not  extend to a family of admissible covers 
parameterized by /4k, b. We shall therefore construct  G and A by providing local 
analytic descriptions G u  and A u over neighborhoods U of  points of [ J r ] .  

Say that t 1 and t 2 meet at a point  (t, y )~  [ I t ]  lying over y~  [ J r ] .  Let U be a 
neighborhood of y in Y and V a ne ighborhood of (t, y) in p l x U containing no 
other nodes of r. Let u denote a coordinate  in U and also its pullback to P1 x Y; 
and let v be a coordinate in the fiber directions on P l x U. 

We begin with the case where y is of  type (2, 2). Here we see clearly why we don ' t  
want to work with admissible covers all the time. The family F has to be smooth  
here. We can express F as a branched cover of the product  P ~ x U; the branch 
divisor t of the cover has a node, of  course, but the ramification divisor in F is 
smooth over V, consisting of  curves Ri lying over rl, i = 1, 2, with R~ and R z lying 
on two disjoint pairs of sheets. Noth ing  is going on here except that two ramifi- 
cation points of the cover Fy ~ P 1 happen to lie over the same point  of P 1; and we 
will take G v ~_ F u and A u  ~- P l  x U over U. 

Note  for future reference that if the equation of t l  t2 near (t, y)  is u 2 - v 2 = 0, 
then the equation of  the cover G at one of the points of R lying over (t, y) will be 
w z = u - v, and at the other  point it will be w 2 = u + v. The equation of R will 
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be w = 0, of course, and the equation of the complement/~ of R in the pullback of 
will be u +_ w z = 0; in particular we see that /~  will meet R transversely twice over 
(t, y) as indicated in the diagram below. 

Observe that by contrast it is not  poss ib le  to extend H to a family of admissible 
covers of the blow-up at the point (t, y) of P 1 • U (that is, the inverse image of U in 
By) with central fiber as pictured in Diagram 2.10. This corresponds to the fact that 
the admissible cover of Diagram 2.10 has automorphisms (the involution ex- 
changing sheets of either of the components that are 2-sheeted covers of the 
exceptional divisor and fixing the remaining components of the cover); we can see it 
directly by noting that such a cover would have to have an isolated branch point at 
the node of the fiber of By over y. If we insisted on having a family of admissible 
covers, we would have to make a base change of order 2 around y, so that "gl and z2 
would be simply tangent at (t, y), blow up twice to separate them, and then blow 
down the first exceptional divisor to an A 1 singularity. 

Type (3) points are more interesting. Since Y is triply branched over X at such 
points the sections z~ and ~'2 will no longer meet transversely at such points; indeed 
they will have local equations v = + u 3. As in the previous case the family F of 
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stable curves should be smooth here, and we see again that we can express it as a 
branched cover of p1 • U: if we rescale the coordinates so that the equat ion 
defining r 1 ~2 in U becomes 2% 2 - 4 u  6 = 0 ,  then a local equat ion for such a cover 
has the form w 3 - u 2 w  + v = 0, where w completes u to a system of coordinates on 
F. This equat ion already defines a smooth surface whose fibre over u = 0 has an 
ordinary triple branch point  at the origin v = 0. Therefore again in this case we will 
take Gu -~ Fu and Au -~ p1 • U over U. 

We note for future reference that the ramification divisor R of G ~ A is given in 
coordinates w and u by the equat ion 

0v 
0 - Ow - Ow ( -  w3 + uZw)  = - 3w2 + u2 (2.13.i) 

and so consists of two smooth arcs meeting transversely; we also observe that the 
complement  of R in the inverse image of the branch divisor r of G over A is given by 

2 7 v  2 - -  4 U  6 27( - -  W 3 "]- u Z w )  2 - -  4 U  6 
= = 3w z - 4u 2 (2.13.ii) 

( - 3 w  ~ + u 2 )  2 ( - 3 w  2 + u z )  z 

and so in a neighborhood of the point  u = w = 0 consists of two smooth arcs 
meeting the two arcs of R transversely, as in the picture: 

/ 
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Observe that  here we could, if we wanted, construct a family of  admissible covers 
without base change (the admissible cover pictured in Diagram 2.11 has no 
automorphisms);  we would, however, have to blow up IPl x U three times to 
separate r a and r 2, then blow down the first two exceptional divisors to create an 
A 2 singularity. 

Finally, consider the case of points of type (1). Here if we just take the family of 
branched covers over Y'  = Y -  [ J r ]  and complete it as a family G' ~ p l  x Y 
--* Y of branched covers of  P 1 the total space G'  of the family will be singular: over 
V c  P~ x U we find d - 2  smooth  sheets and one component  that has local 
equation w 2 = v 2 - u 2, i.e., an A 1 singularity. If  we now blow up the point  (t, y) in 
V and its inverse image in G'  we arrive at a family of admissible covers H v --, P 1 
x U ~ U with fiber over y as pictured in Diagram 2.12; observe in particular that  

blowing up the singularity of G' has resolved it, so that H v is smooth.  Diagram 
(2.14) below shows the local picture a round  the node of G'  before and after the 
blowup. Here it will be handy to take G to be the family of admissible covers; we 
accordingly take A u to be the blow-up of P ~ x U at the point (t, y), and Gu = Hv 
the family of admissible covers over U. Observe that the ramification divisor R of G 
over A in U is disjoint f rom its complement  in the inverse image of the branch 
divisor z. 

G, 

node 

l, blow up 
node 

proper transform 
of special fiber 

exceptional divisor 

- - ~ U  

(2.14) 

To describe the family F near such a point, note that in diagram (2.12), the 
exceptional curve of  (2.16) is the unique rational component  of the right hand cover 
meeting the left hand side in two points, so all the others will have to be blown 
down. The fiber of  the resulting surface over y is the admissible cover in (2.12) with 
all extraneous p l 's on the rioht contracted. But this surface is not  relatively 
minimal over y if the subtype is (lj, o) or (l j,0). For  the genus zero component  of 
the left side meets the remainder of the curve iri only one point, and hence together 
with the exceptional curve forms an extraneous chain of rational components.  



Slopes of effective divisors on .~/Tg 347 

Contract ing these we see that  the fibre of the relatively minimal  model 0~.: F - ,  Y is 
the semi-stable reduction shown in (2.12). 

This completes our  construct ion of the cover G ~ A ~ Y, and our  proof  that  
the smooth  family F ~ Y of semistable curves exists. We summarize  our  descrip- 
tion in the 

Theorem 2.15. 1). There is a smooth relatively minimal family of  semi-stable curves 
of genus 9, 0v: F --* Y whose fiber over a point y ~ Y is a semi-stable model of the 
corresponding admissible cover shown in Diagrams 2.10-2.12. 

2) Let A be the surface obtained by blowing up p1 x Y at the nodes of  z of type 
(1). Then there is a surface G obtained from F by a sequence of blowups of points which 
lie over [ If, ~1)] and are smooth in their Of-fibers, and a finite covering G ~ A such 
that over points Y e [  Jr] of type (1) the fiber of the trianele 

A ~  ~Y 

(2.16) 

is the admissible cover Hy ~ By pictured in Diagram 2.12. 

w Computation of degrees and estimates for sg 

In this section, we will compute  the degrees ),z and 6 z of the Hodge  bundle A and 
the bounda ry  A restricted to the curve Z constructed in the previous section, and 
the ratio s z := 6z/2  z. In fact, it will be no more  work to determine the degree of 
each componen t  of A on Z. We begin by determining these degrees. 

Theorem 3.1. 1). 6 z = 2(b - |)ClOsing. 
2). i) The degree of  the restriction of  the class 6 o to the curve Z is 

2 ( b -  1)cMo (3.2) 

ii) For 1 <- i <- [ g / 2 ] ,  the degree of the restriction of the class ~i to the curve Z is 

2 ( b -  1)cOi (3.3) 

Proof All these assertions follow directly from the descriptions of the fiber of the 
family of  semistable curves 0v: F ~ Y in w We showed there that  over  each of the 
(b - 1 ) c points of  [ I x ] there are Nsi,g points y ~ Y for which the fiber Fy is singular. 
The point  in ,//7o corresponding to each of these singular fibers lies in a unique 
component  of the boundary:  in A o if the combinator ia l  da ta  corresponding to y lies 
in one of the Mo orbits of type 1 o, and in A i if it lies in one of the 01 orbits of  type l j, 
or lj.tg_ ~) for some j > 2. Moreover ,  since the family 0v: F--* Y is smooth  and 
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relatively minimal, the local intersection number  of the image Z = p (Y)  of Y in 
moduli  with the corresponding boundary  component  at the point p(y)  is simply 
the number  of nodes in the corresponding fiber Fy. As Diagram 2.12 shows, this 
number  is always 2 which yields the set of degrees above. [] 

The computa t ion  of the degree 2 z is more involved; it is for this that we have 
introduced in the previous section the family of curves G -~ A --* Y. Our  basic tool 
is a result due to Arakelov. 

Theorem 3.4. ([Arakelov]). Suppose that 0~: G --, Y is a smooth family of  nodal 
curves o f  9enus 9 parameterized by a complete curve Y, Jbr which the induced map 
p: Y -~  Z c ir is finite. Then the deyree 2z of  the pullback to Z via p of  the Hodye 
bundle A is given by 

( o 2 + 6  
deg 2z - (3.5) 

12 

where 6 is the sum over the points y ~ Y of  the number of  nodes of  the fiber Gy, and 
co = c 1 (co~/~) is the first Chern class of  the relative dualizin9 sheaf of  G over Y. [] 

We now proceed to carry out this computat ion.  The approach will be to express 
the surface G as a branched cover of the family A --. Yofra t iona l  curves and use the 
Riemann-Hurwi tz  formula; in order to fix some notation, let us recall the basic set- 
up from w 

G ---_. 

x 
A ~ PixY ~ Y 

PlxX ~ X 

(3.6) 

co = n*(coA/V) + R 

= n*(X*(co~,' • r / r )  + F)  + R 
= n * ( -  2X*(s) + F )  + R 

On  p l  x Y, we let s denote the class of a horizontal  section (i.e. s z = 0); we let a be 
a fixed collection o f b  sections o f P  1 x X over X and z = v -  l (a)  their pullback to 
P l  x Yas  in section 2. The surface A was obtained by blowing up the set l i t . t1 )] 
of nodes of  v of type (1); let us denote by F the exceptional divisor of this blow-up, 
and by ~ the proper transform ofz  on A. The map 7c: G ---, A is a k-sheeted branched 
cover. We denote by R the ramification divisor in G of this covering so that 
n * ( R )  = "~. 

We now compute. Let co = cl (coG/v) be the Chern class of the relative dualizing 
sheaf of  our  family. We have then 
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Taking self-intersections, we find that 

m2 = ( n * ( -  2g*(s) + F ) )  2 q- 2 ( n * ( -  2Z*(s) + F ) ) ' R  + R 2 (3.7) 

We will compute  the three terms on the right side of (3.7) in succession. The first 
term may be rewritten 

d e g ( r c ) . ( -  2Z*(S) + F )  2 = k F  2 (3.8) 

since s 2 = 0 and F is or thogonal  to the image of Z*- The second we may rewrite 
using the push-pull formula as 

2 ( -  2Z*(S ) + F ) . z . ( R )  = 2 ( -  2g*(s) + F ) . g  

= 2 ( -  2Z*(s) + F ) ' ( Z * ( z ) -  2V) 
= - 4(s .~) - 4 F  z (3.9) 

= - 4deg (v ) - ( s . a )  - 4F 2 
= - 4Nc - 4F 2 

In order to compute  the third term we will use the description given in w of the 
ramification divisor R of  rt, and of the complement /~  of R in the inverse image of 
the branch divisor g of ~. In w we saw that R and /~  are disjoint, except over points 
of [ I y ]  of  type (2, 2) and (3); over a point of type (2, 2) we saw that R and /~  had two 
points of  transverse intersection and over a point of type (3) they had a c o m m o n  
node, with all branches meeting pairwise transversely for an intersection multiplic- 
ity of 4. Over each of the (b - 1 )c points x ~ [ .-Ix], there lie ~71 points of Y of type 
(1), ]~2, 2 of type (2, 2) a n d  /~3/3 of  type (3), SO that we have 

( R ' R )  = (b - 1)c(2/~2, 2 + 4/~3/3 ) 

and using this and the fact that as divisors, 

~*(f )  = 2R + / ~  

and 

we compute  that 

Now, we have 

r t . ( R )  = ~? 

R 2 = R-(rc*(~?) - / ~ ) / 2  

= ~72/2 - (b - -  1 ) c ( / ~ 2 ,  2 q-- 2/V3/3 ) (3.10) 

~.Z = ( z _ _ 2 F )  2 
= (qg*(o-)) 2 + 4 F  2 

= 21Vbc + 4 F  2 

since q~ is an ~7-sheeted cover and a z = 2bc. This yields 

R 2 =  1Vbc + 2F 2 -  ( b -  1)c(~72. z + 2N3/3)  (3.11) 

Note that  since F is the exceptional divisor associated to the blow-up of  P 1 x Y at 
the points of [Iy,~l)], F 2 = - I~,o) = - (b - 1)c/V~. Thus, plugging in the values 
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from (3.8), (3.9) and (3.11) into (3.7), we find that  

0)2 = (b - 4 ) N c  + ( k -  2 )F  2 - ( b -  1)c(~72, 2 + 2~73/3 ) 

= (b - 4 ) N c -  (b - 1 ) c ( k -  2 ) N  1 - (b - 1)c(N2,2 + 2N3/3)  (3.12) 

Next we compute  ~ = 6~ / r .  By the construct ion of the family G, the fiber Gy of 
G over  each point of y of type (1) contains k nodes, while the fibers over  each point 
of type (2, 2) or (3) are smooth.  Hence 

6 = (b - 1)ck~71.  (3.13) 

We have thus 
2z = (6 + o)2)/12 

= ((b - 4)/Vc + (b - 1)c(2N 1 - / ~ 2 , 2  - 2N3/3) ) /12  

since ~7 = ~7~ + N2, 2 + ~73. We express this as the 

Theorem 3.14. 2z = ((b - 1)c(3N1 + /V3 /3 )  - 3 c N ) / 1 2  [] 

72(b - 1 )Nsing [] 
Corollary 3.15. s z = (b  - I)(9N~ + N3) - 9N 

(We note that adding tildas to the various N's in this expression leaves its value 
unchanged since by L e m m a  1.24 each term would be multiplied by the same factor: 
1 if k = 2 and k ! if k > 3. We shall leave them out for the remainder  of this section.) 

We now wish to discuss what  Corol lary  3.15 implies about  effective divisors in 
,/fla. The basic tool is the observation,  discussed in the introduction,  that  

If D ~ a2  - b6 is an effective divisor with s o := a / b  < Sz,  

then D contains 2 .  (3.16) 

For  the curves Z we are using Sz depends only on k and b or equivalently on k and 
9, in view of the R iemann-Hurwi t z  formula  which in our case reads 

b = 2(k + 9 - 1).  (3.17) 

To make  this dependence clear we shall denote the slope s z by so (k  ) defining b 
implicitly where it is used by (3.17). 

Two  types of conclusions result f rom (3.16). The  first is that  if 2 = Jg---g then 
s o > Sz.  To say that  2, = "/fro for the curves Z constructed in w simply means that  
the generic curve of genus 9 is expressible as a k-sheeted branched cover  of P 1. A 
s tandard  result f rom Brill Noether  theory is that  this is possible if and only if 
k > [(9 + 3) /2] .  (Here [ a ]  denotes the greatest  integer in a). In other  words, 

sg > sup (so(k)) (3.18) 
k _>_ [(,q + 3)/2] 

R e m a r k .  When 9 is odd and k = (9 + 1)/2, 2 is the divisor of k-gonal  curves 
considered in [ H M ] .  In this case, (3.16) implies that an effective irreducible divisor 
has slope greater  than s o ( k )  or is the k-gonal divisor. In the latter case [ H M ]  shows 
that  the divisor has slope greater  than 6 which, as we shall shortly see is much 
larger than so(k) .  Therefore,  in (3.18) we could take the sup over  all k > [(9 + 2)/2]. 
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One immediate  consequence of (3.18) is that: 

Corollary 3.19. For  all g > 2, sg > O. [] 

In view of the connection to the Schot tky problem mentioned in the introduc- 
tion, it is natural  to ask whether (3.18) leads to a positive bound for s o uniform in g. 
The answer is a lmost  certainly no. We believe that  

Based on calculations of so(k ) for small 9 and k done on an IBM-370 at the 
University of Toron to  and on a Ridge-32 in the Mathemat ics  Depar tment  at 
Columbia  University we would guess the implied constant  to be about  60. Since we 
have no applicat ion for (3.20) we shall not  try to give a proof  here. Instead we give 
an heuristic a rgument  which brings out some ideas we will need for later estimates. 
Fix two transposi t ions tl and t 2 in S k and let L = L ( k ,  b) be the number  of 
elements of I N ( k ,  b)]  of  the form t = (t 1 , t2, t*). The key assumpt ion  we will use is 
that L / N  is independent  of the choice of t 1 and t2 to first order in k. More  precisely, 

= + O ( k 3 ) .  (3.21) 

Assume that  b ~> k for a moment .  
[S~l~(k, b)]  is clear: indeed, the ratio 

Then the corresponding s ta tement  about  

is just that  predicted asymptot ical ly  by Corol lary  1.22. On the other hand, it 
follows easily from Proposi t ion 1.11 that  for b ~> k, 

S~l~'~kl(k'b) ( ~ )  
S~l~(k,b)  - 1 + 0  . 

Recalling that  N is by definition equal to S(1).(k), this leads quickly to a p roof  of 
(3.21) when b ~> k. The difficulty is that  in the geometr ic  applicat ion at hand we 
want k > [(g + 3) /2]  and b = 2(k + g - 1) which together  force b to lie roughly 
between 2k and 6k. In  this range, the asymptot ical ly  trivial terms are quite 
significant (cf. Remark  3.23), but while (3.21) fails the estimates it yields are in rough 
agreement  with our  numerical  evidence. 

We will also need to assume that  Nsing/N1 = 1 + O( I / k ) .  For  b ~> k, this again 
follows by combining the combinator ia l  descriptions of N~i,g and N from w t with 
Theorems 1.11 and 1.21. 

These estimates quickly yield (3.20) as follows. The number  of pairs ( t l ,  t2) 
whose product  is trivial is ( k ) ( k  - 1)/2 and the number  whose product  is a 3-cycle 
is (2k - 4 ) (k) (k  - 1). Hence (3.21) immediately implies that  to first order N ( k ,  b) 
= ( k ) ( k  - 1)Nl (k ,  b ) / 2  and that  N 3 ( k ,  b)  = (k - 2)N1 (k, b). Likewise the second 
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assumption allows us to replace Nsing by N1 to first order. Inserting these estimates 
into (3.15) and cancelling the common factor of N 1 gives, 

72(b - 1) 
s~ = ( b -  1)(2k + 5 ) -  (9/2)(k)(k  - 1) 

Setting k equal to the minimum permissible value [(g + 3)/2] allowed in (3.18) 
immediately gives s o = O(1/9). 

Remark 3.23. With a little more work one can see that for fixed g, the leading term 
on the right hand side of(3.22)is a decreasing function ofk for k > [(g + 3)/2] and 
for this k equals 576/59. Comparing this with the corresponding numerical values 
for the right hand side of(3.15) which are about 60/g gives a rough idea of how far 
off(3.21) is in the geometric range. The difference is only apparently nugatory for it 
means that our numerical results give a proof that o//lg has Kodaira dimension 
- ~ only for g < 10, not for (4 < 15 as would follow from the heuristics. 

The second type of conclusion to which (3.16) leads is that divisors of suf- 
ficiently small slope contain the locus 2 of deformations of certain of our curves Z. 
In particular, we find immediately that 

Corollary 3.24. I f  sD < so(k), then D contains the k-gonal locus. [] 

Here we can use asymptotic information to better effect. The results from w l which 
we used above to determine the asymptotic behaviour in k of certain of the N's 
under the assumption that b >> k yield very nice estimates for k fixed and b tending 
to oo. For  example, Corollary 1.22 immediately implies that the proportion of the 
elements of [S~l)(k, b)] which begin with a fixed pair of transpositions t t and t 2 can 
be made as nearly independent of this pair as we wish by taking b sufficiently large. 
With a little more work based on Proposition 1.11 we obtain the corresponding 
result for [ N ] .  Similarly, as b increases the ratio of Nsi,g to N 1 approaches 1. But 
assuming b >> k is equivalent, in view of Riemann-Hurwitz,  to assuming that g >> k. 
Therefore the argument preceding (3.22) shows that if we increase g keeping k fixed, 

so(k) and 

72(29 + 2k - 3) 

(2a + 2k - 3)(2k + 5 ) - ( 9 / 2 ) ( k ) ( k  - 1) 

approach one another. Raising g again if necessary we find that 

Corollary 3.25. l f  g >> k > 2, than any divisor on J~o of slope less than 72/(2k + 5) 
contains the k - g o n a l  locus. [] 

For small k the results ofw permit us to compute so(k ) in closed form and get 
sharper results valid for all g. We have carried this out below for k equal to 2, 3 and 
4 below and have summarized the results in Table 3.26: 
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Table 3.26 
k =  2 3 
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S(1 ~ 1 3 b - 1 1126b + ~ 2b 

N 1 3 b - 1 _ 3  i�89 b--~3 b - ~ 2  b 

N1 1 3b-2--  3 ~Z6b-- 43b + ~2b-- 60 

Nsing 1 3 b-I  - -9  ~�89 b --~83b + ~2 b -- 12(b2 -- b + 2) 
Sa 0 2.3 b- 1 26 b 

N 3 0 2"3 b-2 ~86b- ~3 b 

Subst i tut ing these values in the formula  for so(k) we find that  

Corollary 3.27. 1) so(2 ) = 8 + 4 /0  

72(20 + 3)(320 +2 _ 9) 
2) so(3 ) = (29 + 3)(329+4 + 2"320+2 - 2 7 ) -  (320+5 - 27) 

(29 + 5)(6 b - 64(3 b) + 27(2 b) - 864(b 2 - b + 2)) 
3) so(4 ) = (29 + 5 ) ( ~ 6  h 4"4"2b ~ 7 2 b  - -  36 b ~ 2  b [] - ~ J  + - 540) + 12(3 b) + 

Observe  that  the case k = 2 agrees with what  we know a priori ,  since the 
relat ion 

c5 = (8 + 4 / y ) - 2  

holds modu lo  the classes 61 , 62 . . . .  in the Picard  group  of the modul i  functor  for 
hyperel l ipt ic  curves (cf. [ C  - HI ) .  Note  that  the leading term 8 --- 72 / (2 .2  + 5) in g 
of so(2 ) is as predicted by Coro l l a ry  3.25; as is the leading term of s9(3): 

72(29 + 3) 320+2 72 

(29 + 3)(320 + 4 + 2(329 + 2)) 11 

and the leading term of so(4 ). A moment ' s  inspect ion of this formula  will convince 
the reader  that  s0(3 ) is always at  least as big as this est imate.  We therefore have 
shown that  

Corollary 3.28. Let 9 > 3 and let D be an effective divisor on ~'o- 
l) I f  s D < 8, then D contains the hyperelliptic locus. 
2) I f  s D < 72 /1 t ,  then D contains the trigonal locus. [] 

When g > 23, we may  apply  this result to divisors in the p lur icanonica l  l inear  series 
on .,~q which by [ H M ]  are  of s lope 13/2 to get 

Corollary 3.29. The common base locus of  the pluricanonical linear series on Jff  o 
contains the hyperelliptic and trigonal loci. [] 

Final ly  for small genera these results combined  with the upper  bounds  for s o 
discussed in the in t roduc t ion  al low us either to determine  sg or to give very sharp 
est imates for it. 
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Corollary 3.30. 0) For g = 2, s o = 10. 
1) For y = 3 we have s o = 9. Moreover  the only effective irreducible divisor o f  

slope less than 28/3 on o~3 is the divisor o f  hyperelliptic curves. 
2) For .q = 4, we have 

53 46,759,680 
= > s 4 > 8.4242 8.8333. . .  7 = = 5,550,633 

3) For 9 = 5, we have s o = 8. Moreover,  the only effective irreducible divisor o f  
slope less than 29524/3659 ( ~  8.07) on ~/~s is the trigonal divisor. 

4) For 9 = 6, we have 

97 15982387645104 
= - -  > s 6 > ~ 7.328409 8 . 0 8 3 3 3 . . .  12 = = 2180880964555 

Prgo f For  genus 2, the lower bound follows from (3.18) and (3.27) and the upper 
bound  from I-C-H]. For  genus 3, the remark following (3. t 8) shows that  if D is an 
effective irreducible divisor on d73 then either s o > s 3 (2) or D is the hyperelliptic 
divisor. By (3.27.1), s 3 (2) = 28/3. Since [D]  and [-HM] show that the hyperelliptic 
divisor has slope 9, this proves both assertions. In genus 5, the same argument  
shows that an effective irreducible divisor D on oAT 5 of slope less than s 5 (3) is the 
trigonal divisor. By (3.27.2), s 5 ( 3 ) =  29524/3659 while by [ H M ]  the trigonal 
divisor has slope 8 yielding both assertions. 

The lower bounds  in genera 4 and 6 follow in each case by straightforward 
application of(3.18) and (3.27). As for the upper bound,  this comes by exhibiting an 
explicit effective divisor in each moduli  space. In the case 9 = 4, we use the divisor 
in ~ ' 4  of  curves whose canonical model lies on a singular quadric surface in P 3 (or, 
equivalently, that have a vanishing theta-nuU; or, equivalently, have one rather 
than two pencils of degree 3) and in case g = 6, we use the divisor in ~/{6 of curves C 
possessing a pencil [D I of degree 4 satisfying H ~  ~ c ( -  2D)) ~ 0 (equivalently, 
the closure of the locus of  curves possessing fewer than 5 pencils of degree 4). The 
classes of both divisors are computed  in the paper [E HI.  [] 

We conclude with two remarks. First, that  the values found for s 2 , s 3 and s 5 are 
exactly those of  Conjecture (0.1). Secondly, that  our  lower bound for s4 is greater 
than 8.4 = 6 + 12/5: i.e. when 9 + 1 is prime we cannot  in general hope for 
equality in (0.1). 
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